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ABSTRACT
Sound speed profiles (SSPs) have a great impact on the accuracy
of underwater localization and sonar ranging. In traditional SSP
inversion, the sound intensity distribution used in normal mode
theory-based matching field processing (MFP) or the multipath
signal propagation time adopted in ray theory-based MFP is sus-
ceptible to boundary parameter mismatch issues, which reduces
the inversion accuracy. Moreover, heuristic algorithms introduced
in the MFP require many individuals and iterations to search for
the optimal feature representation coefficients after the empirical
orthogonal function (EOF) decomposition, which causes extra com-
putational time. In this paper, we propose a two-way interactive
signal propagation time measurement method based on an au-
tonomous underwater vehicle (AUV) and a horizontal linear array
(HLA), and we apply the propagation time of direct arrival signals
for shallow-water SSP inversion to avoid the boundary parameter
mismatch. We propose a joint artificial neural network (ANN) and
ray theory SSP inversion model to reduce the computational time
at the working phase by fitting the nonlinear relationship from the
signal propagation time to the SSP, and once the relationship is
established, the goal of reducing the computational time can be
achieved. To make the ANN better learn the SSP distribution in
a target region and ensure a good inversion accuracy, we give an
empirical data selection strategy. Thenwe propose a virtual SSP gen-
eration algorithm to help ANN training in the case of under-fitting
problems caused by insufficient training data. Simulation results
show that our approach can provide a reliable and instantaneous
monitoring of shallow-water SSP distribution.
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1 INTRODUCTION
Sound speed profiles (SSPs) have a great impact on the accuracy
of underwater localization [7, 16] and sonar ranging [2]. An SSP
describes the distribution of underwater sound speed in a certain
area at different vertical depths. Although given as a function of
depth, the speed of sound actually depends on the temperature,
static pressure, and salinity at a certain depth [4]. The SSP can
be directly measured by a sound velocity profiler (SVP), and it
can be calculated through empirical formula, which makes use of
the temperature, salinity, and depth information measured by a
conductivity-temperature-depth (CTD) system. However, the use of
the SVP and CTD system is labor intensive and energy consuming
due to the need for manual on-site operation. Besides the direct
measurement method, the SSP can also be obtained by inversion of
sound field information. As the inversion method facilitates long-
term observation of ocean parameters and reduces labor costs as
well as energy consumption, there has been growing interest in the
engineering realization of underwater SSP inversion.

There are two major theoretical and conceptual frameworks for
SSP inversion: the acoustic ray theory [9] and normal mode theory
[10, 12]. Munk and Wunsh [9] put forward the underwater acoustic
ray theory and explained basic principles of ocean acoustic tomog-
raphy (OAT), which laid a theoretical foundation for the inversion
of SSP. To further take the boundary effects into consideration
and increase the accuracy of SSP inversion, Munk and Wunsh [10]
and Shang [12] proposed the normal mode theory. Through either
of these two theories, the one-way mapping from ocean environ-
mental information to sound field information can be established,
but till now, there has been no theoretical support for the reverse
process. Therefore, the SSP is difficult to be directly inversed from
sound field information. Tolstoy et al. [15] combined a matched field
processing (MFP) technique with empirical orthogonal function
(EOF) decomposition for SSP inversion. In this approach, the re-
verse mapping from sound field information to ocean environment
information is avoided, making the MFP technique a mainstream
solution for SSP inversion.

Recently, some SSP inversion approaches using the MFP tech-
nique have been proposed, which are theoretically based on normal
mode theory [1, 5, 6] or ray theory [13, 14, 17–20]. Although the
sound intensity distribution of the sound shadow zone, convergence
zone, and caustics zone can be accurately described by the normal
mode theory, it is vulnerable to the boundary parameter mismatch,
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complex in computation and unintuitive for understanding. Con-
versely, acoustic ray theory has the advantages of intuitiveness and
low computational complexity. In [13, 14, 17–20], multipath signal
propagation time was used as the matching objective parameter
for SSP inversion. By taking advantage of the multipath effect, the
medium coverage is improved. However, a wedge-shaped sea floor
will cause deflection of the horizontal sound ray [17, 18]. As a result,
it is difficult to restore the signal propagation time accurately when
the boundary parameter does not match sufficiently in the process
of matching field calculation, which reduces the accuracy of SSP
inversion.

There is a further problem with MFP-based SSP inversion; the
time overhead at the working phase cannot be ignored from the
perspective of saving energy. One issue is that part of the time con-
sumption comes from calculating the matching parameters through
theoretical models. In [17, 18], a perturbation method was proposed
to convert the nonlinear integrals into a linear system of equations,
by which the computational complexity could be reduced, whereas
the inversion accuracy is sacrificed. A second issue is that the time
overhead is affected by the efficiency of the searching algorithm as
well. However, it is usually time consuming to search for the opti-
mal EOF coefficients, which increases the energy consumption and
reduces the life cycle of underwater nodes. In [5], the coefficient
search space was reduced first, and then a traversal principle was
used to find the optimal solution, while in [6] a parallel grid search
algorithm was proposed to reduce time consumption for searching.
However, the searching accuracy depends on the scanning step,
which is why the the time overhead increases as the accuracy of
SSP inversion improves. Heuristic optimization algorithms were
introduced in [13, 14, 17–20] to speed up the searching process of
the optimal EOF coefficients, such as the simulated annealing (SA)
algorithm in [19], genetic algorithm (GA) in [13, 14], and particle
swarm optimization (PSO) algorithm in [17, 18, 20]. However, to get
the optimal result with a high probability, multiple iterations with
multiple individuals are necessary in these heuristic algorithms.
Consequently, the time overhead can not be reduced to a desired
level.

To quickly obtain a reliable SSP reference for shallow-water ap-
plications, several problems should be resolved. First, the sound
intensity distribution and the multipath signal propagation time
respectively adopted by normalmode theory basedMFP and ray the-
ory basedMFP are susceptible to the boundary parameter mismatch.
Second, heuristic algorithms used in MFP require many individuals
and iterations to search for the optimal feature representation coef-
ficients after the EOF decomposition, which is time-consuming. To
avoid the boundary parameter mismatch problem, the propagation
time of direct arrival signals is used for SSP inversion in this paper.
However, the traditional measurement method for measuring the
sound intensity distribution or the multipath signal propagation
time cannot be directly applied to the measurement of the direct
arrival signal propagation time because of stability and coverage
issues. In [13, 14, 17, 18, 20], a vertical linear array (VLA) was used
as the receiver, but the attitude of the VLA is unstable due to the
influence of water current. To overcome this problem, a source node
and a horizontal linear array (HLA) that were both moored on the
seabed were used in [5, 6]. Nonetheless, the source node needs to be
replaced as the propagation path of the direct arrival signal cannot

cover the whole column this way. To overcome the stability and
coverage problems, we take advantage of the HLA and introduce
a shallowly suspended autonomous underwater vehicle (AUV) as
the source node. Thus, the transceiver nodes can ensure that the
sound wave will record the whole column of information during
the propagation process. Because the AUV is able to actively adjust
its position and attitude, the stability of our measurement system
can be guaranteed. Secondly, the MFP-based SSP inversion method
faces with high time consumption due to massive match searching
calculation. As artificial neural networks (ANNs) can handle non-
linear calculations [3], we introduce an ANN to learn the mapping
relationship from the propagation time information to the distribu-
tion of sound speed. Once the mapping relationship is established,
the goal of reducing time consumption at the working phase can
be achieved. Moreover, ray theory is needed in our approach to
calculate the theoretical signal propagation time information for
each set of empirical SSP data, so the required input information of
the mapping relationship to be fitted by the ANN is provided.

Over-fitting and under-fitting are two main problems that ap-
pear during the training phase of an ANN. The over-fitting problem
means that the generalization ability of the ANN is deteriorated,
and the potential for over-fitting depends on both the training data
selection and model structure of the ANN such as the number of
layers and the number of hidden layer neurons. The under-fitting
problem indicates that the ANN cannot adequately capture the un-
derlying structure of the input data, and this usually occurs when
the training data or training times are insufficient, or the features
of training data are too scattered to be learned. To ensure good
performance of the ANN, the training data need to be carefully se-
lected and the structure of the ANN should be well designed. In this
paper, we propose a joint ANN and acoustic ray theory method for
shallow-water SSP inversion, which makes use of the propagation
time of direct arrival signals as the sound field information. The
contributions of our work include:

(1) We present an AUV- and HLA-based two-way interactive
method for measuring the propagation time of direct arrival
signals in shallow water to reduce the influence of boundary
parameter mismatch. To deal with the stability and signal
coverage issues, an AUV is suspended near the ocean surface
as a source node, and a receiving HLA is moored on the
seabed. A two-way interaction is introduced to solve the
problem of time asynchrony.

(2) We propose a joint ANN and ray theory SSP inversion model.
The ANN is adopted to fit the complex nonlinear relationship
from the signal propagation time to the ocean SSP. Com-
pared with traditional MFP based SSP inversion methods,
our approach can significantly reduce the calculation time
at the working phase while ensuring the accuracy of the SSP
inversion.

(3) We propose an empirical SSP data selection strategy to pro-
vide accurate training data for a certain task and put forward
a virtual SSP data generation algorithm to help ANN training.
By training the ANN through a combination of the empirical
and virtual SSP data, the under-fitting problem of the ANN
caused by insufficient training data can be solved. As the
virtual SSP data are generated according to the distribution
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of the empirical SSP data, the consistency of the SSP distri-
bution to be learned by the ANN and that of the empirical
SSP can be guaranteed.

To verify the feasibility and effectiveness of our approach, we con-
ducted a simulation experiment to quantify the inversion accuracy
and time consumption.

The rest of the paper is organized as follows. The two-way inter-
active measuring method of the propagation time of direct arrival
signals is proposed in Sec. 2. The system model and parameters
are proposed and described in Sec. 3. The simulation results are
discussed in Sec. 4, and conclusions are presented in Sec. 5.

2 MEASUREMENT OF SOUND PROPAGATION
TIME

…

Horizontal Line Array

Sourcece

Figure 1: Propagation time measuring.

Unlike multipath signals, the direct arrival signal is not affected
by boundary reflection during the propagation process. To avoid
the boundary parameter mismatch, the propagation time of direct
arrival signals is applied as the sound field information for SSP
inversion in this paper. However, the transceiver nodes should be
separately deployed near the ocean surface and floor to ensure
that the sound wave can record all environmental column infor-
mation during the propagation process. In addition, to reduce the
propagation time measurement error when there is only a single
pair of sender and receiver, it is necessary to measure multiple sets
of propagation time data with an array at either the transmitting
end or the receiving end. Considering that the attitude of a VLA
is unstable due to the water current, an HLA moored on the sea
floor becomes a better choice [5, 6] to reduce measurement errors
caused by attitude-unstable receivers. Thus, we propose an AUV-
and HLA-based direct arrival signal propagation time measurement
method for SSP inversion, as shown in Fig. 1. To deal with the signal
coverage problem, the HLA is moored on the seabed, and the AUV
is shallowly suspended in the same profile with the HLA. Because
the position of the HLA is fixed, the stability of receivers can be
ensured. To reduce the influence of water flow on the transmitting
node and ensure that the transmitting node and the HLA are in the
same profile, an AUV is introduced as the sender, which has the
ability to actively adjust its position and attitude. It should be noted
that it is better to minimize the horizontal distance between the
AUV and HLA. For example, the AUV can be vertically above the
HLA edge node, so that the difference in time of receiving signals
from different HLA elements can be expanded, thereby enhancing
the ability to distinguish sound speed distribution. Moreover, the

communication power requirements can be reduced. On this basis,
the propagation time of direct arrival signals, which is expressed
as a time vector t⃗ = [t1, t2, ..., tN ], can be measured by commu-
nication between the transceiver nodes, where the vector item
tn ,n = 1, 2, ...,N represents the signal propagation time between
the AUV and the nth HLA node.

To reduce the measuring error of signal propagation time caused
by time asynchrony between transceiver nodes, a two-way inter-
action process is introduced as in Fig. 2. An AUV first sends an
initialization (INIT) message, and after a back-off period, each node
of the HLA separately replies with an acknowledgment (ACK) mes-
sage. Assume that the HLA is made up of N nodes. Hn represents
the nth HLA node, and the AUV is marked as A. The propagation
time of the direct arrival signal between the nth pair of transceiver
nodes is expressed as:

tn =
1
2
(tHn
r − tAs + t

A
rn − t

Hn
s ),n = 1, 2, ...,N , (1)

where tAs is the local sending time of the INIT message at A, tHn
r is

the corresponding local receiving time of the INIT message at the
nth HLA node, tHn

s is the local time of the nth HLA node when the
ACKmessage is replied, and tArn is the corresponding local receiving
time of the ACK message at A. Assume that the clock of the AUV
is ahead of the clock of the nth HLA node, and the time difference
is ∆tA−Hn . Then the Eqn.(1) can be modified as:

tn =
1
2
((τHn−A + ∆tA−Hn ) + (τA−Hn − ∆tA−Hn )),n = 1, 2, ...,N ,

(2)
where τHn−A is the propagation time of the INIT message sent by
A, and τA−Hn is the propagation time of the ACK message sent by
the nth HLA node. Referring to Eqn.(2), the time synchronization
error ∆tA−Hn is finally eliminated by subtraction in the formula,
so the measuring error of signal propagation time caused by time
asynchrony between transceiver nodes is reduced. As a result, the
final signal propagation time is an average value of the propagation
time of the INIT message and the ACK message, which is expressed
as:

tn =
1
2
(τHn−A + τA−Hn ),n = 1, 2, ...,N . (3)

Figure 2: Two-way interaction process.
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3 JOINT ANN AND RAY THEORY MODEL FOR
SSP INVERSION

3.1 Structure of Joint ANN and Ray Theory
Model

Figure 3: Structure of joint ANN and ray theory model.

Low energy consumption is important for extending the life
cycle of an SSP inversion system. The energy consumption during
the SSP inversion process mainly comes from the communication
interaction process when measuring the signal propagation time
and the dynamic power consumption of hardware processors when
processing data. One way to save the system energy is to reduce
the computational time under a certain hardware resource occu-
pancy at the working phase; thus, we propose a joint ANN and ray
theory model for SSP inversion to reduce the calculation time at
the working phase while ensuring high accuracy.

The core idea of our approach is to establish the nonlinear map-
ping relationship from the propagation time of direct arrival signals
to the corresponding distribution of sound speed achieved by the
ANN. The structure of the joint ANN and ray theorymodel is shown
in Fig. 3. It is composed of three parts: a training dataset genera-
tion module, theoretical propagation time calculation module, and
ANN-based SSP inversion module.

To obtain a good SSP inversion accuracy at the working phase,
the ANN needs to be well trained during the training phase. To
ensure that the training data accurately reflect the SSP in a target
area, we propose an empirical dataset selection strategy. However,
because it is labor intensive and energy consuming to measure SSPs
by a SVP or CTD system, there is not enough empirical data for ANN
training in most objective regions for a same short time period of
each year. To avoid the under-fitting problem caused by insufficient
training data, we propose a virtual SSP data generation algorithm,
and the virtual SSP dataset generated is combinedwith the empirical
SSP dataset for ANN training. After the training dataset generation,
the acoustic ray theory is introduced to calculate the theoretical
propagation time for a certain SSP. In this way, the indispensable
input information of the mapping relationship to be fitted by the
ANN is provided. At the working phase, the SSP inversion result

is obtained by inputting the measured time information into the
trained neural network.

The SSP inversion workflow is summarized as:
(1) Appropriate empirical SSP data selection and virtual SSP

data generation;
(2) Theoretical propagation time calculation based on acoustic

ray theory;
(3) ANN training offline;
(4) Real propagation time measurement in the target sea area;
(5) SSP inversion via the trained ANN.

3.2 Training Dataset Generation
3.2.1 Empirical SSP Selection Strategy. The convergence of ANN
is related to the training dataset. For regression analysis, an inap-
propriate training dataset will increase the inversion error, even
leading to erroneous results. In fact, the speed of sound is regu-
larly distributed and mainly determined by temperature factors
in shallow water, which makes it indirectly related to regions and
seasons. In this paper, 340 sets of SSP data from the world ocean

Figure 4: Typical shallow-water SSPs in different months
along the eastern Pacific coast between 30–60 degrees north
latitude with depth of 200 m.

database 2013 (WOD13) are analyzed, collected in shallow water
along the eastern Pacific coast between 30–60 degrees north lati-
tude. Some typical SSPs are presented in Fig. 4. Shapes of the SSP
data vary in different months in the same region, and the depth
of the sound speed turning point is floating in a certain month at
different latitudes. However, for a same time period of each year,
the SSPs measured in a certain region has a similar distribution.
As the sampled region and time of the empirical data get closer to
the region and historical contemporaneous time of the task, the
similarity of these SSPs increases. Therefore, to better describe the
possible SSP distribution in a target area, we propose an empirical
SSP data selection strategy to choose the empirical SSP data that
has a closer sampled region with historical contemporaneous time
according to the task.

3.2.2 Virtual SSPs Generation. To solve the under-fitting problem
caused by insufficient training data, we propose a virtual SSP data
generation algorithm, and the ANN is trained by a combination
of the empirical and virtual SSP data. Assuming that the empirical
SSP data selected according to the strategy proposed in this paper
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are able to accurately describe the SSP distribution in a target re-
gion, the virtual SSP distribution should be consistent with that
of the empirical SSP data to make sure that the virtual SSP data
will not lead to bad ANN learning outcomes. Therefore, we pro-
pose a sparse feature point (SFP) extraction method to obtain the
distribution of the empirical SSP data, and the virtual SSP data are
generated according to the SFP extraction result. By these methods,
the consistency and under-fitting problems can be solved.

Figure 5: The SFP extraction of typical SSPs in shallowwater.

SSPs Classification and SFPs Extraction. The empirical SSP distri-
bution is the reference basic of the virtual SSP data to be generated;
however, the empirical SSP distribution varies in different months
and regions. To design a general feature extraction method for SSPs,
statistical analysis and summarization of a large number of empir-
ical SSPs are required. Referring to Fig. 4, there are mainly three
types of SSPs in shallow water, which are described as shown in
Fig. 5. The three types of SSPs are described as the slanted type, the
positive gradient "S" type and the negative gradient "S" type. No
matter which type the SSP belongs to, a five-point-based fold line
can be adopted to approximately express the entire curve, and the
five points are called SFPs. The pseudo code of the SFP extraction
process is presented in Table 1, where PT , PB , PM , P1, and P2 re-
spectively represent the surface point, and the bottom point, the
middle point, and the turning point 1 and 2. P1 and P2 are chosen
according to an approximation principle of minimummean squared
error (MSE) given in Definition 3.1.

Definition 3.1. If P1 (or P2) is a turning point, P1 (or P2) must
be a point between point PM and PT (or PB ) on the SSP curve.
Meanwhile, among all candidate positions of P1 (or P2), P1 (or
P2) must be at the position where the MSE between the fold line
PMP1PT (or PMP2PB ) and the sub-curve

⌢
PMP1PT (or

⌢
PMP2PB ) is

minimum.

Virtual SSP Generation Algorithm. We take the region of the east-
ern Pacific coast between 38–39 degrees north latitude in June as
an example to explain the virtual SSP generation algorithm, and
the SFP extraction results are given in Fig. 6. Referring to Fig. 6,
some rectangles are employed to represent the value space of the
SFPs. The virtual top point PVT , bottom point PVB , and middle point
PVM are generated following a uniform distribution according to
the upper and lower bounds of the SFP extraction results. Noting

Table 1: The SFP extraction of SSPs in shallow water

SFPs extraction

01: Step 1: Surface and bottom points extraction
02: PT = (ct ,dt ), PB = (cb ,db ),
03: where dt = 0 and db = depth of HLA
04: Step 2: Middle point extraction
05: PM = (cm ,dm ), where cm = 0.5(ct + cb )
06: Step 3: Turning points extraction
07: P1 = (c1,d1), P2 = (c2,d2)

Figure 6: Virtual SSP generation for shallow water

that the SSP is usually monotonous and the sub-curves
⌢

PVT PVM and
⌢

PVB P
V
M are single convex in the "S" type, we introduce two aux-

iliary lines PVT PVM and PVB P
V
M to reduce the solution space of the

virtual turning points PV1 and PV2 . This method is also suitable for
the slanted distribution, as it can be considered as a compression
transformation of the "S" type. Due to the influence of temperature,
there will be a weak positive gradient phenomenon in the shallow
water over some months. To imitate this characteristic and control
the amplitude of the positive gradient, a parameter ∆C is proposed
to describe the difference between the maximum sound speed and
the surface sound speed value of each set of SSP. The pseudo code
of the virtual SSP generation algorithm for negative gradient "S"
type SSPs as an example is given in Table 2, where C and D are
respectively the SFP sets of the sound speed and depth of the em-
pirical SSP data, whereas c and d represent the sound speed and
depth of the virtual generated points.

3.3 Theoretical Propagation Time Calculation
Acoustic ray theory could establish the mapping relationship from
the SSP distribution to the signal propagation time information,
which is the indispensable input information of the mapping rela-
tionship to be fitted by the ANN. For a given SSP, the horizontal
propagation distance at the nth HLA node is calculated by:

xn =
m∑
i=0

∆xi =
c0

cosθn0

m∑
i=0

�����
sinθni (z) − sinθ

n
i+1 (z)

дi

�����
, (4)

where i represents the ith depth layer, ∆xi , дi and θni are respec-
tively the horizontal propagation distance, the gradient of sound
speed, and the grazing angle of the acoustic ray from the source to
the nth HLA node at the ith depth layer, and c0 is the sound speed
at the initial depth layer. When i = 0, θn0 is the initial grazing angle
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Table 2: Virtual SSP generation algorithm for negative gradient "S" type shallow-water SSPs

Virtual SSP generation algorithm

01: Step 1: Select the appropriate labeled SSP data sets
02: Step 2: Extract SFPs of all labeled SSP data
03: Step 3: Generate the surface and bottom point
04: cvt =min(Ct ) + rand (̇max (Ct ) −min(Ct ))

05: PVT = (cvt , 0)
06: cvb =min(Cb ) + rand (̇min(max (Cb ), c

v
t ) −min(Cb ))

07: PVB = (cvb ,d
v
b ), where db = depth of HLA

08: Step 4: Generate the middle point
09: dvm =min(Dm ) + rand (̇max (Dm ) −min(Dm ))

10: cvm =max (min(Cm ), cvb ) + rand (̇min(max (Cm ), cvt ) −max (min(Cm ), cvb ))

11: PVM = (cvm ,d
v
m )

12: Step 5: Generate the turning point
13: dv1 =min(D1) + rand (̇min(max (D1),dvm ) −min(D1))

14: k1 =
cvm−c

v
t

dvm
,b1 = cvt

15: dv2 =max (min(D2),dvm ) + rand (̇max (D2) −max (min(D2),dvm ))

16: k2 =
cvb −c

v
m

dvb −d
v
m
,b2 = cvm − d

v
mk2

17: cv1 = (dv1 k1 + b1) + rand (̇c
v
t +max (∆C ) − (dv1 k1 + b1)), where ∆C =max (cr ) − crt

18: cv2 =max (min(C2), cvb ) + rand (̇min(max (C2), (dv2 k2 + b2)) −max (min(C2), cvb ))

19: PV1 = (cv1 ,d
v
1 ), P

V
2 = (cv2 ,d

v
2 )

20: Step 6: Interpolate the feature points through the Hermite method

of the corresponding acoustic ray, and without signal reflection, the
propagation time of the direct arrival signal to the nth HLA node
is calculated by:

tn =
m∑
i=0

∆ti =
m∑
i=0

�������

1
дi
ln

tan( π4 +
θni (z )

2 )

tan( π4 +
θni+1 (z )

2 )

�������
, (5)

where ∆ti is the propagation time of the signal at the ith layer.
According to our sound field measuring method in section 2, the
horizontal propagation distance between the nth pair of transceiver
nodes is known as prior information. Thus, the initial grazing an-
gle θn0 can be obtained by searching for the match of horizontal
propagation distance at different initial grazing angles. Then the
propagation time of the direct arrival signal at the nth HLA node
can be calculated by substituting θn0 in Eqn(5).

3.4 ANN-Based SSP Inversion
The structure design of an ANN is important for improving its
performance. The ANN adopted in this paper is a three-layer struc-
ture, as shown in Fig. 7. The input and hidden and output layer
represent the propagation time of direct arrival signals, the implicit
feature of the input and the corresponding SSP data, respectively.
The number of input layer neurons depends on the number of HLA
elements, and the number of output layer neurons is determined
by the number of sampling points of the SSP. To avoid over-fitting
and under-fitting problems, the number of hidden layer neurons
should be well designed. However, to the best of our knowledge,
there has been little accurate theory for determining this number
yet, and it usually depends on the specific application. Therefore,
inversion accuracy tests with different numbers of hidden layer

Figure 7: Structure of the three-layer ANN.

neurons are conducted to find an appropriate value in this paper, by
which the influence of under-fitting and over-fitting issues caused
by inappropriate hidden layer neuron numbers can be reduced.

To introduce nonlinear factors, the leaky rectified linear unit
(LReLU) [8] is used between the input layer and the hidden layer.
It expedites convergence of the training procedure and leads to
better solutions than conventional sigmoid-like units. The LReLU
function is expressed as:

L(x ) =

{
x x > 0
ax x ≤ 0 (6)

where a is a fixed constant between −1 and 0.
To ensure good performance, the ANN needs to be well trained

before application. During the training phase, most SSP data from
the training SSP dataset are used for ANN training, and the weight
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coefficients of the ANN are updated by the back-propagation (BP)
algorithm proposed in [11]. Then a small amount of data from the
training SSP dataset is selected to verify whether the ANN has been
trained well. The cost function to judge the performance of ANN
is:

C =
1
2

∑P

p=1
(sp − sp )

2, (7)

where P is the number of sample points of the training SSP, and sp
and sp stand for the sound speed value at the pth depth point of the
inverted and training SSP data, respectively. The constant term is
added for ease of calculation. When it comes to the working phase,
the SSP inversion result is obtained by inputting the measured time
information into the trained neural network. Because the training
phase could be finished offline and only one forward propagation
calculation is needed during the working phase, the computational
time overhead of our method can be greatly reduced.

4 SIMULATION RESULTS
To avoid the over-fitting and under-fitting problems of ANN caused
by inappropriate number of hidden layer neurons and training
times, we study how these two parameters affect the accuracy
performance of SSP inversion. Then the accuracy and efficiency
performance of our approach are compared with traditional SSP
inversion method based on MFP using EOF decomposition and PSO
optimization algorithm (MFP-EOF-PSO).

The simulations are carried out in the MATLAB 2016 (a) sim-
ulatoe, and the empirical SSP data come from WOD13. Limited
by the amount of empirical SSP data, we choose 21 sets of SSP
data from 38–39 degrees north latitude, and 123.5–124.5 degrees
west longitude along the eastern Pacific coast sampled in June with
depth around 200 meters. The empirical SSP datasets are randomly
divided into 3 parts that 15 sets used as empirical training data,
3 sets used as verification data, and 3 sets used as test data. The
number of nodes in the HLA is assumed to be 9 in the simulation.
The total training data are a combination of the empirical SSP data
and the generated virtual SSP data according to the virtual SSP
generation algorithm. To verify the feasibility of the virtual SSP
generation algorithm, we generate 65 sets of virtual SSP data based
on the 15 sets of empirical SSP data, and all SSP curves are given
in Fig. 8 (a). The result indicates that the distribution of the virtual
SSP data can be consistent with the empirical SSP data. Fig. 8 (b)
shows the relationship between the root mean square error (RMSE)
and the number of hidden-layer neurons for training 100 times.
When the number of hidden-layer neurons is small or large, the
RMSE of SSP inversion increases. This is due to the over-fitting and
under-fitting problem, respectively, in the ANN training. Referring
to the result, the number of hidden-layer neurons is determined to
be 80 in our experiment. Fig. 8 (c) shows the convergence perfor-
mance of our method with different training times. Considering all
the 3 sets of verification data, the system stabilizes and converges
when the times of training exceed 100 repetitions. To ensure stable
convergence of the neural network, the number of training times
in the subsequent simulation is set to be 200 repetitions.

The EOF decomposition and heuristic optimization algorithms
are widely used in the MFP-based SSP inversion method. In this
paper, the PSO optimization algorithm is employed as a represen-
tation of heuristic optimization algorithms to be compared with

(a) Training data set.

(b) RMSE of SSP inversion as a function
of the number of hidden layer neurons.

(c) RMSE of SSP inversion as a function
of training times.

Figure 8: The impact of the number of hidden layer neurons
and ANN training times on RMSE.

Table 3: Setting of simulation parameters

Item Value

Number of input-layer neurons 9
Number of hidden-layer neurons 80
Number of output-layer neurons 20

Learning rate 0.0001
PSO particles 20

PSO iteration times 50
Input time noise −5µs < tnoisen < +5µs

Number of training SSP data 200
Number of verification SSP data 3

Number of test SSP data 3
Sample depth interval of SSP 10 m

our approach. The key parameters of our method and the PSO
optimization algorithm are listed in Table 3.

The time overhead result at different phases on the 3 sets of
test data is presented in Fig. 9. The time overhead at the working
phase of the ANN is less than that of the MFP-EOF-PSO, which is
equivalent to one time iteration of a single particle. In fact, time is
mainly consumed at the working phase due to the massive match-
ing search calculations for MFP-EOF-PSO. For an ANN, the com-
putational overhead is transferred from the working phase to the
training phase. In this way, the energy of underwater nodes can
be saved because the training work can be finished offline before
the task. What’s more, reducing computation during the working
phase makes it better to monitor environmental parameters in real
time.

To test the accuracy performance of our approach, the RMSE
result of ANN is compared with that of MFP-EOF-PSO in Fig. 10
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Figure 9: Comparison of time overhead at different phases
between ANN and EOF PSO.

(a) Comparison of inversion accuracy
between ANN and EOF PSO.

(b) SSP inversion result fot test data 1.

Figure 10: The accuracy of SSP inversion results.

(a), and the result of test data 1 is typically given as an example in
Fig. 10 (b). Simulation results prove that our approach can achieve
a good inversion accuracy for SSP inversion in shallow water.

5 CONCLUSION
In this paper, we propose a joint ANN and ray theory shallow-water
SSP inversion method, which uses the propagation time of direct
arrival signals measured by the two-way interactive communication
between an AUV and an HLA. In this manner, the influence of any
boundary parameter mismatch can be reduced. To make the ANN
better learn the SSP distribution in a target region, we propose an
empirical SSP data selection strategy. To solve the under-fitting
problem caused by insufficient training data, we propose a virtual
SSP data generation algorithm based on the SFP extraction results
of the empirical SSP data, and the virtual SSP data is combined with
the empirical SSP data for ANN training. Simulation results have
verified the feasibility and effectiveness of our approach that the
time overhead at the working phase can be reduced while ensuring
accuracy.

In our future work, we will further explore the anti-noise perfor-
mance of our approach, extend it to deeper ocean areas, and verify
our approach in an ocean trial.
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