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ABSTRACT 
A method for evaluating and constructing sparse crossbars which 
are both area efficient and highly routable is presented. The evalu- 
ation method uses a network flow algorithm to accurately compute 
the percentage of random test vectors that can be routed. The con- 
struction method attempts to maximize the spread of the switch lo- 
cations, such that any given subset of input wires can connect to as 
many output wires as possible. Based on Hall's Theorem, we argue 
that this increases the likelihood of routing. 
The hardest test vectors to route are those which attempt to use 
all of the crossbar outputs. Results in this paper show that area- 
efficient sparse crossbars can be constructed by providing more out- 
puts than required and a sufficient number of switches. In a few spe- 
cific case studies, it is shown that sparse crossbars with about 90% 
fewer switches than a full crossbar can be constructed, and these 
crossbars are capable of routing over 95% of randomly chosen rout- 
ing vectors. In one case, a new switch matrix which can replace the 
one in the Altera FLEX8000 family is shown. This new switch ma- 
trix uses approximately 14% more transistors, yet can increase the 
routability of the most difficult test vectors from 1% to over 96%. 

1. INTRODUCTION 
Programmable logic devices commonly use full crossbars and 
sparse crossbars as building blocks in routing networks. Typically, 
a full crossbar is chosen when a highly-routable crossbar is desired, 
and a sparse crossbar containing significantly fewer crosspoints is 
selected when area use is most important. This naturally brings up 
the question, "Is it possible to get the best of both worlds?" 
There are many instances where a highly routable crossbar would be 
preferred, but the area cost of a full crossbar is prohibitive. For ex- 
ample, the Plasma FPGA [5] in the Hewlett-Packard Teramac [4] re- 
configurable logic system would have used full crossbars to guaran- 
tee routability. However, to save area, it was necessary to use only 
1/4 of the the switches. 
In Teramac and large-scale logic emulation systems, such as those 
by Quicktum [18], circuits are partitioned across a large number of 
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FPGAs. Each of the generated subcircuits must successfully place- 
and-route in an FPGA, otherwise time-consuming re-partitioning 
and re-routing is required. To make routable subcircuits, one can in- 
tentionally underutilise the LUTs in the FPGA [9], or use an FPGA 
that is designed to be highly routable. 
Highly routable components in a single FPGA can also benefit u s e r s  

by reducing compute time and memory use. The latest FPGAs 
by Altera and Xilinx have a large number of LUTs and wiring re- 
sources. To route these FPGAs, CAD tools usually store the follow- 
ing details in memory: a representation of the circuit, its mapping 
to FPGA resources, and a model of the entire FPGA. This leads to 
considerable memory use. For example, Altera recommends using 
1GB of RAM to route designs for the APEX 20K10OOE device [2]. 
It may be possible to make the CAD tools more efficient if they fol- 
low the Teramac and logic emulation system model: partition a cir- 
cuit into smaller subcircuits, then place and route each piece inde- 
pendently. To do this effectively without rip-up and re-partitioning, 
there must be confidence that each subcircuit is very likely to route. 
As another example, CPLDs are required to be highly routable be- 
cause they are often close to 100% utilised. Full crossbars are not 
normally used in the global interconnect of CPLDs due to the area 
overhead involved, so an area-saving sparse pattern is required. 
The above scenarios indicate that highly routable, sparsely popu- 
lated crossbars would be useful, yet there is little published work in 
this area. In this paper, this issue is addressed by describing con- 
ditions for routability (Hall's Theorem), a method for evaluating 
routability without resorting to place-and-route experiments, and a 
construction algorithm that achieves good performance. Results for 
a few design cases are shown to exemplify the area requirements 
and routability obtainable from sparse crossbars. 

2. CROSSBAR TYPES AND PROPERTIES 
An n × m crossbar connects n different input wires to m output 
wires, typically with n > m .  An example of a few crossb~s are 
shown in Figure 1. At the locations where an input crosses an out- 
put wire, a programmable switch, or crosspoint, may be present. We 
use the term capacity of a crossbar to mean the number of signals 
being routed through it. The term population refers to the number 
of switches in the crossbar, p. 
2.1 Full Crossbars 
A fully-populated crossbar or full  crossbar contains switches at ev- 
ery intersection point of the input and output wires, using a total of 
p = n.  m switches. The term crossbar usually refers to a full cross- 
bar. An example of a full crossbar is shown on the left in Figure 1. 
Full crossbars are extremely flexible because they can connect any 
wire on the input side to connect to any wire on the output side, 
i.e. they support any permutation of the outputs. Additionally, full 
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Figure 1: Examples of 6 x 4 crossbars: a full crossbar on the left, full-capacity minimal crossbars on the right. 

crossbars can be used at full capacity: they can connect as many 
signals as the number of outputs in the crossbar. 
2.2 Fu l l -Capac i ty  M i n i m a l  Crossbars 
Full-capacity minimal crossbars are well-known constmctions that 
use fewer switches than a full crossbar. They are slightly less flexi- 
ble than full crossbars, but they retain the full-capacity property. For 
convenience, we shall refer to them simply as minimal crossbars. 
Minimal crossbars are less flexible than full crossbars because they 
remove the freedom to assign a specific input wire to a specific out- 
put wire. Thus, any m input wires can be connected to all m output 
wires, but the ordering of the signals on the output wires may not be 
freely chosen. 
A minimal crossbar always uses p = ( n - m + l ) . m  switches. 
Nakamum [16] has shown that no switches can be removed from 
a minimal crossbar without also removing the full-capacity prop- 
erty. Minimal crossbars do not save many switches when n >> m, 
but the number of switches is reduced from a quadratic expression 
to a roughly linear one when n = m. 
There are many different topologies for minimal crossbars, a few of 
which are shown in Figure 1. The simplest topology, called a fat- 
and-slim crossbar, uses a full crossbar between the first n - m input 
wires and all m output wires. Each of the remaining m input wires 
have only one switch and are connected to a different output wire. 
This results in baiancedfan-in for the output wires, but largely un- 
balanced fan-out on the inputs. 
Some minimal crossbar topologies simultaneously balance the 
number of switches on the input and output wires. Fujiyoshi [11] 
defines a class of minimal crossbars called hi-scattered which have 
naturally balanced fan-in. They also provide a switch placement 
algorithm to generate bi-scattered crossbars with balanced fan-out. 
Guo [12] suggests a transformation that redistributes switches of a 
fat-and-slim crossbar, yet preserves full-capacity and the already- 
balanced fan-in arrangement. They prove this transformation can 
be used to obtain balanced or nearly-balanced (within ± 1) fan-outs, 
2.3 Perfect Crossbars 
Since both full and minimal crossbars support full-capacity, it is 
convenient to refer to them as perfect crossbars. Perfect crossbars 
are one way to implement an (n, m)-concentrator, a type of graph 
that can disjointly route any m-sized subset of the n inputs to m out- 
puts. 
2.4 Sparse Crossbars 
A sparse crossbar refers to a crossbar which has few switches, 
i.e. is sparsely populated. The demarcation point of when a cross- 
bar becomes "sparse" is debatable: for example, nearly square 
crossbars can be sparsely populated yet support full capacity. This 

paper assumes that a crossbar is sparse if it contains fewer than 
p < (n - m + 1). in switches. Hence, no matter how well it is de- 
signed, a sparse crossbar can never be made perfect. 
Oru~ [17] has proven that a sparse crossbar of guaranteed capac- 
ity c, where c _< m, must contain p _> Ira- (n - m + 1)/(ra - c + 1)] 
switches. This lower bound is not necessarily tight, but when c = ra, 
the number of switches in a minimal crossbar is obtained. Sparse 
crossbars with guaranteed capacity c are also referred to as (n, m, 
c)-eoneentrators. 
The transformation suggested by Guo [12] can also be applied to 
sparse crossbars, provided that there exists some input which cov- 
ers all of the outputs reachable by another input. The transformation 
states that switches can be moved from the one input to the other, 
causing the guaranteed routing capacity of the crossbar, c to increase 
or stay the same - -  but it will never decrease. This is a beneficial 
transformation, but it is not often applicable in sparse crossbars be- 
cause it is uncommon to have one input completely cover another. 
2.5 G r a p h  Representation 
Crossbars are easily modeled as a graph when wires are represented 
by nodes and switches are represented by edges. A crossbar forms a 
bipartite graph G composed of two sets of nodes and a set of  edges. 
The node sets are a set of input wires I and a set of output wires O. 
There are no edges within each set, but an edge can exist between 
any node in set I and any node in set O. 

3. E V A L U A T I N G  R O U T A B I L I T Y  
The traditional approach to evaluate the routability of an FPGA, and 
hence evaluate the sparse crossbars contained therein, is to run place 
and route experiments with a suite of benchmark circuits. This is an 
effective method to design an FPGA and its CAD tools in concert, 
but it can be a lengthy process. As well, the routing performance of 
the crossbars in the FPGA relies upon the effectiveness of the CAD 
tools and the benchmarks to exercise the architecture. 
Our goal was to find a quicker way to test the routability of sparse 
crossbars independently of the CAD tool or benchmark circuits 
used. As well, this new method should provide a more sensitive, yet 
still practical, measurement of routability. This approach also helps 
avoid the problem of"training" an FPGA architecture or CAD tool 
to a particular benchmark suite. 
One routability metric considered was the maximum guaranteed ca- 
pacity of a crossbar, c. With this metric, we wish to find the largest 
value c such that any subset I p C I of size It'l _< c is guaranteed to be 
routable. The main problem with this metric is that it is very difficult 
to compute: the algorithm has inherently exponential complexity 
because it must examine all subsets o f /wi th  cardinality c or smaller. 
We implemented a branch-and-bound algorithm to search for this 
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value, but it is impractical for large crossbars. A greedy heuristic 
search was also implemented, but the results were not robust. 
Instead, the routability of a crossbar is measured using a Monte 
Carlo test. For this test, a number of random test vectors are gener- 
ated, and each is routed on the crossbar using a network flow algo- 
rithm. The routability of the crossbar is estimated as the percentage 
of test vectors which can be successfully routed. 
A test vector of size k is the number of signals to be routed through 
the crossbar. More specifically, it is a subset of the input wires, 
I r C I, where I/'t = k. In terms of real FPGA routing, this test vector 
represents the case where logic signals have already been assigned 
to specific wires due to previous routing restrictions. 
A highly-routable crossbar must be able to route many of these pre- 
constrained vectors. We evaluate routability as a function of the 
number of signals in a test vector, This distinguishes the easily 
routed vectors, i.e., when k is small, from the difficult ones. 
In this paper, we arbitrarily define the highly-routable point as be- 
ing able to route at least 95% of the hardest test vectors, i.e., those 
containing the maximum number of signals intended to be carried 
by the crossbar. 
A network flow algorithm [7] is used to route the test vectors be- 
cause it is guaranteed to find a routing solution if one exists. When 
routing a test vector of size k, switches are assigned unit capacity, so 
a flow of size k must be found to produce a solution. Ifa lower flow 
value is found, it indicates the largest number of wires that were ac- 
tually routable. This guarantee of finding a solution is important in 
that it represents an ideal routing tool, hence it isolates the effective- 
ness of the CAD tools from the performance of the crossbar. 

4. ROUTABLE SWITCH PATTERNS 
This section looks at the following basic problem: given p switches, 
how should they be placed in a sparse crossbar to make it as routable 
as possible. The foundations for the switch-placement algorithm 
presented in the next section are based on the following theorem and 
observations. 
4.1 Hall's Theorem 
Hall's Theorem [ 13] is a result that can be applied to bipartite graphs 
defining whether a maximum matching can be found. A matching 
is a subset of the edges in the graph such that no two edges share a 
node. Hence, every pair of edges in a matching involve 4 distinct 
nodes. Hall's Theorem gives the precise conditions under which a 
matching can exist. 

Halls Theorem. Given bipartite graph G composed of a set of 
edges, E, and two independent sets of nodes, X and Y, then G has a 
matching of X into Y if and only if 

VS c_ X, IS I _< IN(S) I 

where ISl denotes the cardinality of subset S, and N(S) is the set of 
neighbours of S in Y. 
4.2 Application of Hall's Theorem 
In terms of sparse crossbars, a matching actually forms a routing 
solution of a sparse crossbar. The Y set represents the output wire 
set O, and X is a specific test vector of the input wires X = V C I. 
A test vector is routable if and only if Hall's condition is satisfied, 
and the matching gives the solution. The edges in the matching are 
the switches which must be turned on to form the connections. 
To design a routable sparse crossbar, switches should be placed so 
that Hall's condition is satisfied for as many test vectors as possible. 
For test vectors of size k, it is a necessary condition that at least k 
distinct output wires are reachable by switches. 
The switch placement algorithm described in the next section as- 
sumes that the switches placed on any specific subset of input wires 

should be spread out to as many output wires as possible. This is 
equivalent to making the neighbour set N(S) as large as possible so 
that Hall's condition is satisfied. 
Switch placement is not trivial because the switch pattern chosen 
for one subset of input wires may consequently make the pattern 
for some other subset too dose. We argue that this also implies 
that each input wire, having equal likelihood of being a part of any 
particular subset, should have an equal number of switches. If one 
input has fewer switches, it would not be able to "spread out" to 
as many different neighbours. As a result, subsets which included 
this input may be less routable. To get around this, it should be 
given more switches so the fan-outs of the input wires are roughly 
equal. A similar argument implies that the fan-ins of the output 
wires should also be balanced. For this reason, the switch matrices 
constructed in this paper all have balanced fan-in and fan-out. 
4.3 Hamming Distance and Coding Theory 
The switch placement problem requires that subsets of the input 
wires span as many output wires as possible. Doing this for every 
possible subset of input wires is a difficult task, so we chose to ap- 
proximate this by spreading out the switches for every pair of input 
wires. In this form, the switch placement problem becomes iden- 
tical to the problem designing communication codes so that code- 
design techniques such as those from [14] can be used. 
The location where switches are placed on an input wire can be rep- 
resented by a bitvector of length m, where a I in the bitvector indi- 
cates that a switch is present. There are n such bitvectors, one for 
each input, forming the codewords of a binary code. 
The number of neighbours of an input wire subset is the number 
of ones in the bitwise-OR of their bitvectors. Given two bitvec- 
tots, by I and by2, the increase in the number of neighbours (out- 
put wires) reached by the combination of the two is related to the 
Hamming distance I between them, d(bvl, bv2). Spreading out the 
switches between a pair of input wires i and j is the same as max- 
imizing d(bvi, bvj). Code design techniques attempt to maximize 
the minimum d between all of the codewords. 

5. SWITCH PLACEMENT ALGORITHM 
In our construction algorithm, the switch pattern is determined in 
two stages: first an initial switch pattern is chosen, then that pattern 
is iteratively optimized. The minimum inputs required are the ma- 
trix size, n × m, and the number of switches p. 
5.1 Initial Switch Pa t t e rn  
The goal of the initial switch pattern is to place switches so they will 
obey given fan-in and fan-out specifications. These specifications 
form a limit on the number of switches that will be placed on each 
wire. The user may provide any valid fan-in and/or fan-out distribu- 
tion, or, if no specification is provided, a balanced one is automati- 
cally generated based on p, n and m. 
A switch pattern which obeys the fan-in/out specifications is gen- 
erated in one of two ways: either randomly, or by network flows. 
The random method generates random locations in the crossbar and 
places a switch there if it won't violate the fan-in/out specifications. 
If, after a certain number of tries, it cannot find a valid location for 
the next switch, it erases all switches and starts over. Usually an ini- 
tial pattern is found the first time, unless there are a large number of 
switches to place. If it still fails after restarting a number times, the 
tool falls back to the network flow method. 
The network flow method temporarily places a switch at every lo- 
cation in the crossbar, and assigns each a unit capacity. The maxi- 
mum flow from the input to output wires is found, using the fan-out 
and fan-in specifications as flow capacities for the wires. If an initial 

IThe Hamming distance is the number of bit positions that differ 
between the two bitvectors. 
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Figure 2: The switch matrix on the left has identical Hamming costs before and after the swap indicated. After the swap, it cannot route 
any subsets which include wires {1,5,6}. Hence, the cost function is not always effective at distinguishing good switch swaps. The switch 
matrix on the right has lower Hamming cost after the swap indicated, and routes all subsets of size 3. Before the swap it could not route subset 
{1,2,3}. In this case, the cost function can identify a good swap, 

switch pattern can be generated to obey the given constraints, it will 
be found as solution with a total flow ofp.  The switches which the 
flow solver used are kept, and the other switches are discarded. The 
network flow method is used as a backup method because solving 
the flow network is usually slower than the random method. 
5.2 Switch Placement Optimizer 
The routability of an initial switch pattern can be improved by mov- 
ing a number of switches to produce a more "spread out" pattern us- 
ing a number of "switch swaps". A simulated-annealing approach 
was initially used [15], following the approach used in [10]. Since 
the overall goal was similar, we chose to minimize the same cost 
function: 

1 
X d(bvi, by j) 2" Vij 

In the process of designing many switch matrices, it was noticed 
that any hill-climbing moves which raised the cost function were 
nearly always found again and undone. Instead, an algorithm that 
follows the simple approach of accepting any swap that lowers the 
cost function proved to be .just as effective and considerably faster. 
An algorithm that systematically evaluated all possible swap candi- 
dates was also tried, but that algorithm ran considerably slower. 
The resulting improvement algorithm works in a greedy fashion: it 
generates random swap candidates, but it only accepts the swaps if 
the routability improves. The algorithm stops when it is unable to 
find any improvement in cost after checking a large set of swap can- 
didates (about 10 000, for example). 
5.3 Cost Function Pitfalls 
Other cost functions have been considered. As noted in [10], the 
alternative of maximizing the minimum Hamming distance of the 
code is difficult because not all switch swaps would lead to an ob- 
servable change in the cost function. 
Another cost function would be to maximize the total Hamming dis- 
tance between all pairs, i.e., 

d(bv,,bvj). 
Vi,j 

Unfortunately, this does not sufficiently penalize close bitvectors. 
For example, consider the 3 bitvectors 111000, 011100, 000111 
with Hamming distances of 2, 4, and 6. The alternative switch 
topology 111000, 001110, 010011 gives distances of 4, 4, and 4 and 
has better routability. However, no difference between these bitvec- 
tor sets is found if only the total Hamming distance is examined. 
It would also be possible to run a Monte Carlo simulation and ac- 
cept a swap only if routability improved. However, this leads to two 
problems. First, a Monte Carlo simulation would be much slower 
to compute. Second, the results of a single swap may not be readily 
discernible by the simulation. 

In comparison to the above alternatives, the Hamming distance cost 
used is relatively quick to compute and it can distinguish most (but 
not all) changes to the switch pattern. 
5.4 Generating Swap Candidates 
Swap candidates are determined by the four intersection points of 
two input wires and two output wires. To preserve the fan-in/out 
distribution profiles, a swap operation must consist of two switches 
and two empty locations positioned diagonally on the intersection 
points. 
To generate a swap candidate, two input wires are chosen at ran- 
dom. Given the placement of switches on these two wires, two out- 
put wires are randomly selected chosen to form a swap candidate. 
If no valid candidate exists, a new pair of input wires is chosen. 
The fan-in/out distribution profiles can also be preserved while 
moving a single switch, provided the following conditions are met. 
A switch can be moved to another output wire (along the same in- 
put wire) if the original output wire fan-in is one greater than the 
new output wire fan-in before the move. Similarly, a switch can be 
moved along an output wire provided the fan-outs of the old and 
new input wire locations differ by one. Improvements arising from 
these single swaps are done exhaustively after the greedy algorithm 
gives up on swapping switch pairs. 
5.5 Limitations of the Algorithm 
When p < 2n, the switch matrix is very sparse and we have exam- 
pies of suboptimal performance by our algorithm. Under these con- 
ditions, small disconnected components may be present in the bipar- 
tite graph, yet they are indistinguishable by the cost function. For 
example, consider the leftmost matrix in Figure 2. Performing the 
switch swap indicated produces a matrix with identical cost, yet the 
new matrix is not as routable. The original matrix routes any test 
vector of size 3, but the new matrix cannot route the input subset 
{1,5,6}. 
In contrast, consider the switch matrix on the right of Figure 2 which 
cannot route the subset {1,2,3}. Here, the algorithm will find the 
single switch move indicated to lower the cost, and the resulting 
switch pattern routes all groups of 3. 

6. RESULTS 
We have developed a tool in C++ to construct and test sparse cross- 
bars using the switch placement algorithm and evaluation method 
described above. A number of routing experiments have been run 
on sparse crossbars with 168 inputs and 24 outputs. This default 
size was chosen because it is small enough to run experiments 
quickly, and it is the same size as the one used in Altera's FLEX8000 
family [1]. Altera has confirmed that the FLEX8000 sparse cross- 
bar contains 2 switches for every crossbar input [3], however we are 
not privy to the location of the switches, 
6.1 Adding Extra Switches 
The first set of experiments investigate how sensitive the routabil- 
ity of a sparse crossbar is to the addition of switches. It is uncer- 
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Figure 3: The effect of adding extra switches on routability of a 168 x 24 crossbar, The number of output wires is fixed at 24 in each graph, 
Three different ways of looking at the same routability data are presented. Monte Carlo simulations were done with 10,000 test vectors for 
each signal level. 

tain if there is an obvious breakpoint in mutability improvement, if 
routability increases in a smooth or discrete fashion, or how many 
switches are required to maintain a desired level. In Figure 3, a 
number of graphs and curves of the same data are shown to illus- 
trate the effect of adding switches on mutability. 

The leftmost graph in Figure 3 shows a routability curve for each 
fixed switch count. For a given number of signals (i.e., test vector 
size), 10,000 random vectors are routed. One curve shows the per- 
centage of vectors routed as the test vector size increases. Clearly, 
large test vectors are more difficult to route, and sometimes the 
dropoff is very rapid. Each curve represents holding the number 
of switches constant: from 175 to 700 switches, in steps of 25. As 
switches are added, the entire routability curve shifts upward. Typ- 
ically, the amount of the shift decreases as more switches are added, 
implying less utility is gained from each additional switch. 

The middle graph in Figure 3 shows a similar routability curve 
for each test vector size, but the number of switches varies along 
the x-axis. For a given test vector size of 20 signals, for exam- 
ple, the greatest improvement in routability occurs as the number of 
switches is increased from 300 to 500. The largest test vector size 
of 24 signals shows the slowest improvement rate, and requires a 
large number of switches to become highly routable. 

The rightmost graph in Figure 3 measures the utilisation of switches 
when routing the test vector signals. Each curve represents a fixed 
routability level, say 90%. The x-axis is the number of signals to 
be routed, and the y-axis is the smallest number of switches per sig- 
nal required to achieve 90% routability. The curves show that most, 
but not all, of the crossbar outputs should be used to make efficient 
use of the switches. If nearly all of the outputs are used, i.e., more 
than 20, significantly more switches per signal are needed to sustain 
the desired level of routability. Hence, the value obtained by adding 
each additional each switch in this region is small; many switches 
are needed to make a significant contribution to routability. 

Two additional curves of interest are shown in this third graph: the 
entropy curve and the lower bound curve. The 100% lower bound 
curve, obtained from the formula [ ( n - k +  1)m/(m-k+ 1)], 
shows a lower bound for the minimum number of switches required 
to reach perfect routability. A large number of additional switches 
per signal is needed to go from 99.9% to 100% routability for large 
test vector sizes. This lower bound may also indicate inefficiency in 
our switch placements when the number of signals is small (< 16) 
- -  except the lower bound is not guaranteed to be tight. 

The entropy curve shows the absolute minimum number of SRAM 
bits that would be needed to program the switch matrix. As shown 

by DeHon [8], the number of bits required is [log2 ( n ) k "1. 

6.2 Adding Extra Output Wires 
In the previous subsection, the switch matrix was designed with ex- 
actly 24 outputs to match the size of the Altera crossbar. Next, the 
number of crossbar output wires were gradually increased from 24 
to 48, but the crossbar is used for only up to 24 signals. The re- 
sults are shown in Figure 4 for a number of different switch counts. 
When the number of switches is low, the routability increase from 
having more output wires is not significant, However, once 34-0 
switches are reached, dramatic improvements of up to 100% can be 
seen when additional output wires are used. Hence, a certain mini- 
mum number of switches must be present to take advantage of the 
extra output wires. 
In the Altera FLEX8000 architecture, there is a cost associated with 
having more output wires. Each additional output must be consid- 
ered as an additional input to the local interconnect in the Altera 
LABs 2. If the local interconnect is to remain fully connected, ad- 
ditional switches must be placed inside the LAB. The total number 
of switches (sparse crossbar + local cluster) must be considered, and 
is shown in Figure 5. From this graph, it can be seen that the mini- 
mum number of switches at 99.95% routability is obtained with 30 
output wires and approximately 1470 switches (510 switches in the 
sparse crossbar and 960 inside the LAB). This is significantly more 
than Altera's 1104 switches, but the level of routability is also much 
higher. 

6.3 Adding Both Switches and Wires 
To examine the combined effect of adding switches and widen- 
ing the output stage of the sparse matrix, see Figure 6. Three key 
curves are shown: the baseline architecture, which is similar to the 
FLEXS000 with 336 switches and 24 outputs (dotted curve), the im- 
provement from increasing to 30 output wires, and the improvement 
from increasing to 30 output wires and 510 switches (solid curves). 
In comparison, the 24-output crossbar is shown to be less routable 
with the same 510 switches (lower dashed curve). 
However, adding output wires forced more switches to be added 
to the local interconnect. To make a fair comparison, these same 
switches should also be added to the 24-output crossbar, for a to- 
tal of 702 switches (upper dashed curve). The result is still not as 
effective as the crossbar with more outputs. 

6.4 Summary 
The results from this section indicate that, to be area-efficient, a 
sparse crossbar should not be used at maximum utilisation. Rather, 
the number of outputs should be more than the number of signals 

2A FLEX8000 LAB is a completely-connected cluster of eight 4- 
LUTs sharing 24 inputs. 
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Figure 6: Combined effect of adding output wires and switches to 
achieve nearly 100% routability. A total of 20,000 test vectors were 
used for each signal level. 

that are to be routed through it. As well, it is important to choose 
the number of switches and wires together, since a minimum num- 
ber of switches are needed to benefit from the extra output wires. 

7. DESIGN EXAMPLES 
In the following design examples, based on architecture models in 
Figure 7, we searched for a number of sparse crossbar configura- 
tions which could achieve 95% or better routability and had the low- 
est area cost in terms of total transistors per LUT input. In count- 
ing transistors, we counted both the sparse crossbar switches and the 
switches of a fully-connected lower interconnect level. 
Rather than use one SRAM cell and pass transistor per switch, we 
assumed a crossbar output is implemented using a single n-input 
multiplexer and encoded SRAM bits. We also assumed that each 
SRAM cell uses 6 transistors, and the n-input multiplexer uses a tree 
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Figure 7: Models used for the Altera FLEX8000 FPGA, HP Plasma FPGA, and Altera MAX7256 CPLD architectures. The exact switch 
patterns shown were invented for illustration only. 

of 2 : 1 muxes requiring 2 n -  2 pass transistors. To keep things sim- 
ple, we did not account for any additional buffering of signals or 
wider transistor sizes that would accompany a real design. 
To find the lowest-area configuration, we explored a variety of 
switch densities and wider-than-required output stages. Designs 
with 20% or more transistors than the baseline architecture were 
immediately rejected. The baseline architecture chosen assumed 
two switches per input wire and a fully connected local intercon- 
nect (similar to Altera FLEX8000). We performed a quick routabil- 
ity simulation for the remaining designs using only a few (1000) 
test vectors, and rejected those with less than 95% routability at the 
largest test vector size. We retested the some of the remaining de- 
signs with a larger number of test vectors to ensure their measured 
performance. 
7.1 Altera FLEX$000 
The Altera FLEX8000 device uses a 168 x 24 sparse crossbar to 
connect the FastTrack row wires into the LAB clusters. The sparse 
crossbar is 1/12 populated, such that each row wire has two "oppor- 
tunities" to connect into a cluster. Within the cluster, the eight 4- 
LUT inputs select from 24 sparse crossbar outputs and 8 LUT feed- 
back signals using a full crossbar. This design uses approximately 
129 transistors per LUT input, including the cluster interconnect. 
With our switch placement, the routability is excellent when there 
are fewer than 10 signals entering a cluster. However, if 15 or more 
signals enter a cluster, the routability drops below 90%. At full ca- 
pacity, the routability of 24 signals drops below 1%. 
Our construction techniques and search found a 168 x 29 sparse 
crossbar containing 464 switching points, or 2.7 connections per in- 
put wire. This design uses approximately 157 transistors per LUT 
input, including the LUT feedback connections, representing an in- 
crease of 22%. Assuming the cluster interconnect used a minimal 
crossbar instead of a full crossbar, our search found a 168 x 26 
crossbar with 546 switching points, using 147 transistors per LUT 
input, an increase of only 14%. For a modest increase in transistor 
count, the improvement in routability shown in Figure 8 is dramatic. 

Some other organizations found are listed in Table 1. 

7.2 HP Teramac Plasma 
Teramac[4], from HP Labs, is a large reconfigurable system made 
up of custom-designed Plasma[5] FPGAs. A full Teramac system is 
designed to have the capacity of about one million gates distributed 
over 1728 FPGA chips. An important goal in the Plasma design 
was to design a highly routable FPGA: to limit compile times to 
about an hour, placing and routing each FPGA must be done quickly 
(within 3 seconds). This approach meant each FPGA should be 
nearly 100% routable so that almost no time would be spent in rip- 
up or repartitioning the mapped circuit. 
The Plasma 2-level hierarchy comprises sixteen clusters, called hex- 
rants, of sixteen LUTs each. The six LUT inputs in each cluster are 
fully connected to 100 cluster-level wires, and the two LUT outputs 
are I/2 populated. At the top level there are 400 signal wires, which 
must connect to the 100 cluster wires. This 400 x 100 partial cross- 
bar is 1/4 populated using 10,000 crosspoints, implying it is com- 
posed of four diagonally placed 100 x 25 full crossbars. Conser- 
vative measurements of the die photograph in [5] indicates that the 
partial crossbar switches alone consume 23% of total chip area, or 
32% of the core area (excluding the I/O pads). 
The Plasma chip is easy to route because the partial crossbars make 
it predictable to route: as long as fewer than 25 signals enter each 
full crossbar, it can be routed. The router need only consider which 
crossbar it routes to, and not the precise detailed route. Hence, there 
would be no need for ripup. Despite this advantage, there are few 
signal assignments that can satisfy the partial crossbar when more 
than 75 input signals are required, as shown in Figure 8. 
Our sparse crossbar search found a 400 x 104 sparse crossbar with 
1,456 switching points, or 3.6 switches per top-level wire, for a 
switch density of roughly 1/28. This design uses approximately 292 
transistors per LUT input, including the cluster-level interconnect 
(but not the LUT output switches). 3 Even though this sparse cross- 

3plasma used one 5T SRAM cell and one pass transistor per switch- 
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Table 1: Highly routable, area-efficient sparse crossbars suitable for 
use in the Altera FLEX8000 family. The first group shows the num- 
ber of switches required to obtain high routability with exactly 24 
outputs. The second group adds a minimal crossbar between the 
sparse crossbar and the LAB full crossbar to reduce the sparse cross- 
bar outputs to 24. The third group widens the full crossbar local in- 
terconnect inside the LAB to match the number of sparse crossbar 
outputs. All transistor counts include the local interconnect. Tran- 
sistor counts in parentheses indicate that further reduction is possi- 
ble if minimal crossbars are used within the LAB instead. 

Crossbar Size II Switching Points I Transistors ] Routability 
Provide exactly 24 outputs from the sparse crossbar. 

168 × 24 I 336 4144 1.0% 
168 x 24 I 1008 5776 98.6% 

Reduce to exactly 24 outputs using an additional minimal crossbar. 
168 × 26 x 24 546 + 72 5468 96.1% 
168 x 25 x 24 700+48 5492 98.2% 
168 x 27 x 24 567+96 5650 99.2% 
168 x 29 x 24 464+ 144 5694 98.6% 
168 × 30 × 24 450+ 168 5800 98.2% 

Provide more than 24 outputs, increase cluster interconnect. 
168 x29 
168 x 30 
168 x26 
168 x 31 
168 x27 
168 x 25 

464 
450 
546 
434 
567 
700 

5022 (4830) 
5080(4888) 
5084(4700) 
5134 (4942) 
5218 (4834) 
5300(4916) 

98.6% 
98.2% 
96.1% 
98.6% 
99.2% 
98.2% 

Table 2: Highly routable, area-efficient sparse crossbars suitable for 
use in HP Plasma FPGAs. Total transistor counts include the local 
cluster interconnect to choose LUT inputs, but not the LUT outputs. 

Crossbar Size II Switching Points I Transistors I RoutabiUty 

Partial crossbar switch pattern used by HP. 
400x 100 II 10000 1 4 7 0 4 0 1  0.4% 

Sparse crossbar patterns found. 
400x 104 
400 x 105 
400× 103 
400× 106 
400×107 
400x 108 
400x 109 
400 × 105 
400 × 102 
400 × 108 

1456 
1365 
1648 
1378 
1284 
1296 
1199 
1680 
1734 
1404 

28048 
28080 
28218 
28320 
28346 
28584 
28604 
28710 
28788 
28800 

95.9% 
95.1% 
98.8% 
98.6% 
96.9% 
99.3% 
97.1% 
100.0% 
96.6% 
99.9% 

bar contains nearly 1/7 the number of switching points of Plasma, 
it has significantly improved routability. It can route over 95% of 
vectors containing 100 input signals, whereas Plasma can route less 
than 1%. Given this new switch pattern, a router would have even 
higher assurances it could route each Plasma chip independently. 
Alternatively, a sparse crossbar of size 400 x 105 with 1,680 
switching points, or 299 transistors per LUT input, can be con- 
strutted which routes over 99.9% of the test vectors. A few other 
organizations found are listed in Table 2. 

7.3 Al tera  M A X 7 0 0 0  
The Altera MAX7256 CPLD has 2-levels of hierarchy, where the 
top level contains multiple sparse n x 36 crossbars, The value of n 
used in the MAX7256 device is not known, but it is probably not 
more than 410 (one wire for each macrocell output and I/O pin). 
Here, we shall assume n = 410. 
We have noted before that providing more than 36 crossbar out- 
puts is necessary to keep area low while obtaining high routabil- 
ity. Rather than increase the number of inputs to the product-term 
AND planes by this amount, we have chosen to connect the cross- 
bar outputs to a minimal crossbar, which can perfectly select any 36 
of these signals for the AND plane. In this case, this minimal cross- 
bar is area-efficient because it is close to being square, so it requires 

ing point, but we are assuming a different implementation here. 
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Table 3: Highly routable, area-efficient sparse crossbars suitable for 
use in the Altera MAX7256 CPLD. Total transistor counts include 
the minimal crossbar selector, if appropriate, but not the product 
term array. 

Crossbar Size I1 Switching Points [ Transistors I Routability 
l-level, provide exactly 36 outputs from the sparse crossbar. 
410x36  I 2448+0 I 6336 96.40% 
410 x 36 2952 + 0  7344 99.70% 

2-levels, reduce to exactly 36 outputs using a minimal 
410 x 43 x 36 1161 + 288 4678 
4 1 0 x 4 2 x 3 6  1218+252 4692 
410×41 ×36 1271 +216 4698 
410 x 39 × 36 1443 + 144 4860 
410 × 45 × 36 1080+ 360 4932 
410 × 38 × 36 1558 + 108 4984 
4 1 0 x 4 0 x  36 1360+180 5016 
410 × 43 x 36 1333 + 288 5022 

crossbar. 
97.2% 
97.6% 
97.8% 
96.7% 
96.2% 
96.2% 
97.2% 
100.0% 

few switching points. 
Assuming an SRAM and mux-based crossbar implementation, the 
best organization found used a 410 × 43 sparse crossbar containing 
1161 switching points, or about 2.8 switches per input. This cross- 
bar is over 97% routable when 36 signals are required. The min- 
imal crossbar requires an additional 288 switching points. A total 
of 4678 transistors would be required to construct the two switch- 
ing stages, or 129 transistors per output. Alternatively, a 410 x 
43 sparse crossbar containing 1333 switching points was found to 
achieve over 99.9% routability. This system used 5022 transistors, 
or 139 transistors per output. 
Both of these 2-level organizations use significantly fewer transis- 
tors (and switching points) than an architecture with only one sparse 
crossbar containing exactly 36 outputs. The best 2-level organiza- 
tion contains 26% fewer transistors and 40% fewer switching points 
than the best l-level. A few other organizations found are shown in 
Table 3. 

7.4 Varying FLEX8000 Cluster Size 
In this section, we present the results of generating highly routable 
sparse crossbars for variations of the Altera FLEXS000 architecture 
shown in Figure 7. The goal is to understand the impact of clus- 
ter size and crossbar input size on the area efficiency of the sparse 
crossbar. To do this, we normalize the area based on transistors per 
LUT input. This accounts for the increased logic capacity of larger 
clusters, and allows us to directly compare the results. 
We varied the cluster size, N, from between 2 and 12 LUTs, the 
number of top-level wires, n, were varied from 168 to 995. The 
maximum number of output signals required by the crossbar was set 
to be 3N, which gives 24 inputs for the FLEXS000 case of N = 8. 
We also repeated these experiments with 2N + 2 output signals, as 
recommended by Betz [6]. 
In general, it was usually possible to find multiple sparse cross- 
bars which are both area-efficient and fit within the desired routabil- 
ity constraints. When multiple designs matching the criterion were 
found, the one with the lowest transistors per LUT input was se- 
lected. Sometimes a design could not be found, so the data point 
was left out of the results. 
First, we examine the impact of cluster size on area as shown in the 
top graphs of Figure 9. For a sparse crossbar with only 168 inputs 
the effect of cluster size is not significant on area, but it can be seen 
that a cluster size between 4 and 7 gives the best efficiency. In con- 
trast, small cluster sizes become very inefficient when the number 

of crossbar inputs is increased. Selecting a cluster size of at least 
8 is necessary in these cases. Letting the aspect ratio of the sparse 
crossbar get too large hinders the efficiency. 
Next, we examine the impact of increasing the number of crossbar 
inputs for specific cluster sizes, as shown in the lower graphs of Fig- 
ure 9. This is an orthogonal view of the same data, except some 
cluster sizes have been left out for clarity, From this data, we can 
see that the area cost for a given cluster size is a roughly linear func- 
tion of the size of the crossbar. The slope of the larger cluster sizes 
is smaller, making them more area-efficient at larger crossbar sizes. 

8. CONCLUSIONS AND FUTURE WORK 
We have shown a method for evaluating and constructing sparse 
crossbars. The construction technique is based on an understand- 
ing of Hall's Theorem to generate highly routable crossbars. 
Routability of sparse crossbars can be improved by adding addi- 
tional switches and by widening the output stage of the crossbar. 
The latter method was the most effective once there were enough 
switches to be used: approximately two per input in the case of a 
168 x 24 crossbar. Careful evaluation using both methods is neces- 
sary to obtain optimum routability at minimum area. 
We have demonstrated with a few design examples that it is ben- 
eficial to plan to underutilise the output stage of a sparse crossbar 
and design using the correct number of switches. In the Plasma ex- 
ample, only 4 additional output wires and a switch density of 1/28 
was required to remain highly routable; this organization uses 75% 
fewer switches than Plasma, and obtains superior results. In the A1- 
tera FLEX8000 example, 5 additional output wires and a slight in- 
crease in switch density (from 1/12 to about 1/10) was needed to 
obtain over 95% routability. It was also found that cluster sizes 
between 4 and 7 give the most area-efficient interconnect in the 
FLEX8000. 
Planning on high routability does not require an exorbitant amount 
of switching resources: in the examples given, the most dense 
switch pattern used was less than 1/10 populated. 
For future work, we have tried to design and simulate cascaded 
sparse crossbars that depend on one another. To date, we have not 
been successful in generating consistently improved results with 
cascaded crossbars - -  independently optimized crossbars produce 
more consistent results. Also there is difficulty modeling conges- 
tion with a network flow solver, so plans are underway to integrate 
the construction algorithms into an actual router. 
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