skip to main content
research-article

Procedural city generation beyond game development

Published:13 November 2018Publication History
Skip Abstract Section

Abstract

The common trend in the scientific inquiry of urban areas and their populations is to use real-world geographic and population data to understand, explain, and predict urban phenomena. We argue that this trend limits our understanding of urban areas as dealing with arbitrarily collected geographic data requires technical expertise to process; moreover, population data is often aggregated, sparsified, or anonymized for privacy reasons. We believe synthetic urban areas generated via procedural city generation, which is a technique mostly used in the gaming area, could help improve the state-of-the-art in many disciplines which study urban areas. In this paper, we describe a selection of research areas that could benefit from such synthetic urban data and show that the current research in procedurally generated cities needs to address specific issues (e.g., plausibility) to sufficiently capture real-world cities and thus take such data beyond gaming.

References

  1. M. Alizadeh, C. Cioffi-Revilla, and A. Crooks. Generating and analyzing spatial social networks. Computational and Mathematical Organization Theory, 23(3):362--390, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Anas, R. Arnott, and K. A. Small. Urban spatial structure. Journal of economic literature, 36(3):1426--1464, 1998.Google ScholarGoogle Scholar
  3. C. Atkinson, R. Atkinson, and G. Bridge. Gentrification in a Global Context. Housing and Society Series. Taylor & Francis, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Batty. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT press, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Batty. The size, scale, and shape of cities. Science, 319(5864):769--771, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Batty and P. A. Longley. Fractal cities: a geometry of form and function. Academic press, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Beneš, A. Wilkie, and J. Křivánek. Procedural modelling of urban road networks. In Computer Graphics Forum, volume 33, pages 132--142. Wiley Online Library, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Biljecki, H. Ledoux, and J. Stoter. Generation of multi-LOD 3D city models in CityGML with the procedural modelling engine Random3Dcity. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., pages 51--59, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  9. G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang. Interactive procedural street modeling. In ACM transactions on graphics (TOG), volume 27, page 103. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Crooks, C. Castle, and M. Batty. Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6):417 -- 430, 2008. GeoComputation: Modeling with spatial agents.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. T. Crooks. Constructing and implementing an agent-based model of residential segregation through vector gis. International Journal of Geographical Information Science, 24(5):661--675, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. M. De Carli, F. Bevilacqua, C. T. Pozzer, and M. Cordeiro dOrnellas. A survey of procedural content generation techniques suitable to game development. In Games and Digital Entertainment (SBGAMES), 2011 Brazilian Symposium on, pages 26--35. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. O. Deussen, P. Hanrahan, B. Lintermann, R. Měsch, M. Pharr, and P. Prusinkiewicz. Realistic modeling and rendering of plant ecosystems. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 275--286. ACM, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Y. Diallo, J. J. Padilla, I. Bozkurt, and A. Tolk. Modeling and simulation as a theory building paradigm. In Ontology, Epistemology, and Teleology for Modeling and Simulation, pages 193--206. Springer, 2013.Google ScholarGoogle Scholar
  15. P. Eichhorst and W. J. Savitch. Growth functions of stochastic lindenmayer systems. Information and Control, 45(3):217--228, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  16. T. Germer and M. Schwarz. Procedural arrangement of furniture for real-time walkthroughs. In Computer Graphics Forum, volume 28, pages 2068--2078. Wiley Online Library, 2009.Google ScholarGoogle Scholar
  17. N. Gilbert, P. Gilbert, and S. Publications. Agent-Based Models. Number no. 153 in Agent-based Models. SAGE Publications, 2008.Google ScholarGoogle Scholar
  18. M. F. Goodchild. Gis and transportation: status and challenges. GeoInformatica, 4(2):127--139, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. F. Goodchild. Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4):211--221, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  20. B.-O. Heine, M. Meyer, and O. Strangfeld. Stylised facts and the contribution of simulation to the economic analysis of budgeting. Journal of Artificial Societies and Social Simulation, 8(4), 2005.Google ScholarGoogle Scholar
  21. M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Procedural content generation for games: A survey. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 9(1):1, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. H. Johnson. Urban geography: an introductory analysis. Elsevier, 2013.Google ScholarGoogle Scholar
  23. G. Kelly and H. McCabe. A survey of procedural techniques for city generation. The ITB Journal, 7(2):5, 2006.Google ScholarGoogle Scholar
  24. G. Kelly and H. McCabe. Citygen: An interactive system for procedural city generation. In Fifth International Conference on Game Design and Technology, pages 8--16, 2007.Google ScholarGoogle Scholar
  25. G. Kelly and H. McCABE. An interactive system for procedural city generation. Institute of Technology Blanchardstown, page 25, 2008.Google ScholarGoogle Scholar
  26. B. Kim, A. Jarandikar, J. Shum, S. Shiraishi, and M. Yamaura. The smt-based automatic road network generation in vehicle simulation environment. In Embedded Software (EMSOFT), 2016 International Conference on, pages 1--10. IEEE, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J.-S. Kim, S.-J. Yoo, and K.-J. Li. Integrating indoorgml and citygml for indoor space. In International Symposium on Web and Wireless Geographical Information Systems, pages 184--196. Springer, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  28. L. Krecklau, C. Manthei, and L. Kobbelt. Procedural interpolation of historical city maps. In Computer Graphics Forum, volume 31, pages 691--700. Wiley Online Library, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. L. Krecklau, D. Pavic, and L. Kobbelt. Generalized use of non-terminal symbols for procedural modeling. In Computer Graphics Forum, volume 29, pages 2291--2303. Wiley Online Library, 2010.Google ScholarGoogle Scholar
  30. K. Kropf. Aspects of urban form. Urban Morphology, 13(2):105, 2009.Google ScholarGoogle Scholar
  31. K. Kropf. The Handbook Of Urban Morphology. John Wiley & Sons Ltd, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Krückhans. Iso and ogc compliant database technology for the development of simulation object databases. In Simulation Conference (WSC), Proceedings of the 2012 Winter, pages 1--9. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. Lechner, B. Watson, and U. Wilensky. Procedural city modeling. In In 1st Midwestern Graphics Conference, 2003.Google ScholarGoogle Scholar
  34. T. Lechner, B. Watson, U. Wilensky, S. Tisue, M. Felsen, A. Moddrell, P. Ren, and C. Brozefsky. Procedural modeling of urban land use. Technical report, North Carolina State University. Dept. of Computer Science, 2007.Google ScholarGoogle Scholar
  35. J. Legakis, J. Dorsey, and S. Gortler. Feature-based cellular texturing for architectural models. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 309--316. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Li and C. Shahabi. A brief overview of machine learning methods for short-term traffic forecasting and future directions. SIGSPATIAL Special, 10(1):3--9, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Lindenmayer. Mathematical models for cellular interactions in development. Journal of theoretical biology Parts I and II, 18(3):280--299, 1968.Google ScholarGoogle Scholar
  38. R. A. Loggins, W. A. Wallace, and B. Cavdaroglu. Municipal: A decision technology for the restoration of critical infrastructures. In Proceedings of the 2013 Industrial and Systems Engineering Research Conference, pages 1767--1776. Institute of Industrial and Systems Engineers (IISE), 2013.Google ScholarGoogle Scholar
  39. X. Lyu, Q. Han, and B. De Vries. Procedural urban modeling of population, road network and land use. Transportation Research Procedia, 10:327--334, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  40. R. Mahabir, A. Croitoru, A. T. Crooks, P. Agouris, and A. Stefanidis. A critical review of high and very high-resolution remote sensing approaches for detecting and mapping slums: Trends, challenges and emerging opportunities. Urban Science, 2(1):8, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  41. D. Mendonça, W. A. Wallace, B. Cutler, and J. Brooks. Synthetic environments for investigating collaborative information seeking: An application in emergency restoration of critical infrastructures. Journal of Homeland Security and Emergency Management, 12(3):763--784, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. Merrell, E. Schkufza, and V. Koltun. Computer-generated residential building layouts. In ACM Transactions on Graphics (TOG), volume 29, page 181. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. P. Neis, M. Goetz, and A. Zipf. Towards automatic vandalism detection in openstreetmap. ISPRS International Journal of GeoInformation, 1(3):315--332, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  44. G. Nishida, I. Garcia-Dorado, and D. G. Aliaga. Example-driven procedural urban roads. In Computer Graphics Forum, volume 35, pages 5--17. Wiley Online Library, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Y. I. Parish and P. Müller. Procedural modeling of cities. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 301--308. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. K. Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287--296, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects. In Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems, GIS '03, pages 25--32, New York, NY, USA, 2003. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. P. Prusinkiewicz and M. Hammel. A fractal model of mountains with rivers. In IN PROCEEDINGS OF GRAPHICS INTERFACE '93, pages 174--180, 1993.Google ScholarGoogle Scholar
  49. S. Saeedi, S. Liang, D. Graham, M. F. Lokuta, and M. A. Mostafavi. Overview of the ogc cdb standard for 3d synthetic environment modeling and simulation. ISPRS International Journal of Geo-Information, 6(10):306, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  50. T. C. Schelling. Dynamic models of segregation. Journal of mathematical sociology, 1(2):143--186, 1971.Google ScholarGoogle Scholar
  51. G. Siromoney and R. Siromoney. Radial grammars and radial l-systems. Computer Graphics and Image Processing, 4(4):361--374, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  52. R. M. Smelik, K. J. de Kraker, S. A. Groenewegen, T. Tutenel, and R. Bidarra. A survey of procedural methods for terrain modelling. In Proceedings of the CASA Workshop on 3D Advanced Media In Gaming And Simulation, pages 25--34, 2009.Google ScholarGoogle Scholar
  53. R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes. A survey on procedural modelling for virtual worlds. In Computer Graphics Forum, volume 33, pages 31--50. Wiley Online Library, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. G. Stiny and J. Gips. Shape grammars and the generative specification of painting and sculpture. pages 1460--1465, 1972.Google ScholarGoogle Scholar
  55. J. Sun, X. Yu, G. Baciu, and M. Green. Template-based generation of road networks for virtual city modeling. In Proceedings of the ACM symposium on Virtual reality software and technology, pages 33--40. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. F. Taal and R. Bidarra. Procedural generation of traffic signs. In Proceedings of the Eurographics Workshop on Urban Data Modelling and Visualisation, pages 17--23. Eurographics Association, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. De Kraker. Rule-based layout solving and its application to procedural interior generation. In CASA Workshop on 3D Advanced Media In Gaming And Simulation, 2009.Google ScholarGoogle Scholar
  58. T. Tutenel, R. M. Smelik, R. Lopes, K. J. De Kraker, and R. Bidarra. Generating consistent buildings: a semantic approach for integrating procedural techniques. IEEE Transactions on Computational Intelligence and AI in Games, 3(3):274--288, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  59. C. Urmson and W. . Whittaker. Self-driving cars and the urban challenge. IEEE Intelligent Systems, 23(2):66--68, March 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. C. A. Vanegas, D. G. Aliaga, B. Benes, and P. A. Waddell. Interactive design of urban spaces using geometrical and behavioral modeling. In ACM Transactions on Graphics (TOG), volume 28, page 111. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. N. Waters. Transportation gis: Gis-t. Wiley, 2005.Google ScholarGoogle Scholar
  62. O. Wiki. Tiger fixup. https://wiki.openstreetmap.org/wiki/TIGER_fixup/, Oct. 2018.Google ScholarGoogle Scholar
  63. Wikipedia. Need for speed. https://en.wikipedia.org/wiki/Need_for_Speed, Oct. 2018.Google ScholarGoogle Scholar
  64. P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture, volume 22. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka. Inverse procedural modeling of facade layouts. ACM Transactions on Graphics (TOG), 33(4):121, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image SIGSPATIAL Special
    SIGSPATIAL Special  Volume 10, Issue 2
    July 2018
    40 pages
    EISSN:1946-7729
    DOI:10.1145/3292390
    Issue’s Table of Contents

    Copyright © 2018 Authors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 13 November 2018

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader