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ABSTRACT
Designing immersion is the key challenge in virtual reality; this
challenge has driven advancements in displays, rendering and re-
cently, haptics. To increase our sense of physical immersion, for
instance, vibrotactile gloves render the sense of touching, while
electrical muscle stimulation (EMS) renders forces. Unfortunately,
the established metric to assess the effectiveness of haptic devices
relies on the user’s subjective interpretation of unspecific, yet stan-
dardized, questions.

Here, we explore a new approach to detect a conflict in visuo-
haptic integration (e.g., inadequate haptic feedback based on poorly
configured collision detection) using electroencephalography (EEG).
We propose analyzing event-related potentials (ERPs) during in-
teraction with virtual objects. In our study, participants touched
virtual objects in three conditions and received either no haptic
feedback, vibration, or vibration and EMS feedback. To provoke a
brain response in unrealistic VR interaction, we also presented the
feedback prematurely in 25% of the trials.

We found that the early negativity component of the ERP (so
called prediction error) was more pronounced in the mismatch
trials, indicating we successfully detected haptic conflicts using our
technique. The results can be understood as a first step towards
ERPs as a potential metric of haptic immersion in VR.
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1 INTRO
A key challenge in virtual reality is to create a user experience that
mimics the natural experience as closely as possible. This challenge
has propelled advancements in display software and hardware (VR
headsets and rendering), interaction techniques and, more recently,
∗
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in haptic technology. In fact, many researchers argue that attaining
haptic realism is the next grand challenge in virtual reality [6, 43].

The addition of haptic feedback in VR has been shown to dra-
matically increase the user’s sense of immersion [32]. For instance,
vibrotactile gloves [18] stimulate the user’s sense of touch, and
force feedback and exoskeletons [5, 15] or electrical muscle stimu-
lation [21, 22] stimulate the user’s proprioceptive system.

To better understand how different interaction technologies sup-
port real world-like user experiences, questionnaires are used that
ask "how realistic is it? (from 1-7)" [35, 38, 42]. These questionnaires
are also used as a metric to assess how effective a haptic device is
in rendering a realistic simulation (e.g., [2, 33, 48] just to mention a
few). However, as Slater pointed out in his critique, these metrics
are subjective [37], i.e., they rely on the user’s own introspection
and frame of reference. Furthermore, these metrics require break-
ing the user’s immersion—literally, as they require the user to halt
the immersive experience—to collect the data about the previous
interaction.

Figure 1: We propose using the prediction error negativity
of the brain’s event related potential (ERP) to detect visuo-
haptic conflicts arising from unrealistic VR feedback. In our
study, participants selected objects in VR. To provoke their
brains to process an unrealistic interaction, we sometimes
provided the haptic feedback prematurely. When subtract-
ing these ERPs to the ERPs from realistic interactions, we
found that the negative amplitude of the error prediction
increased, hinting at a loss in immersion.

Instead, in this paper, we propose analyzing the user’s brain re-
sponses as a first step towards a complimentary or even alternative
metric of haptic immersion that, unlike questionnaires, does not
require any task interruption or subjective reflection. Our approach,
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depicted in 1, works by analyzing the user’s brain dynamics cap-
tured by an EEG worn under the VR headset. We found that we
can use the user’s brain potentials to detect sensory mismatches
that occur in moments where the VR experience is not immersive
(e.g., due to a poorly configured collision detection, inadequate or
delayed haptic information, etc.).

2 TOWARDS ERPS AS A METRIC FOR
HAPTIC IMMERSION

The goal of haptic devices is to render realistic sensory feedback
that mimics the sensory experience a user would normally per-
ceive when interacting with the real world. The simple case that
we examine here is of touching an object. Imagine grasping a cup
of coffee on the breakfast table: as we reach out for the cup, our
visual system provides ongoing feedback about the position of the
arm and hand relative to the cup on the table, while proprioceptive
feedback from muscles and joints provides information about the
relative position of the hand and the strength of our grasp. Com-
bined with the motor plan, the sensory feedback is used to compare
what is effectively happening in the environment with what was
predicted to happen [8]. When making contact with the cup, the
visual and proprioceptive feedback are integrated with haptic feed-
back providing information about the contact with the object. In
the case where all sensory information channels provide consis-
tent feedback, the action would be successful (and the coffee can
be enjoyed). However, in the case of a mismatch in the incoming
information, attention has to be directed to this mismatch so that
the action can be corrected in real-time [34]. It is precisely this idea
– that the brain has evolved to optimize motor behavior based on
detected sensory mismatches – that inspired us to investigate brain
responses to sensory mismatches as a potential metric for haptic
immersion.

To investigate these prediction errors in VR, an electroencehalo-
gram (EEG) can be used. An EEG measures the electrical activity
of cortical neurons in the human brain with high temporal reso-
lution [27]. Transient sensory events (e.g., haptic feedback from
touching a coffee mug) evoke event-related potentials (ERPs) in the
ongoing oscillatory activity of the brain, reflecting sensory and cog-
nitive processing of incoming stimuli [24]. An ERP is a stereotyped
response comprised of a series of positive and negative deflections.
One specific component of the ERP is the prediction error nega-
tivity (PEN)—a negative potential that occurs from 100 to 200 ms
whenever a deviation from the predicted state of the environment
is detected [34]. We propose utilizing this prediction error (high-
lighted in Figure1) as a metric for haptic immersion, a potential
immersion indicator that does not require subjective interpretation
or interrupting the user, which results in breaking the immersive
experience. Furthermore, as we will discuss, this metric can be used
in realtime to continuously adapt an environment depending on
the users prediction of and actual state of the environment.

To actualize this proposal, we conducted a user study in which
we measured the brain activity of 11 participants using a 64 channel
EEG system. During the VR experience, participants touched differ-
ent virtual objects with each touch being accompanied by feedback
via the incremental combination of popular feedback modalities: (1)
visual feedback, (2) tactile (via vibration) + visual feedback, and (3)

force feedback (via EMS) + tactile + visual feedback. To provoke the
participant’s brain into processing the experience of an unrealistic
VR interaction, we provided the haptic feedback prematurely in 25%
of the trials. When comparing these ERPs to the ERPs from realistic
interactions, we found that the amplitude of the PEN increased,
indicating that we can successfully detect error processing hinting
at a loss in immersion, without interrupting the VR experience.
Furthermore, we found that this error prediction systematically co-
varied with the number of feedback channels. Before detailing our
experiment, we will leverage the HCI and neuroscience literature
to ground our ERP-based approach.

3 RELATEDWORK
Our approach builds on the research done in the fields of Virtual
Reality (VR), haptics, neuroscience and cognitive psychology.

3.1 Assessing immersion/presence in VR
One of the most commonly used questionnaires for evaluating how
a user experiences presence in a virtual environment is the Igroup
Presence Questionnaire (IPQ) [35]. The questionnaire spans over
14 questions on four domains: general presence, spatial presence,
involvement and experienced realism. Its broad application scope
makes it a widely adopted metric used by [10, 12], just to cite a few.
The authors of the IPQ state that they interpret sense of presence as
an individual experience and therefore a matter of subjective rating
scales. However, researchers have critiqued this approach precisely
due to its subjectivity. For instance, Slater elaborated a critique on
these metrics in [37] and as Garvia-Valle et al. put it "presence is
a subjective parameter, and that is why the results depend on the
participant opinion"; they even add "their answers depend on their
level of expertise" [11].

3.2 Assessing haptic immersion
There are many ways to evaluate a haptic device, one of the more
established is the Just-noticeable difference (JND) [39]. This study
design allows researchers to measure the perceptual threshold by
forcing the user to consider whether two haptic events are dissimilar.
While methods such as the JND are very popular (e.g., [1, 31]), they
target the user’s perceptual apparatus and are not a measure of
haptic immersion in a VR environment. Thus, many researchers
rely the presence questionnaire to assess haptic immersion.

The IPQ has been used by many researchers seeking to better
understand their haptic devices. Just to exemplify a few: a vibro-
tactile cane for blind VR users [48]; a multi-haptics interface that
uses a combination of vibration, wind, water spray and heat [33]; a
wind feedback device based on head-mounted fans [19]; vibration
feedback for roller-coaster experiences [2]; an exoskeleton that
provides force-feedback [7]; and so forth.

In certain cases, the researchers selected a few questions of the
standard IPQ, but felt the need to append haptic specific ques-
tions. For example, when Calvo et al. evaluate their aforementioned
exoskeleton device in a bow and arrow VR simulator [7], they ap-
pended two haptic specific questions to the IPQ, so they could
evaluate the sensation of pulling on the bowstring. Moreover, there
seems to be an abundance of recent research in VR haptics that
does not use the IPQ at all and, instead, authors craft their own
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questions directly targeted at their devices (e.g., [11, 17, 21]). These
examples propelled us to explore a complementary or perhaps even
alternative method to detect conflicts in the user’s sense of haptic
immersion.

3.3 The impact of realism in brain responses
The idea to analyze the user’s brain response as an indicator of the
user’s state has become increasingly popular at the intersection of
neuroscience and HCI [3, 44, 46].

For instance, Zander et al. revealed that, as users observed a
cursor moving towards a target on a screen, any deviation from
the user’s expectation about the cursor path was reflected in the
amplitude of the prediction error negativity (PEN) [47]. Similarly,
Holroyd et al. found out that participants exhibit a negative poten-
tial around 200ms after seeing a visual stimulus that fell outside
their expectations [16]. Along the same lines, Coles et al. found that
the negative evoked potentials are indeed sensitive to the process-
ing of incoming stimulus [9]. These studies utilized precisely the
same component of the ERP we propose for detecting visuo-haptic
conflicts.

More recently, Singh et al. demonstrated that, in an object se-
lection task in VR, the PEN component of the ERP was more pro-
nounced for incorrect feedback when the user’s hand was repre-
sented by a realistic hand avatar as compared to unrealistic represen-
tations [36]. Furthermore, they found the PEN amplitude correlated
with the level of realism of the avatar hand, as suggested by the
uncanny valley theory [25]. Moreover, Gonzalez-Franco and Lanier
recently argued that it is precisely the sensory prediction model
that enables all illusions in VR to take place [13]; thus, it is a key
neural mechanism for understanding immersion. Taken together,
these results show a link between the prediction error signal and
the level of immersion, suggesting that the increased immersive
experience of the user is reflected in an increased sensitivity to de-
viations from the expected changes in the VR environment during
the interaction.

4 USER STUDY
The objective of our study is to explore whether ERPs have poten-
tial in detecting sensory conflicts in VR. As such, we designed a
study in which participants perform a 3D object selection task in
VR (modeled after [36]). As a participant reaches out to touch an
object, they are presented with three sensory feedback modalities
(a visual baseline, tactile and tactile with force-feedback). However,
to provoke the participants’ brains into processing an unrealistic
VR interaction, we sometimes provide the feedback prematurely.

We hypothesized that the prediction error negativity (PEN) com-
ponent of the ERP would respond to this sensory conflict in a
systematic manner.

4.1 Participants
We recruited 11 participants from our local institution (7 female
and 4 male;mean = 27.5 years old, sd = 2.8), all right-handed. No
participant had experienced VR with either vibrotactile feedback at
the fingertip or any form of force feedback, including EMS. Partici-
pants received 12 USD per hour. The study design was approved

by the local ethics committee and all participants provided written
informed consent prior to their participation.

4.2 Apparatus
The experimental setup, depicted in Figure 2, comprised: (1) a
VR headset and a wrist-mounted wearable VIVE tracker, (2) a 64-
channel EEG system, (3) one vibrotactile actuator worn on the
fingertip, and (4) a medically-compliant EMS device connected via
two electrodes worn on the forearm. To assist readers in replicating
our experiment, we provide the necessary technical details, the
complete source code to the VR experiment, the collected data, and
the analysis scripts 1.

vibration 
motor

EMS

64 channel EEG

Figure 2: Our experimental setup (image with consent from
participant).

(1) VR and hand tracking. We used an HTC Vive headset
with the Vive Deluxe Audio Strap to ensure a good fit and less
discomfort due to the EEG cap. We used a Vive Tracker, attached
to the participant’s wrist, to track their right hand.

(2) Vibrotactile feedback.We used a vibration motor (Model
308-100 from Precision Microdrives), which generates 0.8g at 200Hz.
This motor measures 8mm in diameter, making it ideal for the
fingertip. The vibration feedback was driven at 70mA by a 2N7000
MOSFET, which was connected to an Arduino output pin at 3V.

(3) Force feedback. We actuated the index finger via electrical
muscle stimulation (EMS), which was delivered via two electrodes
attached to the participants’ extensor digitorum muscle. We utilized
a medically-compliant battery powered muscle stimulator (Rehas-
tim from Hasomed), which provides a maximum of 100mA and
is controllable via USB. We chose this device since it had been
successfully used by researchers as a means to generate force feed-
back in both VR [22] and AR [23]. The EMS was pre-calibrated per
participant to ensure a pain-free stimulation and robust actuation.

(4) EEG Setup. EEG data was recorded from 64 actively ampli-
fied electrodes using BrainAmp DC amplifiers from BrainProducts.
Electrodes were placed according to the extended 10% system [28].
After fitting the cap, all electrodes were filled with conductive gel to
1Anonymous link for submission.
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ensure proper conductivity and electrode impedance was brought
below 5kOhm for all electrodes. EEG data was recorded with a
sampling rate of 1000 Hz. We synchronized tracking, EEG data, and
an experiment marker stream that marked sections of the study
procedure using labstreaminglayer2.

4.3 Training phase
We asked participants to wear the HTC VIVE VR headset for a
maximum of 24 trials practice trials. Overall, the EEG fitting, cali-
bration, and practice trials took around 30 minutes (with two ex-
perimenters).

4.4 Task
Participants performed a 3D object selection task in VR. The in-
teraction flow of our task, depicted in Figure 3, was as follows:
(1) participants moved their hands from the resting position to the
ready position, to indicate they were ready to start the next trial; (2)
participants waited for a new target to appear (the time of a new
target spawning was randomized between 1-2 s); (3) then, the target
(a cube) would appear in one of three possible positions (center, left,
right), all equidistant from the participant’s ready position; (4) then,
participants acquired the target by moving and touching the target
with their index finger. (5) After a target was acquired, participants
moved back to the resting position. Here, they could take a break
before the next trial.

4.5 Interface conditions
Participants performed the task in three additive feedback condi-
tions:

(1) visual-only (Visual): when participants touched the cube,
it changed its color from white to red (visual feedback); our no-
haptics baseline

(2) tactile (Vibro): when participants touched the cube in the
vibro condition, they received a 100 ms vibroactile stimulus and the
color change (visual + tactile feedback); this is the only available
haptic feedback in today’s VR experiences.

(3) force-feedback (EMS): in this condition, participants also
received a 100 ms of EMS stimulation at the index finger extensor
in addition to the visual and vibrotactile feedback (visual + tactile +
force feedback). As prior research showed the EMS stimulation of
the opposing muscle (in our case, the extensor) is perceived as the
resisting force that arises from pushing against the cube (i.e., force
feedback) [20–22].

Additionally, to allow us to compare the elicited ERPs in a realis-
tic vs. unrealistic interaction, we presented two different classes of
trials:match trials (C) (75% of the trials) andmismatch trials (M)
(25%). In the matching trials, the feedback stimuli were presented
upon touching the object, exactly when participants expected them
to occur based on the available visual information (finger touching
the target). In contrast, in themismatch trials, the feedback stimuli
were triggered prematurely, which was accomplished by enlarging
the invisible radius of touch-detection in the targets by 350%. These
were presented in five randomly generated sequences, each with
an equal distribution of matches and mismatches.

2https://github.com/sccn/labstreaminglayer

This procedure elicits a prediction mismatch signal in 25% of the
trials similar to previous designs investigating the impact of target
probabilities on ERP modulations [30].

4.6 Experimental design
The experiment consisted of five phases: (1) a setup phase; (2) a
calibration phase; (3) a short training phase; (4) the task itself, in
all three possible interface conditions, each followed by a subset of
the IPQ questionnaire; and, lastly (5) participants were asked about
their experience in the VR and which condition they enjoyed the
most.

We used a within-subjects design with 100 trials per feedback
condition. The order of the Visual and Vibro conditions was ran-
domized across participants with the EMS condition always being
the last block. This was done to avoid potential overshadowing of
the EMS stimulation (a very strong sensation) on the two other
stimulation conditions.

For completeness, at the end of each condition we presented
the four most relevant questions from the standard IPQ [35], in
particular: G1, REAL2, SP4 and INV1. However, our hypothesis was
that the inclusion mismatch trials, which were presented in 25% of
the cases, would lower the IPQ ratings dramatically.

4.7 EEG data processing
We utilized the EEGLAB3 and MoBILAB4 toolboxes inside the MAT-
LAB environment for our analysis. To assist the reader in replicating
our analyses, we provide data and scripts1. The inherent delay of
the EEG setup was corrected by subtracting 63ms to the times-
tamps. The raw EEG data was then re-sampled to 250Hz, high pass
filtered at 1Hz and low pass filtered at 125Hz. Finally, the data was
re-referenced to the average of all channels including the original
reference channel, the FCz electrode at the forehead.

To reject eye and line noise activity we computed independent
component (IC) analysis on a dataset containing the cleanest 85%
of the data. The IC is a robust and established method to separate
the scalp EEG signals into independent sources, originating from
different brain areas or artifacts (e.g., eye blinks) [40]. To perform
the IC analysis, the original data was split into 1 second long epochs,
and we calculated for each epoch the (1) mean absolute amplitude
of all channels, (2) standard deviation across all channel mean
amplitudes, and (3) the Mahalanobis distance of all channel mean
amplitudes. Then, we joined the results for each epoch of all three
methods and ranked all epochs highest to lowest. We rejected the
15% highest ranking epochs [14].

On this cleaned data, we computed a single-model AMICA [29].
Lastly, we automatically assigned source descriptions to each inde-
pendent component using the ICLabel toolbox. We selected eye and
line noise components (mean = 3.1components, sd = 1.4) if they
were assigned a probability higher than 0.8 to belong to the eye or
line noise category and eliminated them from the data for further
processing.

3https://sccn.ucsd.edu/eeglab/index.php, last accessed 9/9/2018
4https://sccn.ucsd.edu/wiki/MoBILAB, last accessed 9/9/2018
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Figure 3: Interaction flow depicting one trial in our 3D object selection task.

4.8 Extracting the ERPs
To obtain the ERPs (shown in Figure 4), we filtered the EEG data
with a 0.2Hz high pass and 35Hz low pass filter. Then we sliced
it between -0.3 seconds to 0.7 seconds around the stimulus onset,
i.e. the moment of object selection. To guarantee robust data, we
rejected 10% of the noisiest epochs using the approach described
before. We focused our analysis on one electrode, FCz, located on
the forehead, which has been shown in prior research to be the
focal point of this activity [36].

Furthermore, we automatically extracted the ERP negativity
peaks and their latencies by locating the minimum peak in a 100 to
300 ms time window after object selection, using a 10Hz low pass
filter. The time window was derived from visual inspection of the
mean difference ERP wave, see Figure 1.

5 RESULTS
Our most important finding was an interaction effect of the level
of haptic feedback and feedback congruency on ERP amplitude at
the FCz electrode. As we will present, our findings suggest that
this effect originates when the participants’ brain processed the
mismatch trials. Other potential candidate confounding effects that
could explain this were controlled by subtracting mismatch from
match trials.

5.1 ERP results
We observed a strong amplitude modulation occurring at the same
instant as the participants selected the VR object; these are our
ERPs, depicted in Figure 4.

First, in the matched trials, we observed a consistent ERP shape
among participants, with a stereotypical main positive component
that occurred around 200 milliseconds after the object was selected
and matching feedback was provided, depicted in Figure 4(A). We
found that this positive deflection was most pronounced in the EMS
condition.

Secondly, in the mismatch trials (with premature feedback), we
observed a consistent ERP shape among participants, but different
from thematch trials. In fact, as depicted in Figure 4(B), we observed
a negative deflection around 170ms after a participant had selected
the object (i.e, the prediction error), and a subsequent positive peak
reaching a maximum around 300ms. Similar to the match trials, the
ERPs in the EMS condition were more pronounced than Visual or
Vibro.

To validate our hypothesis we must compare the match and mis-
match ERPs. To compare these, we subtracted the mean amplitude
of all match trials from the mean amplitude of all mismatch trial

Figure 4: ERP amplitude (in µV ) and standard error of the
mean at the forehead electrode FCz across [A] all match tri-
als and [B] mismatch trials in a -300ms to 700ms window
centered at the object selection time, for each of the three
feedback conditions (Visual, Vibro and EMS).

within each participant; this is what we depict in 6. We found that
the amplitude of a global minimum after stimulus onset differs
significantly when experiencing EMS (mean = −6.2µV , sd = 2.1)
compared to the Vibro (mean = −4.7µV , sd = 2.4) and Visual
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(mean = −4.0µV , sd = 1.7) conditions (F (2, 30) = 3.31p = .05,η2 =
.18).

Figure 5: Amplitude and standard error of the mean of the
resulting ERPs obtained by subtracting the mean amplitude
of all match trials from themean amplitude of all mismatch
trials for each participant (in µV ) at the forehead electrode
FCz; for all three feedback conditions (Visual, Vibro and
EMS)

Post-hoc, we tested non-parametric pairwise differences using
Wilcoxon signed-rank tests [41]. Post-hoc comparisons for latency
and amplitude of the prediction error peaks are depicted in Figure 6.
First, as depicted in Figure 6(B), we observed no significant differ-
ences for the peak latencies over the three conditions. Secondly, we
found that the negativity peak amplitude was more pronounced
while experiencing EMS compared to Vibro (p = 0.1) as well as
significantly lower compared to Visual (p < 0.05)—this validated
our main hypothesis, showing that the prediction error amplitude
is a suitable approach to detect a visuo-haptic conflict, such as the
one we induced in the mismatch trials.

5.2 Questionnaire and users’ comments
First, as expected, we observed no significant differences in the level
of immersion between conditions for any of the four IPQ questions
we asked; this is likely caused by the experiment design, which
contains randomly presented unrealistic trials that score very low
on immersion.

Second, in the exit interviews, 8 participants voiced (that) they
prefer the comfort and experience of the Vibro condition. Two
participants preferred the EMS condition, stating it was “more
engaging”. One last participant stated that the visual condition was
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Figure 6: Negative peak amplitudes (in µV ) and latencies (in
ms) 100 to 300ms post object selection event in difference
ERPs, see figure 5. Dots represent individual participants.
Uncorrected p-values of pairwise comparisons were com-
puted with non-parametric rank-sum tests.

the most realistic condition but added “it felt easier to perform the
task in the EMS condition” (likely due to the extra force feedback
that informs of collision).

6 CONTRIBUTION, BENEFITS &
LIMITATIONS

With this study, we contributed a new approach to detect conflicts in
visuo-haptic sensory integration based on analyzing event-related
brain potentials. We demonstrated in eleven participants using EEG
recordings that our method is able to correctly detect prematurely
given visuo-haptic feedback (combinations of visual, vibration and
EMS). This approach might thus be used in combination with ques-
tionnaires such as IPQ or as an alternative measure that does not
require interrupting the user.

6.1 Implications for the future of VR Research
We believe that this is a first step towards a new metric for haptic
immersion. If follow up studies replicate the reported patterns
of ERP modulation based on sensory mismatch, VR research will
benefit four-fold: (1) evaluating haptic immersion via ERPs does
not require interrupting the user’s immersive experience to ask
questions. (2) The latter will further enable to conduct background
evaluations of the user’s sense of haptic immersion, enabling new
paradigms for user studies in VR (using implicit measures). (3) ERPs
are not subject to the same degree of introspection as the standard
presence questionnaires. Lastly (4), our technique can be used as the
building-block for VR applications that want to automatically adjust
to the user’s perception of conflicts, e.g., using our approach, an
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application could automatically adjust collision detection volumes
based on the user’s ERPs.

6.2 Limitations
As with any system based on EEG, our approach has its inher-
ent shortcomings: (1) ERP data is typically not taken per-trial but
averaged over many trials and thus require high number of trial
repetitions. In addition, (2) high-resolution EEG is still cumbersome
to apply and requires time and expertise. However, researchers
are working towards single-trial ERP analysis approaches [4], and
we do believe that new EEG systems will be directly embedded in
future VR headsets allowing easy setup and recording of electro-
physiological signals 5 with new comfortable electrode types [26],
including dry electrodes [45]. These EEG limitations put a cap on
using our approach for quickly iterating on the design of a haptic
VR scene. However, when designers want to develop and validate
haptic immersion in VR scenarios without interrupting the user, our
approach could offer a potential replacement for questionnaires.

7 CONCLUSIONS
In this paper, we propose a technique that allows us to detect haptic
conflicts in VR, which is based on event-related brain potentials
obtained using EEG during interaction with virtual objects. We
found out in our user study that the early negativity component of
the ERP (the prediction error) is more pronounced during situations
with haptic conflicts, such as: inadequate or delayed haptic feed-
back, poorly configured collision detection, etc. This result suggests
we can successfully detect haptic conflicts using our proposed tech-
nique. In fact, we found out that, when the number of mismatched
feedback channels increases, the prediction error increases.

Thus, we believe this is a first step to open up the potential of
ERPs as an indicator of haptic immersion in VR. We discussed the
impact of our findings for VR research and lay out two potential
avenues to this future metric: a complement to the traditional pres-
ence questionnaires or an alternative metric that does not require
interrupting the user.

As for future work, we plan two courses of action, a technical
and an experimental angle. First, we plan to explore a real-time
implementation of our analysis scripts, which would enable real-
time adaptation of the haptic devices based on the user’s ERPs (e.g.,
inspired by recent work in EEG-based adaptive VR [45]); to achieve
this we will explore implementing our scripts into a real-time EEG-
based cloud service, such as intheon6. Secondly, while we believe
our work is a first step, more research is required to solidify ERPs
as a metric for haptic immersion; for instance, one needs to explore
how sensitive the prediction error is to different sensory channels
beyond vibration and EMS.
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