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ABSTRACT
Difficulty is one of the major motivational pull of video
games, and thus many games use Dynamic Difficulty Ad-
justment (DDA) systems to improve the game experience.
This paper describes our research investigating the influence
of DDA systems on player’s confidence, evaluated using an
in-game bet system. Our hypothesis is that DDA systems
may lead players to overconfidence, revealed by an overes-
timation of their success chances when betting. This boost
of confidence may be a part of the positive impact of DDA
systems on the quality of game experience. We explain our
method to evaluate player’s confidence and implement it into
three games related to logical, motor and sensory difficulties.
We describe two experimental conditions where difficulty is
either randomly chosen or adapted using a DDA algorithm.
Results show how DDA systems can lead players to high
level of overconfidence.
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1 INTRODUCTION
Confidence is a complex construct linked to optimism, trust,
self-confidence as well as feeling of self-efficacy [51]. In
this paper, we study confidence as a feeling of self-efficacy,
described by Bandura [9]. Indeed, we will study the impact of
difficulty on the player’s "conviction that one can successfully
execute the behavior required to produce the outcomes" [9].
This form of confidence is a desirable positive feeling [31].
Confident players that believes in their chance of success
may try-out new and risky strategies and attempt to achieve
harder challenges than those being less confident. This might
be considered as a useful behavior in the context of safe,
virtual environments, and may improve the learning process
[1, 42, 50]. In this paper, we show that, as suggested in the
literature, the way difficulty is adapted to the player skills can
have a strong influence on the player’s confidence, leading
them in some cases to be highly overconfident.

Our hypothesis regarding the link between difficulty adap-
tation and player’s confidence comes first from the vast lit-
erature about the importance of difficulty and challenge in
everyday life, as well as in video games. From a positive
psychology point of view, Csikszentmihalyi’s flow theory ar-
gues that quality of experience is impacted by the perceived
difficulty of a challenge, and by the perception of one’s skills
with regard to this challenge [19]. In video games, challenge
is often considered as a critical aspect of player’s experience.
According to Malone, challenge is, with fantasy and curiosity,
one of the most important appeal elements of video games
[41].

More specifically, flow theory explains that difficulty has
to be adapted to the player’s skill to provide a motivational
boost or to put the player in a flow state. As a practical ap-
plication of the flow theory for game design, the Gameflow
model puts difficulty as one of the criteria of game enjoyment.
Gameflow states that levels of difficulty must be varied, and
related to the players’ skills in order to maintain the players’
interest in the challenge [53]. Klimmt et al. also find that too
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easy or too hard levels of difficulty lead to boredom or frus-
tration [35]. Even more, the balance or imbalance between
player’s skills and game’s difficulty may provoke different
emotional states, a number of them being desirable [45].
Flow, and thus the adaptation of challenge, is a core aspect of
video games, but also of computer human interaction in gen-
eral. As proposed by Elmqvist et al., fluid interaction can be
defined as "promoting flow" and thus a "balanced challenge",
as well as "supporting direct manipulation" and "minimizing
the gulf of action" [22]. Indeed, one may consider that, except
in the context gaming, difficulty is to be lowered as much
as possible. However, lowering difficulty might also lower
the intrinsic value of any interaction. The user may easily
lose focus while performing a follow up of trivial task, while
they might be more concentrated a flow state is induced by
and adapted level of challenge.

ManyDynamic Difficulty Adjustment (DDA) systems have
thus been designed to adapt games difficulty in real time,
given the player’s skills. DDA systems are commonly used
within the game industry, whatever the game genre [2, 49],
sport [25], shooters [12], plateformers [6], role-playing games
[24]. DDA systems can for instance be designed to generate
an optimal flow experience during the game session [15].
Researchers have investigated their effect on player’s enjoy-
ment and motivation [7, 16]. Difficulty and its adaptation is
thus a fundamental aspect of game experience.

The link between DDA and players confidence can already
be found in the literature, if confidence is seen as a feeling
of competence. Flow theory states that participants’ sense of
competence is ensured by balancing the perceived difficulty
of a challenge with the actual skills of the participants [43].
Sense of competence is also examined in Self-Determination
Theory as a motivational factor. While applying SDT to
games, Ryan et al. study the feeling of competence as a factor
underlying players’ intrinsic motivation [48]. As video games
can provide challenges adapted to players’ actual skills, play-
ers may feel to be optimally qualified to overcome them and
thus, feel a sense of accomplishment.
Confidence can also be linked with the notion of subjec-

tive difficulty. Indeed, as stated before, we see confidence as
the player’s feeling of self efficacy, and thus, of player’s confi-
dence towards their future success, which is tightly related to
the player’s perception of difficulty. Perception of difficulty is
fundamental: as Nakamura puts it, the most important aspect
of difficulty, when it comes to it’s impact on game experience,
is the player’s perception of this difficulty, not the actual one
[45]. The thing is that player’s perception of difficulty is
absolutely not straightforward and can be strongly biased
[17]. Furthermore, player’s estimation of the useful effort to
overcome a challenge depends on multiple factors. The type
of challenge, physical or cognitive [21] implies a different

form of effort. Levieux et al. define three dimensions of diffi-
culty, logical, motor or sensory, each one of them requiring
various levels of physical and mental effort [8, 38]. Player’s
expertise and experience may also impact their perception
of needed effort [21]. Moreover, Caillois [13], Malaby [40]
and Costikyan [18] explain that the amount of effort needed
must remain uncertain in order to keep the game compelling.
These contributions suggest that one may, by design, have
an impact on the player’s perception of difficulty, and thus
on it’s confidence.
In this paper, we study how DDA systems can have an

impact on the player’s confidence. More specifically, we in-
vestigate the hypothesis that dynamically adjusting the diffi-
culty according to the player’s performance can lead them
to overestimate their success chances. We consider that this
overestimation is desirable, as it can be thought as a boost
of self-confidence. We study the player’s confidence while
using two DDA systems: one where we pick difficulty uni-
formly at random, and one that targets a balanced challenge
for which players’ probability of success equals 50%. We
choose to study these two conditions because they are at
both ends of the DDA spectrum. Random difficulty does
not take into account the player at all, providing him with
an unbalanced, unpredictable difficulty, and has thus been
used previous research in cognitive psychology about over-
confidence [28, 39, 46]. The other one, the fully adaptive
DDA targeting P success = 0.5 can be thought as the "canon-
ical" DDA used in video games, were skills and challenge
are evenly balanced, as the flow model would suggest. We
think that dynamically adapting difficulty to the player’s
performance will lead them to higher levels of confidence
than when difficulty is randomly picked. For these reason,
we choose to investigate two DDA systems’ impact on the
player’s confidence, one aiming to balance challenge’s diffi-
culty, and another one picking random difficulty levels.
To do so, we first review various studies related to the

use of DDA systems and their impact on the overall player
experience, and precisely on the player motivation and en-
joyment. Then we discuss the links between game difficulty
variations and player confidence. We introduce our method
to measure objective and perceived difficulty. Objective diffi-
culty is estimated as the player’s chances of success using
a mixed effects logistic regression on actual successes and
failures. Perceived difficulty is estimated using the player’s
estimation of their chances of success for a specific challenge
using an in-game bet system. We present the design of our
games developed to study the influence of difficulty. Each
game is dedicated to a type of difficulty: logical, motor and
sensory. These games have been played both with a random
or balanced difficulty curve, in order to compare these two
experimental conditions. Lastly, we present and discuss our



results, showing in witch case a balanced difficulty adapta-
tion may have provoked a strong boost of self confidence.

2 DIFFICULTY AND PLAYER’S MOTIVATION
As introduced, flow theory expresses that perceived chal-
lenge, as clear goals and feedback, are two conditions for
optimal experience [45]. Difficulty, as a challenge parameter,
may impact the player’s perception of the game experience
[35]. Moreover, adapting the objective challenge difficulty
to the player’s actual skills may help to achieve an optimal
experience [15, 53].
Allart et al. study the impact of the difficulty on players’

motivation based on two commercial games, Rayman Leg-
ends and The Division. They evaluate the impact of various
levels of difficulty on the player retention [5]. In both games,
players seem to prefer higher level of difficulty, the average
chances of failure being only around 20%. Increasing the diffi-
culty may have a positive impact on the time that the players
spent on the games. However, the impact of the variation
of difficulty on the players retention is variable from one
game to an other. Authors postulate that such results may be
explained by the nature of the game itself and the perception
of the challenge, as related either to player’s skills or avatar’s
levels (locus of attribution). As flow theory states, they find
that players favor optimal levels of difficulty, not too easy
nor too hard. Players also prefer to face challenge in which
the uncertainty about their chances of success is higher.
Alexander et al. test different difficulty settings in order

to find the level of difficulty which is the most enjoyable
for all kind of players [4]. They show that casual players
choose difficulty settings that are not balanced with their
actual skills. Casual players seem to prefer lower levels of
difficulty, even if their skills are higher than the ones needed
by the challenge. On the other hand, experienced players
prefer to have difficulty settings accordingly to their skills.
DDA systems may help to address these preferences, as

they adapt the difficulty curve for each type of players [8, 30]
and, in some cases, according to their affect [3, 47]. Moreover,
to balance the player’s motivation through the overall game
experience, DDA systems may be used in order to maintain
a high level of motivation.
Colwell et al. evaluate this adaptive game mechanism by

increasing or reducing the number of PNJ assaulting the
players during one level of an arcade-style game [16]. They
evaluate the enjoyment through a post game questionnaire,
crossed with the players’ data collected while playing two
versions of the same game: one with DDA, one without. Re-
sults show that both weak and strong players may enjoy their
play experience better when the game difficulty is adapted
to their current performance. Players also found their play

experience as more balanced while using DDA systems, ac-
cording to the post game questionnaire where players have
to rate the difficulty on a 1 to 5 scale.
Ang & Mitchell define two types of DDA systems: one

based on the players’ choices (pDDA), and one other based
on their performance (rDDA). They test the impact of these
two systems on the nine dimensions of the flow experience
[7]. Results show that both DDA systems have a positive
impact on the player experience, as they allow players to
"enter a state of Flow [...] much faster and for a longer periods
of time". They find that pDDA impacts more positively the
sense of control, as this DDA system allows the players to
control the difficulty of the game. Their study makes a clear
link between DDA systems and a important improvement of
the flow experience. By extension, immersion andmotivation
of the players are also impacted by the use of such systems.

Manipulating difficulty with DDA systems has a positive
impact on the player’s motivation and, according to flow
theory, may influence the player sense of competence [20].
Sense of competence may also be linked to other factors, like
confidence. For example, cognitive psychology studies show
a direct link between the decision-maker confidence and
their feeling of self-efficacy [23]. Cognitive biases, such as the
illusion of control and overconfidence effect, may also impact
the sense of competence [36]. In this paper, we examine a
possible direct link between the use of DDA systems and
the player’s confidence, as this link has not been studied
while playing video games. We make the hypothesis that this
connection may partly explain the impact of DDA systems
on the players’ motivation and enjoyment.

3 DIFFICULTY AND PLAYER’S CONFIDENCE
As introduced, video games are intrinsically built to keep the
players highly motivated and engaged during the resolution
of challenge. Video games are also used, in specific contexts,
as tools to manipulate the player’s confidence.

For example, Garris et al. analyze the essential character-
istic of video games for educational use. As video games
offer experimental environment free from real-world con-
sequences, they can be used to enhance the learner confi-
dence [26]. For the authors, modifying the difficulty of the
gamemay help to increase the players’ confidence: "Moreover,
games that employ progressive difficulty levels allow the user
to gain familiarity and build skills in complex or novel task
environments in a graduated manner." In that case, difficulty
seems to have a direct impact on the players’ confidence.
Confidence is also a key component of the ARCS model,

another framework used to describe the game experience.
This framework is based on 4 fundamental properties: Atten-
tion, Relevance, Confidence and Satisfaction, and originally
designed to improve the learners’ motivation while facing
instructional activities, like games for learning [34]. In this



framework, confidence is described as an expectancy of suc-
cess, meaning that "[...] the players have the persuasion to
be successful if they show sufficient engagement. The level of
confidence has important consequences for several aspects [...]
increased and sustained engagement, and self-efficacy." [54].
In that case, the perception of the difficulty of the task may
be impacted by the learners’ level of confidence.

These observations are supported by cognitive psychology
literature regarding decision-making and misplaced confi-
dence: "overconfidence amounts to an ’error’ of judgment or
decision-making, because it leads to overestimating one’s ca-
pabilities and/or underestimating an opponent, the difficulty
of a task, or possible risks." [31]. Such studies demonstrate
the presence of a cognitive bias during the estimation of the
difficulty of a task called the hard/easy effect. This behav-
ior implies that decision-makers cannot estimate the real
difficulty of the task [46]. For low levels, they will underesti-
mate their chances of success, whereas for high levels, they
will overestimate them [28, 39]. Confidence, in these studies,
is defined as the decision-makers ability to estimate their
chances of success facing a specific task.

For this research, following cognitive psychology related
to overconfidence, we describe the player’s confidence as an
estimation of their chances of success regarding a specific
challenge. In that way, the player’s confidence may mod-
ify their perception of the challenge, and indirectly, of the
perceived difficulty of it. We investigate the effects of DDA
systems on the players’ overestimation of their chances of
success. In other words, adapting the game difficulty to the
player’s capabilities may induce a feeling of overconfidence.
Following that hypothesis, we can make the assumption that
the players’ motivation may partly rely on a biased estima-
tion of their skills.
Games are tools in which players can experiment vari-

ous strategies without being confronted to real-world issues
[1, 50]. Failure in video games is not definitive but a part of
the learning process [27, 33]. Overconfidence in video games,
as a misplaced belief in its own capacity of success, may help
players to surpass themselves, even if it can lead them to a
probable failure. Overconfident players may be more moti-
vated, and subject to a risky decision-making. For instance, a
confidence boost may help players to face harder challenges,
challenges that are not calibrated on player’s actual skills.
For educational games, overconfidence may indeed improve
the learning process or, at least, arouse learner’s curiosity
in the challenge. Game designers can also use the player’s
misplaced confidence to provoke unexpected outcomes, with
regard to the unfolding narrative for example. Consequently,
studying player’s confidence variation in video games may
give some methods and provide tools to enhance the overall
game experience.

4 EXPERIMENTATION
The current experimentation is investigating a potential influ-
ence of DDA systems on players’ perception of their chances
of success, and thus, on players’ confidence. Following the
results of our previous research showing the existence of
a gap between the objective difficulty of a challenge and
the perceived difficulty of the same challenge [17], we want
to study the influence of DDA systems on this gap, called
the difficulty estimation error. As we suggest that balanced
difficulty should boost player’s confidence, our hypothesis is
that the gap is widened when difficulty is adapted to players
skills.

In order to investigate these hypotheses, we designed three
games, each one of them focused on one of the three dimen-
sions of difficulty defined by Levieux et al.: sensory, logical
and motor [8, 38]. Participants have to play each game for
30 turns. At each turn, they have to evaluate their chances
of success. One session will use a difficulty curve that fol-
lows the player performance and converges to 50% chances
of success (Balanced condition). To adapt the difficulty, we
subtract 0.1 to the difficulty parameter when the player loses,
and add 0.1 when they win. By doing so, we adjust difficulty
from one step to another based on the player results from the
last round. Another session will use a randomly generated
difficulty curve (Random condition), by picking uniformly at
random the difficulty parameter between 0, the lowest level
of difficulty, to 1, the highest. Difficulty parameters of each
game are described in section 4. The two conditions share
the same experimental protocol and context of use. Perceived
and objective difficulties are evaluated during the game ses-
sion, respectively using a bet system and mixed effect logistic
regression, as detailed in the following sections.

Measuring Perceived Difficulty
In order to measure players’ perception of difficulty, we
choose to ask them to estimate their chances of success.
If their estimation is high, it means that they evaluate dif-
ficulty as low; and if their estimation is low, it means that
they think that difficulty is too high for them. But, as found
in the literature, this evaluation can be biased by a hard/easy
effect (section 3.Difficulty and Player’s Confidence).
Our bet system is based on a 7 point Likert scale (see

top of figure 1a) that allows players to bet from 1 to 7 on
their success at the current turn of the game. If the player
win, the amount they bet is added to their score; if they lose
the amount is subtracted. The evaluation of confidence is
thus tied to their score, asking them to stay focused and
pay attention to such a repetitive question. Betting is done
before the players can actually realize their action. To do
so, any elements required to solve the challenge is provided,
allowing them to evaluate their chances of success.



Our goal is to gather in-game data related to the player
perception of difficulty, while avoiding any memory bias
that could occur during post performance questionnaires
[7, 16, 37]. Measurement of the perceived difficulty is based
on the players’ bet, noted Dperceived . With b being the bet
value we use the formula Dperceived = 1 − b−1

6 to get the
estimated chances of failure.

Measuring Objective Difficulty
To measure the objective difficulty of a challenge, we follow
Levieux et al. definition, suggesting the estimation of the
players’ failures probability for that challenge [8, 38]. We
use a logit mixed-effects model [11] to take into account
the players inter-personal differences. Time and difficulty
parameter of each challenge (e.g. cursor speed, number of
cells...) are used as fixed effect parameters, and we add ran-
dom intercepts. This mixed model can be used because each
players realizes multiple tries on the same challenge. The
random intercepts give us a coefficient for each players that
we use as a global evaluation of each player’s level.1

Games Description and Difficulty Parameters
Three video games, one for each dimension of difficulty, were
played randomly during two sessions. First session was dedi-
cated to the Balanced condition, targeting young volunteers,
gamers and non-gamers. Second one, carried out one month
later, was dedicated to the Random condition, targeting the
same population with new participants. The experiment was
conducted during school vacation period, in a national mu-
seum in Paris, the Cité des sciences et de l’industrie. We used
the same computers and place to fulfill the two experimenta-
tion. Each play session was 40 minutes long approximately,
including a pre-experiment questionnaire needed to define
the different player profile. This questionnaire was split into
three parts:

Gaming habits, based on the time that participants spent
playing games (board games, video games, social games,
gambling).

Self-efficacy profile, based onGeneral Self-Efficacy Scales
[10, 14] adapted to gaming situations. This part of the ques-
tionnaire is used to check a possible influence of the partici-
pants’ gaming ability on their estimation of confidence, and
by extension, their estimation of their chances of success
[52].

Risk aversion profile, based on Holt & Laury’s Ten-
Paired Lottery-Choice [29]. This part was used to verify
any influence of the risk aversion on the players’ estimation
of their chances of success through the betting system.

1We also tried to add a random slope on the difficulty parameter but the
accuracy gain was very small.

Participants start playing one of the three games, ran-
domly chosen to avoid any order effect. They have to play
33 each game turns, including 3 turns dedicated to the game
tutorial. Before starting one game, participants can read its
rules and follow their progression through a dedicated page,
the game hub. Their goal is to give their best performance,
which can be evaluated through their score. All games fol-
low the same protocol: for each turn, player faces a specific
challenge for which they evaluate their chances of success
by betting from 1 to 7. Then, they can play and see the result.
Each game is based on a simple task addressing a dimension
of difficulty:

Logical difficulty is evaluated with a sliding puzzle game,
where the players have to restore the numerical order of a
grid composed of 9 squares (figure 1a). At the beginning of a
turn, the grid order is mixed up by switching multiple times
the 5th square with an adjacent one. The players have 20
seconds to observe the grid before it disappears. Then they
have to make a bet, before replacing the fifth square to its
original position, within the number of possible move. The
difficulty parameter is associated to the number of possible
moves necessary to restore the grid order, linearly from 1 to
11.

Sensory difficulty is evaluated through a perceptive task.
A 300 pixels wide grid, composed of multiples squares, is
displayed at the center of the screen (figure 1b). At the end
of a 3 second countdown timer, five of the squares will blink
and then fade out during a short time. The players have to
find them back, by clicking on them. The selected squares are
displayed in a blue color, whereas the other squares remains
in a gray one to avoid any color perception bias. The location
of the flashing squares is chosen to avoid simple pattern. The
difficulty parameter, d for this game, is related to the fade out
time, t . It can be approximated as follows: t = d2−0.24d−1.22.
The number of squares composing the grid vary with the
difficulty: higher levels of difficulty imply that the grid will
gain squares on each side, while its surface stay the same.
Squares will thus become smaller. The maximum level of
difficulty corresponds to a grid composed of 11 squares on
each side, while only 4 for the minimum level of difficulty.

Motor difficulty is evaluated with a basic reflex-based
task, for which the players have to stop a moving cursor on
a black marker at the center of a horizontal segment (figure
1c). The cursor is moving at a linear speed that is correlated
with the difficulty of the task, ranging linearly from 100 to
400 pixels per seconds. The sliding area is 320 pixels wide,
the cursor is 15 pixels, and the target 2 pixels.

2This equation is a quadratic regression of the fade-out time. In the game,
the color is incrementally modified during the game loop, but plotting this
equation is much clearer than reading the color update code.



(a) Logical game

(b) Sensory game (c) Motor game

Figure 1: Interface for the logical (a), sensory (b) and motor
(c) games. Logical game is shown with the whole user inter-
face, including the bet system, while we only show the cen-
ter frame for the other games. Screenshots were taken for
the easiest levels of difficulty.

These games share a similar protocol and always provide
players with the elements needed to evaluate the difficulty
and make a proper bet on their chances of success. For the
logical difficulty, the game displays the number of inversions.
For the sensory one, the players select the tiles to solve the
problem, but without any feedback, before betting. Previous
playtests showed that this game could be frustrating if the
players had to stop focusing on the grid for betting with-
out selecting the tiles. For the motor difficulty, players can
observe the moving cursor before betting.

5 RESULTS
We present here the results of the two experimentation, es-
pecially the ones based on the players’ in-game performance,
as we did not find any correlation between our profiles and
estimated player’s confidence. The first experimentation,
dedicated to the Balanced condition, has a total of 6990 ob-
servations for 80 participants. The second one, dedicated to

the Random condition, allowed to gather 5742 observations
for 58 participants. The 138 participants were randomly se-
lected for each condition, and they were not told the purpose
of the two experiments. 76 of them declared themselves as
regular players. Median age is 15 years old. For each task
we remove outliers from the dataset, such as players who
did not use the betting system to perform a self-assessment,
players who always placed the same bet, or players with
outlying performance. For example, a very low score may
reflect some user experience issues. Specifically, we have
taken out 5 players which had a too low standard deviation
on the bets, as they almost always betting the same value. 5
other players were cleared away because they had a too high
accumulated bet variation, showing that they took advantage
of the adaptive difficulty system in order to maximize their
score by deliberately losing with a low bet then by placing
a high bet on the next easier challenge and so on. In total,
11 outliers were removed: 6 for the logical game, 4 from the
motor game, 4 from the sensory one. Final amount of players
for each game is 131 for the logical task, 133 for the motor
task and 129 for the sensory task.

Modeling Objective Difficulty
To evaluate objective difficulty, we used a logit mixed effect
regression as explained in section 4.Measuring Objective Dif-
ficulty. Figure 2 describes the conditional R2 using both fixed
and random effects for each game [44]. The model evaluation
is performed through a 10-fold cross-validation, using our
model as a binary predictor of the challenge outcome. Figure
2 shows that the difficulty parameter is, for all the games,
highly significant and has the strongest effect on failure prob-
ability, especially for the sensory game. By changing this
parameter, we were indeed manipulating the objective diffi-
culty of the games. The effect of time is always negative and
significant, meaning that the objective difficulty seems to
decrease overtime if the difficulty parameter stays constant.
This may indicate that players are learning as their success
rate improves overtime for a specific value of the difficulty
parameter. We observe that the time effect is stronger for
the logical task (−1.51), which is coherent with the fact that
players should learn quicker from a logical problem than
for a purely sensory or motor one (respectively, −0.46 and
−0.27).

For a better understanding of the games’ difficulty, we plot
the objective difficulty over the difficulty parameter (figure
3). Players are split into three groups of level using k-means3.
Figure 3 describes objective difficulty for each challenge
for both Balanced and Random condition at time t = 0. The
logical game is themost balanced, as the objective difficulty is

3We have players levels from the random intercept of mixed effect logistic
regression (see section 4.Measuring Objective Difficulty).



Parameters Logical Motor Sensory
Difficulty
parameter

5.51 ((p <
2e − 16)***)

3.07 ((p <
2e − 16)***)

8.51 ((p <
2e − 16)***)

Time −1.51
((p = 2e − 6)***)

−0.46 ((p =
0.00018)***)

−0.27
((p = 0.0454)*)

R2 0.56 0.28 0.65
Cross

Validation 0.71 0.64 0.74

Figure 2: Modeling objective difficulty for each task: logit
mixed effect regression results for difficulty and time over
failures.

close to the difficulty parameter value. The motor game may
be too hard for the lowest levels of difficulty, the objective
difficulty is around 0.25 when the difficulty parameter is 0.
For the sensory game, it seems that the maximal level of
difficulty is reached too quickly, when difficulty parameter
is 0.6.
Overall, the objective difficulty model is the weakest for

the motor game, with a low conditional R2 (0.28) and the
lowest prediction accuracy (0.64). R2 and prediction accuracy
are higher for the logical and sensory games (respectively,
R2 = 0.56 & accuracy = 0.71 and R2 = 0.65 & accuracy =
0.74).

Differences Between Balanced and Random
Difficulty
To investigate a gap between the perceived difficulty of a
game using balanced difficulty and one using random diffi-
culty, data for the Balanced and Random conditions (respec-
tively represented by triangles and dots) are split into 16
equally sized bins using the objective difficulty as estimated
by the mixed effect model. In each bin, for each player, the
average perceived difficulty is computed. We thus have only
one value by player in the bin, and each observation is thus
independent from the others. We then only process bins
where both Balanced and Random conditions contain more
than 10 different players.
We run a Wilcoxon rank sum test on each bin, against

the null hypothesis that perceived difficulty values for the
Balanced and Random condition are drawn from the same
distribution (p < 0.05), i.e. we check whether perceived diffi-
culty can safely be considered different in the two gameplay
conditions for the same objective difficulty level. When the
null hypothesis is rejected, triangles and dot are filled, and
just outlined when it is not.

Overall results show that players tend to be more overcon-
fident in the Balanced condition. For both logical and motor
games, the gap is indeed wider for players using a difficulty
curve converging to 0.5. Results are particularly strong for
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Figure 3: Objective difficulty for each game at t = 0, using
random and balanced difficulty curves. Blue dashed line is
the median player, red dashed lines show first and last quar-
tiles. The less efficient players are in yellow,mediumplayers
in cyan and best players in green.

the motor game. For instance, the most significant gap is
observed for an objective difficulty at 78% chances of failure:
the perceived difficulty for the Random condition is at 72%
while only at 37% for the Balanced condition. Similarly, for



the logical game, when objective difficulty is at 84% chances
of failure, the perceived difficulty is at 63% for the Random
condition, and at 38% for the Balanced condition. On the op-
posite, we do not find any significant results for the sensory
game, where it seems that the players have the same slight
overconfidence for the two experimental conditions.

Differences Between Objective and Perceived
Difficulty
To investigate a gap between the perceived difficulty of a
game and its objective one, we run a Wilcoxon signed rank
test on each bin, against the null hypothesis that the median
of the perceived difficulty values equals the objective diffi-
culty (p < 0.05), i.e. we check if perceived difficulty can safely
be considered different from objective difficulty. This test
evaluates the pseudo-median of the distribution, so we use
this value to plot each bin’s median on Figure 4. We carry out
the test for both the Balanced and Random conditions, and
using triangles for Balanced and dots for Random condition.
When the null hypothesis was rejected and we could safely
say that perceived difficulty is different from objective diffi-
culty, we add red diamonds outlines (for Balanced condition)
and red squares outlines (for Random condition) around the
corresponding triangles or dots.
Results show that the logical game presents a hard/easy

effect for both condition. Players seem to be overconfident
for the highest difficulty levels, and a little bit underconfi-
dent for the easiest difficulty levels. As noted earlier, players
of the Balanced condition show stronger results. For this
experimentation, players of the Random condition seem to
have a correct estimation of their chances of success for
medium difficulty levels included between Dobjective > 0.3
and Dobjective < 0.7. Results for the motor game show the
strongest hard effect. However players of the Balanced con-
dition seem to be overconfident when Dobjective > 0.3, while
players of the Random condition seem to be well-calibrated
for the same objective difficulty level. For the lowest diffi-
culty levels, only the players of the Random condition seem
to be slightly overconfident. Players of the sensory game
seem to be overconfident for all difficulty levels.

6 DISCUSSION
Balanced & Random Difficulty and the Hard/Easy
Effect
Each task shows a specific profile with regard to hard / easy
effect. The logical task seems closest to cognitive psychol-
ogy studies related to the influence of difficulty on decision-
maker’s confidence, as we find both an overestimation of the
highest difficulty levels (hard effect) and an underestimation
of the lowest difficulty levels (easy effect). However, these
effects are only found at the same time in the logical game

Logical game

Motor game
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Sensory game

Dobjective

Figure 4: Perceived and objective difficulty for Balanced and
Random conditions, for each game and all players. Triangle
represents the players estimation of the difficulty for the
Balanced condition, and dots for the Random one. When tri-
angles or dot are filled, perceived difficulty can be consid-
ered different between the two conditions. Red squares and
diamonds, respectively for the Balanced and Random con-
dition, are showed when perceived difficulty is not equal to
objective difficulty (blue line).



(figure 4). Following results of previous research [17], we
do not find such easy effect for the other games. One expla-
nation is that the logical game may be closest to the task
used in cognitive psychology studies, implying pure logical
challenge like mathematical problems or general knowledge
questionnaires.

We observe for the motor game within the Balanced con-
dition an important hard effect, contrasted by a good estima-
tion of the difficulty for the Random condition. Motor game
is a simple and repetitive task, meaning that the players’
decision-making may be rushed. With random difficulty lev-
els, players may take more time to appreciate the difficulty,
and, as such, better evaluate their chances of success.
For the whole experiment, hard effect may rely on the

player confidence on the game design itself: games are rarely
impossible to finish, implying that players think that every
difficulty level can be overcome. It may lead to an overconfi-
dence effect. Also, player overconfidence may be stronger in
our games than in previous cognitive psychology studies due
to player progression. Indeed, our games allow players to
experiment and learn from their failures, thereby improving
their performance. This feeling of progression and mastery
may help players to become more confident in their chances
of success. In cognitive psychology studies, where tasks are
independent from one to another, this might not be the case.

Differently, results for the sensory game show that players
seem to be slightly overconfident for all difficulty levels. One
hypothesis is that players perform well and have a better
perception of their chances of success because of the nature
of the sensory difficulty. Another is related to the sensory
game design itself. In this game, the player can select the
squares before betting, thus experiencing some gameplay
before interpreting their chances of success. While they are
not yet aware of their actual performance, they do go one
step further toward the completion of the challenge than for
the two other games. By assessing their chances of success
after having experienced the exercise they may have a more
accurate feeling about the quality of their answer. Player’s
confidence may be reevaluated during this lap of time, cancel-
ing any overconfidence effect related to the use of balanced
difficulty. For the two other games players perform no in-
teraction and must guess the tasks’ next steps. This design
choice for the sensory task was made because we did not
want to focus on memorization, but on the sensory aspect
of detecting blinking squares.

Influence of DDA Systems on the Player’s Confidence
We also observe that there is an important difference be-
tween the players’ estimation of their chances of success
depending on how we adapt the difficulty. Players seem to
have a better estimation of the difficulty while playing with
a random difficulty curve, whereas the difficulty estimation

error is more important when using a balanced difficulty
converging to 0.5. In other words, players seem to be much
more overconfident with a difficulty adapted to their skills.
As stated in section 2.Difficulty and Player’s Motivation,

DDA systems are used to improve the player’s motivation
and enjoyment, and our results seem to confirm their impact
on the player’s confidence. However, one hypothesis could
be that when facing unpredictable difficulty levels, players
may be more careful with their estimation of their success
chances. They know they can be surprised by the difficulty of
the next turn and thus not rush their moves and evaluation.
This could impact their motivation but others experiments
must be conducted in order to verify this hypothesis.
The influence of balanced difficulty on the perceived dif-

ficulty seems also to depend on the nature of the task. For
the motor game, the gap is wider than for the logical one.
Moreover, for the motor game, players seem to have a good
evaluation of the difficulty, once again, for the highest diffi-
culty levels in the Random condition. Their judgment look
more calibrated than in the other tasks. As we said in section
6.Balanced & Random Difficulty and the Hard/Easy Effect, re-
sults for the motor game may be explained by the nature of
the task, as players may rush their decision-making process.
For a pure logical challenge, implying complex judgment and
a quite longer decision timing, uncertainty factors are more
diverse. Balancing difficulty may thus have a more limited
impact on player’s overconfidence, as they may tend to be
more cautious in their decision process.
We also note that the sensory game presents specific re-

sults, in which players seem to be following the same cali-
bration curve for the two experimental condition. As we said
in the previous section 6.Balanced & Random Difficulty and
the Hard/Easy Effect, the design of the task may help play-
ers to have a better estimation of their chances of success,
independently from any influence of the DDA system.

7 LIMITATIONS OF THE EXPERIMENT
The Bet System and the Difficulty Evaluation
Our estimation of the challenge perception is based on a
bet system, used to measure the difficulty estimation error
made by the players. As introduced in section 3.Difficulty and
Player’s Confidence, such a bet system stems from cognitive
psychology studies about the overconfidence effect. However,
in our games, there exist an optimal strategy that players can
use in order to maximize their score: bet 7 when Dobjective >
0.5, and 1 when Dobjective < 0.5. Data from players who used
this strategy were ditched from our study. We also tried to
integrate regular confidence scales in our experimentation,
for which players have to give a proper estimation of their
confidence. Results show that the players neglect to fulfill
this evaluation while it is not strictly related to their score.



Also, the bet system does not allow us to clearly distinguish
between effort-based and skill-based perceived difficulties.
New experiments can improve the separation between them.

Player Performance and Motivational Influences
Our measurement of players performance is based on their
score, without regarding their motivation to exert an effort
for one specific challenge. Balanced difficulty seems to boost
the players confidence, but we can only make the assumption
that such increased confidence may result in a rise of their
motivation. If a player is not motivated enough, they may
make a correct assessment of difficulty, but perform poorly
because they do not want to make the effort. Video game
players experience various states of emotion [13, 32], includ-
ing boredom and anxiety. As such, these emotions should be
taken account of for future experiments.

8 CONCLUSION AND PERSPECTIVES
This study investigates the impact of DDA systems on player’s
confidence. Our work stems from the vast literature describ-
ing the link between difficulty adjustment and player expe-
rience, from positive psychology studies about flow state,
to cognitive psychology studies about overconfidence and
hard/easy effect and contributions about the impact of DDA
systems on player’s motivation and enjoyment. Our hypoth-
esis is that DDA systems can place players in a state of
overconfidence, that we consider as desirable. To study this
hypothesis, we propose a method to evaluate objective and
perceived difficulty of a challenge, and implement it into
three video games related to various dimensions of difficulty.
We report the results of two experiments, where we adapt
these games using either a random difficulty curve, or a
balanced difficulty curve adapted to players successes and
failures.
First, we demonstrate the effectiveness of our objective

difficulty estimation, using a mixed effect model to take into
account players differences. Results show a predictive accu-
racy ranging from 64% for the motor game, to 71% for the
logical game and 74% for the sensory one. We were also able
to see a learning effect, as a negative effect of time on ob-
jective difficulty for a given difficulty parameter value. This
learning effect is relative to the nature of the tasks, with a
higher learning effect for the logical task.
Then, we compare objective difficulty to the perceived

difficulty, estimated through a bet system. These results con-
firm the existence of an unrealistic evaluation of player’s
actual chances of success when difficulty is balanced with
player’s skills. In this case, motor game shows a clear hard
effect, while logical game presents a hard/easy effect.
Moreover, when difficulty is randomly chosen, players

seem to have a better estimation of their chances of success
for the motor and logical game, confirming our hypothesis

for two of the three games. The effect is more important for
the motor game, as players of the Random condition correctly
estimate their odds of win. We also notice the same effect for
medium difficulty levels of the logical game. However, for the
sensory game only, we observe that players are constantly
overconfident, and have a similar perception of the difficulty
for both experimental conditions.

We then discussed how the nature of the task may explain
these difference. A motor game implies a faster decision-
making that may have helped to provoke a high overconfi-
dence state in the balanced condition. The results regarding
the sensory task may be explained by the design of this task:
the difficulty evaluation is performed after players started
the task, thereby potentially gaining additional insight into
their performance.
This experiment thus suggests that in the case of motor

and logical gameplays, one can influence the player’s pre-
diction of self-efficacy by modifying the way difficulty is
adapted in real time. Of course, in this experiment, the two
conditions used basic difficulty adaptation algorithm : either
random or targeting a constant 0.5 success probability. Fur-
ther experiments needs to be conducted in order to measure
the impact of a more various sample of difficulty curves. We
want to explore, for instance, the impact of DDA systems
targeting higher or lower difficulty levels, or more varied
curves with difficulty peaks.

We also plan to investigate DDA systems impact in more
complex gameplays. Very often, such gameplays are not
based on a turn by turn rhythm. The bet system has to be re-
designed in that perspective, as we need to evaluate player’s
confidence during the game experience without disturbing
the player. We want to find a way to keep studying time to
time player’s confidence, and not rely on post-experiment
questionnaires. As the sensory gameplay’s result may sug-
gest and as explained in section 4.Measuring Perceived Diffi-
culty, timing of confidence evaluation seems crucial.

Finally, we want to expand our approach with an investi-
gation of the impact of these findings on player’s behavior.
Players showing greater confidence may be disposed to act
accordingly. They may attempt harder challenges, try more
risky and advanced strategies, or even show an increase of
creativity while facing new and unknown challenges. Study-
ing player’s in-game actions might help to have a better
understanding of the overconfidence effect on the game ex-
perience.
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