
How Users Interpret Bugs
in Trigger-Action Programming
Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee,

Weijia He, Guan Wang†, Michael L. Littman†, Blase Ur
University of Chicago, † Brown University

{wbrackenbury,akdeora,jjritchey,jvallee,hewj,blase}@uchicago.edu, {wang,mlittman}@cs.brown.edu

ABSTRACT
Trigger-action programming (TAP) is a programming model
enabling users to connect services and devices by writing
if-then rules. As such systems are deployed in increasingly
complex scenarios, users must be able to identify program-
ming bugs and reason about how to fix them.We first system-
atize the temporal paradigms through which TAP systems
could express rules. We then identify ten classes of TAP
programming bugs related to control flow, timing, and in-
accurate user expectations. We report on a 153-participant
online study where participants were assigned to a tempo-
ral paradigm and shown a series of pre-written TAP rules.
Half of the rules exhibited bugs from our ten bug classes.
For most of the bug classes, we found that the presence of
a bug made it harder for participants to correctly predict
the behavior of the rule. Our findings suggest directions for
better supporting end-user programmers.

CCS CONCEPTS
• Human-centered computing → Empirical studies in
HCI; • Software and its engineering → Error handling
and recovery;

KEYWORDS
Trigger-action programming, end-user programming, IoT,
Internet of Things, IFTTT, bugs, debugging

ACM Reference Format:
Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee,
Weijia He, Guan Wang, Michael L. Littman, Blase Ur. 2019. How
Users Interpret Bugs, in Trigger-Action Programming. In CHI Con-
ference on Human Factors in Computing Systems Proceedings (CHI
2019), May 4–9, 2019, Glasgow, Scotland Uk. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3290605.3300782

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5970-2/19/05.
https://doi.org/10.1145/3290605.3300782

1 INTRODUCTION
The power of data-driven services and the Internet of Things
(IoT) centers on interconnections between components [53].
While users could plausibly specify how IoT devices and
online services interact using a variety of interaction meth-
ods [10], both industry and academia have repeatedly turned
to end-user programming, especially trigger-action program-
ming (TAP). In TAP, a user creates rules of the form “IF
a trigger occurs, THEN perform an action.” For example,
users can write rules such as, “IF someone tells the voice
assistant they are sad THEN turn the lights blue.” This par-
adigm is the basis for the popular website IFTTT (“If This,
Then That”) [26], Microsoft Flow [33], Zapier [27], Mozilla’s
Things Gateway [24], Stringify [44], SmartRules [43], Nin-
jaBlocks [54], and many others. The TAP approach can be
used to connect physical IoT devices, as in the example above,
or as a substitute for shell scripting in workplace environ-
ments (e.g., allowing novice programmers to write rules
that automatically back up data). Academic researchers have
recognized the effectiveness of this paradigm for end-user
development, conducting a number of studies that rely on
TAP or a close variant [4, 9, 13, 18, 19, 22, 23, 34, 50–52].

Rules in TAP typically connect a single event to a single
action (e.g., “IF I am tagged in a Facebook photo, THEN save
that photo to Dropbox”). However, many important behav-
iors require greater expressiveness. For example, one might
want lights to turn on when they arrive home, but only at
night. Expressing such a behavior requires that rules sup-
port conjunctions (“and” clauses) within triggers. Deployed
platforms differ in their support for this. Stringify [44] and
SmartRules [43] support conjunctions in a single trigger,
while Microsoft Flow [33] and Zapier [27] provide only par-
tial support through trigger filters. While some studies found
participants could write rules with conjunctions regardless of
their prior programming experience [50], others highlighted
inconsistencies in how users interpret such rules [22].

To reason about TAP rules unambiguously, it is necessary
to fully specify the programming model. We are the first to
do so here, delineating three temporal paradigms that could
govern how TAP rules are expressed. We identify the syntac-
tic components and limitations of each of these paradigms,
providing the first of our three key contributions.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 1

https://doi.org/10.1145/3290605.3300782
https://doi.org/10.1145/3290605.3300782
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3290605.3300782&domain=pdf&date_stamp=2019-05-02

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk W. Brackenbury et al.

As TAP is deployed in more complex environments, the
potential for programming bugs becomes more likely. We
identify ten programming bugs that might arise in TAP by
re-examining the literature, translating bugs from other do-
mains into TAP, and discussing use cases with scientists
deploying a TAP system. To our knowledge, three of these
ten bugs are novel within the context of TAP. Of the re-
maining seven, no single previous paper had identified more
than three. We grouped these ten bugs into three classes:
bugs in control flow, timing-related bugs, and errors in user
interpretation. This taxonomy is our second contribution.

To gauge whether these ten bugs impair user understand-
ing of TAP rules, we conducted a 153-participant online study,
our third contribution. We assigned each participant to one
of the three temporal paradigms and had them complete a tu-
torial about TAP. We then showed them a series of TAP rules
with accompanying scenarios. In half of these instances, the
rules exhibited one of the bugs from our taxonomy. In the
other half, the rules were written correctly. We found partic-
ipants were significantly more likely to accurately predict
the outcome of bug-free rules, compared to those exhibiting
a bug. We also qualitatively coded participants’ explanations
of why they chose each answer to better understand the
manifestation of these bugs, to unpack users’ mental models
of TAP systems, and to identify possible interventions.

We begin by discussing related work in Section 2. We then
present our systematization of TAP temporal paradigms (Sec-
tion 3) and our taxonomy of TAP bugs (Section 4). We then
describe the methodology (Section 5) and results (Section 6)
of our user study. Finally, in Section 7, we discuss directions
for helping users avoid these bugs.

2 RELATEDWORK
End-user development has long been an area of interest
within context-aware systems and IoT environments [10, 13,
14, 25, 30, 35, 42], as well as for web mash-ups [7, 32, 36]. The
ubiquity of TAP-like formulations of end-user programming
may reflect users’ mental models. Dey et al. found that users
often specified behaviors for context-aware applications in
an if-then style [13], while Ur et al. found that many desired
behaviors in smart homes could be expressed with TAP [50].
Pane et al. found similar results for programming solutions
expressed by non-programmers [45]. These results may re-
flect, however, the framing of tasks by researchers, rather
than inherent mental models [8]. Nonetheless, multiple stud-
ies have found that users can write TAP programs regardless
of prior programming experience [19, 50], as demonstrated
by thriving real-world TAP ecosystems like IFTTT [40, 51].

There are drawbacks to current TAP interfaces, however.
Many do not support desired complex functionality [4], many
TAP interfaces lack feedback during rule creation [19], and

temporal issues in TAP can lead to inaccurate mental mod-
els [22]. Initial attempts to mitigate some of these problems
leverage techniques typical of software engineering, includ-
ing formal verification [34, 57], information-flow control [49],
privilege isolation [15], and dynamic instrumentation [52].

3 TEMPORALITY IN TAP
The temporality of triggers and actions is a crucial source
of ambiguity for TAP. Prior work by Ur et al. [50] and by
Huang and Cakmak [22] noted this difficulty, distinguishing
between triggers based on events (things that occur at a
moment in time) and states (conditions that are true over a
period of time). Here, we adopt the following terminology:

• An event trigger occurs at a particular instant in time
(e.g., “it begins to rain”).

• A state trigger is a condition that remains true or
false over time (e.g., “it is currently raining”).

We also distinguish between the following action types:
• An event action occurs or begins at a particular in-
stant in time (e.g., “turn on the light”).

• A state action identifies the desired state of a device
in a time period (e.g., “the light should be on”).

Prior work has identified ambiguities caused by tempo-
rality [22]. It has not, however, formalized or united the
conflicting interpretations. We do so here, proposing three
temporal paradigms within which users can write TAP rules
with unambiguous meaning. Rulesets in one temporality
may be translated to any other.
Table 1 summarizes the paradigms: Event–Event; State–

State; and Event–State. This systematization is important
because the literature is inconsistent in handling temporal-
ity. Some prior studies considered only event triggers [6, 26],
some considered only state triggers [55, 56], and still oth-
ers distinguished between (and used) both [5, 22, 43, 47, 50].
Alarmingly, other work has used both types of triggers with-
out specifying how such rules would function [11, 13, 16, 19].

The Event–Event Paradigm
As TAP is often event-driven, combinations of events would
seem to be a viable candidate for triggers. A crucial observa-
tion, however, is that events do not compose well—they are
unlikely to occur at the exact same instant in time [22, 50].
Therefore, the Event–Event paradigm uses time windows
(e.g., “IF Sally enters the bedroom AND the sun sets WITHIN
2 hours”) to account for events not occuring simultaneously.
When any event that is part of the trigger occurs, the TAP
system would look back in its history to determine whether
all other events in the trigger had occurred within the time
window. If they had, it would execute the rule’s action.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 2

How Users Interpret Bugs in Trigger-Action Programming CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

Paradigm Format Examples

Event–Event
→Event

IF event (AND event | AND
AFTERWARDS event)* (WITHIN
time window) THEN event

• IF Sally enters the bedroom AND the sun sets WITHIN 2 hours THEN turn on the bedroom lights.
• IF Sally enters the bedroom AND AFTERWARDS the sun sets WITHIN 2 hours THEN turn on
the bedroom lights.

Event–State
→Event

IF event (WHILE state (AND state)*)*
THEN event

• IF the sun sets WHILE Alice is currently at home THEN turn on the bedroom lights.
• IF the sun sets WHILE Alice is currently at home AND it is currently raining THEN turn on the
bedroom lights.

State–State
→State

IF state (AND state)* THEN state
PRIORITY priority

• IF Bill is currently in the room THEN the temperature should be 70° PRIORITY 8.
• IF Charlie is currently in the room AND it is currently night THEN the temperature should be
65° PRIORITY 9.

State–State
→Event

IF state (AND state)* THEN event • IF I am currently hungry AND no pizza has been ordered in the last 3 hours THEN order a pizza.

Table 1: The three TAP temporal paradigms, defined by the trigger temporality. The action temporality follows
from the trigger temporality. The third paradigm, State–State, has two variations because the action can be either
a state or an event. The asterisk (*) denotes components that may appear an arbitrary number of times, including
zero. PRIORITY indicates the ordering of rule precedence, with higher numbers indicating higher precedence.

To enable particular orderings of events, we also support
“and afterwards.” For example, “IF the sun sets AND AFTER-
WARDS Sally enters the bedroomWITHIN 2 hours” will only
trigger if Sally enters the bedroom after the sun sets.

The Event–State Paradigm
The Event–State paradigm requires that each trigger con-
tain one event, with zero or more states [43, 50]. When an
event trigger occurs, the system would check whether the
trigger’s states are true. The rule triggers if and only if all
specified states are true at the moment the event trigger
occurs. Unfortunately, prior research has shown that the dis-
tinction between events and states is lost on many users [22].
Nonetheless, the Event–State paradigm is used in the real-
world deployments of Stringify and SmartRules [27, 44], as
well as in many academic studies [5, 22, 43, 47, 50].

The State–State Paradigm
In the State–State paradigm, triggers only contain states
(e.g., “IF it is currently raining AND I am currently at home”).
Because state triggers are true over an interval of time, state
actions are most natural (e.g., “the lights should currently be
blue”), though it is also possible to include events as actions.
Because multiple states can be true simultaneously, rules
affecting the same capability (e.g., controlling the lights)
must include a prioritization to resolve conflicts. We expand
on this in Section 4 through the Priority Conflict bug.

Because some actions (e.g., sending an email) are discrete
events that cannot be expressed as state actions in a straight-
forward way, in Table 1 we provide State–State formulations
for both state actions and event actions. Additionally, sup-
porting event actions within State–State introduces compli-
cations. Consider the rule “IF I am hungry, THEN order a

pizza.” While one is hungry, this rule continually evaluates
to true and thus continually triggers, ordering many pizzas.

Other Logical Operators
Neither “or” nor “not” operators are necessary in TAP se-
mantics. Triggers involving “or” can be expressed as separate
rules. Note that we used “or” in our user study to separate
rules in a ruleset, as discussed in Section 6. The “not” opera-
tor is not needed because the negation of a state trigger can
be encoded in the state itself (e.g., “it is not raining”), whereas
the negation of an event requires a notion of history (e.g., a
given event has not occurred in a specified time period).

4 BACKGROUND
In this section, we taxonomize ten bugs that might arise in
TAP. Four of these bugs (Priority Conflict, Secure-Default
Bias, Extended Action, and Missing Reversal) have been dis-
cussed at length in TAP literature, while three (Infinite Loop,
Repeated Triggering, and Nondeterministic Timing) have
been identified but not fully discussed. The remaining three
(Contradictory Action, Time-Window Fallacy, and Flipped
Triggers) are, to our knowledge, new to the TAP literature.

Our methodology for uncovering these bugs consisted
of three activities: re-examining the literature on TAP, at-
tempting to translate bugs observed in novice programming
and distributed systems to TAP, and discussing desired use
cases and implementation pain points with scientists deploy-
ing their own TAP system. Naturally, no bug taxonomy is
complete. We anticipate new bugs could be discovered in
long-term field studies that uncover complex interactions
over time. Logging the use of TAP systems and evolution
of rules over time could also provide insight into new bugs.
However, we expect our taxonomy captures common bugs.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 3

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk W. Brackenbury et al.

Bug Name Paradigm Description

Control-flow bugs
Infinite Loop All One rule triggers another rule, which then triggers the first, ad infinitum.
Contradictory Action All An infinite loop over an extended period (e.g., alternating between heating and cooling).
Repeated Triggering All A rule repeatedly triggers because an event occurs many times or a state remains true.

Timing bugs
Nondeterministic Timing All The order in which nearly concurrent events are processed changes the system’s behavior.
Extended Action State–State Rules fail to account for the extended timing of an action (e.g., brewing coffee).

Inaccurate user expectation
Missing Reversal All Even when no rule exists to undo an action (e.g., turning on lights), users assume one exists.
Secure-Default Bias All Users assume an action is performed (e.g., locks are locked) because doing so is more secure.
Time-Window Fallacy Event–Event The specified time window is ignored in favor of a more intuitive interpretation.
Priority Conflict State–State Users ignore the stated priorities of rules in favor of what would make the rules match intent.
Flipped Triggers Event–Event, Event-State In trigger conjunctions, assuming a reversal of the triggers could still trigger the rule.

Table 2: A taxonomy of the ten potential TAP bugs we examined and their temporal paradigms.

Control-Flow Bugs
Some TAP bugs may impair proper control flow [52].

Infinite Loop bugs arise when rules trigger each other,
leading to loops. For example, if a user wants to add items
to their to-do list when a file is placed into a to-do folder
and save a file in their to-do folder when an item is added to
their to-do list, a naive implementation could lead to a never-
ending storm of new files as one rule triggers the other. This
bug has been encountered within end-user programming of
robots [1]. Static or dynamic analysis could detect this bug.

Contradictory Action bugs describe an infinite loop
over an extended period of time. For example, a naive set of
rules that turn on the heat if the temperature drops below a
threshold and turns on air conditioning above the threshold
could result in a system that does not converge to an ideal
temperature. The TAP literature does not identify this spe-
cific form of bug, though Brich et al. studied the related issue
of unintended side effects in TAP programming [4]. This bug
is difficult to detect in static or dynamic analysis.

Repeated Triggering is when users expect a rule to only
trigger once, yet it triggers multiple times. For example, trav-
eling on a road that varies between 0.9 miles and 1.1 miles
from a pizza shop can cause “IF I comewithin 1mile of a pizza
shop THEN order me a pizza” to order many pizzas. This
bug is particularly common in the State–State paradigm,
where triggers are states that are true over long periods
of time. Repeated Triggering was briefly noted in work on
mashup programming [7]. Static analysis can detect possible
Repeated Triggering, but cannot determine if it is intentional.

Timing Bugs
Timing bugs, common in distributed systems [21, 31], are also
possible in TAP. Prior work found novice programmers in
non-TAP contexts struggle to reason about concurrency [38].

Nondeterministic Timing bugs arise due to nondeter-
minism of the order in which a system processes simultane-
ous triggers. Given the rules “IF the clock strikes 8:00 PM
AND it starts rainingWITHIN tenminutes THEN turn off the
lights” and “IF the clock strikes 8:01 PM AND it starts rain-
ing WITHIN ten minutes THEN turn on the lights,” rain that
starts at 8:05 PM will trigger both simultaneously. Whether
the light is now on or off depends on the order in which the
system processes the rules. This bug is frequent in the dis-
tributed systems literature, and Huang and Cakmak describe
it briefly within TAP [22]. Static and dynamic analysis can
detect potential Nondeterministic Timing bugs.

Extended Action bugs are due to actions that occur over
time, rather than instantaneously, such as brewing coffee [22].
A rule designed to brew coffee when no coffee is ready would
continue to trigger when coffee is brewing (but not yet ready),
potentially leading to excess coffee. Although Huang and
Cakmak described extended actions [22], the particular Ex-
tended Action bugs that result are an extension of their work.

Inaccurate User Expectations
Bugs in users’ mental models, which can arise from novice
programmers ascribing systems intelligence beyond what
they possess [2, 3, 12, 46], may also arise in TAP [22].

Missing Reversal bugs occur when a user creates a rule
that performs some action, yet neglects to write a rule undo-
ing that action. For example, “IF I walk into the living room
THEN turn on the lights” turns on the lights when a person
enters, yet performs no action when they leave. Prior work
has found that users expect such rules to automatically revert
themselves when appropriate [22, 55]. Huang and Cakmak
discussed Missing Reversal at length [22], noting users ex-
pect systems to have a default regardless of semantics. Static
analysis can detect, but not always fix, a Missing Reversal.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 4

How Users Interpret Bugs in Trigger-Action Programming CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

Secure-Default Bias bugs occur when users assume a
system defaults to a safe state [55], such as windows remain-
ing locked at night. However, in the most widely deployed
paradigm, Event–State, devices do not have default states.
Yarosh and Zave discuss this bug in the context of locks [55].

Time-Window Fallacy bugs occur when users ignore
the time window specified by a ruleset constructed in the
Event–Event paradigm in favor of a more intuitive inter-
pretation, particularly for rulesets that are more naturally
expressed in other temporal paradigms. This bug was not pre-
viously noted, likely because prior work left the composition
of multiple events as ambiguous.

Priority Conflict occurs when multiple State–State rules
act on the same device, causing the need for rule prioritiza-
tion. Prior work has found that users struggle to prioritize
rules to match their intent [55]. Prioritization is essential
when multiple rules act on the same device, and when rules
act on distinct devices with similar results (e.g. turning on
lights and raising blinds to cause more light). The Priority
Conflict bug has been discussed extensively in the TAP liter-
ature [4, 13, 16, 34, 41, 56]. Static analysis can detect this.

Flipped Triggers occur when users struggle specifying
which part of a trigger should be an event and which should
be a state. For example, a user might confuse “IF the garage
door opensWHILE it is raining, THEN close the garage door”
with the subtly different “IF it starts raining WHILE then
garage door is open, THEN close the garage door.” However,
these rules behave differently. This bug does not appear in
previous TAP literature, although the Event-State paradigm
has been studied. Formal methods can produce a rule’s com-
plement, but cannot determine when it is appropriate.

5 METHODOLOGY
To gauge whether the bugs we identified lead to misinterpre-
tation of TAP rulesets, we conducted an online user study.We
recruited participants on Amazon’s Mechanical Turk, requir-
ing they be 18+ years of age, located in the USA, and have at
least a 95% approval rating with at least 100 tasks completed.
The study took approximately one hour, for which we paid
$10. We randomly assigned each participant to one of the
three temporal paradigms described in Section 3. The partic-
ipant then completed a tutorial about the semantics of their
assigned paradigm, answering comprehension questions.
The bulk of the study was a series of scenarios. Each de-

scribed an intended goal, provided a set of TAP rules attempt-
ing to achieve that goal, and gave a detailed description of
what occurs. Based on the ruleset shown, participants an-
swered a multiple-choice question about the scenario out-
come (e.g., whether the lights would be on or off). Whether
participants chose the answer accurately predicting the out-
come is their correctness. Participants also rated their con-
fidence and provided a free-text explanation of their choice.

For each bug in our taxonomy, we created two scenar-
ios in different domains, termed Scenario One and Scenario
Two. For inspiration, we examined the TAP literature and
discussed use cases with scientists who have implemented
TAP-like rules for the Globus system [20]. For each scenario,
we created rulesets in each temporal paradigm to which that
bug applied. In addition, for each scenario in each paradigm,
we created both a buggy and a fixed ruleset. In the buggy
version, the rules shown exhibited the bug, while in the fixed
version, they did not. All other aspects remained constant.

For each bug applicable to their assigned paradigm, the
participant saw one scenario with its fixed ruleset, and the
other with its buggy ruleset. Of the ten bugs, seven applied
to Event-State, while eight each applied to State-State and
Event-Event. Thus, Event-State participants saw 14 scenarios,
whereas all others saw 16 scenarios. For each bug, which
scenario was fixed and which was buggy was randomized,
as was the overall order of all 14–16 scenarios.

The study concluded with questions about demographics,
background in computer programming, and familiarity with
both TAP and IoT devices. As we hypothesized that facility
with logical thinking might impact performance, we also
asked the three-question Cognitive Reflection Test [17].

Example Scenario Task
We provide the full study instrument in our online appendix.
Here, we provide an example of one scenario in one paradigm.
We presented scenarios in a visual format similar to the
IFTTT interface as IFTTT is widely used [40, 51].

Scenario One for Flipped Triggers had the following stated
goal: “You do not want your dog Fido playing outside in the
rain, since he will track mud back indoors.” In the Event-State
paradigm, the buggy rule was the following:

IF [It starts raining] WHILE [Fido is outside]
THEN [Call Fido inside]

Events were always shown in green IFTTT-like boxes and
states in purple boxes. We avoided using loaded colors (e.g.,
red, orange) for items, but otherwise the choice is arbitrary.

We described the scenario as follows: “At 2:00 PM, it begins
to rain, and continues raining. At 2:30 PM, Fido goes outside.
At 2:31 PM, will Fido have been called inside?” Participants
could choose from the following:

• Fido will have been called inside.
• Fido may or may not have been called inside; the an-
swer depends on other factors.

• Fido will not have been called inside.
Participants then rated their confidence and answered “Why?”

In this example, the correct outcome is “Fido will not have
been called inside,” contrary to the stated scenario goal. This
rule exhibits the Flipped Triggers bug. To trigger the rule
in this scenario, the event portion of the trigger must be
swapped with the state portion, as it is in the fixed version.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 5

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk W. Brackenbury et al.

For bugs like Repeated Triggering, we needed to measure
the participant’s expectation of the number of times an action
occurs, rather than just whether it occurs. Therefore, we
presented participants with four choices (e.g., exactly one
pizza will have been ordered, the number of pizzas ordered
cannot be determined, no pizzas will have been ordered, and
more than one pizza will have been ordered).

Analysis
Our analysis had three goals. First, we wanted to understand
if the temporality, the choice of scenario, and whether fixed
or buggy rules were seen influenced correctness. Second, we
wished to understand participants’ TAP mental models and
recognition of the bugs. Third, we wanted to test the impact
of demographics and prior experiences.

Toward the first goal, we built a mixed-effects logistic re-
gression model for each bug. The dependent variable was
whether each participant answered each scenario correctly
(1) or incorrectly (0). The independent variables (IVs) were
which temporal paradigm the participantwas assigned, which
scenario was being tested, and the ruleset (buggy or fixed).
Each of these IVs was categorical with respective baseline
categories “Event-State,” “Scenario One,” and “fixed.” We in-
cluded terms capturing the interaction between the ruleset
and the two other IVs. We used a mixed-effects model with
the participant ID as a random effect because each partic-
ipant answered two scenarios per bug. If a bug applied to
only one paradigm, we excluded the paradigm IV.

For the Secure-Default Bias bug, our correctness compar-
ison differed slightly. Scenario Two was hypothesized to
trigger the Secure-Default Bias because it involved criminal
alerts and locks, while Scenario One was hypothesized not
to do so because it involved weather alerts and the color
of lights in a garden. For this bug, the scenario IV and its
interactions were thus especially important.

To pursue our second goal, we performed qualitative cod-
ing on the free-text “Why?” responses. A first coder per-
formed open coding and created a codebook, assigning one
class of code for whether the response demonstrated recog-
nition of the bug, and another class of code for any extra
assumptions encoded in the justification. The second coder
independently used that codebook to code all data, and the
coders met to resolve discrepancies. Cohen’s κ was 0.795 and
0.919 for the two classes of codes, respectively.
Toward our third goal, we built two additional linear re-

gression models. The dependent variables were the partic-
ipant’s overall correctness (# correct answers / # scenarios
seen) and mean confidence self-rating across questions. The
IVs encompassed the participant’s demographics, CRT score,
correctness on tutorial comprehension questions, and prior
experience with TAP, computer programming, and the IoT.

Limitations
Our study has several limitations. First, we used a conve-
nience sample that may not capture actual users of TAP
interfaces. Second, the framing of our system introduces con-
founds. We chose an abstraction centered on devices because
it has been widely deployed to date, priming participants to
think in a certain way [8]. We explained in the tutorial, “you
will be asked to decide whether or not certain actions take
place in these scenarios based on the rules presented” and
to “assume no other rules are present,” but prior experiences
with IoT devices (e.g., Amazon Echo) using machine learning
might bias participants to assume all IoT systems are “smart.”

Some rulesets we tested are more complex than those seen
in widely deployed TAP instantiations like IFTTT [40, 51]. As
TAP is deployed for a larger number of systems in the future,
however, ruleset complexity promises to increase. Finally,
interpreting pre-written programs and creating programs are
very different. The former can unpack mental-model errors,
but program creation is the true goal. Our work should be
augmented by studies in which participants create TAP rules.

6 RESULTS
We first introduce our participants and summarize which
factors impacted their correctness. We then describe aspects
of participants’ mental models that manifested across sce-
narios. Subsequently, we detail results for each of the ten
bugs. Finally, we describe demographics and experiences
correlated with participants’ correctness and confidence.

Participants
We had 153 participants ranging in age from 21–69. Among
participants, 83 identified as female, 68 as male, and 2 pre-
ferred not to answer. Education levels ranged from high
school degrees to post-graduate degrees, the largest cate-
gories of which were “4-year college degree” (57) and “some
college with no degree” (34). Of the 153 participants, 23 ma-
jored in, held a degree in, or had held a job in CS-related
fields, and 42 had studied computer programming. In total, 63
participants had 15 different types of IoT devices, including
voice assistants (47), thermostats (12), and lightbulbs (8).

Overall Performance
Our logistic regression models for each bug allowed us to
evaluate whether the temporal paradim and the presence
or absence of the bug itself (buggy vs. fixed ruleset) im-
pacted the correctness of participants’ multiple-choice an-
swers about the outcome of each scenario. It also allowed us
to check whether correctness varied across the two scenarios
for each bug. Table 3 summarizes the significant factors in
these regressions, while Appendix A in the online supple-
mentary materials presents the full models.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 6

How Users Interpret Bugs in Trigger-Action Programming CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

0 20 40 60 80 100
Percent correct

Infinite
Loop

Contradictory
Action

Repeated
Triggering

ND Timing

Extended
Action

Missing
Reversal

Secure
Default

Time
Window

Priority
Conflict

Flipped
Trigger

Event-Event
Fixed
Buggy

0 20 40 60 80 100
Percent correct

State-State
Fixed
Buggy

0 20 40 60 80 100
Percent correct

Event-State
Fixed
Buggy

Figure 1: Correctness of responses by bug and by paradigm
for fixed (dark green) and buggy (light green) rulesets.

For seven of the ten bugs, participants who saw the buggy
ruleset were significantly less likely to choose the correct out-
come, compared to those who saw the fixed ruleset (see Fig-
ure 1). For two bugs, Repeated Triggering and Time-Window
Fallacy, we did not observe a significant effect. For the final
bug, Secure-Default Bias, whether the ruleset was buggy was
not significant. However, the scenario term in the regression
actually encapsulated this bug, as detailed later in the pa-
per, and this term was significant. Thus, the Secure-Default
Bias also led to significantly less correct answers. In total,
we found evidence that eight of the ten bugs we examined
impaired participants’ ability to predict scenario outcomes.
The temporal paradigm also significantly impacted cor-

rectness. Compared to Event–State, the baseline in our re-
gression, participants in the Event–Event paradigm were
significantly less correct for three bugs, while participants
in the State–State paradigm were significantly more correct
for one bug. Despite our best efforts to make equally diffi-
cult scenarios for all bugs other than Secure-Default Bias,
responses to Scenario Two were significantly less correct
than for Scenario One for two bugs, and significantly more
correct for one bug. We also observed a handful of significant
interactions between terms, detailed later in this section.

Overall Mental Models and TAP Assumptions
We qualitatively coded participants’ free-text explanations
of why they chose particular outcomes. As we detail individ-
ual bugs, we discuss bug-specific assumptions participants
made. However, we also observed some high-level trends in
participants’ mental models of TAP.

Some participants consistently struggled to distinguish be-
tween events and states, even in paradigms like Event–Event
or State–State with only one or the other. This confusion also
underlies the Flipped Triggers bug. Participants often tended
to think in either one manner or the other, underscoring
the importance of defining unambiguous semantics for TAP
(Section 3) and clearly communicating them to users.

Paradigm Ruleset Seen Scenario

Bug SS EE Buggy B:SS B:EE Two B:Two

Infinite Loop ´
Contradictory Action ´ ´ ˆ
Repeated Triggering ´ ´
Nondeterministic Timing ´ ˆ
Extended Action (SS) NA NA ´ NA NA
Missing Reversal ´ ´ ´
Secure-Default Bias ˆ ´
Time-Window Fallacy (EE) NA NA NA NA
Priority Conflict (SS) NA NA ´ NA NA ˆ
Flipped Triggers (ES, EE) NA ´ ´ NA ˆ ´

Table 3: Factors that led to significantlymore (ˆ) or sig-
nificantly less (´) correct answers per bug. The Event-
State paradigm, Fixed rulesets, and Scenario One were
the baseline categories. SS is State-State and EE is
Event-Event. B:* refers to the interaction between
buggy rulesets and the stated factor. Some factors do
not apply (NA) if a bug only affects certain paradigms.

Participants also expressed uncertainty about the inter-
action between a TAP system and outside actions, such as
someone turning off lights by flipping a switch. Assumptions
about the outside world were a key impediment to correct
predictions of scenario outcomes. While this confusion may
have been heightened by the artificial nature of an online
user study, interactions between TAP and physical controls
are a likely source of confusion in real systems, too.

Finally, particular semantics we tested also caused confu-
sion. Event–Event includes “afterwards” to force an ordering
of triggers, yet this caused confusion. While negation can be
fully encoded in carefully designed triggers without includ-
ing a “not” operator (Section 3), we tested some scenarios
with a “not” operator, and participants struggled.

Control-Flow Bugs
In this and the following sections, we give detailed results
for each bug. The control-flow bugs challenged participants.

Infinite Loop was tested in scenarios predicting whether
email attachments would synchronize with a computer folder
or text messages. Buggy rulesets automatically forwarded
items from one to the other, creating an infinite loop. Fixed
rulesets checked the sender or item to avoid duplicates.
Participants correctly predicted outcomes significantly

more often with fixed rules — 59.9% of the time — than with
buggy rules — 46.1% of the time (OR=0.361, p=0.032). The
paradigm and scenario did not have a significant impact.
Of participants who correctly predicted the outcome of

buggy rulesets, 81.4% of free-text responses displayed recog-
nition of the bug. For example, “This is a rule with an event
as an action that does not specify a time period in the trigger.
Therefore, the rule is going to keep triggering. It is going to
be going in a loop.” The remaining responses were too vague
to ascertain whether or not the bug was recognized.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 7

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk W. Brackenbury et al.

Surprisingly, 17.1% of participants who were incorrect
nonetheless mentioned the bug in their justification. Of this
17.1%, 57.1% mentioned other assumptions that led to an
incorrect prediction. In particular, they assumed the user
may have read the email before the trigger was evaluated
(2 participants), that the system automatically would recog-
nize when files were duplicates (2), that the rule would not
trigger on emails sent by another rule (1), or that rules were
mutually exclusive (1). That is, some participants ascribed to
the system internal intelligence and consistency [46].

Contradictory Action bugs were tested in scenarios con-
trolling temperature in a house and generators in a power
plant. Buggy rulesets caused one rule to eventually trigger
a contradictory rule (e.g., heating the house eventually trig-
gered a rule that cools the house by opening windows).

While participants correctly predicted the outcome 60.5%
of the time with fixed rules, they did so only 48.7% of the
time with buggy rules (OR=0.190, p=0.001). The scenario
(OR=0.182, p<0.001) and the interaction of the scenario and
whether the rules were buggy (OR=6.160, p<0.001) also im-
pacted correctness (negatively and positively, respectively).
Our coding found 55.4% of justifications for correct re-

sponses mentioned the bug. One noted, “After 10 minutes
with the window open the interior would be the same 60
degrees as outside so it would trigger the thermostat, after
another 10 minutes [...] it would [...] trigger the other rule.”
An additional 24.3% of justifications for correct answers did
not mention the bug, while 20.3% were ambiguous.

None of the justifications for incorrect answers mentioned
the bug. While 86.3% of these responses did not indicate a
clear reason for giving the wrong answer, the remaining
13.7% demonstrated misunderstandings. Three participants
thought that rules controlling generators could not trigger
while the generators were turning on. Two believed the sys-
tem would not continuously poll a rule after its triggers had
initially been checked and found to be false.

Repeated Triggering was tested with scenarios predict-
ing how many pizzas would be ordered or how many alerts
from a motion sensor would be sent. Buggy rulesets had no
rate-limiting clauses, making rules trigger repeatedly. Fixed
rulesets augmented triggers so rules triggered only once. Re-
peated Triggering occurs either when a state is continuously
true or an event occurs multiple times. We thus used similar,
yet somewhat different, scenarios in each paradigm.
The impact of the Repeated Triggering bug appears to

depend on the paradigm. In our regression model, we did
not find the choice of a fixed or buggy ruleset to significantly
impact correctness, yet we observed a significant negative in-
teraction between buggy rules and the State–State paradigm
(OR=0.119, p=0.005). As shown in Figure 1, participants were
more likely to answer correctly for fixed rules than for buggy
rules in the State–State paradigm, yet the opposite was true

for both the Event–Event and Event–State paradigms. Com-
pared to Event–State, answers overall in Event–Event were
less likely to be correct (OR=0.299, p=0.014).
The free-text justifications partially explain these mixed

quantitative results. In Event–Event, 15.9% of participants
who answered incorrectly struggled with the “not” operator
we included in this study, believing the end of the time win-
dow was when the truth of the trigger was evaluated. We
thus advise against supporting “not” operators. An additional
9.1% appeared to misread the description, while another 6.8%
expressed confusion about the trigger.

Timing Bugs
Both Timing Bugs proved challenging for participants.

Nondeterministic Timing involved evaluating scenar-
ios with simultaneous phone calls or texts, as well as individ-
uals arriving at work the instant the clock struck 9:00. Buggy
rulesets left ambiguous the order in which rules triggered.
Compared to 83.6% correctness for fixed rules, correctness
for buggy rules was only 22.4% (OR=0.159, p<0.001). Further-
more, buggy rules and State–State had a significant positive
interaction (OR=16.112, p<0.001). Among justifications from
participants who answered correctly for buggy rules, 22.6%
explicitly mentioned this nondeterminism, lower than for
other bugs. Of participants who did not mention the bug,
16.6% assumed an ordering that made intuitive sense to them,
12.5% did not believe there was physically enough time for
the notifications to trigger, and 8.3% assumed the full time
window had to pass before rules triggered.

Of participants who were incorrect, 29.7% nonetheless rec-
ognized that there might be buggy behavior. The majority,
51.4%, assumed an incorrect ordering that made intuitive
sense to them, while 37.1% incorrectly assumed the “after-
wards” keyword would resolve uncertainty.

Extended Action involved scenarios in which industrial
robots ran chemical reactions and coffee brewed. Buggy rule-
sets would trigger additional rules while these extended ac-
tions were in process, yet not complete. Participants correctly
predicted outcomes more often (47.6% of the time) with fixed
rules than with buggy rules (19.0% of the time) (OR=0.164,
p=0.015). Only 5.9% of participants who answered incorrectly
for buggy rules mentioned the bug in their response (e.g.,
“More than one cup could brew”). Participants often ignored
the rules’ semantics in favor of an intuitive interpretation;
41.1% assumed actions would not buffer, while 20.6% believed
they would. Others misread the question (17.6%), assumed
extended actions would cease if a state trigger became false
(5.9%), or confused events and states (5.9%).

Errors Based on Inaccurate User Expectation
Four of the five bugs we tested related to potentially incorrect
user expectations proved problematic for participants.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 8

How Users Interpret Bugs in Trigger-Action Programming CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

Missing Reversal was tested in scenarios involving con-
trolling living room lights or house windows. Buggy rulesets
turned lights on and closed the windows, but did not include
any rules to reverse those actions. Participants were correct
86.2% of the time for fixed rules, but only 63.8% of the time
for buggy rules (OR=0.156, p=0.046). The scenario (OR=0.254,
p=0.018) and, relative to Event–State, the Event–Event para-
digm (OR=0.152, p=0.022) negatively impacted correctness.

Overall, 79.4% of participants who answered correctly for
buggy rules mentioned the bug in their justification (e.g.,
“There is no rule to open the windows after it stops raining”).
The remaining 20.6% either re-stated the scenario or made
vague statements (e.g., “it’s just obvious”).

Surprisingly, 40.0% of participants who answered incor-
rectly nonetheless mentioned the potential for buggy behav-
ior. Six of them anticipated out-of-system manual interac-
tions (e.g., “The rule never turns the lights off, only on. So,
they must be turned off manually”), which our tutorial said
to ignore. Five believed additional rules might exist (“There
may or may not be a rule to re-open the windows”), also dis-
allowed by our tutorial. Two others treated events as states.

Secure-Default Bias was tested differently than other
bugs. Instead of comparing buggy and fixed rules, we com-
pared two scenarios with parallel wording. An innocuous
Scenario One discussed “weather alerts” and changed the
color of garden lights, whereas a security-critical Scenario
Two discussed “criminal alerts” and controlled door locks.

Participants correctly predicted scenario outcomes more
often in the innocuous scenario — 65.8% — than when shown
the security-critical scenario — 61.2% (OR=0.367, p=0.043).
Furthermore, compared to Event–State, State–State answers
were more likely to be correct (OR=10.075, p=0.002), though
our qualitative coding sugggests this difference may derive
from ambiguous wording in our survey.
Overall, 72.8% of justifications from participants who an-

swered correctly for buggy rules mentioned the bug. One
stated, “The rule to unlock the door from 7-8pm has a higher
priority than the criminal alert rule and so the doors will be
unlocked then, regardless of the criminal alert.” The remain-
ing participants in this category wrote vague justifications.
Among participants who were incorrect, 26.7% explicitly

displayed a Secure-Default Bias. In contrast, the majority
who did not recognize the bug displayed a few different
misunderstandings. For example, 18.2% misunderstood the
State–State priority system, while 13.6% incorrectly believed
the order in which events occurred would lead one to “over-
ride” the other (e.g., “Because the criminal alert was issued
before 7pm, it would automatically override the ’unlock’
command at 7”). This was unique to the Secure-Default Bias,
suggesting that it may also be a manifestation of the bug.

Time-Window Fallacy, exclusive to Event–Event, was
tested in scenarios involving alerts based on the arrival of

data or a person at the door. In buggy rulesets, the time
window extended beyond when the activity was occurring.
Thus, the rule would still trigger. The fixed version set a
smaller time window that better matched the activity.
Neither the ruleset nor any other factor we tested signif-

icantly impacted correctness, which was high overall. Fur-
thermore, 84.4% of participants who answered correctly for
buggy rules explicitlymentioned the bug in their justification.
Overall, this potential bug appears not to be problematic.

Priority Conflict was tested in scenarios about control-
ling lights. Buggy rulesets incorrectly applied equal priority
to conflicting rules. Fixed rulesets used unique priorities.
Participants correctly predicted scenario outcomes more

often — 59.5% — for fixed rules than for buggy rules — 40.5%
(OR=0.154, p=0.004). Furthermore, buggy rulesets interacted
significantly with the scenario (OR=9.89, p=0.013).
Among participants who answered correctly for buggy

rules, 88.2% of their justifications mentioned the bug. One
noted it well: “It could go either way because all the rules
are met and there is no difference in priority.” Of participants
who were incorrect, only 24.4% mentioned potential bugs.

Flipped Triggers was tested in scenarios involving call-
ing a dog in from the rain and pairing Bluetooth devices.
While the fixed rules triggered in the scenario given, the
buggy rules would have triggered only if the event and state
(or the two events) in the trigger were swapped. We thus
searched for incorrect expectations of the swapped version
also triggering the rule despite the rule stating otherwise.

Indeed, 82.7% of participants answered correctly for fixed
rules, compared to only 60.9% for buggy rules (OR=0.197,
p=0.022). The scenario (OR=5.894, p=0.009), the Event–Event
paradigm (OR=0.155, p=0.006), and the interaction between
the ruleset and the scenario (OR=0.189, p=0.035) all had sig-
nificant interactions. Overall, 89.6% of participants who an-
swered correctly for buggy rules mentioned either the bug
or the correct semantics of the triggers in their response.
For example, “Fido was not outside when it began to rain. It
started raining first and then Fido went outside.”

Among participants who were incorrect, only 13.9% men-
tioned the possibility of the bug. While 35.1% seemed to
misunderstand the “afterwards” keyword, the majority ex-
hibited the Flipped Triggers bug.

Impact of Demographics and Prior Experience
To test the effects of demographic factors and prior experi-
ences with relevant technologies, we built a linear regression
model with the overall percentage of scenarios a participant
answered correctly as the dependent variable (Appendix A).
We built an analogous model for average confidence ratings.

Participants who had prior programming experience an-
swered more correctly (β = 0.083, p = .038), but were less
confident in their answers (β = −0.363, p = .006). In contrast

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 9

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk W. Brackenbury et al.

to prior work that found programming experience was not a
significant factor in TAP correctness [50], this discrepancy
may derive from differences in the studies. The prior study
focused on simpler scenarios without intentionally buggy be-
havior. Our study instead focused on challenging situtations.
In these situations, users with programming experience may
look for edge cases, which we observed in free-text justifi-
cations. For example, asked whether a dog would be called
indoors, one participant noted, “This depends on the dog.
Just because you call him in doesn’t mean he will come in.”

Participants’ logical thinking, measured with the CRT [17],
was also correlated with greater correctness (β = 0.038,
p = .006). Unsurprisingly, participants were more confident
in their answers if they had used IFTTT (β = 0.312, p = .009)
or did better on the tutorial questions (β = 0.106, p = .026).

7 CONCLUSIONS AND DISCUSSION
Despite recent interest, most literature treats TAP temporal-
ity imprecisely, preventing systematic evaluations in com-
plex situations. We thus defined semantics that unambigu-
ously express TAP rules in three temporal paradigms. We
also synthesized a taxonomy of ten bugs likely to impact
TAP systems. Of the ten, three were completely novel, and
no single prior paper had collected more than three. This
taxonomy can serve as a roadmap for developing end-user
debugging tools. To gauge if these bugs impair users’ ability
to predict TAP outcomes, we conducted a 153-participant
online study. Participants interpreted TAP rules in scenarios
designed to elicit these ten bugs. Eight of these bugs impaired
participants’ ability to correctly predict scenario outcomes.

Identifying Bugs
Significant research in software engineering addresses bug
detection, but less work focuses on debugging in end-user
programming. The Priority Conflict, Infinite Loop, Extended
Action, and Nondeterministic Timing bugs can potentially
be detected by static analysis. Prior work has already shown
success in combatting Priority Conflict bugs [34, 41], though
current static analysis techniques may be insufficient to fully
handle Infinite Loop bugs. To address Extended Action bugs,
a system could highlight that the action is extended, asking
users about expected behaviors. To address Nondeterminis-
tic Timing bugs, the system could analyze rules that might
conflict, asking for a priority ordering. Our results showed
that some participants were unable to detect these bugs by
themselves. Many studies have noted, however, that feed-
back during rule creation can enable end-users to correct
simple bugs when notified [19, 28, 29, 37, 48].
The Contradictory Action and Repeated Triggering bugs

can only be detected at runtime. This is because current for-
mal methods cannot model a system’s self-interference. Thus,

Contradictory Action bugs should be met with pattern analy-
sis in system logs. Repeated Triggering bugs require heuristic
methods to resolve. Static analysis can suggest when these
bugs might be present, but some situations are intentional
(e.g. ordering many pizzas for a party).

The remaining bugs cannot be detected automatically, ei-
ther because the situation is ambiguous (Secure-Default Bias,
Time-Window Fallacy), or because suggestions for fixes may
be incorrect (Missing Reversal, Flipped Triggers). Whie the
Time-Window Fallacy did not impair understanding in our
study, the others did. Recent work [57] combining formal
methods with user-specified properties (e.g., “the window
is open AND it is raining SHOULD NEVER OCCUR TO-
GETHER”) may help users identify and repair such bugs.

Communicating Bugs to Users
Correctness cannot be achieved with bug detection alone. In-
terfaces that support effective end-user debugging are critical.
A lack of feedback during rule creation is a key impediment
to creating correct TAP rules [19]. The simplest type of feed-
back would be an interface highlighting rules that might
suffer from a bug. For less challenging bugs, this may be
sufficient [28, 48]. Automatically suggesting potential fixes
(that may or may not match user intent) during rule creation
might help. Seeing a proposed fix might be sufficient to show
the user why the fix is necessary or not. For example, a sys-
tem could show the user a rule’s Flipped Triggers reversal,
hoping that this will be enough for a user to decide whether
they need that variant. The user must be deeply involved in
this process, though, because correctness is often subjective,
and suggested rules may not match their intent.
The limited work thus far on debugging smart homes

has focused on providing retroactive insight into why unin-
tended behaviors triggered. For example, Mennicken et al.
proposed a calendar-based interface for this purppose [39], in
line with work on interrogative debugging [29] for end-user
programming. Plausibly, users could also provide feedback
to the system, specifying undesirable behaviors and asking
why are occurring. Model checking techniques could also
identify when rules would cause these behaviors [34, 57].

However, we propose that interfaces could instead proac-
tively simulate the rule outcomes. For example, a system
could ask the user whether the lights should be on or off
in a given scenario, then use the answer to choose among
synthesized rules or prioritize existing rules. Interfaces could
visualize concrete differences between when subtly different
rules would have triggered in the past, or might in the future.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grants No. 1837120 and 1835890.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 10

How Users Interpret Bugs in Trigger-Action Programming CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

REFERENCES
[1] Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. 2015.

RoboFlow: A flow-based visual programming language for mobile
manipulation tasks. In Proc. ICRA.

[2] Jeffrey Bonar and Elliot Soloway. 1983. Uncovering principles of novice
programming. In Proc. POPL.

[3] Jeffrey Bonar and Elliot Soloway. 1985. Preprogramming knowl-
edge: A major source of misconceptions in novice programmers.
Human-Computer Interaction 1, 2 (1985), 133–161.

[4] Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Flo-
rian Schaub. 2017. Exploring end user programming needs in home
automation. ACM TOCHI 24, 2 (2017), 11.

[5] Federico Cabitza, Daniela Fogli, Rosa Lanzilotti, and Antonio Piccinno.
2017. Rule-based tools for the configuration of ambient intelligence
systems: a comparative user study. Multimedia Tools and Applications
76, 4 (2017), 5221–5241.

[6] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and
Monica S. Lam. 2017. Almond: The architecture of an open, crowd-
sourced, privacy-preserving, programmable virtual assistant. In Proc.
WWW.

[7] Jill Cao, Kyle Rector, Thomas H. Park, Scott D. Fleming, Margaret
Burnett, and Susan Wiedenbeck. 2010. A debugging perspective on
end-user mashup programming. In Proc. VL/HCC.

[8] Meghan Clark, Mark W. Newman, and Prabal Dutta. 2017. Devices and
data and agents, oh my: How smart home abstractions prime end-user
mental models. ACM IMWUT 1, 3 (2017), 44.

[9] Yngve Dahl and Reidar-Martin Svendsen. 2011. End-user composition
interfaces for smart environments: A preliminary study of usability
factors. In Design, User Experience, and Usability. Theory, Methods,
Tools and Practice. 118–127.

[10] Scott Davidoff, Min Kyung Lee, Charles Yiu, John Zimmerman, and
Anind K. Dey. 2006. Principles of smart home control. In Proc.
UbiComp.

[11] Luigi De Russis and Fulvio Corno. 2015. Homerules: A tangible end-
user programming interface for smart homes. In Proc. CHI Extended
Abstracts.

[12] Daniel C Dennett. 2017. Brainstorms: Philosophical essays on mind
and psychology. MIT press.

[13] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006.
iCAP: Interactive prototyping of context-aware applications. In Proc.
Pervasive.

[14] W. Keith Edwards and Rebecca E. Grinter. 2001. At home with ubiqui-
tous computing: Seven challenges. In Proc. UbiComp.

[15] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash.
2018. Decentralized action integrity for trigger-action IoT platforms.
Proc. NDSS.

[16] Jacopo Fiorenza and Andrea Mariani. 2015. Improving trigger
action programming in smart buildings through suggestions based on
behavioral graphs analysis. Technical Report. Politecnico di Milano.

[17] Shane Frederick. 2005. Cognitive reflection and decision making.
Journal of Economic Perspectives 19, 4 (2005).

[18] Manuel García-Herranz, Pablo Haya, and Xavier Alamán. 2010. To-
wards a ubiquitous end-user programming system for smart spaces.
Journal of Universal Computer Science 16, 12 (2010), 1633–1649.

[19] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro.
2017. Personalization of context-dependent applications through
trigger-action rules. ACM TOCHI 24, 2 (2017), 14.

[20] Globus. 2019. https://www.globus.org/.
[21] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,
Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, et al. 2014.

What bugs live in the cloud? A study of 3000+ issues in cloud systems.
In Proc. SOCC.

[22] Justin Huang and Maya Cakmak. 2015. Supporting mental model
accuracy in trigger-action programming. In Proc. UbiComp.

[23] Ting-Hao Kenneth Huang, Amos Azaria, and Jeffrey P. Bigham. 2016.
Instructablecrowd: Creating if-then rules via conversations with the
crowd. In Proc. CHI Extended Abstracts.

[24] Matthew Hughes. 2018. Mozilla’s new Things Gateway is an open
home for your smart devices. TheNextWeb.

[25] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter Åkesson,
Boriana Koleva, Tom Rodden, and Pär Hansson. 2003. “Playing with
the bits” User-configuration of ubiquitous domestic environments. In
Proc. UbiComp.

[26] If This Then That. Accessed 2018. If This Then That. https://ifttt.com.
[27] Thorin Klosowski. 2016. Automation Showdown: IFTTT vs Zapier vs

Microsoft Flow. LifeHacker.
[28] Andrew J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-

garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, et al. 2011. The state of the art in end-user
software engineering. ACM CSUR 43, 3 (2011), 21.

[29] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A
debugging interface for asking questions about program behavior. In
Proc. CHI.

[30] Tiiu Koskela and Kaisa Väänänen-Vainio-Mattila. 2004. Evolution
towards smart home environments: Empirical evaluation of three user
interfaces. Personal Ubiquitous Comput. 8, 3–4 (July 2004), 234–240.

[31] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and
Haryadi S. Gunawi. 2016. TaxDC: A taxonomy of non-deterministic
concurrency bugs in datacenter distributed systems. ACM SIGPLAN
Notices 51, 4 (2016), 517–530.

[32] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008.
CoScripter: Automating & sharing how-to knowledge in the enterprise.
In Proc. CHI.

[33] Nat Levy. 2017. Microsoft updates IFTTT competitor Flow and custom
app building tool PowerApps. GeekWire.

[34] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Karls-
son F. Börje, Dongmei Zhang, and Feng Zhao. 2016. Systematically
debugging IoT control system correctness for building automation. In
Proc. BuildSys.

[35] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf.
2006. End-user development: An emerging paradigm. Springer.

[36] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A.
Lau. 2009. End-user programming of mashups with Vegemite. In Proc.
IUI.

[37] Michelle L. Mazurek, J.P. Arsenault, Joanna Bresee, Nitin Gupta, Iulia
Ion, Christina Johns, Daniel Lee, Yuan Liang, Jenny Olsen, Brandon
Salmon, Richard Shay, Kami Vaniea, Lujo Bauer, Lorrie Faith Cranor,
Gregory R. Ganger, and Michael K. Reiter. 2010. Access control for
home data sharing: Attitudes, needs and practices. In Proc. CHI.

[38] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011.
Habits of programming in Scratch. In Proc. ITiCSE.

[39] SarahMennicken, David Kim, and ElaineMayHuang. 2016. Integrating
the smart home into the digital calendar. In Proc. CHI.

[40] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An
empirical characterization of IFTTT: Ecosystem, usage, and perfor-
mance. In Proc. IMC.

[41] Alessandro A. Nacci, Bharathan Balaji, Paola Spoletini, Rajesh Gupta,
Donatella Sciuto, and Yuvraj Agarwal. 2015. Buildingrules: A trigger-
action based system to manage complex commercial buildings. In
UbiComp Adjunct Proceedings.

[42] MarkW. Newman, Ame Elliott, and Trevor F. Smith. 2008. Providing an
integrated user experience of networked media, devices, and services

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 11

https://www.globus.org/
https://ifttt.com

CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk W. Brackenbury et al.

through end-user composition. In Proc. Pervasive.
[43] Obycode, LLC. 2018. SmartRules. http://smartrulesapp.com/.
[44] Ed Oswald. 2016. IFTTT competitor Stringify gets a major update.

TechHive.
[45] John F. Pane, Brad A. Myers, and Leah Miller. 2002. Using HCI

techniques to design a more usable programming system. Technical
Report. Carnegie Mellon University.

[46] Roy D. Pea. 1986. Language-independent conceptual “bugs” in novice
programming. Journal of Educational Computing Research 2, 1 (1986),
25–36.

[47] Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
2017. IFTTT vs. Zapier: A comparative study of trigger-action pro-
gramming frameworks. arXiv:1709.02788 (2017).

[48] T.J. Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook,
Joseph R. Ruthruff, Laura Beckwith, and Amit Phalgune. 2004. Impact
of interruption style on end-user debugging. In Proc. CHI.

[49] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and
Limin Jia. 2017. Some recipes can do more than spoil your appetite:
Analyzing the security and privacy risks of IFTTT recipes. In Proc.
WWW.

[50] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L.
Littman. 2014. Practical trigger-action programming in the smart

home. In Proc. CHI.
[51] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah

Mennicken, Noah Picard, Diane Schulze, and Michael L. Littman. 2016.
Trigger-action programming in the wild: An analysis of 200,000 IFTTT
recipes. In Proc. CHI.

[52] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear
and logging in the Internet of Things. In Proc. NDSS.

[53] Wireless Watch. 2017. Huawei could rescue Amazon’s Alexa from
the smart home. The Register. https://www.theregister.co.uk/2017/
01/26/huawei_throws_amazon_alexa_a_mobile_lifeline_to_reach_
beyond_the_home/.

[54] Jong-bum Woo and Youn-kyung Lim. 2015. User experience in do-it-
yourself-style smart homes. In Proc. UbiComp.

[55] Lana Yarosh and Pamela Zave. 2017. Locked or not?: Mental models
of IoT feature interaction. In Proc. CHI.

[56] Pamela Zave, Eric Cheung, and Svetlana Yarosh. 2015. To-
ward user-centric feature composition for the Internet of Things.
arXiv:1510.06714 (2015).

[57] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu,
and Blase Ur. 2019. Synthesizing and repairing trigger-action programs
using LTL properties. In Proc. ICSE.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 552 Page 12

http://smartrulesapp.com/
https://www.theregister.co.uk/2017/01/26/huawei_throws_amazon_alexa_a_mobile_lifeline_to_reach_beyond_the_home/
https://www.theregister.co.uk/2017/01/26/huawei_throws_amazon_alexa_a_mobile_lifeline_to_reach_beyond_the_home/
https://www.theregister.co.uk/2017/01/26/huawei_throws_amazon_alexa_a_mobile_lifeline_to_reach_beyond_the_home/

	Abstract
	1 Introduction
	2 Related Work
	3 Temporality in TAP
	The Event–Event Paradigm
	The Event–State Paradigm
	The State–State Paradigm
	Other Logical Operators

	4 Background
	Control-Flow Bugs
	Timing Bugs
	Inaccurate User Expectations

	5 Methodology
	Example Scenario Task
	Analysis
	Limitations

	6 Results
	Participants
	Overall Performance
	Overall Mental Models and TAP Assumptions
	Control-Flow Bugs
	Timing Bugs
	Errors Based on Inaccurate User Expectation
	Impact of Demographics and Prior Experience

	7 Conclusions and Discussion
	Identifying Bugs
	Communicating Bugs to Users

	Acknowledgments
	References

