
Extracting Secrets from Encrypted Virtual Machines
Mathias Morbitzer∗
Fraunhofer AISEC

Garching near Munich, Germany
morbitzer@aisec.fraunhofer.de

Manuel Huber∗
Fraunhofer AISEC

Garching near Munich, Germany
manuel.huber@aisec.fraunhofer.de

Julian Horsch
Fraunhofer AISEC

Garching near Munich, Germany
julian.horsch@aisec.fraunhofer.de

ABSTRACT
AMD SEV is a hardware extension for main memory encryption on
multi-tenant systems. SEV uses an on-chip coprocessor, the AMD
Secure Processor, to transparently encrypt virtual machine memory
with individual, ephemeral keys never leaving the coprocessor. The
goal is to protect the confidentiality of the tenants’ memory from a
malicious or compromised hypervisor and from memory attacks,
for instance via cold boot or DMA. The SEVered attack has shown
that it is nevertheless possible for a hypervisor to extract memory
in plaintext from SEV-encrypted virtual machines without access to
their encryption keys. However, the encryption impedes traditional
virtual machine introspection techniques from locating secrets in
memory prior to extraction. This can require the extraction of large
amounts of memory to retrieve specific secrets and thus result in
a time-consuming, obvious attack. We present an approach that
allows a malicious hypervisor quick identification and theft of
secrets, such as TLS, SSH or FDE keys, from encrypted virtual
machines on current SEV hardware. We first observe activities of
a virtual machine from within the hypervisor in order to infer
the memory regions most likely to contain the secrets. Then, we
systematically extract those memory regions and analyze their
contents on-the-fly. This allows for the efficient retrieval of targeted
secrets, strongly increasing the chances of a fast, robust and stealthy
theft.

CCS CONCEPTS
• Security and privacy→ Virtualization and security.

KEYWORDS
AMD SEV; virtual machine encryption; virtual machine introspec-
tion; memory extraction; data confidentiality
ACM Reference Format:
Mathias Morbitzer, Manuel Huber, and Julian Horsch. 2019. Extracting
Secrets from Encrypted Virtual Machines. In Ninth ACM Conference on
Data and Application Security and Privacy (CODASPY ’19), March 25–27,
2019, Richardson, TX, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3292006.3300022

∗Both authors contributed equally to the work.

CODASPY ’19, March 25–27, 2019, Richardson, TX, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Ninth ACM
Conference on Data and Application Security and Privacy (CODASPY ’19), March 25–27,
2019, Richardson, TX, USA, https://doi.org/10.1145/3292006.3300022.

1 INTRODUCTION
On common multi-tenant systems, the confidentiality of sensitive
Virtual Machine (VM) data depends on both the Hypervisor’s (HV)
integrity and on the operator’s trustworthiness. Unfortunately,
these strong requirements are prone to getting infringed by differ-
ent attack vectors. Examples are attacks by other tenants exploit-
ing software-level vulnerabilities to escape their sandboxed VMs
[15, 21, 23], attackers with physical access conducting a memory
attack, e.g., via Direct Memory Access (DMA) [3, 4, 7] or cold boot
[10], or simply a malicious operator using the HV to read the VM’s
memory. In order to protect the VM’s memory in such scenarios,
AMD introduced Secure Encrypted Virtualization (SEV) [2, 6] on
recent server systems. SEV is a hardware extension for main mem-
ory encryption on a per-VM granularity. With SEV enabled, AMD’s
Secure Processor (SP) transparently encrypts the main memory of
each VMwith individual SP-bound keys. The goal is to protect VMs
from memory attacks and from a malicious or compromised HV.
To attest tenants that their VMs’ memory is indeed encrypted, SEV
includes a cryptographic protocol to verify VM encryption on an
SEV-enabled platform.

SEVered [16] is a recent attack on AMD SEV, which showed that
it is nevertheless possible for a HV to extract plaintext contents
from SEV-encrypted VMs. SEVered exploits SEV’s missing integrity
protection for VMmemory pages, previously discovered by [11, 17],
to modify the memory mapping of a non-colluding service inside
a VM. The modification causes the service to access and return
an arbitrary portion of plaintext memory when serving requests.
This allows an attacker in the HV to extract all the VM’s main
memory in plaintext by repeatedly requesting the same resource
and changing its mapping. However, the encryption prevents the
attacker from locating the VM’s most valuable resources in memory
prior to extraction, such as keys for Transport Layer Security (TLS),
Secure Shell (SSH) or Full Disk Encryption (FDE). In the worst case,
extracting those secrets requires a full dump of the VM’s memory.
This can take a significant amount of time, depending on the size of
the attacker-controlled resource and throughput of the service. For
example, an extraction speed of about 80 KB/s was reached with
web servers providing a resource covering exactly one memory
page. In this scenario, it takes more than 7 hours and requires
524,288 requests to extract all memory contents of a VM with 2
GB of main memory. During this time, other clients requesting the
same resource also receive arbitrary contents, making full memory
extraction conspicuous.

In this paper, we show that it is possible to overcome these
downsides and present an approach that makes HVs capable of
quickly locating and extracting specific secrets from SEV-enabled
VMs. Our approach has two phases, the observation and the retrieval
phase. In the observation phase, we exploit the fact that the HV is
able to observe certain events triggered by VMs. These observable

ar
X

iv
:1

90
1.

01
75

9v
1 

 [
cs

.C
R

] 
 7

 J
an

 2
01

9

https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022


events can, for instance, be page faults which the HV handles but
also I/O events like network traffic or disk writes. We observe and
combine such events to identify a minimal set of VMmemory pages
likely to contain the targeted secrets. Second, in the retrieval phase,
we iteratively extract and analyze the identified set of pages on
the fly until we find the targeted secret. For this phase, we use
the SEVered attack, but could potentially leverage other vectors
allowing memory extraction from SEV-encrypted VMs.

Our targeted extraction approach offers an inconspicuous, reli-
able and efficient method to steal various secrets from encrypted
VMs. We demonstrate the potential of our approach by extracting
TLS and SSH keys from a VM’s user space memory, and FDE keys
stored in the VM’s kernel space. We conduct our experiments on
an SEV-enabled EPYC processor, running Apache and nginx web
servers as well as the OpenSSH server. To show that our approach
can cope with real-world scenarios where VMs can be under vary-
ing levels of load, we base our experiments on a load model in
which multiple independent clients concurrently access the VM’s
services during our attack.

2 AMD SEV AND THE SEVERED ATTACK
This section provides background information on AMD SEV, the
Second Level Address Translation (SLAT) concepts of HVs, and the
SEVered attack.

SEV. The AMD SEV technology allows for the transparent en-
cryption of main memory of individual VMs. SEV primarily targets
server systems and builds on the AMD Secure Memory Encryption
(SME) technology, which provides transparent full main memory
encryption. While the goal of SME is to protect systems against
physical attacks on the main memory, SEV tries to additionally
protect memory of individual VMs against attacks from other VMs
and from a malicious HV. The SEV encryption is executed by a
hardware AES engine located in the memory controller. The keys
for the encryption are created and managed by an additional com-
ponent, the AMD SP. All keys are ephemeral and never exposed to
software on the main CPU. In contrast to SME, SEV uses different
keys for each VM and for the HV. Additionally, a VM running on
an SEV-protected system can request encryption and receive proof
that its memory contents are being encrypted, which establishes
trust between its owner and the remote operator. While SME was
first integrated into AMD’s Ryzen CPUs, SEV was introduced onto
the market with the EPYC processor family. The mainline Linux
kernel provides necessary software-level support for SEV.

SLAT. AMD SEV integrates with the existing AMD hardware
virtualization technologies marketed as AMD-V. An integral compo-
nent of hardware virtualization is an additional address translation,
often named nested paging or SLAT [1]. While non-virtualized
systems simply translate virtual addresses directly to physical ad-
dresses, a hardware-virtualized system distinguishes between three
different types of addresses. When the VM accesses a Guest Virtual
Address (GVA), the guest-controlled first level translation translates
the address to a Guest Physical Address (GPA). The GPA is then
translated to a Host Physical Address (HPA) using the second-level
translation controlled by the HV. SLAT is completely transparent to
the VM. This allows running multiple VMs that use the same GPA

space while separating them in physical memory. With SEV en-
abled, the first level translation from GVA to GPA in the encrypted
VM is non-accessible to the HV. But the HV is still responsible for
managing physical memory for its VMs and is therefore able to
restrict access and change second-level mappings from GPAs to
HPAs. Since there is no integrity protection in SEV, the HV can use
SLAT to transparently switch a GPA to HPA mapping to a different
HPA page belonging to the same VM.

SEVered. The SEVered attack [16] enables a malicious or com-
promised HV to extract the full memory of SEV-encrypted VMs in
plaintext by exploiting SEV’s missing integrity protection. SEVered
requires a (non-colluding) service in the targeted VM, e.g., a web
server, offering a remotely accessible resource. The first step of
SEVered is to identify the HPAs, i.e., the physical pages, at which
the accessible resource is located in the VM’s encrypted memory.
The number of pages containing (parts of) the resource depends
on the size of the resource as well as on the page size. The knowl-
edge about the resource’s location allows SEVered to modify the
VM’s GPA to HPA mappings to point to arbitrary other HPAs of
the VM instead of to the service’s resource. The modified mapping
causes the service to access different memory pages instead of the
real resource when handling requests. In the second step, SEVered
repeatedly requests the resource while remapping the memory (us-
ing the SLAT feature). This leads to the iterative extraction of an
encrypted VM’s full memory contents. The throughput of SEVered
depends on the service and on the amount of pages that can be
extracted at once. Our attack uses SEVered for the extraction of
main memory from SEV-encrypted VMs. Like SEVered, our attack
neither requires breaking SEV’s cryptographic primitives, nor con-
trol over the SP. Likewise, our attack requires control over the HV,
i.e., a malicious administrator or a compromise of the HV. We refer
to [16] for further information about SEVered.

3 FINDING AND EXTRACTING SECRETS
Our concept for the targeted extraction of secrets from SEV-encrypt-
ed VMs has two phases: In the first phase, we start our attack by
observing the page accesses of the targeted VM in the HV until an
event occurs which indicates the VM’s recent use of the targeted
secret. In the second phase, we search the VM’s memory for the
secret by systematically extracting and analyzing the set of observed
pages accesses. This section describes both phases in detail.

3.1 Observation Phase
The goal of the observation phase is to narrow down the set of VM
memory pages possibly containing the targeted secret. We start
the phase at an arbitrary point in time by tracking the VM’s page
accesses in the HV until observing the end of a particular activity.
This activity must make use of the targeted secret at least once. The
start of the activity, denoted by ActivityStart, does not need to be
observable by the HV. In contrast, the end of an activity, called
ActivityEnd, must be a HV-observable event. This event indicates
that the VM recently used the secret one or multiple times, denoted
by Use1..Usen. As soon as we observe ActivityEnd, we stop track-
ing, denoted by TrackingEnd. We do not actively attempt to trigger
ActivityStart in order to interfere as little as possible.



To start page access tracking, denoted by TrackingStart, the HV
invalidates all the target VM’s GPA to HPA mappings. As a conse-
quence, each of the VM’s page accesses causes an observable event,
a SLAT page fault. For each SLAT page fault, we record the GPA as
well as the time and type of the page access (read, write, execute) in
a list and re-validate the mapping. The re-validation clears the page
from tracking. This means that each accessed page triggers exactly
one page fault and that we track the page exactly once, namely the
first time it is accessed after TrackingStart. The tracking enforces
that accesses to the secret will inevitably be recorded. Note that
the secret can be contained in a single page or span over multiple
pages and can have multiple occurrences on different pages.

An example for an activity is a TLS handshake as part of a
request to a web server. The server uses the targeted secret, in this
case its TLS private key, to authenticate itself to a client during
the handshake. The HV can observe ActivityEnd by monitoring
network traffic, waiting for the packet the VM sends to complete
the handshake.

Figure 1 depicts an attack scenario with the target VM and the
HV in the upper and lower box, respectively. The illustration shows
the start and end of a VM’s activity along with events triggered
by the activity, such as Use1..Usen. The vertical arrows crossing
the upper and lower box represent the events observable from the
HV. These are, for instance, SLAT page faults, network packets or
disk I/O. Some of the vertical arrows do not cross the boundary of
the VM. These are events not observable by the HV, for example,
page faults handled by the VM or possibly ActivityStart. Some of
the events may be related to concurrent activities, and multiple
other activities may potentially make use of the secret as well, cases
which are not depicted in Figure 1. The illustration emphasizes that
TrackingEnd concludes the observation phase right after ActivityEnd.

When starting tracking between Usen and ActivityEnd, we do not
observe any of the page accesses to the secret. This means that we
are unable to find the secret in the later search phase, requiring to
repeat the attack. This is why we call the timespan between Usen
and ActivityEnd the critical window. The critical window size is an
important factor regarding the quality of the attack. The smaller the
critical window the higher the probability that the attack succeeds.
Further, a small critical window means quick termination of page
access tracking after Usen. This causes Usen to be tracked at the very
end of the phase, and likely only a fewmore pages to be tracked after
Usen. We evaluate the critical window size for different scenarios
with various levels of load in Section 5.

It is not necessary to synchronize the start of the observation
phase with a possibly non-observable ActivityStart. If TrackingStart
takes place long before ActivityStart, the observation phase might
take longer, but since every page is tracked only once, this does
not lead to a persistent performance impact. On the other hand, if
TrackingStart takes place after ActivityStart (but not inside the critical
window), the tracking period will be shorter and likely output less
tracked page accesses.

To conclude, the result of the observation phase is a list of pages
in which the page with the targeted secret is contained at least once
as long as TrackingStart is not inside the critical window. The set of
pages in the list is significantly smaller than the whole set of the
VM’s pages.

VM

HV

 ActivityStart ActivityEnd
...

Use1

Page
Faults

1. Observation
2. Search

Critical Window

time

time

TrackingStart

SLAT 
Page
Faults

Usen

TrackingEnd

Figure 1: A HV first observing an activity inside an en-
crypted VM and then searching for the targeted secret. The
vertical lines crossing the VM boundary into the HV box de-
pict the events observable outside the VM.

3.2 Search Phase
The goal of the search phase is to extract the targeted secret from
the VM’smemory as quickly as possible, i.e., with aminimal number
of memory requests. The input to the search phase is the list of
tracked pages acquired during the observation phase. It is unknown
which of the page accesses in the list correspond to Use1..Usen. The
naive extraction of all pages in the list would still require a fairly
high number of memory requests to find the secret. In the following,
we describe our approach for a more efficient extraction.

The search phase starts right after TrackingEnd, as depicted at the
bottom of Figure 1. We know that ActivityEnd indicates recent use of
the secret. This means that Usen must have occurred shortly before
TrackingEnd. For this reason, we consecutively extract the tracked
pages in backward order until we find the secret. We thus start the
extraction with the most recently tracked pages. This backward
search is shown by the arrow directed to the left at the bottom of
Figure 1. We analyze extracted memory chunks for the presence of
the secret on the fly to be able to terminate the extraction procedure
as early as possible. On the fly means we search the latest extracted
memory chunk for the secret while we request the next chunk.
When finding the secret in the chunk, we terminate the search
phase, otherwise we request another chunk. The actual analysis is
specific to the targeted secret and described in Section 4 for different
secrets.

We propose an optional preprocessing step before the extraction
to further minimize the number of memory requests. Preprocessing
filters page accesses from the list, which cannot represent a use
of the secret, and prioritizes accesses that are likely to represent
a use. The ability to filter and prioritize depends on the use case,
in particular, on the specific activity and secret. In most cases,
the secret is a data structure on a page in non-executable memory,
allowing to filter all execute-accesses from our list. The page is likely
to be read, but may also be written during an activity. Depending on
the use case, it is also possible that the secret resides in a read-only
area, or represents confidential code. The information about this
can often be acquired prior to the attack. A further possibility for
preprocessing is to conduct a representative offline access pattern



analysis for the activity to observe the expected timing of Use1..Usen.
An offline analysis is more representative the more the hardware
platform and the software configuration inside the VM resemble
the attack target. With the gained timing information, an attacker
can further filter or re-prioritize pages in the list.

Extracting the secret from the encrypted VM using SEVered
requires the secret to remain at the same location during the attack.
Thismeans that the secret must not be erased ormoved to a different
HPA by the VM’s kernel before the search phase terminates. We
show that the secrets we chose for extraction always fulfilled this
requirement and investigate preprocessing possibilities as part of
our evaluation in Section 5.

4 KEY EXTRACTION SCENARIOS
In the following, we describe the application of our concept for the
extraction of targeted secrets at the example of private keys and
symmetric FDE keys. We focus on the aspects from Section 3 that
are specific for the type of secret. These aspects are the activities
with their events and the on the fly analysis.

4.1 Private Keys
For the extraction of private keys, we focus on the example of web
server TLS keys. These keys are resources located in a VM’s user
space and highly sensitive. Web servers use these keys to establish
authenticated TLS channels with clients. An attacker can make use
of a stolen private key for identity spoofing and deceive clients for
fraud or data exfiltration.
Events. ActivityStart is the start of a TLS handshake. The hand-

shake can be part of an HTTPS request or be directly trig-
gered by a client. Usei represents a server’s use of the TLS
key for its authentication during the handshake. The ex-
act moment of use depends on the key exchange method.
For instance, in case of an Elliptic-Curve Diffie-Hellman
Ephemeral (ECDHE)-based key exchange algorithm, this is
the moment of signing curve parameters. For an RSA-based
key exchange, this moment is the decryption of the premas-
ter secret encrypted by the client with the server’s public key.
ActivityEnd happens when the VM sends the client a specific
network packet during the handshake. We observe these
packets with network monitoring tools. The change cipher
spec packet is an indicator independent of the specific key
exchange algorithm. Depending on the algorithm, packets
sent earlier may be usable indicators as well. Note that we
can also observe or even trigger ActivityStart ourselves in
this scenario. We discuss this aspect in Section 6.

On the fly analysis. The public key and its length are part of the
server’s certificate and known in advance. When using RSA,
the private components of the key are the factors p or q of
known length dividing the modulus of the public key. For
every extraction request we make, we traverse the extracted
chunk of memory and check if it contains a contiguous bit
sequence that divides the modulus without remainder. If so,
we found either p or q and can instantly determine the other
factor. Otherwise, we request the next chunk of memory.
Analyzing a chunk this way usually takes less time than
memory extraction with SEVered, see Section 5.

The same approach can be used for extracting SSH private keys.
In the SSH scenario, the SSH server must also use its private key
for authentication during the SSH handshake when establishing a
session. We evaluate the extraction of TLS and SSH keys using the
Apache, nginx and OpenSSH servers in Section 5.

4.2 FDE Keys
The normal approach when using SEV is to first perform an attes-
tation of the platform. The attestation proves to the tenant that the
VM has been started with SEV enabled. After a successful attes-
tation, the tenant provides the FDE key in encrypted form to the
VM [2]. This protects the key from eavesdropping adversaries in
the network and from being read by the HV. Thereafter, the FDE
key is present in the VM’s memory and can be extracted with our
approach. The FDE key is particularly important, because it allows
attackers to decrypt the VM’s persistent storage gaining access to
further valuable secrets.

Events. The corresponding activity is a disk I/O operation. The
trigger for ActivityStart is not observable by the HV and un-
like in the TLS key scenario, ActivityStart can have many
different triggers. The trigger can, for instance, be data up-
loaded to a service, a request to a web server being logged,
or an operation of the VM’s OS involving disk I/O. The event
Usei is the VM’s use of the FDE key to en- or decrypt disk
content to be read or written. We observe ActivityEnd by
monitoring the VM’s disk image file in the HV.

On the fly analysis. We can be sure that we found the secret
as soon as we are able to successfully decrypt the VM’s
persistent storage. Traversing extracted memory chunks and
naively trying each possible sequence as key leads to an
inefficient approach. Our goal is thus to first identify key
candidates in extracted memory chunks. For this purpose,
we search the extracted memory for characteristics specific
to FDE keys based on the following two criteria.
First, the FDE key is stored in the VM’s kernel in a specific
data structure. This structure has various fields, some of
which must have certain value ranges, for instance, kernel
addresses pointing to other kernel objects. Our first criterion
for a key candidate is thus the identification of possible FDE
key structures in extracted memory chunks.
Our second criterion is based on the statistical properties of
the FDE key. Because FDE is usually AES-based, the kernel
derives round keys from the FDE key and keeps them in
AES key schedules in memory. The round keys have com-
mon statistical properties that can be identified with linear
complexity. The first-round key is the AES key itself. We
use aeskeyfind [5] to search memory chunks for AES key
schedules. Note that candidates that turn out to be false pos-
itives are possibly symmetric keys used for other purposes
and might also be valuable secrets. The traversal of mem-
ory chunks based on these two criteria takes considerably
less time than the extraction of memory with SEVered, see
Section 5.

We evaluate the FDE key extraction scenario as part of the following
section.



5 IMPLEMENTATION AND EVALUATION
In the following, we first define performance indicators and then
present our prototype and test setup. Based on that, we evaluate
the extraction of TLS, FDE and SSH keys, as discussed in Section 4.
In the final part of our evaluation, we present strategies for opti-
mization with preprocessing and summarize our results.

5.1 Performance Indicators
The key factors we investigate are the success probability and the
attack time.

Success Probability. As discussed in Section 3, the critical window
size is the factor determining the success probability of our attack.
The smaller the critical window, the smaller the probability that
the observation phase ends without having tracked the access to
the secret. In our evaluation, we present the success probability
for the tested scenarios and provide an upper bound on the size
of the critical window. We call the upper bound the reaction time
of our attack. The reaction time is the sum of the critical window
(the time frame between Usen and ActivityEnd) and the time our
prototype requires to detect ActivityEnd and stop tracking (the time
frame between ActivityEnd and TrackingEnd).

Attack Time. We divide the total attack time of a full attack into
its three components: the time required to setup SEVered prior to
extraction, the duration of the observation phase and the duration
of the search phase.
Setup of SEVered. The time required to setup SEVered is evalu-

ated in [16] and is thus not subject of our evaluation. Setting
up SEVered usually takes less than 20 seconds, depending
on the load of the VM. After setting up SEVered once, we
can arbitrarily extract the victim VM’s memory and repeat
our attack when necessary.

Observation phase. The main factor for the duration of the ob-
servation phase is the frequency of the targeted activity. For
instance, a web server under high load will often make TLS
handshakes while SSH logins generally occur less frequently.

Search phase. The duration of the search phase is mainly deter-
mined by the amount of memory that has to be extracted
until the secret is found. This is driven by the number of
pages we track within the reaction time frame. The reaction
time not only provides an upper bound on the critical win-
dow, but also serves as indicator for the expected number of
tracked pages.

In our evaluation, we investigate the number of pages that have to
be extracted, and the duration of the observation and search phase.
We call the combined duration of both phases the attack time.

5.2 Prototype and Test Setup
We implemented our prototype including the functionality required
for SEVered based on Kernel-based Virtual Machine (KVM). To
start and stop page tracking and change mappings, we extended
the KVM API with additional calls, in particular, with KVM system
ioctls [19]. This allows us to launch the attack from user space
by communicating with the KVM kernel module. For page access
tracking in KVMwe used the technique from [9, 16]. While tracking
is active, we record all tracked pages in a list in kernel memory.

Upon the call to stop tracking, KVM returns the list of tracked pages
to user space.

We ran KVM on Debian with a page size of 4 KB using an SEV-
enabled Linux kernel in version 4.18.13 and QEMU 3.0.50. We
used an AMD EPYC 7251 processor with full support for SEV. We
created a victim VM with 2 GB of memory and one of the four
available CPU cores. We deployed Apache 2.4.25-3 and nginx
1.10.3-1 for the TLS key scenarios, and OpenSSH 7.4 for the
SSH scenario in the VM. The FDE scenario is independent of a
service, because the FDE key is a kernel resource exclusively used
by the OS. We deployed eleven different web resources on each web
server. We used 4096-bit private keys for TLS and SSH and a 256-bit
symmetric FDE key for storage encryption with AES-XTS. As target
for memory extraction with SEVered, we used a page-sized web
resource served by nginx.

To capture the handshake messages for the TLS and SSH key sce-
narios, we used tcpdumpwith libpcap, a library for network packet
capturing. For TLS, we captured the change cipher spec packet the
services send to conclude a TLS handshake (filter tcp[37] ==
0x04). For SSH, we captured the new keys message, which con-
cludes the SSH handshake (filter tcp[37] == 0x15). We patched
libpcap to execute a system call for TrackingStart the moment
packet capturing begins, and a call for TrackingEnd the moment the
filtered packet is captured. This tight interconnection minimizes
the reaction time. To monitor disk I/O events of the VM in the
FDE key scenario, we used the tool inotifywait to observe inotify
events. In particular, the notify option allows to detect disk writes
on the VM’s disk image file. We modified inotifywait to issue the
calls for TrackingStart right before starting to watch events and for
TrackingEnd as soon as an inotify event is identified.

In real-world scenarios, a tenant’s VM can show higher or less
activity depending on the load caused by its clients. To simulate
this behavior, we executed all our tests based on a load model with
various load levels, representing low to high load. In our model, a
load level of nine, for instance, refers to nine requests per second
to the VM. We randomly alternate between the services for each
request. With a probability of 300

301 , we make a request to one of
the resources offered by one of the two web servers with equal
probability. With a probability of 1

301 , we initiate an SSH login
with a user remaining logged in for two minutes. Compared to the
number of web server requests, we execute only few SSH logins, as
these usually happen less frequently than requests to a web server.
The average duration of the observation phase thus lies in the range
of a few seconds to a few hundreds of milliseconds for the web
servers and in the range of a few minutes to tens of seconds for SSH.
Note that sshd forks a new process for each new SSH connection.
When the session terminates, the process exits and purges its SSH
key. This means that the search time must be less than two minutes
to extract the SSH key before the forked process exits.

We conducted 2,000 independent iterations of our attack for
each of the four scenarios on four load levels: level 1, 9, 17, and
25. We started our attacks at random points in time while the VM
processed requests according to the specific load level of our model.
As an initial preprocessing step before the search phase, we filtered
all execute-accesses. In our scenarios, all secrets are data structures
located on non-executable memory pages.



0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

TLS handshakes (Apache)

0 10 20 30 40 50

TLS handshakes (nginx)

Load level 25
Load level 17
Load level 9
Load level 1

0 10 20 30 40 50
Reaction time [ms]

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

Disk write events

0 10 20 30 40 50
Reaction time [ms]

SSH handshakes

Figure 2: Distribution of the reaction times for all scenarios and load levels. The X-axes show discretized time steps of one
millisecond and the Y-axes are normalized to one.

5.3 Success Probability and Reaction Time
In this part, we investigate the success probability and reaction
times. The four diagrams in Figure 2 illustrate the distribution of
measured reaction times for each scenario. The four graphs in each
diagram represent the four load levels. The X-axes are discretized
in steps of one millisecond, and the Y-axes are normalized to one.
The vertical dashed lines show the median reaction times over all
repetitions for each level, providing an upper bound on the median
critical window size.

The results for Apache and nginx TLS handshakes are depicted
in the top row of Figure 2. Both diagrams show a clear peak for
the two lower load levels, indicating a reliable reaction time when
the VM is not under high load. For the lowest load level, we can
even observe that the reaction time never exceeded 21 milliseconds
with Apache and 22 milliseconds with nginx. For higher load levels,
more concurrent activities are executed by the VM, and the mea-
surements are more dispersed over time. Consequently, it becomes
likely that more pages have to be extracted in the search phase until
the secret is found. This led to a maximum reaction time of around

50 milliseconds for both nginx and Apache in rare cases. However,
the median reaction time increased to about only 20 milliseconds
for nginx, and to about 16 milliseconds for Apache. As the reaction
time is an upper bound for the critical window, the latter is smaller
than tens of milliseconds for both Apache and nginx. We achieved
a very high success rate of around 99.99% for both web servers on
all load levels, meaning that we started tracking inside the criti-
cal window only in a few cases. The high success rate indicates
that the upper bound we measured is a very conservative estimate.
This comes from the fact that our prototype requires some time
to actually stop tracking and (especially for the TLS scenarios) to
recognize ActivityEnd. Note that if TrackingStart occurs inside the
critical window of a TLS handshake, we still have the chance to
observe Usei of other handshakes being concurrently processed on
higher load levels where lots of handshakes are made each second.
The critical window can thus be even smaller on higher load levels.

The bottom left diagram in Figure 2 for disk write events shows
that our implementation achieved an extremely fast reaction time
of one millisecond in the median for each load level. Only in a few



Table 1: Statistics for the median length of the observation
and search phases, and for the median number of extracted
pages with the median absolute deviation for the different
scenarios and load levels.

Use
Case

Load
Level

Median
Page No

MAD
Page No

Median Time

Observ. Search

TLS
(nginx)

1 102 5 1.46s 17.72s
9 116 19 0.37s 15.48s
17 165 69 0.32s 18.61s
25 301 160 0.31s 32.71s

TLS
(Apache)

1 128 21 1.42s 21.90s
9 137 40 0.37s 17.95s
17 154 80 0.33s 17.44s
25 171 109 0.32s 18.65s

FDE

1 70 8 2.43s 12.24s
9 71 9 2.15s 9.34s
17 70 8 2.08s 7.84s
25 69 9 2.04s 7.37s

SSH

1 7 1 193.36s 1.33s
9 7 1 27.23s 0.97s
17 7 1 16.19s 0.83s
25 7 1 14.41s 0.80s

cases, we encountered a slightly higher reaction time. In contrast
to the TLS key scenarios, the behavior was generally independent
of the load level. In the TLS key scenarios, the network packets
must first be sent by the VM to the network interface, on which the
HV executes more time-consuming network packet capturing. The
interception of disk write events is less complex and introduces less
delay. The success rate for FDE key extraction was about 99.99%,
indicating a very small critical window, as confirmed by the upper
bound in the graph.

The bottom right diagram in Figure 2 shows that the reaction
time for SSH handshakes was four milliseconds in the median and
mostly independent of the load level. We encountered only a few
samples going up to about 30 milliseconds. As for the TLS scenario,
this indicates a small upper bound on the critical window and a
possibly quick extraction. Accordingly, our attack had a success
rate of 99.98%.

5.4 Attack Time
This part investigates the attack times for each scenario. Table 1
summarizes the relevant statistics for the median number of pages
to be extracted and the median attack time for every scenario and
load level. For both Apache and nginx, the median number of pages
to be extracted until finding the TLS key increased between low
and high load levels. We measured an increase of the median from
102 to 301 pages (i.e., 408 to 1,204 KB of memory) for nginx, and
from 128 to 171 pages (i.e., 512 to 684 KB of memory) for Apache.
Additionally, the Median Absolute Deviation (MAD) increased from
5 to 160 from low to high load for nginx, respectively from 21 to 109

for Apache. The median number of extracted pages was particularly
small compared to the median number of total tracked pages, which
was for both cases between 1,691 and 2,085 (not listed in Table 1).
The median duration of the search phase was between about 15.5
and 32.7 seconds for nginx, and between about 17.5 and 22 seconds
for Apache. We measured an average extraction time of around 123
milliseconds for a single page with our SEVered implementation
and setup. We measured this time to fluctuate quite frequently in
the scale of a few tens of milliseconds. This is why a higher median
number of extracted pages did not affect the duration of the search
phase in a clearly linear way. The on the fly analysis for a single
memory page took about 50 milliseconds. This means that the page
extraction performance is the limiting factor of our attack. The
higher the load, the less time we required for the observation phase,
which ranged from 1.46 to 0.31 seconds in case of nginx, for instance.
This is because the probability of quickly observing ActivityEnd
increases with a high frequency of requests. To summarize, we
measured an attack time between about 16 and 33 seconds in the
median for the web services.

For the FDE key scenario, the amount of pages that had to be
extracted was very small and mostly independent of the load level.
Accordingly, the median number of extracted pages was between
69 and 71 for the different load levels (i.e., 276 to 284 KB of memory)
As in the TLS key scenario, this number is small compared to the
median number of total tracked pages, which was between 2,526
and 3,433. The overall duration of the search phase was between
about 7.4 and 12.3 seconds. The on the fly analysis for a single mem-
ory page took only about 2 milliseconds on average. We mostly
identified the key as part of the AES key schedule, and only occa-
sionally by the kernel data structure, see Section 4. We measured
a slightly decreasing observation time from 2.43 to 2.04 seconds.
This indicates that the VM’s OS is regularly writing pages to disk,
in our case mostly regardless of the load level. In sum, the attack
time was between less than 9.5 and 14.7 seconds in the median.

In the SSH scenario, we merely had to extract seven pages in the
median with a MAD of one. This is a particularly small number,
especially compared to the median number of 10,102 to 11,094 total
tracked pages, omitted from Table 1. We measured a median dura-
tion of the search phase of about 0.80 to 1.33 seconds. This means
that the attack works reliably assuming that the SSH connection
lasts at least 1.33 seconds. Similar to the TLS key scenario, the on
the fly analysis of a memory page took about 50 milliseconds. With
our load model, the observation time of about 14 to 194 seconds
was comparably high for the SSH scenario. This is another reason
why the number of extracted pages was especially low for the SSH
case. In long observation phases, we already tracked a high number
of pages before Usen, making it very unlikely that many pages are
tracked within in the reaction time frame at the end of the activity.

5.5 Optimization with Preprocessing
As discussed in Section 3, preprocessing with prioritization and
filtering is an optional optimization before the search phase. Pre-
processing usually requires a priori knowledge about the use case
and behavior of the VM, which may not always be available. This
behavior may also vary between different hard- and software con-
figurations. For our evaluation, we already used the knowledge that



all secrets are data structures located on non-executable memory
pages. This allowed us to filter execute-accesses from the list of
tracked pages. The amount of pages to be extracted was thereby
reduced by about 22% on average over all samples.

Usen was a read-access in 96% of our attacks for the TLS hand-
shakes and in 93% a write-access for the SSH handshakes. For disk
write events, Usen was always a read-access. Whether the page
containing the secret is tracked as read- or write-access depends
on the other data located within the page. The type of access thus
cannot be predetermined with certainty. Filtering of write-accesses
could significantly reduce the attack time, but could also reduce
the success probability. Also, prioritizing the extraction of read-
accesses over write-accesses in the list would boost the attack in
most cases, but could also introduce costly outliers.

Another possibility for prioritization is knowledge about the
reaction time, as shown in Figure 2. The graphs for the two web
server scenarios show that the reaction time was rarely less than
eight milliseconds before TrackingEnd. Re-arranging these early
accesses further back in the list of tracked pages can thus reduce
the amount of pages to be extracted until the secret is found. The
same observation can be made for the SSH scenario, where Usen
never happened less than three milliseconds before TrackingEnd.
However, in this case the number of pages to be extracted is already
so small that further optimization may not be required.

The reaction times in Figure 2 can also help to determine a
good criterion for restarting the attack when a secret has not been
found after a certain number of extracted pages. For instance, page
accesses tracked later than 30 milliseconds before TrackingEnd are
likely exceeding the reaction time frame and thus unlikely to be a
candidate for Usen. This can be used as a criterion to detect that
TrackingStart was inside the critical window and to restart the attack
from the observation phase.

5.6 Summary
For all evaluated scenarios, both performance indicators are very
promising. We found that the critical window was very small in all
cases. TrackingStart was thus inside the critical window only in a
few cases, resulting in a very high success probability throughout
all scenarios and load levels. The most important factor for the
attack time, the duration of the search phase, was also very small.
Extracting all memory from our VM with 2 GB of main memory
would take more than 7 hours with SEVered [16]. Assuming that a
key can reside not only on one but on several pages, the naive ex-
traction would require several hours on average to find the key. Our
approach can extract secrets faster by several orders of magnitude.

In cases when TrackingStart is inside the critical window, the
attack fails and we extract all tracked pages without finding the
secret. In such cases, we have to repeat both the observation and
search phase. To avoid a lengthy extraction of all tracked pages in
unsuccessful attempts, the search can be canceled early when the
likelihood of finding the secret drops, according to our evaluated
distribution. For the following search phase, all pages extracted in
the previous attempts can then be excluded from extraction given
that the secret does not change its location. In sum, our results have
shown that our prototype is able to quickly and reliably extract
different sensitive secrets and performs well even under high load.

6 DISCUSSION
In the following, we discuss further important aspects of our attack
and possible countermeasures:

Overhead. The overhead caused by the tracking itself is limited,
because each accessed page only triggers a SLAT page fault once.
We neither detected perceivable effects like delays in response times
in the HV nor inside the VM. The host system and VM remained
stable even on the highest load level. We measured only a small
additional delay of web and SSH server responses when tracking
was active.

Low Memory. When the VM is low on memory, its kernel might
try to free memory by swapping out pages, by unmapping file-
backed pages, or by killing processes. A page containing the secret
might then be re-used by another process or by the kernel during
our attack. In such a case, we are still able to extract the memory
contents of the page, but its contents might have already been
overwritten. We did not encounter such cases in our tests.

Triggering Activities. In our concept, we start tracking at an unde-
fined point in time and do not actively trigger activities to interfere
as little as possible with the VM’s normal operation. Our concept
worked well in our evaluated scenarios, because we extracted fre-
quently used secrets. In the SSH scenario, however, the key may
be used rather infrequently. This is, for instance, the case when an
administrator logs in to a web server for maintenance only from
time to time. When a secret is rarely used but the attacker requires
the observation phase to be as short as possible, the attacker can
consider the active triggering of an activity. In the SSH scenario, an
attacker can actively start a login procedure without a user account.
SSH servers use their key for server authentication and wait for
the user to authenticate with a default timeout of two minutes. An
attacker can thus initiate a login and extract the SSH key before the
session timeout without waiting for a legitimate user to login. Note
that active triggering might increase the probability of the attack
being detected and might not always be possible.

Portability. We expect that our approach can be transferred to
other scenarios and configurations than evaluated. Our approach
does not depend on specific service or library versions. Furthermore,
our approach is not tied to a specific SEV processor and mostly in-
dependent of the VM’s performance and OS. Our approach can also
be leveraged to extract other types of memory, such as confidential
code, documents or images. The performance of our approach can
differ on systems with other hard- and software configurations.
However, we expect the performance to vary only slightly assum-
ing that TrackingEnd can be observed quickly. We ran several tests
in which we assigned our VM more memory, multiple cores and in
which we configured the web servers to utilize a high number of
worker processes. The performance indicators remained coherent
with our evaluation results in all runs.

Countermeasures. A countermeasure against our attack is to
prevent the SEVered attack [16], which we rely on for memory
extraction. Further, our attack relies on targeted secrets to remain
at their memory location during our attack. Purging secrets in
memory after use would cause the search phase to fail. We found
TLS and FDE keys to always remain at their memory location in



our tests. However, in case of SSH keys, the processes forked by
the SSH daemon for initiating new SSH connections purge their
private key when a session terminates and then exit. This means
that an SSH session must remain open until the secret is extracted.
This, for instance, requires a user to remain logged in or a login
attempt to remain pending over the time of the search phase, which
is less than 1.5 seconds in our case.

Systematically purging all sorts of secrets from main memory
after use would require adapting existing software. For some se-
crets, purging might not be feasible. An example is the FDE key,
which is constantly required for disk I/O. A more promising solu-
tion is to relocate the most valuable secrets from main memory to
dedicated hardware. Since SEVered can only extract contents from
main memory, storing secrets in hardware would prevent them
from being extracted by a malicious HV. This can, for example, be
realized using Hardware Security Modules (HSMs). Additionally,
hardware-based disk encryption can be used to protect the FDE
key.

7 RELATEDWORK
While there are established Virtual Machine Introspection (VMI)
frameworks [14, 18, 20] for data analysis and extraction on unen-
crypted VMs, the systematic extraction of memory from encrypted
VMs has not been subject to extensive study. On AMD SEV plat-
forms, the SP protects page encryption and the corresponding keys
from the HV. This makes it infeasible to directly read memory
contents from SEV-enabled VMs as long as the SP cannot be com-
promised [13]. Payer [17] early discussed the missing integrity
protection on AMD SEV platforms. By remapping memory in the
HV, this can be used to extract memory without compromising
the SP, as done by the SEVered attack [16]. While SEVered allows
the extraction of data, it does not provide concepts for quickly
extracting specific secrets.

Buhren et al. presented an attack [11] to gain remote code exe-
cution with user privileges on an SEV-enabled VM. Their approach
exploits memory remapping to modify the control flow of an SSH
service. The first step is an off-line tracing of the system call se-
quences performed during an SSH login on a comparable, unen-
crypted VM. The goal of this analysis is to determine the behavior
of a VM accessing the login information of the SSH session, the
credentials data structure. The next step is to wait for a victim user
to login to the SSH service. With the information gained in the off-
line analysis, they identify the memory page containing the user’s
login information. They then try to illicitly login by remapping the
valid user’s credential data structure to the one the SSH service
creates during the illicit login attempt. This allows the attacker to
re-use the victim user’s login information. In their evaluation, they
achieved a success rate of around 23%. The low rate was primarily
caused by the fact that the SSH service may store the credentials
data structure at different offsets within the page. As a condition
for a successful attack, the SSH service must have stored both the
victim user’s and attacker’s credentials data structures at the same
page offset. Besides being quite invasive, this approach requires ac-
cess to a comparable VM, detailed analysis of the SSH service, user
interaction, and data being incidentally stored at specific offsets.

The attack described in [8] follows the same goal of gaining
remote code execution on an SEV-encrypted VM, but does not
exploit remapping. Instead, the authors describe a ciphertext block
move attack, which also exploits the missing integrity protection.
The authors argue that it is possible to move memory contents
in physical memory. This is because the HPA is not part of the
AES-based encryption scheme itself but is incorporated into the
encryption result in a later step with a reversible physical address-
based tweak algorithm that uses static parameters. After reversing
the tweak, ciphertext can be moved and the tweak re-applied with
the target HPA. The authors describe amethod that moves the pages
to exploit an SSH process. Both the approaches in [11] and [8] were,
to the best of our knowledge, not confirmed on real SEV hardware.
The ciphertext block move attack could possibly be leveraged for the
memory extraction as an alternative to the remapping in SEVered.

On the side of defenses, Fidelius [22] is a software-based ex-
tension to SEV. This extension is a privileged module separate
from the HV that restricts the HV from accessing specific critical
resources with non-bypassable memory isolation, for instance, to
prevent replay attacks. The authors provide a VM lifecycle concept
that describes how to start Fidelius and provide tenants proof that
the system runs Fidelius in addition to SEV. This requires trusting
the Fidelius module instead of the operating HV.

Intel announced the implementation of its own hardware-based
memory encryption approach called Multi-Key Total Memory En-
cryption (MKTME) [12]. According to our understanding of the
specification, MKTME does not protect from a malicious or com-
promised HV, but only from memory attacks from outside. The HV
remains, for instance, capable of enabling or disabling the encryp-
tion, or to handle the sharing of memory with other VMs.

8 CONCLUSION
We presented an approach for the efficient extraction of secrets
from SEV-encrypted VMs. Compared to time-consuming, naive
memory extraction, our two-phased approach exfiltrates secrets
unobtrusively and quickly with a high success probability. In the
first phase, we track the page accesses of an encrypted VM until
detecting an event indicating that the VM recently accessed the
secret. In the second phase, we leverage an existing attack for
memory extraction to systematically retrieve the tracked pages and
simultaneously analyze their contents to quickly identify the secret.
We presented various use cases for highly sensitive secrets usually
found in VMs in cloud scenarios. We performed an evaluation for
these cases on a fully SEV-enabled EPYC processor with varying
levels of load, usually caused by independent clients not involved
in the attack. Our results show that we are able to extract TLS keys
after a handshake in less than 15.5 seconds in the median on lower
load levels and in no more than about 32.7 seconds in the median
on our highest evaluated load level. The extraction of the FDE key
after a disk write event took between less than 7.4 seconds and 12.3
seconds in the median. The extraction phase for SSH keys after an
SSH handshake took about 0.8 to 1.35 seconds in the median. We
expect that our approach can be used for the extraction of further
types of secrets, which we are going to investigate in future work.



ACKNOWLEDGMENTS
This work has been partially funded in the project CAR-BITS.de
by the German Federal Ministry for Economic Affairs and Energy
under the reference 01MD16004B. We would like to thank Michael
Velten for the implementation of the tool that searches extracted
memory dumps for the private components of public key moduli,
see Section 4.

REFERENCES
[1] Advanced Micro Devices. 2008. Nested Paging. http://developer.amd.com/

wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf.
[2] Advanced Micro Devices. 2018. Secure Encrypted Virtualization API Version 0.16.

http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf.
[3] Michael Becher, Maximillian Dornseif, and Christian N Klein. 2005. FireWire: All

Your Memory Are Belong To Us. Proceedings of CanSecWest.
[4] Adam Boileau. 2006. Hit by a bus: Physical access attacks with Firewire. Presen-

tation, Ruxcon.
[5] Center for Information Technology Policy at Princeton University. 2008. Memory

Research Project Source Code. https://citp.princeton.edu/research/memory/
code/.

[6] David Kaplan. 2017. Protecting VM Register State with SEV-ES. White Paper.
[7] Christophe Devine and Guillaume Vissian. 2009. Compromission physique par

le bus PCI. Proceedings of SSTIC.
[8] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse

Liu, and Jesse Fang. 2017. Secure Encrypted Virtualization is Unsecure.
arXiv:cs.CR/1712.05090 https://arxiv.org/abs/1712.05090

[9] Xiao Guangrong. 2016. [PATCH v3 00/11] KVM: x86: Track Guest Page Access.
http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1076006.html.

[10] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. 2009. Lest We Remember: Cold-boot Attacks on Encryption Keys. Com-
mun. ACM 52, 5 (May 2009), 91–98. https://doi.org/10.1145/1506409.1506429

[11] Felicitas Hetzelt and Robert Buhren. 2017. Security Analysis of Encrypted Vir-
tual Machines. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’17). ACM, New York, NY,
USA, 129–142. https://doi.org/10.1145/3050748.3050763

[12] Intel. 2017. Intel Architecture Memory Encryption Technologies Spec-
ification. https://software.intel.com/sites/default/files/managed/a5/16/
Multi-Key-Total-Memory-Encryption-Spec.pdf.

[13] CTS Labs. 2018. Severe Security Advisory on AMD Processors. Technical Report.
[14] LibVMI Project. 2015. LibVMI Virtual Machine Introspection. http://libvmi.com/.
[15] Microsoft. 2017. Microsoft Security Bulletin MS17-008 - Critical. https://technet.

microsoft.com/en-us/library/security/ms17-008.aspx.
[16] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. 2018.

SEVered: Subverting AMD’s Virtual Machine Encryption. In Proceedings of the
11th European Workshop on Systems Security (EuroSec’18). ACM, New York, NY,
USA, Article 1, 6 pages. https://doi.org/10.1145/3193111.3193112

[17] Mathias Payer. 2016. AMD SEV Attack Surface: a Tale of too Much Trust. https:
//nebelwelt.net/blog/20160922-AMD-SEV-attack-surface.html.

[18] Rekall Forensics. 2018. Rekall. http://www.rekall-forensic.com/.
[19] The Linux Kernel Organization. 2018. The Definitive KVM (Kernel-based Virtual

Machine) API Documentation. https://www.kernel.org/doc/Documentation/
virtual/kvm/api.txt.

[20] The Volatility Foundation. 2018. Open Source Memory Forensics. https://www.
volatilityfoundation.org/.

[21] VMware. 2017. VMSA-2017-0006: VMware ESXi, Workstation and Fusion Up-
dates Address Critical and Moderate Security Issues. https://www.vmware.com/
security/advisories/VMSA-2017-0006.html.

[22] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu Zang, and Haibing Guan.
2018. Comprehensive VM Protection Against Untrusted Hypervisor Through
Retrofitted AMD Memory Encryption. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 441–453. https://doi.org/10.
1109/HPCA.2018.00045

[23] Xenproject.org Security Team. 2017. x86: Broken Check in memory_exchange()
Permits PV Guest Breakout. https://xenbits.xen.org/xsa/advisory-212.html.

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf
https://citp.princeton.edu/research/memory/code/
https://citp.princeton.edu/research/memory/code/
http://arxiv.org/abs/cs.CR/1712.05090
https://arxiv.org/abs/1712.05090
http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1076006.html
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/3050748.3050763
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
http://libvmi.com/
https://technet.microsoft.com/en-us/library/security/ms17-008.aspx
https://technet.microsoft.com/en-us/library/security/ms17-008.aspx
https://doi.org/10.1145/3193111.3193112
https://nebelwelt.net/blog/20160922-AMD-SEV-attack-surface.html
https://nebelwelt.net/blog/20160922-AMD-SEV-attack-surface.html
http://www.rekall-forensic.com/
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/
https://www.vmware.com/security/advisories/VMSA-2017-0006.html
https://www.vmware.com/security/advisories/VMSA-2017-0006.html
https://doi.org/10.1109/HPCA.2018.00045
https://doi.org/10.1109/HPCA.2018.00045
https://xenbits.xen.org/xsa/advisory-212.html

	Abstract
	1 Introduction
	2 AMD SEV and the SEVered Attack
	3 Finding and Extracting Secrets
	3.1 Observation Phase
	3.2 Search Phase

	4 Key Extraction Scenarios
	4.1 Private Keys
	4.2 FDE Keys

	5 Implementation and Evaluation
	5.1 Performance Indicators
	5.2 Prototype and Test Setup
	5.3 Success Probability and Reaction Time
	5.4 Attack Time
	5.5 Optimization with Preprocessing
	5.6 Summary

	6 Discussion
	7 Related Work
	8 Conclusion
	References

