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Abstract 

In this paper we present a "high-level" FPGA architecture 
description language which lets FPGA architects succinctly and 
quickly describe an FPGA routing architecture. We then present an 
"architecture generator" built into the VPR CAD tool [1, 2] that 
converts this high-level architecture description into a detailed and 
completely specified fiat FPGA architecture. This flat architecture 
is the representation with which CAD optimization and visualiza- 
tion modules typically work. By allowing FPGA researchers to 
specify an architecture at a high-level, an architecture generator 
enables quick and easy "what-if '  experimentation with a wide 
range of FPGA architectures. The net effect is a more fully opti- 
mized final FPGA architecture. In contrast, when FPGA architects 
are forced to use more traditional methods of describing an FPGA 
(such as the manual specification of every switch in the basic tile of 
the FPGA), far less experimentation can be performed in the same 
time, and the architectures experimented upon are likely to be 
highly similar, leaving important parts of the design space com- 
pletely unexplored. 

This paper describes the automated routing architecture gener- 
ation problem, and highlights the two key difficulties - -  creating 
an FPGA architecture that matches all of an FPGA architect's spec- 
ifications, while simultaneously determining good values for the 
many unspecified portions of an FPGA so that a high quality 
FPGA results. We describe the method by which we generate 
FPGA routing architectures automatically, and present several 
examples. 

1. Introduction 

In order to develop a high-quality FPGA architecture, one 
must evaluate the utility of a huge number of architectural trade- 
offs and decisions. Typically one "implements" (using a synthesis 
flow) a set of benchmark circuits in each FPGA architecture (or 
architecture variant) of  interest, and determines the area required 
and speed achieved by these circuits in each of the architectures [2, 
3]. The architecture which leads to circuit implementations with 
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the best combination of area, delay, and perhaps other parameters 
such as power, is the best FPGA architecture, and is laid out and 
manufactured. 

The architecture of an FPGA specifies both the structure of its 
logic block and its programmable routing; in this paper we are 
focusing on the routing architecture portion of an FPGA. To imple- 
ment circuits in each FPGA routing architecture of interest, one 
requires both a CAD tool set incorporating sufficiently flexible 
internal data structures and algorithms that it can target each of 
these architectures, and a method of describing each FPGA archi- 
tecture to this CAD tool set. In this paper we are concerned with 
the second of these requirements - -  how can one conveniently and 
quickly describe an FPGA routing architecture to a CAD tool. If 
one cannot describe architectures quickly to a CAD tool, the num- 
ber of architectures with which one can experiment will be quite 
limited. The net result will be that many portions of the design 
space remain unexplored, many architecture decisions are not 
tested with real benchmark circuits run through a real CAD flow, 
and the final FPGA is not as fully optimized as it could have been. 

The most brute-force method of describing an FPGA routing 
architecture to a CAD tool is to create a directed graph (which we 
call a routing-resource graph) that fully specifies all the connec- 
tions that may be made in the FPGA routing. This is a very general 
representation of FPGA routing, and is generally the data structure 
used internally by the routing tool. It is not very practical to specify 
this routing-resource graph manually, however, as the routing 
resource graph for a typical FPGA is 10 MBytes - 200 MBytes in 
size. Essentially, this is too low-level a description for an FPGA 
architect to use conveniently. 

A more practical alternative is to design a basic tile (a single 
logic block and its associated routing) manually, and create a pro- 
gram to automatically replicate and stitch together this tile into a 
routing-resource graph describing the entire FPGA. Even the man- 
ual creation of a basic tile is too time-consuming for many pur- 
poses, however. A typical tile contains several hundred 
programmable switches and wires, so it can take hours or days to 
describe even one tile. Furthermore, such a hand-crafted tile is 
designed for one value of routing channel width, W (the number of 
tracks in a channel). In many architecture experiments one must 
vary W in order to see how routable a given FPGA architecture is, 
or to determine the minimum value of W that allows some desired 
fraction of application circuits (say 95%) to route successfully. 
With a tile-based approach, one must hand-craft one tile for each 
different value of W, for each architecture. An FPGA designer will 
often wish to investigate hundreds of different FPGA architectures, 
and tens of W values for each of these architectures, resulting in 
thousands or tens of thousands of these basic tiles. 

There has been some prior work in describing FPGA routing 
at a higher level of abstraction. In [4], Brown et al developed an 
FPGA router for use with island-style FPGAs. In order to quickly 
investigate FPGAs with different numbers of routing switches, 
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they localized all the code that interacted with switch patterns to 
two routines, Fc0 and Fs0. By rewriting these two routines, a user 
can target their router (CGE) to an FPGA with a different switch 
pattern. The later SEGA router [5] used the same method to allow 
retargeting to different FPGAs. 

In the Emerald CAD system [6], an FPGA's routing is 
described by means of WireC schematics - -  essentially schematics 
annotated with C-like code that describe switch patterns. The 
Emerald system can convert these WireC schematics into routing- 

resource graphs for use by its FPGA router. 

While both CGE, SEGA and Emerald reduce the labour 
required to specify FPGA's routing, they still require considerable 
effort. Instead of specifying every switch in a basic tile of an 
FPGA, one writes code (in either C or WireC) to generate all the 
switches in a basic tile. If the user writes sufficiently general code, 
it may be possible to change the channel width, W, and have the 
basic tile adapt properly, but again, it is the user's task to write this 
(often non-obvious) code. 

In this paper we describe a different method of specifying 
FPGA routing architectures; this specification method has been 
built into the Versatile Place and Route (VPR) CAD tool [ 1, 2]. As 
Figure 1 shows, a user describes an FPGA to VPR via a concise, 
easily understandable list of parameters. Essentially, the FPGA is 
described to VPR in a specialized and simple FPGA architecture 
description language. VPR then uses an internal "architecture gen- 
erator" to create the routing-resource graph with which the router, 
graphics, and statistics routines all work. We have designed the 
architecture description language such that a single architecture 
description can always be used to generate an FPGA with any 
value of channel width, W. We can make an analogy with the lev- 
els of abstraction possible in software development: manually 
describing an FPGA by specifying every switch in its basic tile is 
like programming in machine code (binary), while using WireC or 
CGE is akin to assembly language programming. We are propos- 
ing the use of architecture descriptions that are more like high- 
level languages; they are easy for humans to create and understand, 
but require more interpretation by the CAD tools (compilers). 

The remainder of this paper is organized as follows. In the 
next section, we describe the routing architecture description lan- 
guage. Section 3 describes the routing-resource graph used inter- 
nally by VPR to represent a routing architecture. Section 4 shows 
how we convert from the easily understood architecture descrip- 
tion language input to VPR into the detailed routing-resource 
graph. We highlight the two major difficulties in this procedure: (i) 
it is often difficult to meet all the specifications listed by the user, 
and (ii) VPR must automatically build the portions of the architec- 
ture that are left unspecified in a way that results in the best overall 
FPGA. In Section 5, we show some examples of automatically 
generated FPGA routing architectures, and Section 6 presents our 
conclusions and suggestions for future work. 

Concise, 
understandable 

RouteL 
graphics, 
statistics 
routines 

Figure 1: A concise architecture description is converted to a 
detailed graph description. 

2. Architecture Description and 
Parameterization 

We want architecture descriptions to be easy to create, so we 
tried to parameterize architectures in ways that are intuitive to 
FPGA researchers. By pararneterizing architectures we also make 
it easier to describe results to other FPGA architects and research- 
ers, and to understand why one architecture is better than another. 
(Simply showing that one 100 MB routing-resource graph is supe- 
rior to most others does not allow one to describe results to others 
very easily!) Indeed, the choice of parameterization is itself a key 
step in architecture exploration. 

Our architecture description is currently intended for use with 
island-style FPGAs, although it could be extended to other types of 
FPGAs. Figure 2 shows a typical island-style FPGA. The architec- 
ture description file specifies: 

• The number of logic block input and output pins, 

• The side(s) of the logic block from which each input and out- 
put is accessible, 

• The logical equivalence between the various input and out- 
put pins (e.g. all look-up table inputs are functionally equiva- 
lent), 

• The number of I/O pads that fit into one row or column of 
the FPGA, 

• The switch block [7] topology used to connect the routing 
tracks (i.e. which tracks connect to which at a switch block), 

• The number of tracks to which each logic block input pin 
connects, Fc,inpu t [7], 

• The number of tracks to which each logic block output pin 
connects, Fc,output, 

• The F c value for I/O pads, Fc,pa d, and 

• One or more wire segment types. For each segment type, 
one specifies: 

• The fraction of tracks in a channel that are of this segment 
type, 

Programmable Programmable 
Connection connection routing switch 

k l  ~ I . -  - .  • 

nt 

Figure 2: An island-style FPGA (from [2]). 
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• The segment length (number of logic blocks spanned by a 
wire segment), 

• The type of switch (pass-transistor or tri-state buffer, 
drive strength, etc.) used to connect a wire segment of this 
type to other routing segments, 

• The switch-block internal population of this segment type 
(discussed below), and 

• The connection-block intemal population of this segment 
type (discussed below). 

Note that the segmentation distribution (the fraction of rout- 
ing tracks of each length), is specified as part of the wire type defi- 
nitions. 

Two of the parameters listed above, switch-block and connec- 
tion-block internal population, may not be familiar to many FPGA 
researchers. These two terms were introduced by Chow et al in [8]. 
They indicate whether or not routing wires and logic blocks, 
respectively, can connect to the interior of a wire segment that 
spans multiple logic blocks, or if connections to a wire can be 
made only at its ends. In [8], a wire segment is either completely 
internally populated or completely depopulated. We allow partial 
depopulation of the interior of a wire segment. For example, a 
length five segment spans five logic blocks. If we specify a con- 
nection-block population of 100%, this wire segment can connect 
to all five logic blocks it passes, so it is fully internally populated. 
If the connection-block population is 40%, it can only connect to 
the two logic blocks at its ends, so it is internally depopulated. If 
we specify a connection-block population of 60%, however, the 
wire can connect to the two logic blocks at its ends and one logic 
block in its interior, so it is partially internally depopulated. Figure 
3 illustrates the four possible values of connection-block popula- 
tion for a length five wire. Switch-block population is specified in 
a similar, percentage, form. 

Notice that we specify the distribution of wire types as frac- 
tions of the channel width, W, rather than as an absolute number of 
tracks of each type. For example, one might say there are 20% 
length = 2 wires and 80% length = 5 wires. This allows a user to 
attempt routing with different W values, to determine the routabil- 
ity of an architecture, without changing the architecture file. Simi- 
larly, the various F c values can be specified either as absolute 
numbers (e.g. 5 tracks), or as a fraction of the tracks in a channel 
(e.g. 0.2.W). 

The number of tracks per channel, W, and the size of the logic 
block array size can be specified on the command line. If one or 
more of these parameters is not specified, the VPR router will 
determine the minimum value(s) needed to fit the circuit in the 
specified FPGA architecture. 

1 
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Figure 3: Possible connection-block population values for length 
5 wire segments. 

Finally, to allow extraction of the delay of routed nets and 
path-based timing-analysis, one must specify various timing 
parameters in the architecture description file. These include: 

• The input and output capacitance, equivalent resistance, and 
intrinsic delay of each type of switch used in the routing; as 
many switch types as desired can be defined. 

• The capacitance and resistance of each type of wire segment, 

• The delays of all the combinational and sequential elements 
within each logic block, and 

• The delays of the I/O pads. 

3. The Routing-Resource Graph 
While the architecture parameters listed above are easy for 

FPGA architects to understand and specify, they are not appropri- 
ate for use as an internal architecture representation for a router. 
Internally, VPR uses a routing-resource graph [9] to describe the 
FPGA; this is more general than any parameterization, since it can 
specify arbitrary connectivity. It also makes it much faster to 
determine connectivity information, such as the wires to which a 
given wire segment can connect, since this information is explic- 
itly contained in the graph. 

Each wire and each logic block pin becomes a node in this 
routing-resource graph and each switch becomes a directed edge 
(for unidirectional switches, such as buffers) or a pair of directed 
edges (for bidirectional switches, such as pass transistors) between 
the two appropriate nodes. Figure 4 shows the routing-resource 
graph corresponding to a portion of an FPGA whose logic block 
contains a single 2-input, 1-output look-up table (LUT). 

Often FPGA logic blocks have logically equivalent pins; for 
example, all the input pins to a LUT are logically equivalent. This 
means that a router can complete a given connection using any one 
of the input pins of a LUT; changing the values stored in the LUT 
can compensate for any re-ordering of which connection connects 
to which input pin performed by the router. We model this logical 
equivalence in the routing-resource graph by adding source nodes 
at which all nets begin, and sink nodes at which all net terminals 
end. There is one source node for each set of logically-equivalent 
output pins, and there is an edge from the source to each of these 
output pins. Similarly, there is one sink node for each set of logi- 
cally-equivalent input pins, and an edge from each of these input 
pins to the sink node. 

To reduce the number of nodes in the routing-resource graph, 
and hence save memory, we assign a capacity to each node. A 
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Figure 4: Modelling FPGA routing as a directed graph. 
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node's capacity is the maximum number of different nets which 
can use this node in a legal routing. Wire segments and logic block 
pins have capacity one, since only one net may use each. Sinks 
and sources can have larger capacities. For example, in a 4-input 
LUT, there is one group of four logically-equivalent inputs, so we 
have one sink of capacity four. If we could not assign a capacity of 
four to the sink, we would be forced to create four logically-equiv- 
alent sinks and connect them to the four input pins via a complete 
bipartite graph (K4,4), wasting considerable memory. 

To perform timing-driven routing, timing analysis, and to 
graphically display the architecture we need more information than 
just the raw connectivity embodied in the nodes and edges of the 
routing-resource graph. Accordingly, we annotate each node in the 
graph with its type (wire, input pin, etc.), location in the FPGA 
array, capacitance and metal resistance. Each edge in the graph is 
marked with the index of its "switch type," allowing retrieval of 
information about the switch intrinsic delay, equivalent resistance, 
input and output capacitance and whether the switch is a pass tran- 
sistor or tri-state buffer. 

4. Automatic Routing Architecture Generation 
to Match Specified Parameters 

As Section 1 described, there are compelling reasons to allow 
designers to specify architectures in an understandable, parameter- 
ized format, and for the routing tools to work with a more detailed, 
graph-based, description. We therefore need the capability illus- 
trated in Figure 1: a tool that can automatically generate a routing- 
resource graph from a set of specified architecture parameters. 
This is a difficult problem for two reasons: 

1. We want to create a good architecture with the specified 
parameters. That is, the unspecified properties of the archi- 
tecture should be set to "reasonable" values. 

2. Simultaneously satisfying all the parameters defining the 
architecture is difficult. In some cases, the specified param- 
eters conflict and overspecify the FPGA, making it impossi- 
ble to simultaneously satisfy all the specified constraints. 

The next section gives a brief overview of our architecture 
generation approach, while Sections 4.2 and 4.3 illustrate the two 
difficulties mentioned above. 

4.1. Architecture Generation Approach 

We generate routing architectures in two phases. First, we 
build all the unique switch patterns required by the architecture, 
and one vertical and one horizontal routing channel. Typically the 
unique switch patterns consist of one connection box (logic block 
pins to routing wires switch pattern) for each side of the logic 
block, another connection box for IO blocks, and the switch block 
(routing wire to other routing wire switch pattern) specified by the 
user. 

Next, we create the entire FPGA by replicating variants of 
these basic switch patterns and the canonical channels. As Section 
4.3 describes, creating the entire FPGA is more complex than sim- 
ply replicating these switch patterns and the basic channels across 
the FPGA; they must be stitched together in a more involved way. 

4.2. Creating a Good FPGA Despite Unspecified 
Architecture Parameters 

If we require a user to specify every conceivable parameter, 
and every interaction between these parameters, describing an 
architecture will be very time-consuming. Instead, we want to 
allow users to specify the important parameters, and have the 
architecture generator automatically adjust other parameters of the 
architecture so that a good FPGA results. For example, we require 
that a user specify the number of tracks to which input and output 
pins can connect, Fc,inpu t and Fc,output, rather than requiring a user 
to specify the complete connection block switch pattern. This cer- 
tainly simplifies the task of describing an FPGA, but it means that 
VPR must generate a good connection block switch pattern auto- 
matically. 

Let us consider this connection block problem in more detail. 
We decided that the switch pattern chosen should: 

• Ensure that each of  the W tracks in a channel can be con- 
nected to roughly the same number of input pins, and 
roughly the same number of output pins, 

• Ensure that each pin can connect to a mix of different wire 
types (e.g. different length wires), 

• Ensure that pins that appear on multiple sides of the logic 
block connect to different tracks on each side, to allow more 
routing options, 

• Ensure that logically-equivalent pins connect to different 
tracks, again to allow more routing options, and 

• Ensure that pathological switch topologies in which it is 
impossible to route from certain output pins to certain input 
pins do not occur. Figure 5 shows one example of a patho- 

[ out2 ~ - ~  ~1 -~  °ut2 ~ l - [ - ~ - t ~  Routing 
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• " switch 

(a) Nets starting at out2 can only reach in2, 
nets starting at outl can only reach inl 

] in2 ~-I'-~-- -~ 

out2 

in2 

inl outl 

• l t 

(b) Nets starting at either output can reach 
either input; vastly improved routability 

Figure 5: Example connection block patterns: 
(a) pathologically bad; (b) good. 
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logically bad switch pattem - -  some logic block output pins 
cannot drive any tracks that can reach certain input pins. 

Clearly this is a complex problem. In essence, the proper 
connection block pattern is a function of Fc,inpu t, Fc,output, W, the 
segmentation distribution (lengths of routing wires), the logical 
equivalence between pins, and the side(s) of a logic block from 
which each pin is accessible. The last condition is also a function 
of the switch block topology. The architecture generator uses a 
heuristic algorithm that attempts to build a connection block that 
satisfies the five criteria above, but it will not necessarily perfectly 
satisfy them all for all architectures. 

4.3. Matching All the Architecture Specifications 

The second difficulty in generating an architecture automati- 
cally is simultaneously meeting all the user-defined specifications. 
We will illustrate this difficulty with an example that shows it often 
takes considerable thought to simultaneously satisfy the specifica- 
tions. Consider an architecture in which: 

• Each channel is three tracks wide. 

• Each wire is of length 3. 

• Each wire has an internal switch block population of 50%. 
That is, routing switches can connect only to the ends of a 
wire segment (2 of the 4 possible switch block locations). 

• The switch block topology is disjoint [10]. In this switch 
block, wires in track 1 always connect only to other wires in 
track 1, and so on. This is the switch block topology used in 
the original Xilinx 4000 FPGAs [ 11]. 

Figure 6 shows the disjoint switch block topology, and a 
channel containing 3 wires of length 3. Notice that the "start 
points" of the wire segments are staggered [12]. This enhances 
routability, since each logic block in the FPGA can then reach a 
logic block two units away in either direction using only one wire 
segment. It also arises naturally in a tile-based layout, so stagger- 
ing the start points of the segments in this way makes it easier to 
lay out the FPGA. A tile-based FPGA layout is one in which only 
a single logic block and its associated routing (one vertical channel 
segment and one horizontal channel segment) have to be laid out 
- -  the entire FPGA is created by replication of this basic tile. 

.all......-- Wire segment 
Programmable 

s 

(a) Disjoint switch block 

Segment "start points" 

(b) Each channel contains 3 wires of length three. 

Figure 6: Architecture specification: (a) disjoint switch block; 
(b) segmentation distribution. 
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Figure 7: Replicating one channel causes the horizontal and 
vertical constraints to conflict. 

The most straightforward way to create an FPGA with this 
architecture is to create one horizontal channel and one vertical 
channel, and replicate them across the array. Switches are then 
inserted between horizontal and vertical wire segments which the 
switch block and internal population parameters indicate should be 
connected. Figure 7 shows the results of such a technique, where 
only a few of the routing switches have been shown for clarity. 
Notice that this FPGA does not meet the specifications. By insert- 
ing routing switches at the ends of the horizontal segments, we are 
allowing connections into the middle of vertical segments. How- 
ever, our specifications said that segments should have routing 
switches only at their ends. If we do not insert switches at the ends 
of the horizontal segments, however, we cannot connect to the 
ends of the horizontal segments, so the specifications are again 
violated. We call this problem a conflict between the horizontal 
constraints and the vertical constraints. 

The solution to this problem is shown in Figure 8. Instead of 
simply replicating a single channel, the "start points" of the seg- 
ments in each channel have to be adjusted. As Figure 8 shows, this 
allows the horizontal and vertical constraints to be simultaneously 
satisfied. The specification for the FPGA has been completely 
realized - -  every segment connects to others only at its ends, and 
the switch block topology is disjoint. Figure 9 shows how one can 
implement this architecture using a single layout tile. This is an 
additional bonus of this "segment start point adjustment" tech- 
nique - -  we not only meet our specifications fully, but create an 
easily laid-out FPGA. 

In order to describe the adjustment of the segment start points 
more clearly, let us define an FPGA coordinate system. Let the 
logic block in the lower left corner of the logic block array have 
coordinates (1,I). The logic block to its right has coordinates 
(2,1), and the logic block above it has coordinates (1,2), as Figure 
8 shows. A horizontal channel has the same y-coordinate as the 
logic block below it, and a vertical channel has the same x-coordi- 
nate as the logic block to its left. We also number the tracks within 
each channel from 0 to 2, with track 0 being the bottommost track 
in a horizontal channel, or the leftmost track in a vertical channel. 

The proper adjustment shifts the start point of each segment 
back by 1 logic block, relative to its start point in channel j, when 

179 



Wire segment 
Routing switch 

Vertical Vertical Vertical Vertical 
channel 1 channel 2 channel 3 channel 4 

I ~ I ~ ~ i I 
I ~ x x / t 

~" N / '  N N ~ "  

_ 

! 

Horizontal Horizontal 
channel 0 channel 1 

0 1 2  
Track numbers 

Figure 8: Adjusting the segment start points allows both the 
horizontal and vertical constraints to be satisfied. 

The FPGA coordinate system is also shown. 

constructing channel j+l .  For example, in Figure 8, the left ends 
of the wire segments in track 0, horizontal channel 0 line up with 
the logic blocks that satisfy 

(i + 2) modulo 3 = 0,  (1.1) 

where i is the horizontal (x) coordinate of a logic block. In channel 

--=== Wire segment 
Routing switch 

Basic 
tile 

FPGA composed by arraying tiles 

Figure 9: Tiled layout to implement FPGA of Figure 8. 

1, track 0, however, the left ends of the wire segments line up with 
logic blocks that satisfy: 

( i + 3 )  modulo 3= 0 (1.2) 

A similar shifting back of start points must be performed in 
the vertical channels - -  the start point of each segment in channel 
i+l is moved back one logic block relative to its start point in chan- 
nel i. 

The shifting of segment start points above allows the horizon- 
tal and vertical constraints on an FPGA to be met if either of the 
following two conditions is met: 

• The disjoint switch block topology is used. The segmenta- 
tion distribution and segment intemal populations can have 
any values. Or, 

• All segments are fully switch-block populated. The segmen- 
tation distribution and switch block topology can have any 
values. 

If either of these conditions is satisfied, the shifting of seg- 
ment start points also makes a tile-based layout possible if one 
additional constraint is satisfied: the number of tracks of length L 
is divisible by L, for all segment lengths L. 

We have not yet found a method to simultaneously satisfy the 
horizontal and vertical constraints when a switch block topology 
other than disjoint is used with internally-depopulated segments. 
It is an open question as to whether there is any method of satisfy- 
ing both sets of constraints in this most general case. In cases 
where we cannot make the horizontal and vertical constraints 
agree, there are locations in the FPGA where a vertical wire wishes 
to connect to a horizontal wire, but the horizontal wire does not 
want a switch there, or vice versa. We resolve this conflict by 
inserting the switch, preferring to err on the side of too many 
switches in the routing, rather than too few. 

5. Examples of Automatically Generated 
Routing Architectures 

Figure 10 shows a routing architecture description file for an 
FPGA in which the logic block is a 4-input look-up table plus a 
register. For a precise description of the architecture description 
file format, see [13]. Notice that the file is indeed concise - -  only 
38 non-comment lines, 12 of which specify timing and area model 
information. While this is a simple FPGA architecture, even quite 
complex FPGA architectures can be described in less than 100 
lines with our architecture description language. 

Figure 11 shows the FPGA VPR generates to match the archi- 
tecture specification of Figure 10, when the desired channel width, 
W, is 10 tracks. These pictures of the FPGA architecture come 
directly from VPR's built-in graphics. Figure 1 la shows the entire 
FPGA; in this case the FPGA generated consists of a 17 x 17 array 
of logic blocks, surrounded by IO pads on all four sides. A circuit 
has been mapped into this FPGA, and logic blocks that were are 
being used by this circuit are shown as grey squares, while unused 
logic blocks are shown as white squares. In this case, two IO pads 
fit into the width or height occupied by a logic block. 

Figure l ib  is a close-up of a small part of this FPGA so the 
switch pattern is visible. The black lines are routing wires, while 
the small black squares are logic block input and output pins. 
Switches between logic block pins and routing wires are shown as 
x's. The routing switches in switch blocks are shown as grey lines 
between routing wires; a small triangle indicates the switch is a tri- 
state buffer, while a circle indicates it is a pass transistor. In this 
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io_rat 2 # 2 IO pads per row or column 
chan_width_io 1 # All channels the same width. 
chan_width_x uniform 1 
chan_width_y uniform 1 

# 4-input LUT. LUT inputs first, then output, then clock. 
inpin class: 0 bottom # Equivalence class 0 is LUT inputs 
inpin class: 0 left 
inpin class: 0 top 
inpin class: 0 right 
outpin class: 1 bottom # Output. Not equivalent to anything 
inpin class: 2 global top # Clock. 

switch_block_type subset # Also called disjoint switch block. 
Fc_type fractional # Fc values are relative to W 
Fc_output 1 
Fc_input 1 
Fc_pad 1 

# Definitions of different types of routing wires. 

segment frequency: 0.2 length: 1 wire_switch: 0 opin_switch: 1 \ 
Frac_cb: 1. Frac_sb: 1. Rmetal: 4.16 Cmetal: 81e-15 

segment frequency: 0.4 length: 2 wire_switch: 2 opin_switch: 2 \ 
Frac_cb: 1. Frac_sb: 1 Rmetal: 4.16 Cmetal: 81e-15 

segment frequency: 0.4 length: 4 wire_switch: 2 opin_switch: 2 \ 
Frac_cb: 1. Frac_sb: 1 Rmetal: 4.16 Cmetal: 81e-15 

# Definitions of different types of routing switches. 

# Pass transistor switch. 
switch 0 buffered: no R: 196.728 Cin: 20.574e-15 \ 

Cout: 20.574e-15 Tdel: 0 

# Logic block output buffer driving pass-transistor-switched 
# wires. 
switch 1 buffered: yes R: 393.47 Gin: 7.512e-15 \ 

Cout: 20.574e-15 Tdel: 524e-12 

# Switch used as a tri-state buffer within the routing, and also 
# as the output buffer driving tri-state buffer switched wires. 
switch 2 buffered: yes R: 786.9 Cin: 7.512e-15 \ 

Cout: 10.762e-15 Tdel: 456e-12 

# Used only by the area model. 
R_minW_nmos 1967 
R_minW_pmos 3738 

# Timing info below. See manual for details. 
C_ipin_cblock 7.512e-15 
T_ipin_cblock 1.5e-9 
T_ipad 478e-12 # clk to_Q + 2:1 mux 
T_opad 295e-12 # Tsetup 
T_sblk_opin_to_sblk_ipin 0. 
T clb ipin_to_sblk_ipin 0. 
T_sblk_opin_to clb_opin 0. 

subblocks_per_clb 1 
subblock_lut_size 4 
T_subblock T_comb: 546e-12 T_seq_in: 845e-12 \ 

T_seq_out: 478e-12 

Figure 10: Example architecture description file. 

architecture, we specified that each logic block pin is accessible 
from only one side. One of the four look-up table input pins is 
accessible from each side of the logic block, while the output pin 
can drive routing tracks below the logic block. As specified, each 
LUT input pin can be reached by every track adjacent to it and the 
logic block output can drive each track adjacent to it (i.e. Fc,inpu t = 
W and Fc,output = W). Notice that there are no switches connecting 
the clock pin (in the upper fight corner of the logic block) to rout- 
ing wires; the architecture description in Figure 10 specified that 
the clock must be routed on a special dedicated resource. Also, as 
we specified, 20% of the routing wires connect to each other via 
pass transistor switches, while the remainder of the switches in a 
switch block are tri-state buffers. 

Figure 12 is a less cluttered view, in which the routing 
switches are not displayed, of the same FPGA. The segmentation 
distribution of the FPGA is clearly visible: 20% of the routing 
tracks are length 1 wires (span one logic block before terminating), 
40% are length 2 wires, and 40% are length 4 wires. Notice that the 
"starting points" of the longer wires are staggered to enhance 
routability. 

Figure 13 shows a small portion of an FPGA with a more 
complex logic block. In Figure 13, the logic block is a "logic clus- 
ter" [14, 15] containing four 4-input LUTs and four registers. It has 
ten logic inputs, four outputs, and one clock input. In this FPGA 
the connection block switch pattern is more sparse - -  each of the 
ten "regular" logic block inputs can connect to only half the tracks 
in the routing channel beside it, while each of the four outputs can 
connect to only one-quarter of the routing tracks adjacent to it. All 
ten logic inputs are logically equivalent in this logic block, as are 
all four logic outputs. Notice that VPR takes advantage of this log- 
ical equivalence in creating switch patterns. The switch patterns 
for the outputs, for example, ensure that every track can be driven 
by one of the outputs, and that each output can drive roughly the 
same number of wires of each type as the other outputs can. Notice 
also that while the switch pattern looks quite regular, it is not per- 
fectly regular (i.e. the switch pattern for each pin is not merely an 
offset version of the switch pattern for the other pins). For routing 
architectures like this, perfectly regular switch patterns often resuk 
in some input pins not being reachable from some output pins, 
which reduces routability. Consequently, VPR checks if its switch 
pattern generator has created perfectly regular switch patterns 
which will "disconnect" some inputs from some outputs, and per- 
turbs the switch pattern to solve this problem if necessary. 

The VPR routing architecture generator is CPU-efficient, 
requiring only 15 seconds of CPU time on a 300 MHz UltraSparc 
to build the routing-resource graph of a large (8300 4-input LUTs) 
FPGA. 

6. Conclusions and Future Work 

We believe that the automatic generation of FPGA architec- 
tures to match a set of specifications is both a key technology for 
the development of high-quality FPGA architectures and a fertile 
area for future research. Automatic FPGA architecture generation 
allows FPGA architects to quickly and easily perform "what-if" 
experiments on a huge range of FPGA architectures, resulting in a 
more fully optimized final FPGA architecture to go to manufactur- 
ing. Without an easy method to specify FPGA architectures, on the 
other hand, FPGA architects are likely to experiment with far 
fewer, and much more similar, architectural ideas, increasing their 
chance of becoming trapped in a "local minimum" in the FPGA 
architecture search space. 
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(a) Entire FPGA 

(b) Close-up view 

Figure 11: Graphical view of an example FPGA routing architecture; logic block is a four-input LUT + register. 
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Figure 12: Segmentation distribution of an example FPGA; logic block is a four-input LUT + register. 

Figure 13: Routing architecture of a more complex FPGA; each logic block contains 4 LUTs + 4 registers. 
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In this work, we have presented a method of parameterizing 
and describing island-style FPGAs, and described the method by 
which we turn these succinct architecture descriptions into a fully- 
specified FPGA architecture. The two key difficulties in this archi- 
tecture generation procedure are meeting all the specifications of 
the FPGA architect, and choosing unspecified parameters intelli- 
gently in order to create the most routable FPGA. 

While our current architecture generation tool can match all 
the desired specifications for a wide variety of architectures, there 
are circumstances where it cannot match all the specifications. 
Future research can investigate ways to ensure that the generated 
FPGAs match all their specifications not only by developing better 
ways of generating architectures from the parameters we have 
listed in this work, but also by searching for new methods of 
parameterizing FPGA architectures such that all the specifications 
can always be satisfied. Similarly, much more work remains to be 
done in terms of choosing unspecified architectural parameters 
intelligently enough that the best routability always results. 

Finally, throughout this work we have focused on homoge- 
nous (one type of routing channel and function block) island-style 
FPGA architectures. Other styles of architectures can be specified 
via a high-level description and automatically generated as well, 
however. In fact a research project at the University of Toronto 
recently enhanced the VPR architecture generator to allow it to 
generate Altera-like "long-line" FPGAs [16]. Another important 
improvement to the architecture generator described in this work 
would be to allow the automatic generation of heterogeneous 
FPGAs - -  that is, FPGAs with several different types of routing 
channels, or several different types of function blocks. For exam- 
ple, the Lucent Orca FPGAs contain two different types of routing 
channels [17], while many commercial FPGAs contain two differ- 
ent types of function blocks: logic blocks and RAM blocks. 
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