
On the Latency of USB-Connected Input Devices
Raphael Wimmer

University of Regensburg
Germany

raphael.wimmer@ur.de

Andreas Schmid
University of Regensburg

Germany
andreas.schmid@ur.de

Florian Bockes
University of Regensburg

Germany
florian.bockes@ur.de

ABSTRACT
We propose a method for accurately and precisely measur-
ing the intrinsic latency of input devices and document mea-
surements for 36 keyboards, mice and gamepads connected
via USB. Our research shows that devices differ not only in
average latency, but also in the distribution of their laten-
cies, and that forced polling at 1000 Hz decreases latency
for some but not all devices. Existing practices - measuring
end-to-end latency as a proxy of input latency and report-
ing only mean values and standard deviations - hide these
characteristic latency distributions caused by device intrin-
sics and polling rates. A probabilistic model of input device
latency demonstrates these issues andmatches ourmeasure-
ments. Thus, our work offers guidance for researchers, en-
gineers, and hobbyists who want to measure the latency of
input devices or select devices with low latency.

CCS CONCEPTS
• Human-centered computing→ Interaction devices; Lab-
oratory experiments; • Hardware → Communication hard-
ware, interfaces and storage.

KEYWORDS
latency, lag, USB, input, input devices, model
ACM Reference Format:
Raphael Wimmer, Andreas Schmid, and Florian Bockes. 2019. On
the Latency of USB-Connected Input Devices. In CHI Conference
on Human Factors in Computing Systems Proceedings (CHI 2019),
May 4–9, 2019, Glasgow, Scotland UK. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3290605.3300650

1 INTRODUCTION
The amount of latency (or lag) in human-computer inter-
faces affects how effectively, efficiently, and satisfactorily
users interact with a computer system. As shown by Ng et
al. [21], users are able to detect the effects of latency in a

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive Version of Record was pub-
lished in CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK , https://doi.org/10.
1145/3290605.3300650.

Figure 1: Latency of input devices varies significantly between
devices. This becomes especially obvious when plotting the la-
tency distributions gained from multiple measurements (blue).
Reporting such latency distributions instead of average latency
exposes individual quirks and common patterns (bottom).When
forcing a 1000 Hz USB polling rate (orange), average latency and
latency variance shrinks for most (top) but not all devices (mid-
dle).

user interface, down to an overall latency of 2 ms. In prac-
tice, a maximum latency of 20 ms for touch input and 2
ms for dragging actions is desirable [9]. High latency dis-
proportionally increases task completion time for pointing
tasks by slowing down feedback loops [18]. In certain com-
puter games, such as first-person shooters or real-time strat-
egy games, the amount of latency a user experiences de-
cides over virtual life or death [12]. In experimental psychol-
ogy, researchers conducting reaction time studies are con-
cerned about the latency of computers tainting the results
[24]. When controlling surgical robots or vehicles, spikes
of high latency may cause critical situations and real phys-
ical harm [25]. Therefore, reducing and controlling latency
is of great importance for designers of such systems. Attig
et al. give a good overview of recent findings on the effect
of latency on human performance [2].
In order to characterize or reduce the overall latency of a
system, it is necessary to isolate and measure individual
sources of latency, such as input devices, output devices,
network connections, or applications. In recent years,
several researchers and hobbyists have started measuring
the latency of input devices. However, we have found that
previous research reports imprecise or incorrect latencies,

https://doi.org/10.1145/3290605.3300650
https://doi.org/10.1145/3290605.3300650
https://doi.org/10.1145/3290605.3300650


incorrectly uses overall latency as a proxy for input latency,
and neglects the important effects of polling rate and phase
on latency.
We present a simple method for precisely and accurately
characterizing the latency of common input devices, such
as computer mice, keyboards, joysticks and gamepads. To
achieve this, we explicitly choose three limitations:
Focusing only on USB-connected input devices makes it
easier to compare devices and reason about technical issues.
While sensorsmay be connected to a computer through vari-
ous interfaces (e.g., I2C, SPI, UART), the Universal Serial Bus
(USB) [27] is by far most commonwired peripheral interface
on desktop computers, notebooks, and mobile phones at the
moment. The wide choice of available input devices allows
users and designers to actually choose an input device based
on its latency.
Limiting latency measurements to binary button presses
allows for more accurately characterizing input latency. Un-
like mouse or joystick movement, button presses are easy to
reproduce repeatedly, have a quite clearly defined starting
point (when electrical contact is made), and have no inher-
ent noise. Furthermore, mice, keyboard, and gamepads all
contain buttons, allowing to compare their latency.
Ignoring the mechanical latency of a button press
improves accuracy, precision and reproducibility of the
measurements.The amount of time between a user pressing
a button and it closing an electrical contact is undoubtedly
an important characteristic of an input device. However,
as Oulasvirta et al [22] show, pressing a button is an
inherently complex neuromechanical process. Thus, it is
conceptually hard to define at which point in time a button
press is initiated. Furthermore, humans are quite bad at
precisely repeating the same movement thousands of times.
For conducting the measurements, we implemented LagBox,
a simple Raspberry-Pi-based tool that measures latency
of USB-connected input devices by repeatedly electrically
triggering a button on the device and detecting the input
event on the Raspberry Pi. LagBox can automatically
conduct thousands of latency measurements per input
device, reproducibly collecting more data in a shorter time
period and with higher accuracy than manual approaches.
Our measurements show significant differences between
devices and highlight some peculiarities and commonalities
(Figure 1). Most importantly, we found that latency distri-
butions differ so much between devices that only reporting
average latency and standard deviation may be misleading.
In order to better understand and explain how these latency
distributions are generated, we developed a probabilistic
simulation of input latency that allows reproducing many
of the latency distributions we observed.

Our work is intended to provide guidance and tools for re-
searchers, practitioners, and enthusiasts who want to mea-
sure or improve latency. The main contributions in this pa-
per are: a model of latency in input devices, a set of guide-
lines for measuring and reporting latency, a robust method
for measuring latency of USB-connected input devices with
high accuracy and precision, and a collection of measure-
ments illustrating important characteristics of input device
latency.
This paper is organized as follows: In the next section, we
shortly introduce basic concepts of Latency in Interactive
Systems. Afterwards, we give an overview of Related
Work, present A Model of USB Input Latency, and discuss
challenges when Measuring and Reporting Input Latency.
We describe the implementation of our measuring system,
LagBox, and present Latency Measurements, for 36 USB
input devices gathered with LagBox. After a Discussion of
limitations and general insights that can be gained from
our measurements, the paper ends with a Conclusion and
Outlook on future work.

2 LATENCY IN INTERACTIVE SYSTEMS
As famously described by the Card et al.’s human processor
model [4], interactive systems are part of a continuous feed-
back loop wherein the user performs an input action which
is received and processed by the system. The system’s out-
put is in turn perceived by the user who reacts to it. La-
tency in an interactive system slows down these feedback
loops and thus increases the time needed to perform a task.
The most important latency metric for interactive systems
is end-to-end latency, also sometimes called system latency
or overall latency. It usually refers to the delay between user
input and perceivable system output1. We define end-to-end
latency as the amount of time that passes between the user
starting to change a physical statewhich ismonitored by the
system (e.g., pressing a button on a keyboard) and the sys-
tem starting to output something in response to the user’s
action (e.g., as a change of screen content on a monitor, au-
ditory, or haptic feedback). In order to reduce end-to-end
latency, its individual components need to be analyzed and
reduced.These partial latencies can be roughly grouped into
input latency, processing latency, and output latency. We de-
fine input latency as the delay between the beginning of a
physical state change (e.g., button press) and an application
receiving notice of this state change. Processing latency is
the delay between an application receiving notice of a phys-
ical or digital state change and the application handing over
the results of the state change to the operating system (or

1A detailed description of the many individual steps involved when typing
a search term into a web form and pressing Enter can be found at https:
//github.com/alex/what-happens-when

https://github.com/alex/what-happens-when
https://github.com/alex/what-happens-when


computer if no OS is involved). Processing latency may also
typically include network latency, disk latency, etc. Output
latency describes the delay between the output data being
handed over to the operating system and it actually being
presented to the user.
This rather crude grouping has the advantage that it mirrors
the typical separation of concerns in developing, using, and
studying interactive systems. Rarely do application devel-
opers also implement input/output hardware, correspond-
ing operation system drivers, or input/output frameworks.
As most interactive systems allow for adding or exchang-
ing individual input or output devices, users interested in
reducing the end-to-end latency of their system can choose
appropriate input and output devices independently from
the applications. As we discuss later in this paper, measur-
ing just end-to-end latency does not allow inferring the ac-
tual latency of a component. Only by focusing on individual
parts, we are able to identify why and how latency varies. In
the remainder of this paper we focus on measuring input
latency.

3 RELATEDWORK
Measuring input latency has been a pastime of researchers,
engineers, and hobbyists for decades. The latency measure-
ment methods employed in previous research can be cate-
gorized in the following ways:
• directly measuring partial latency vs. using end-to-end
latency as a proxy metric

• destructive vs. non-destructive rigging of input devices
for latency measurements

• reporting absolute latency of a device vs. reporting rela-
tive latency compared to other devices2

3.1 End-to-End latency on Desktop Computers
Many previously presented approaches measure end-to-
end latency, i.e. the time difference between an input event
(e.g., the user pressing a button) and an output event (e.g., a
change of screen contents). By varying only one part of the
processing pipeline - such as the input device that is being
used - one may indirectly determine latency differences
caused by these changes und thus non-destructively mea-
sure relative, partial latency. This approach is often done
using a video camera [10]. Industrial cameras and high-end
mobile phones offer frame rates of several hundred or
thousand frames per second, allowing for measuring
latency with high precision. However, accuracy of such
approaches is problematic. Video footage needs to be
manually analyzed in order to find the point in time where

2i.e., the difference in latency between an input device and either a refer-
ence device (whose absolute latency does not need to be known) ormultiple
other devices.

an input event occurs. In many cases, it is not easy to
precisely define the beginning of an input action. Casiez et
al. [5] - who also give a good overview of related work on
latency - present a non-destructive approach for measuring
absolute end-to-end latency of a computing system. To this
end, they place a computer mouse on a display that shows a
moving pattern which stimulates the mouse into reporting
movement. Measuring the time between pattern change
and mouse event gives an estimate of end-to-end latency.
The authors report results of measurements with different
graphical toolkits and for different computer mice. In a later
publication, Casiez et al. [6] present another method for
measuring end-to-end latency. They attach a piezoelectric
vibration sensor to the user’s finger to capture tapping and
button-pressing. An application running on a computer
changes screen contents when receiving an button-press
event. A photodiode is used for capturing this screen
response. An Arduino board captures input from both
sensors and measures the time between both events. While
the authors’ focus is on presenting a measuring method,
they mention that output latency makes up most of the
end-to-end latency they measured3. Casiez et al. report an
input latency of 12 ms for a computer mouse polled at 125
Hz and 2 ms for a gaming mouse polled at 1000 Hz.

3.2 End-to-End Latency on Touch Screens
Deber et al. present a similar tool for measuring the end-to-
end latency of deviceswith touch screens [8].Their “Latency
Hammer” uses a metallic probe that is placed on a capaci-
tive touch screen. When connecting the probe electrode to
ground, a touch event is simulated. A photodiode connected
to the “Latency Hammer” captures the screen response.
Mooney and Koudritsky, engineers at Google, have pub-
lished tools for measuring input latency of touch screens -
Quickstep4 and its successor WALT5. Both employ simple
custom hardware which senses input events in the physical
domain. The difference between the timestamps of the
physical input event and of the digital input event (as
recorded by the operating system’s kernel) gives the
latency of the touch screen. Using these tools, Mooney and
Koudritsky found that typical tap latencies for touchscreens
in mobile devices are in the range of 10 - 45 ms6.

3Leo Bodnar Electronics sells a Video Signal Input Lag Tester which al-
lows for measuring the latency of TVs and computer monitors. http://www.
leobodnar.com/shop/?main_page=product_info&products_id=212
4https://docs.google.com/document/d/1B3GfZkwAfHlQE5kAuHcn-wq8I -
7D5UF2Ap7C_CYk5co/
5https://github.com/google/walt
6Mark Koudritsky, personal communication, 2016-04-12.

http://www.leobodnar.com/shop/?main_page=product_info&products_id=212
http://www.leobodnar.com/shop/?main_page=product_info&products_id=212
https://docs.google.com/document/d/1B3GfZkwAfHlQE5kAuHcn-wq8I-7D5UF2Ap7C_CYk5co/
https://docs.google.com/document/d/1B3GfZkwAfHlQE5kAuHcn-wq8I-7D5UF2Ap7C_CYk5co/
https://github.com/google/walt


3.3 Input Latency
While the aforementioned research allows for indirectly
measuring the latency of input devices, few researchers
have directly measured input latency. Most notably, Plant
measured the input latency of eight computer mice, a
keyboard, and a response box7 connected to a computer via
the serial port, PS/2 or USB [24] . An oscilloscope was used
to measure the delay between a (simulated) button press on
the device and a signal being emitted to the computer. Each
measurement was repeated 80 times. Latencies recorded
ranged from 6.5 ms to 60 ms for the mice. The keyboard had
a latency of 28 ms, whereas the response box had a latency
of only 1 ms. Plant et al. also report on previous attempts
to measure mouse latency ranging back to 1990. Plant has
published several other papers on this topic over the last
decade, urging psychologists to measure and control input
latency in their experiments [23].
Luu conducted experiments measuring the latency of mul-
tiple keyboards by manually triggering keys and inspecting
the output of a logic analyzer attached to the USB cable [16].
The measurements are rounded to 5 ms increments and Luu
estimates an error in the 1 ms to 10 ms range. Luu also re-
ports on further experiments and sources concerning gen-
eral latency of computers and terminals [15,17].
In parallel to academic research, computer gaming enthu-
siasts have explored ways to to measure the latency of in-
put devices. Overclock.net forummember uaokkkkkkkk has
compiled a comprehensive overview of these approaches8
A very simple, non-destructive way to measure the differ-
ence in latency between two computer mice is to connect
both to the same computer and simultaneously press but-
tons on both mice. This is usually done by placing the left
mouse button of one mouse on the right mouse button of
the other mouse and rapidly pressing both together. Input
device manufacturer Bloody offers a Windows application
for this task9. The same approach also works for joysticks
and keyboards. While simple and non-destructive, this ap-
proach requires a secondmouse to be available and does not
measure absolute latency. Furthermore, if the spring of the
micro-switch in the first mouse is stronger than the spring
in the second mouse, the second mouse button will always
be depressed earlier, resulting in a systematic measurement
error. In addition, the approach requires repeated manual
action. This introduces additional random and systematic

7A response box is an external computer peripheral used for reaction time
experiments. It usually contains multiple buttons and/or lights and allows
for low-latency, high-accuracy/-precision time measurements.
8http://www.overclock.net/t/1572872/firmware-added-button-delay-
testing -attempts-tapping-mouse-buttons-lightly (most information is
hidden behind the “spoilers” links)
9KeyResponse PK, http://www.bloody.tw/en/download.php

measurement errors depending on the user conducting the
experiment.
Since 2013 the Japanese blog rafalog10 has measured the
relative latency of more than 50 mice by soldering a single
push-button to the micro-switches of both a reference
mouse (Logitech G300) and a mouse to be tested. Pressing
this button simultaneously closes the electrical circuits of
both mice, mitigating the major limitation of the aforemen-
tioned Bloody approach.The rafalog approach is destructive
and only reports relative latency. However, as they use
a Logitech G300 as reference mouse in all tests, whose
absolute latency we report in this paper, absolute latencies
for the other mice can be easily calculated. A commenter
on rafalog, Chou Star, seems to have implemented a system
that is quite similar to our LagBox11. They use the GPIO pin
on a Raspberry Pi to toggle the electrical circuit of a mouse
button while the mouse is connected to the Raspberry Pi. A
video shows latency values for the G300 which are in the
3 - 5 ms range, roughly similar to the ones we measured.
Another blogger, sousu, conducted absolute, end-to-end
latency measurements for over 50 mice with another
destructive method12. They soldered a phototransistor to
the contacts of the mouse button and glued it to a computer
screen. The measuring software turned the screen white
causing the phototransistor to become conductive and trig-
ger the mouse button. The latency between screen update
and mouse event was measured. Latency values seem to
be a few milliseconds higher than our measurements as
end-to-end latency was measured.
Overall, we found that only few researchers and hobbyists
investigated the latency of input devices so far. Most exist-
ing approaches either use end-to-end latency as a proxy for
input latency or measure only relative latency. In general,
only average latency, and sometimes standard deviation, is
reported. As discussed in the following sections, both prac-
tices distort the actual latency profiles of input devices.

4 A MODEL OF USB INPUT LATENCY
When conducting preliminary latency measurements with
our system, we were surprised by the latency distributions
some devices exhibited (Figure 1). In order to better under-
stand the observed data, we developed a simple model that
helps to explain how complex latency distributions may
arise from a combination of individual latency sources.

10http://web.archive.org/web/20160224102835/
https://utmalesoldiers.blogspot.de/2013/02/114.html
11https://www.youtube.com/watch?v=u9z62MKX_Wg
12http://sousuch.web.fc2.com/DIY/mouse_latency/index.html

http://www.overclock.net/t/1572872/firmware-added-button-delay-testing-attempts-tapping-mouse-buttons-lightly
http://www.overclock.net/t/1572872/firmware-added-button-delay-testing-attempts-tapping-mouse-buttons-lightly
http://www.bloody.tw/en/download.php
http://web.archive.org/web/20160224102835/https://utmalesoldiers.blogspot.de/2013/02/114.html
http://web.archive.org/web/20160224102835/https://utmalesoldiers.blogspot.de/2013/02/114.html
https://www.youtube.com/watch?v=u9z62MKX_Wg
http://sousuch.web.fc2.com/DIY/mouse_latency/index.html


MC
USB
OS
App

BTN

latency

time

Figure 2: Simplified illustration of the path an input takes from
button press to the input event arriving at the application. Each
step adds constant latency (black bar).Themicrocontroller (MC),
USB, and operating system (OS) also add varying amounts of la-
tency depending when an event is handed over within a scan-
ning/polling interval. Overall input latency therefore varies sig-
nificantly depending on when the button is pressed.

4.1 Types of Latency in a Button Press
When a user presses a button on an USB-connected input de-
vice, the following individual steps happen, each with its as-
sociated latency (approximate orders of magnitude in paren-
theses):

1. the user first touches the input device,
2. the user overcomes activation force and triggers a me-

chanical switch (~ 20 ms [11]),
3. the mechanical switch closes an electrical circuit,
4. the closed circuit is detected by the device’s controller

chip (~ 1-20 ms),
5. after processing the sensor data the chip puts data into

a USB buffer (~ 1-20 ms),
6. the host computer queries the USB device for new data

(~ 1-10 ms),
7. the device sends data over the wire (0.001 ms),
8. the host computer notifies the OS about new data from

the USB (0.001 ms),
9. the OS has processed the data and made it available to

userland libraries (0.01 ms),
10. user code has received an input event from a userland

library (0.01 ms).

The overall latency of a button press is therefore in the range
between 23 and 70 ms, depending on user, button, and con-
text. In this paper, we focus on non-mechanical latency com-
prised by steps 4 - 10.While each individual step contributes
latency, the amounts and distributions of these partial laten-
cies are very heterogeneous and device-specific.
Figure 2 shows a slightly simplified example of the involved
latencies.

Detecting a closed switch (step 4) may be either done via a
hardware interrupt in the controller or by regularly scan-
ning the state of the switch. In general, hardware interrupts
are consistently processed within microseconds, adding
constant latency. Scanning introduces variable latency: if
the button is pressed right before the controller checks its
state, latency is low; if the button is pressed immediately
after the controller checked its state, the controller will
only find out about this the next time it scans the state of
the switch. In most cases, hardware interrupts provide little
benefit and add complexity to the code. As far as we know,
most USB input devices sequentially scan switch state in
the main loop of the controller code13.
Processing the input in the device’s controller (step 5) may
take constant time in theory. In practice, different code
paths may be taken which introduce a set of distinct con-
stant latencies. For example, debouncing14 or integrating
the state of other sensors may require a variable amount of
time.
These three types of latency - constant latency, variable la-
tency, and a set of distinct latencies may be used to char-
acterize each processing step. Of course, in reality constant
latency is not perfectly constant but shows some spread due
to physical noise. Variable latency may exhibit different dis-
tributions, most commonly uniform or normal distributions.
While processing of USB events on the host computer
(steps 8-10) usually occurs within microseconds, USB
polling (steps 6-7) introduces variable latency up to several
dozen milliseconds and thus warrants closer inspection.

4.2 The Role of the USB Polling Rate
HID-class USB input devices [28], such as keyboards,
mice, joysticks, and gamepads, communicate with a host
computer using interrupt transfers. Despite their name,
interrupt transfers do not actually rely on hardware in-
terrupts. Instead, the host computer periodically polls the
USB device for new data or sends new data to the device
[27]. In contrast to other transfer types, interrupt transfers
are guaranteed a maximum upper latency limit. A device
endpoint may specify a polling interval via its bInterval
field which is transmitted during registration of the device
with the host. This polling interval specifies how much
time may pass at maximum between two polling events.

13If an input devices has many keys, such as a keyboard, matrix scanning is
employed.This implementation choice does not substantially affect latency,
however.
14Themetal contacts in mechanical micro-switches tend to bounce slightly
after impact, resulting in multiple short interruptions of the contact. The
controller firmware has to filter out these ‘echoes’, e.g. by not accept-
ing repeated button presses for a limited time. Some device manufactur-
ers employ optical switches which do not require debouncing (e.g., http:
//www.bloody.tw/en/Products.php?pid=28, http://www.wooting.nl/)

http://www.bloody.tw/en/Products.php?pid=28
http://www.bloody.tw/en/Products.php?pid=28
http://www.wooting.nl/


According to the USB HID specification, for high-speed
input devices (connected via USB 2.0) the polling interval
may be in the range of 1 to 255 ms [28:69]. For low-speed
input devices (USB 1.1), the minimum polling interval is 10
ms [27:51]. The actual polling interval may be shorter but
is guaranteed to be not longer. On Windows, the maximum
polling interval is limited to 32 ms [19]. In practice, polling
intervals are rounded down to the next lower power of
two, at least on Windows [19] and Linux [14]. This allows
for better allocation of available bandwidth. Therefore, an
USB HID device specifying a desired polling interval of 10
ms is usually polled every 8 ms, i.e. with a polling rate of
125 Hz. If the polled device does not have any new data
available in its USB buffer, it sends a NAK packet. It is
therefore possible and specification-conforming to poll a
HID device at a higher rate than specified. For example,
the usb_hid driver in the Linux kernel allows specifying
a custom polling rate for HID mice and joysticks. Similar
functionality is offered by vendor-provided and inoffical
Windows tools. It is primarily used by gamers to reduce
input latency. We investigated the effects of polling devices
with the maximum rate of 1000 Hz. Results are described in
the Latency Measurements section.
An important aspect of USB devices being polled at fixed in-
tervals is that their latency in no small part depends on the
polling rate. Even if an input device rapidly detects and pro-
cesses a button press, the host computer only learns about
the button press when it polls the device the next time. How-
ever, a low polling rate results not only in higher overall la-
tency but also in significant variance in latency. This issue
is rarely acknowledged at all in studies of input latency. An-
other important aspect to consider is polling phase of each
latency component, i.e. the relative displacement between
the scanning/polling intervals of devices within a process-
ing chain. Overall input latency may vary a lot depending
on the phase difference between the involved polling inter-
vals. We describe both effects in more detail in the following
section.

4.3 Simulating Input Device Latency
In order to verify whether our understanding of input de-
vice latency is correct, we developed a simple programmatic
model of input latency for USB devices. As most device man-
ufacturers do not publish the source code for their firmware,
input devices are essentially black boxes. However, based on
the assumptions described above and example source code
providedme.g., by Cypress Semiconductors15, onemay build
amodel of a typical input device. Such amodel has three pur-
poses. First, the model allows us to validate our understand-
ing of input device latency by comparing predicted latencies

15http://www.cypress.com/file/103181/download

a)

b)

c)

MC latency: 3 / 7.7 ms
MC scan rate: 300 Hz
USB poll rate: 1000 Hz

MC latency: 3 / 7.7 ms
MC scan rate: 300 Hz
USB poll rate: 125 Hz

MC latency: 4.7 / 9.4 ms
MC scan rate: 200 Hz
USB poll rate: 1000 Hz

Figure 3: Simulations of input latency for a controller with two
code paths. Small changes in partial latencies, scanning rate,
polling rate, and polling phase produce distinctly different la-
tency distributions.

with empirically measured latencies. Second, the model al-
lows for predicting latency distributions of input devices if
components are known. Third, the model allows to find the
latency properties of input devices by adjusting model pa-
rameters, such as keyboard scan rate, until the predicted la-
tencies match measured latencies. In this paper, we focus on
the first use case, showing that a simple combination of par-
tial latencies may produce complex latency distributions.
In our model, each major latency component - button,
microcontroller, USB bus, and OS - is implemented as a
Python object that adds intrinsic latency and polling-related
latency. The intrinsic latency can be either a constant value
or randomly chosen from a set of constant latencies (which
may exhibit a certain distribution as described above).
Furthermore, each component has a polling/scanning
rate and a polling/scanning phase. From these values, the
polling-related latency is determined. When running the
simulation, a randomized start time is passed to the button
object which adds its intrinsic and polling-related latency
and returns a new timestamp. This timestamp is in turn
passed along by the microcontroller, USB, and OS objects
which each add their own intrinsic and polling-related
latency.
Figure 3 shows the latency distribution for 2000 simulated
measurements. In this instance, the microcontroller had two
“code paths” with different latency from which one was cho-
sen at random. While the distinct latency of each code path
is clearly visible in Figure 3a - where the USB polling rate
was set to 1000 Hz / 1 ms, the latency distribution for polling
at 125 Hz / 8 ms (Figure 3b) hides the effect of different code
paths on latency. Figure 3c shows the simulated latency dis-
tribution for a controller with slightly different values for
latency and scanning rate.

http://www.cypress.com/file/103181/download


Figure 4: Actual latency measurements for two gamepads visu-
alized in five different ways: a) bar charts, b) box plots, c) violin
plots, d) histograms with kernel density estimates and rug plots,
e) swarmplots. Only swarm plots and histograms faithfully show
peculiar latency characteristics.

Adding many partial latencies which have a uniform or
normal distribution always leads to a more or less normal-
distributed overall latency if the ranges are in the same
order of magnitude. However, partial latencies that have a
distribution with much higher average or variance than the
other latency distributions, dominate in the overall latency
distribution. Thus, a low USB polling rate smoothes and
broadens the overall latency distribution.
For reporting latency distributions, we strongly suggest us-
ing swarmplots which are similar to histograms but show
each individual measurement as a dot. Other forms of vi-
sualizations, such as bar graphs, boxplots, violin plots, or
histograms may hide important characteristics (Figure 4).

5 LAGBOX
In order to accurately and precisely measure input latency,
we used LagBox [3], a system for automatically triggering
the buttons of input devices and measuring how much time
passes until the corresponding input event is received. This
device was used for conducting all measurements presented
in this paper. In order to simplify device design and make
the device affordable for a wide audience, LagBox is built
around a Raspberry Pi 2. A shown in Figure 5, an optocou-
pler is connected to a GPIO pin on the Raspberry Pi. The

input device optocoupler

150 Ω

Raspberry Pi 2

GND

GPIO22 USB

microcontroller buon

probes

GND

Figure 5: The LagBox measurement circuit. Via an optocoupler
(Fairchild Semiconductors H11A817) connected to a GPIO pin,
the Raspberry Pi triggers the button of an input device and mea-
sures the time until the USB event arrives.

switched side of the optocoupler is connected to the con-
tacts of a button in the device that is to be tested. The con-
nection can either be made via soldering or via micro-clips
or pogo pins16.The device under test is also connected to the
Raspberry Pi via USB. When the GPIO pin is pulled high,
the optocoupler electrically connects both contacts of the
button, thereby simulating a button press. This is registered
by the input device’s microcontroller which stores the new
value in its USB buffer and transmits it to the host computer
the next time the USB endpoint is polled.
LagBox offers two user interfaces - a versatile command
line interface and a graphical frontend written in Python.
A small application written in C handles measurements and
logging. It is optimized for low overhead and low latency
in the critical code path. The general testing algorithm is as
follows:

start:
wait pseudo-random amount of time
set GPIO pin to activate optocoupler
record timestamp
loop:
read from Linux device
if new event of correct type available:

record timestamp
calculate and store latency
goto start

else:
sleep for 10 µs
goto loop

Potential latency sources in our measurement setup are
the main loop of our measurement software, triggering
the GPIO pin, and handling the USB packet. We have
verified that all of these inherent latencies are in the low
microsecond range, adding up to much less than 0.1 ms.
Thus, we are confident that our setup accurately measures
latency in the millisecond range with sub-millisecond
accuracy.
16We used the Hirschmann MICRO-KLEPS clips and MPS2/0.64FT probes.



Between each two latencymeasurements, our codewaits for
a pseudo-random amount of time between 100 and 1000 ms
in order to emulate button presses at random times. If one
would not wait and trigger the button again directly after an
USB event has been received, the next event would usually
arrive exactly polling interval milliseconds later at the next
time when the device is polled.

6 LATENCY MEASUREMENTS
In the following, we describe measurements that we
conducted using LagBox. Overall, we measured the latency
of 36 commercially available USB devices (including
wired and wireless variants): 11 keyboards, 16 mice, and 9
gamepads. Our choice of devices was determined by three
factors: availability, published latency measurements in
related work, and popularity. Input devices which only had
a PS/2 connector were measured using a PS/2-USB adapter
reporting a bInterval of 10 ms. For each device and each
choice of polling rate, 5000 latency measurements were
conducted. After each 1000 measurements, we disconnected
and reconnected the input device in order to mitigate any
synchronization effects.

6.1 General Comparison
As shown in Figures 6 - 8, significant differences exist be-
tween devices and between device classes. Latency distri-
butions are shown as overlayed swarmplots - blue for the
default polling interval, orange for a forced 1000 Hz polling
rate (see below).

6.2 Forced 1000 Hz polling.
While USB devices report the desired polling rate in their
endpoint descriptors, the operating system may poll the
devices more often - up to every millisecond (1000 Hz).
The Linux usbhid driver offers a configuration option to
manually define the polling interval in milliseconds for
mice (usbhid.mousepoll=N), joysticks (usbhid.jspoll=N),
and keyboards (usbhid.kbpoll=N)17.
As only the mousepoll parameter was implemented when
we started our research, we modified the usbhid driver so
that the manually defined polling interval applied to all de-
vices. For all tested input devices, we measured the latency
once when polled at their requested polling rate, and once
when explicitly polled at 1000 Hz. In Figures 6 - 8, latency
distributions for the default polling rates are plotted in blue,
whereas distributions for polling at 1000 Hz are plotted in
orange. If the blue plot completely occludes the orange plot,
this means that polling at 1000 Hz makes no difference –
usually because the device is already polled at 1000 Hz by
default.

17https://patchwork.kernel.org/patch/10299667/

Figure 6: Latency distributions for USB mice. Default polling in-
terval is given in the legend. Blue: default polling rate, orange:
forced 1000 Hz polling rate.

https://patchwork.kernel.org/patch/10299667/


Figure 7: Latency distributions for USB keyboards. Default
polling interval is given in the legend. Blue: default polling rate,
orange: forced 1000 Hz polling rate.

For some devices, the latency does not change or changes
only little. This is probably because their internal latency is
higher than the reported polling rate. For some devices the
latency decreases when polled more often, i.e. the internal
latency of the devices is lower than their desired polling in-
terval. Most notably, the Logitech Wingman Precision - sold
for around 10 USD - offers an extremely low latency of 1-2
milliseconds when polled at 1000 Hz.
In summary, forcing a higher polling rate than advertised
by the device may reduce latency in some devices. Polling
at a higher rate also reduces the variance in latency. We

Figure 8: Latency distributions for gamepads. Default polling in-
terval is given in the legend. Blue: default polling rate, orange:
forced 1000 Hz polling rate.

have anecdotal evidence that some devices may not be able
to handle higher polling rates. A cheap GreenAsia gamepad
became permanently unresponsive when polled at 1000 Hz.
However, this seems to be a very rare exception. We have
not found any evidence online that users who enforced 1000
Hz polling on Linux via usbhid parameters temporarily or
permanently damaged their devices. Higher polling rates
might lead to higher power consumption on the host and on



the input device [13]. To test this hypothesis, we measured
the power consumption of a Raspberry Pi 2 running an
LXDE desktop environment and an attached Logitech
RX250 under 2×2 different conditions: with default (125
Hz) and maximum (1000 Hz) polling rate, and while the
mouse was sitting still or being jiggled rapidly. Current was
measured with milliampere resolution via the power supply.
While the mouse was sitting still, current varied between
740 and 750 mA. Rapidly jiggling the mouse resulted in a
current of 770-800 mA. In both cases, changing the polling
rate did not discernibly increase current consumption. We
therefore assume that any increase in power consumption
due to higher polling rates is negligible on laptops and
desktop computers. Wireless input devices with a USB
dongle should not be affected by a higher USB polling
rate, as they only send events to the USB dongle when a
button/key has been pressed [20]. In our opinion, polling
at the maximum rate (usually 1000 Hz) should be enabled
in most use cases in order to reduce average latency and
latency variance.

6.3 Effect of USB Hubs and Raspberry Pi versions
We conducted measurements with a gamepad connected ei-
ther directly to the Raspberry Pi, via a cheap USB 2.0 hub,
or via a cheap USB 3.0 hub. Measurements were conducted
both with the device’s default polling rate andwith a polling
rate of 1000 Hz. None of the measurements indicated that
measureable latency was added by a USB hub. We also mea-
sured a device’s latency using different Raspberry Pi models
(1-3) and found no difference.

7 DISCUSSION
In the following, we discuss limitations, findings, and con-
clusions. Our approach to measuring latency is limited in
several ways. As mentioned, LagBox can only measure the
latency of USB devices. Currently, only button events are de-
tected. All measurements were conducted on Raspberry Pi
devices running Linux. Whether latency on other devices
and other operating systems is the same, needs to be in-
vestigated. While we made sure that latency sources in our
measuring setup are in the low microsecond range, we have
not conducted conclusive measurements of kernel schedul-
ing and USB subsystem latency. Also, the latency values we
measured are not necessarily an indicator of practical per-
formance. We assume that mechanical latency contributes
more to overall input latency than the electrical latency we
measured. End-to-end latency might be affected even more
by processing latency and output latency.
Nevertheless, our research resulted in a few salient findings.
Most importantly, we found that the latencies of most USB

input devices have a bimodal or even multimodal distribu-
tion. Nearly none of the prior works contain histograms de-
picting latency distributions. While Casiez et al. show his-
tograms in Figure 5 of their paper, two of them do not show
any indications of multimodal distributions [5]. Therefore,
the peaks in the lower histogram appear to be caused by
timing issues of the Qt framework. Teather et al. report a
“roughly bimodal distribution around 12 ms (70%) and 24
ms (30%)” [26]. However, they attribute this effect to tim-
ing limitations of their software framework. Damian [7] ar-
gues that polling-rate-related variance of latency for typi-
cal input devices (with a standard deviation (SD) in the mil-
lisecond range) is much smaller than the variation in re-
action times (SD in the dozens of milliseconds) for a num-
ber of typical psychological experiments. Therefore, effects
of latency jitter might usually be neglected. Damian sup-
ports this claim with the results of simulations. However,
his model assumes that variance is small and follows a uni-
form distribution. As we show in this paper, this is not the
case for most input devices.

8 CONCLUSION AND OUTLOOK
In this paper we have presented a model of input latency,
as well as a latency measurements for 36 USB devices. Our
measurements show - for example - that great differences
exist between input devices, that even for the same device
latency may vary up to several dozen milliseconds due to
wide latency distributions, and that polling input devices at
the maximum speed of 1000 Hz oftentimes improves both
average latency and latency variance. Even if input latency
is only a small part of end-to-end latency in a computing
system, measuring and improving it helps in improving the
latency of other components. General concepts discussed in
this paper, such as the effect of polling rate or ways of re-
porting latency, may also be of use in other contexts.
In summary, we suggest that
• partial latencies should be measured as directly as possi-

ble in order to better characterize sources of latency,
• that swarmplots should be preferred over other common

visualizations and especially over average/SD reports for
reporting latency,

• that the issue of input latency in reaction time studies
should be revisited,

• and that operating systems should use a polling rate of
1000 Hz for input devices per default at least on desktop
and laptop computers.

Future research would include more precisely determining
the actual effect of input latency in realistic tasks, extending
LagBox to non-binary input events, such as mouse move-
ment, and extending the catalogue of devices whose latency
has been measured. LagBox might also be used to calibrate



other, non-invasive methods [6]. We informally discussed
ethical implications of this research according to the ACM
Code of Ethics [1] and do not see any direct or indirect neg-
ative effects of our research. Source code and dataset are
attached as supplementary material in the ACM Digital Li-
brary. Additional information can be found at the accompa-
nying website: hci.ur.de/projects/latency.

ACKNOWLEDGMENTS
This paper builds on earlier work done by Simon Fürnstein,
Oliver Pieper, and Mark Engerißer in their bachelor’s the-
ses under the supervision of Raphael Wimmer. We would
like to thank all reviewers for their helpful feedback, Sun-
jun Kim for valuable discussions, the members of the linux-
input mailing list for background information on the USB
polling rate, and Lucia Eckl for editing the accompanying
video. This project is funded by the Bavarian State Ministry
of Science and the Arts in the framework of the Centre Digi-
tisation.Bavaria (ZD.B)

REFERENCES
[1] ACM Code 2018 Task Force. 2018. ACM Code of Ethics. Retrieved Sep-

tember 19, 2018 from https://www.acm.org/code-of-ethics
[2] Christiane Attig, Nadine Rauh, Thomas Franke, and Josef F. Krems.

2017. System Latency Guidelines Then and Now – Is Zero Latency Re-
ally Considered Necessary?In Engineering Psychology and Cognitive Er-
gonomics: Cognition and Design (Lecture Notes in Computer Science),
3–14.

[3] Florian Bockes, Raphael Wimmer, and Andreas Schmid. 2018. LagBox –
Measuring the Latency of USB-Connected Input Devices.In Extended
Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI EA ’18), LBW115:1–LBW115:6. https://doi.org/10.1145/
3170427.3188632

[4] Stuart K Card, Thomas P Moran, and Allen Newell. 1986. The
model human processor - an engineering model of human perfor-
mance.Handbook of perception and human performance. 2, 45–1.

[5] Géry Casiez, Stéphane Conversy, Matthieu Falce, Stéphane Huot, and
Nicolas Roussel. 2015. Looking through the Eye of the Mouse: A
Simple Method for Measuring End-to-end Latency using an Optical
Mouse.629–636. https://doi.org/10.1145/2807442.2807454

[6] Géry Casiez, Thomas Pietrzak, Damien Marchal, Sébastien Poulmane,
Matthieu Falce, and Nicolas Roussel. 2017. Characterizing Latency in
Touch and Button-Equipped Interactive Systems.In Proceedings of the
30th Annual ACMSymposium onUser Interface Software and Technology
(UIST ’17), 29–39. https://doi.org/10.1145/3126594.3126606

[7] Markus F. Damian. 2010. Does variability in human perfor-
mance outweigh imprecision in response devices such as
computer keyboards?Behavior Research Methods 42, 1: 205–211.
https://doi.org/10.3758/BRM.42.1.205

[8] Jonathan Deber, Bruno Araujo, Ricardo Jota, Clifton Forlines,
Darren Leigh, Steven Sanders, and Daniel Wigdor. 2016. Ham-
mer Time!: A Low-Cost, High Precision, High Accuracy Tool
to Measure the Latency of Touchscreen Devices.2857–2868.
https://doi.org/10.1145/2858036.2858394

[9] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How fast
is fast enough?: A study of the effects of latency in direct-touch point-
ing tasks.In Proceedings of the sigchi conference on human factors in
computing systems, 2291–2300.

[10] Topi Kaaresoja and Stephen Brewster. 2010. Feedback is… Late: Mea-
suring multimodal delays in mobile device touchscreen interaction.1.
https://doi.org/10.1145/1891903.1891907

[11] Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta. 2018. Impact Acti-
vation Improves Rapid Button Pressing.In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18), 571:1–
571:8. https://doi.org/10.1145/3173574.3174145

[12] Ulrich Lampe, Qiong Wu, Ronny Hans, André Miede, and
Ralf Steinmetz. 2013. To Frag or to Be Fragged - An Em-
pirical Assessment of Latency in Cloud Gaming:5–12. https:
//doi.org/10.5220/0004345900050012

[13] Linux Input Mailing List. 2018. Re: Reasons for respecting bInter-
val? Retrieved January 7, 2019 from https://www.spinics.net/lists/
linux-input/msg59274.html

[14] Linux Kernel Developers. 2019. Linux kernel: Drivers/usb/core/urb.c.
Retrieved January 7, 2019 from https://github.com/torvalds/linux/
blob/master/drivers/usb/core/urb.c#L566

[15] Dan Luu. 2017. Terminal latency. Retrieved January 7, 2019 from https:
//danluu.com/term-latency/

[16] Dan Luu. 2017. Keyboard latency. Retrieved January 7, 2019 from https:
//danluu.com/keyboard-latency/

[17] Dan Luu. 2017. Computer latency: 1977-2017. Retrieved January 7,
2019 from https://danluu.com/input-lag/

[18] I Scott MacKenzie and Colin Ware. 1993. Lag as a determinant of hu-
man performance in interactive systems.In Proceedings of the inter-
act’93 and chi’93 conference on human factors in computing systems,
488–493.

[19] Microsoft. _USB_ENDPOINT_DESCRIPTOR documentation. Re-
trieved January 7, 2019 from https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/usbspec/ns-usbspec-_usb_
endpoint_descriptor

[20] Marc Newlin. 2016. MouseJack - Injecting Keystrokes into
Wireless Mice. Retrieved January 10, 2019 from https://github.com/
BastilleResearch/mousejack/blob/master/doc/pdf/MouseJack-whitepaper-v1.
1.pdf

[21] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders,
and Paul Dietz. 2012. Designing for low-latency direct-touch
input.In Proceedings of the 25th annual acm symposium on
user interface software and technology (UIST ’12), 453–464.
https://doi.org/10.1145/2380116.2380174

[22] Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018. Neurome-
chanics of a button press.4099–4112. https://doi.org/10.1145/3173574.
3174082

[23] Richard R. Plant. 2016. A reminder on millisecond timing accuracy
and potential replication failure in computer-based psychology exper-
iments: An open letter.Behavior Research Methods 48, 1: 408–411. https:
//doi.org/10.3758/s13428-015-0577-0

[24] Richard R. Plant, Nick Hammond, and Tom Whitehouse. 2003. How
choice of mouse may affect response timing in psychological stud-
ies.Behavior Research Methods, Instruments, & Computers 35, 2: 276–
284. https://doi.org/10.3758/BF03202553

[25] Reiza Rayman, Serguei Primak, Rajni Patel, Merhdad Moallem, Roya
Morady, Mahdi Tavakoli, Vanja Subotic, Natalie Galbraith, Aimee Van
Wynsberghe, and Kris Croome. 2005. Effects of latency on telesurgery:
An experimental study.In International conference on medical image
computing and computer-assisted intervention, 57–64.

[26] Robert J. Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I.
Scott MacKenzie. 2009. Effects of tracking technology, latency, and
spatial jitter on object movement.43–50. https://doi.org/10.1109/3DUI.
2009.4811204

https://hci.ur.de/projects/latency
https://www.acm.org/code-of-ethics
https://doi.org/10.1145/3170427.3188632
https://doi.org/10.1145/3170427.3188632
https://doi.org/10.1145/2807442.2807454
https://doi.org/10.1145/3126594.3126606
https://doi.org/10.3758/BRM.42.1.205
https://doi.org/10.1145/2858036.2858394
https://doi.org/10.1145/1891903.1891907
https://doi.org/10.1145/3173574.3174145
https://doi.org/10.5220/0004345900050012
https://doi.org/10.5220/0004345900050012
https://www.spinics.net/lists/linux-input/msg59274.html
https://www.spinics.net/lists/linux-input/msg59274.html
https://github.com/torvalds/linux/blob/master/drivers/usb/core/urb.c#L566
https://github.com/torvalds/linux/blob/master/drivers/usb/core/urb.c#L566
https://danluu.com/term-latency/
https://danluu.com/term-latency/
https://danluu.com/keyboard-latency/
https://danluu.com/keyboard-latency/
https://danluu.com/input-lag/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/usbspec/ns-usbspec-_usb_endpoint_descriptor
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/usbspec/ns-usbspec-_usb_endpoint_descriptor
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/usbspec/ns-usbspec-_usb_endpoint_descriptor
https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/MouseJack-whitepaper-v1.1.pdf
https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/MouseJack-whitepaper-v1.1.pdf
https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/MouseJack-whitepaper-v1.1.pdf
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/3173574.3174082
https://doi.org/10.1145/3173574.3174082
https://doi.org/10.3758/s13428-015-0577-0
https://doi.org/10.3758/s13428-015-0577-0
https://doi.org/10.3758/BF03202553
https://doi.org/10.1109/3DUI.2009.4811204
https://doi.org/10.1109/3DUI.2009.4811204


[27] USB Implementers Forum. 2000. Universal Serial Bus Specification
Revision 2.0. Retrieved from https://www.usb.org/document-library/
usb-20-specification

[28] USB Implementers Forum. 2001. Universal Serial Bus (USB) Device
Class Definition for Human Interface Devices (HID), Firmware Speci-
fication Version 1.11. Retrieved January 7, 2019 from https://www.usb.
org/sites/default/files/documents/hid1_11.pdf

https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/sites/default/files/documents/hid1_11.pdf
https://www.usb.org/sites/default/files/documents/hid1_11.pdf

	Abstract
	1 Introduction
	2 Latency in Interactive Systems
	3 Related Work
	3.1 End-to-End latency on Desktop Computers
	3.2 End-to-End Latency on Touch Screens
	3.3 Input Latency

	4 A Model of USB Input Latency
	4.1 Types of Latency in a Button Press
	4.2 The Role of the USB Polling Rate
	4.3 Simulating Input Device Latency

	5 LagBox
	6 Latency Measurements
	6.1 General Comparison
	6.2 Forced 1000 Hz polling.
	6.3 Effect of USB Hubs and Raspberry Pi versions

	7 Discussion
	8 Conclusion and Outlook
	Acknowledgments
	References

