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ABSTRACT
Recent years have witnessed the successful marriage of finance

innovations and AI techniques in various finance applications in-

cluding quantitative trading (QT). Despite great research efforts

devoted to leveraging deep learning (DL) methods for building

better QT strategies, existing studies still face serious challenges

especially from the side of finance, such as the balance of risk and

return, the resistance to extreme loss, and the interpretability of

strategies, which limit the application of DL-based strategies in real-

life financial markets. In this work, we propose AlphaStock, a novel
reinforcement learning (RL) based investment strategy enhanced

by interpretable deep attention networks, to address the above chal-

lenges. Our main contributions are summarized as follows: i) We

integrate deep attention networks with a Sharpe ratio-oriented re-

inforcement learning framework to achieve a risk-return balanced

investment strategy; ii) We suggest modeling interrelationships

among assets to avoid selection bias and develop a cross-asset at-

tention mechanism; iii) To our best knowledge, this work is among

the first to offer an interpretable investment strategy using deep

reinforcement learning models. The experiments on long-periodic

U.S. and Chinese markets demonstrate the effectiveness and ro-

bustness of AlphaStock over diverse market states. It turns out

that AlphaStock tends to select the stocks as winners with high

long-term growth, low volatility, high intrinsic value, and being

undervalued recently.

CCS CONCEPTS
•Applied computing→ Economics; •Computingmethod-

ologies → Reinforcement learning; Neural networks.

KEYWORDS
Investment Strategy, Reinforcement Learning, Deep Learning,

Interpretable Prediction
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1 INTRODUCTION
Given the ability in handling large scales of transactions and

offering rational decision-makings, quantitative trading (QT) strate-

gies have long been adopted in financial institutions and hedge

funds and have achieved spectacular successes.Traditional QT strate-

gies are usually based on specific financial logics. For instance, the

momentum phenomenon found by Jegadeesh and Titman in the

stock market [14] was used to build momentum strategies. The

mean reversion [20] proposed by Poterba and Summers believes

that asset price tends to move to the average over time, so the bias

of asset prices to their means could be used to select investment

targets. The multi-factor strategy [7] uses factor-based asset valua-

tions to select assets. Most of these traditional QT strategies, though

equipped with solid financial theories, can only leverage some spe-

cific characteristic of financial markets, and therefore might be

vulnerable to complex markets with diverse states.

In recent years, deep learning (DL) emerges as an effective way

to extract multi-aspect characteristics from complex financial sig-

nals. Many supervised deep neural networks are proposed in the

literature to predict asset prices using various factors, such as fre-

quency of prices [11], economic news [12], social media [27], and

financial events [4, 5]. Deep neural networks are also adopted in

reinforcement learning (RL) frameworks to enhance traditional

shallow investment strategies [3, 6, 16]. Despite the rich studies

above, applying DL to real-life financial markets still faces several

challenges:

Challenge 1: Balancing return and risk. Most existing supervised

deep learning models in finance focus on price prediction without

risk awareness, which is not in line with fundamental investment

principles and may lead to suboptimal performance [8]. While some

RL-based strategies [8, 17] have considered this problem, how to

adopt state-of-the-art DL approaches into risk-return-balanced RL

frameworks, is yet not well studied.
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Challenge 2: Modeling interrelationships among assets.Many fi-

nancial tools in the market can be used to derive risk-aware profits

from the interrelationship among assets, such as hedging, arbitrage,

and the BWSL strategy used in this work. However, existing DL/RL-

based investment strategies paid little attention to this important

information.

Challenge 3: Interpreting investment strategies. There is a long-
standing voice arguing that DL-based systems are “unexplainable

black boxes” and therefore cannot be used in crucial applications

like medicine, investment and military [9]. RL-based strategies with

deep structures make it even worse. How to extract interpretable

rules from DL-enabled strategies remains an open problem.

In this paper, we propose AlphaStock, a novel reinforcement

learning based strategy using deep attention networks, to overcome

the above challenges. AlphaStock is essentially a buying winners and
selling losers (BWSL) strategy for stock assets. It consists of three

components. The first is a Long Short-Term Memory with History
state Attention (LSTM-HA) network, which is used to extract asset

representations from multiple time series. The second component

is a Cross-Asset Attention Network (CAAN), which can fully model

the interrelationships among assets as well as the asset price rising

prior. The third is a portfolio generator, which gives the investment

proportion of each asset according to the output winner scores of

the attention networks. We use a RL framework to optimize our

model towards a return-risk-balanced objective, i.e., maximizing

the Sharpe Ratio. In this way, the merit of representation learning

via deep attention models and the merit of risk-return balance

via Sharpe ratio targeted reinforcement learning are integrated

naturally. Moreover, to gain interpretability for AlphaStock, we

propose a sensitivity analysis method to unveil how our model

selects an asset to invest according to its multi-aspect features.

Extensive experiments on long-periodic U.S. stockmarkets demon-

strate that our AlphaStock strategy outperforms some state-of-the-

art competitors in terms of a variety of evaluation measures. In

particular, AlphaStock shows excellent adaptability to diverse mar-

ket states (enabled by RL and Sharpe ratio) and exceptional ability

for extreme loss control (enabled by CAAN). Extended experiments

on Chinese stock markets further confirm the superiority of Alpha-

Stock and its robustness. Interestingly, the interpretation analysis

results reveal that AlphaStock selects assets by following a principle

as “selecting the stocks as winners with high long-term growth, low

volatility, high intrinsic value, and being undervalued recently”.

2 PRELIMINARIES
In this section, we first introduce the financial concepts used

throughout this paper, and then formally define our problem.

2.1 Basic Financial Concepts
Definition 1 (Holding Period). A holding period is a minimum

time unit to invest an asset. We divide the time axis as sequential
holding periods with fixed length, such as one day or one month. We
call the starting time of the t-th holding period as the time t .

Definition 2 (Seqential Investment). A sequential invest-
ment is a sequence of holding periods. For the t-th holding period, a
strategy uses original capital to invest in assets at time t , and gets
profits (could be negative) at time t + 1. The capitals plus profits of the

t-th holding period are used as the original capitals of the (t + 1)-th
holding period.

Definition 3 (Asset Price). The price of an asset is defined as
a time series p(i) = {p(i)

1
,p

(i)
2
, . . . ,p

(i)
t , . . .}, where p

(i)
t denotes the

price of asset i at time t .

In this work, we use a stock as an asset to describe our model,

which could be extended to other types of assets by taking asset

specificities and transaction rules into consideration.

Definition 4 (Long Position). The long position is the trading
operation that buys an asset at time t1 first and then sells it at t2. The
profit of a long position during the period from t1 to t2 for asset i is
ui (p(i)t2

− p
(i)
t1

), where ui is the buying volume of asset i .

In the long position, traders expect an asset will rise in price, so

they buy the asset first and wait for the price rise to earn profits.

Definition 5 (Short Position). A short position is the trading
operation that sells an asset at t1 first and then buys it back at t2. The
profit of a short position during the period from t1 to t2 for asset i is
ui (p(i)t1

− p
(i)
t2

), where ui is the selling volume of asset i .

Short position is a reverse operation of the long position. Traders’

expectation in short position is that the price will drop, so they sell

at a price higher than the price at which they buy it back later. In

the stock market, a short position trader borrows stocks from a

broker and sells them at t1. At t2, the trader buys the sold stocks

back and returns them to the broker.

Definition 6 (Portfolio). Given an asset pool with I assets, a
portfolio is defined as a vector b = (b(1), . . . , b(i), . . . , b(I ))⊤, where
b(i) is the proportion of the investment on asset i , with

∑I
i=1

b(i) = 1.

Assumewe have a collection of portfolios {b(1), . . . ,b(j), . . . ,b(J )}.
The investment on portfoliob(j) isM(j)

, withM(j) ≥ 0 when taking

a long position on b(j), andM(j) ≤ 0 when taking a short position.

We then have the following important definition.

Definition 7 (Zero-investment Portfolio). A zero-investment
portfolio is a collection of portfolios that has a net total investment of
zero when the portfolios are assembled. That is, for a zero-investment
portfolio containing J portfolios, the total investment

∑J
j=1

M(j) = 0.

For instance, an investor may borrow $1,000 worth of stocks in

one set of companies and sell them as a short position, and then use

the proceeds of short selling to purchase $1,000 stocks in another

set of companies as a long position. The assemble of the long and

short positions is a zero-investment portfolio. Note that while the

name is “zero-investment”, there still exists a budget constraint to

limit the overall worth of stocks that can be borrowed from the

broker. Also, we ignore real-world transaction costs for simplicity.

2.2 The BWSL Strategy
In this paper, we adopt the buy-winners-and-sell-losers (BWSL)

strategy for stock trading [14], the key of which is to buy the

assets with high price rising rate (winners) and sell those with low

price rising rate (losers). We execute the BWSL strategy as a zero-

investment portfolio consisting of two portfolios: a long portfolio

for buying winners and a short portfolio for selling losers. Given a



sequential investment withT periods, we denote the short portfolio

for the t-th period as b−t and the long portfolio as b+t , t = 1, . . . ,T .

At time t , given a budget constraint M̃ , we borrow the “loser”

stocks from brokers according to the investment proportion in b−t .
The volume of stock i that we can borrow is

u−(i )
t = M̃ · b−(i )t /p(i )t , (1)

where b
−(i)
t is the proportion of stock i in b−t . Next, we sell the

“loser” stocks we borrowed and get the money M̃ . After that, we

use M̃ to buy the “winner” stocks according to the long portfolio

b+t . The volume of stock i that we can buy at time t is

u+(i )t = M̃ · b+(i )t /p(i )t . (2)

The money M̃ we used to buy winner stocks is the proceeds of short

selling, so the net investment on the portfolio {b+t ,b−t } is zero.
At the end of the t-th holding period, we sell stocks in the long

portfolio. The money we can get is the proceeds of selling stocks

using new prices at t + 1 for all stocks, i.e.,

M+t =
I∑
i=1

u+(i )t p(i )t+1
=

I∑
i=1

M̃ · b+(i )t
p(i )t+1

p(i )t
. (3)

Next, we buy the stocks in the short portfolio back and return them

to the broker. The money we spend on buying the short stocks is

M−
t =

I ′∑
i=1

u−(i )
t p(i )t+1

=

I ′∑
i=1

M̃ · b−(i )t
p(i )t+1

p(i )t
. (4)

The ensemble profit earned by the long and short portfolios is

Mt = M+t −M−
t . Let z

(i)
t = p

(i)
t+1

/p(i)t denote the price rising rate of
stock i in the t-th holding period. Then, the rate of return of the

ensemble portfolio is calculated as

Rt =
Mt

M̃
=

I∑
i=1

b+(i )t z(i )t −
I ′∑
i=1

b−(i )t z(i )t . (5)

Insight I. As shown in Eq. (5), a positive profit, i.e., Rt > 0, means

the average price rising rate of stocks in the long portfolio is higher

than that in the short portfolio, i.e.,

I∑
i=1

b+(i )t z(i )t >

I ′∑
i=1

b−(i )t z(i )t . (6)

A profitable BWSL strategy must ensure the stocks in the portfolio

b+ have a higher average price rising rate than the stocks inb−. That
is to say, even the prices of all stocks in the market are falling, as

long as we can ensure the price falling of stocks inb+ is slower than
that in b−, we can still get profits. On the contrary, even the prices

of all stocks are rising, if the rising of stocks in b− is faster than that

in b+, our strategy still lose money. This characteristic implies that

the absolute price rising or falling of stocks is not the main concern

of our strategy; rather, the relative price relations among stocks

are much more important. As a consequence, we must design a

mechanism to describe the interrelationships of stock prices in our

model for the BWSL strategy.

2.3 Optimization Objective
In order to ensure that our strategy considers both return and

risk of an investment, we adopt the Sharpe ratio, a risk-adjusted
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Figure 1: The framework of the AlphaStock model.

return developed by the Nobel laureate William F. Sharpe [21] in

1994, to measure the performance of our strategy.

Definition 8 (Sharpe Ratio). The Sharpe ratio is the average
return in excess of the risk-free return per unit of volatility. Given
a sequential investment that contains T holding periods, its Sharpe
ratio is calculated as

HT =
AT − Θ

VT
, (7)

where AT is the average rate of return per period for the investment,
VT is the volatility that is used to measure risk of the investment, Θ
is a risk-free return rate, such as the return rate of bank.

Given a sequential investment with T holding periods, AT is

calculated as

AT =
1

T

T∑
t=1

Rt −TCt , (8)

whereTCt is a transaction cost in the t-th period. The volatilityVT
in Eq. (7) is defined as

VT =

√∑T
t=1

(Rt − R̄t )2
T

, (9)

where R̄t =
∑T
t=1

Rt /T is the average of Rt .
For a T -period investment, the optimization objective of our

strategy is to generate the long and short portfolio sequences B+ =
{b+

1
, . . .b+T } and B

− = {b−
1
, . . . ,b−T } that can maximize the Sharpe

ratio of the investment as

arg max

{B+,B−}
HT

(
B+, B−)

. (10)

Insight II. The Sharpe ratio evaluates the performance of a strategy

from both profit and risk perspectives. This profit-risk balance

characteristic requires our model not only focuses on maximizing

return rate Rt for each period, but also considers the long-term

volatility of Rt across all periods in an investment. In other words,

designing a far-sighted steady investment strategy is more valuable

than a short-sighted strategy with short-term high profits.

3 THE ALPHASTOCK MODEL
In this section, we propose a reinforcement learning (RL) based

model called AlphaStock to implement a BWSL strategy with the

Sharpe ratio defined in Eq. (7) as the optimization objective. As

shown in Fig. 1, AlphaStock contains three components. The first

component is a LSTM with History state Attention network (LSTM-

HA). For each stock i , we use the LSTM-HA model to extract a

stock representation r (i) from its history states X (i)
. The second

component is a Cross-Asset Attention Network (CAAN) to describe

interrelationships among the stocks. The CAAN takes as input the



representations (r (i)) of all stocks, and estimates a winner score

s(i) for every stock. The s(i) is a score to indicate the degree of

stock i belonging to a winner. The third component is a portfolio

generator, which calculates the investment proportions in b+ and

b− according to the scores (s(i)) of all stocks. We use reinforcement

learning to end-to-end optimize the three components as a whole,

where the Sharpe ratio of a sequential investment is maximized

through a far-sighted way.

3.1 Raw Stock Features

The stock features used in our model contains two categories.

The first category is the trading features, which describes the trading
information of a stock. At time t , the trading features include:

• Price Rising Rate (PR): The price rising rate of a stock during
the last holding period. It is defined as

(
p
(i)
t /p(i)t−1

)
for stock i .

• Fine-grained Volatility (VOL): A holding period can be fur-

ther divided into many sub-periods. We set one month as a holding

period in our experiment, thus a sub-period can be a trading day.

VOL is defined as the standard deviation of the prices of all sub-

periods from t − 1 to t .
• Trade Volume (TV): The total quantity of stocks traded from

t − 1 to t . It reflects the market activity of a stock.

The second category is the company features, which describe

the financial condition of the company that issues a stock. At time

t , the company features include:

•Market Capitalization (MC): For stock i , it is defined as the

product of the price p
(i)
t and the outstanding shares of the stock.

• Price-earnings Ratio (PE): It is the ratio of the market capi-

talization of a company to its annual earnings.

• Book-to-market Ratio (BM): It is the ratio of the book value
of a company to its market value.

• Dividend (Div): It is the reward from company’s earnings to

stock holders during the (t − 1)-th holding period.

Since the values of these features are not in the same scale, we

standardize them into Z-scores.

3.2 Stock Representations Extraction

The performance of a stock has close relations with its history

states. In the AlphaStock model, we propose a Long Short-Term
Memory with History state Attention (LSTM-HA) model to learn the

representation of a stock from its history features.

The sequential representation. In the LSTM-HA network, we

use the vector x̃t to denote the history state of a stock at time t ,
which consists of the stock features given in Section 3.1. We name

the last K historical holding periods at time t , i.e., the period from

time t − K to time t , as a look-back window of t . The history states

of a stock in the look-back window are denoted as a sequence

X = {x1, . . . , xk , . . . , xK } 1
, where xk = x̃t−K+k . Our model uses

a Long Short-Term Memory (LSTM) network [10] to recursively

encode X into a vector as

hk = LSTM (hk−1
, xk ) , k ∈ [1, K ] (11)

1
We also use X to denote the matrix (xk ), the two definitions are interchangeable.

where hk is the hidden state encoded by LSTM at step k . The hK
at the last step is used as a representation of the stock. It contains

the sequential dependence among elements in X .

The history state attention. The hK can fully exploit the sequen-

tial dependence of elements in X , but the global and long-range

dependence among X are not effectively modeled. Therefore, we

adopt a history state attention to enhance hK using all middle hid-

den states hk . Specifically, following the standard attention [22],

the history state attention enhanced representation, denoted as r ,
is calculated as

r =
K∑
k=1

ATT (hK ,hk )hk , (12)

where ATT(·, ·) is an attention function defined as

ATT (hK ,hk ) =
exp (αk )∑K

k ′=1
exp (αk ′)

, (13)

αk = w⊤ · tanh

(
W (1)hk +W

(2)hK
)
.

Here,w ,W (1)
andW (2)

are the parameters to learn.

For the i-th stock at time t , the history state attention enhanced

representation is denoted as r (i)t . It contains both the sequential and

global dependences of stock i’s history states from time t − K + 1

to time t . In our model, the representation vectors for all stocks

are extracted by the same LSTM-HA network. The parametersw ,

W (1)
,W (2)

and those of the LSTM network in Eq. (11) are shared by

all stocks. In this way, the representations extracted by LSTM-HA

are relatively stable and general for all stocks rather than for a

particular one.

Remark. A major advantage of LSTM-HA is that it can learn both

the sequential and global dependences from stock history states.

Compared with the existing studies that only use a recurrent neural

network to extract the sequential dependence in history states [3,

17] or directly stack history states as an input vector of MLP [16]

to learn the global dependence, our model describes stock histories

more comprehensively. It is worthmentioning that LSTM-HA is also

an open framework. The representations learned from other types

of information sources, such as news, events and social media [4,

12, 27], could also be concatenated or attended with r (i)t .

3.3 Winners and Losers Selection
In the traditional RL-based strategy models, the investment port-

folio is often directly generated from the stock representations

through a softmax normalization [3, 6, 16]. The drawback of this

type of methods is that it does not fully exploit the interrelation-

ships among stocks, which however is very important for the BWSL

strategy as analyzed in Insight I of Section 2.2. In light of this, we

propose a Cross-Asset Attention Network (CAAN) to describe the

interrelationships among stocks.

The basicCAANmodel.TheCAANmodel adopts the self-attention

mechanism proposed by Ref. [24] to model the interrelationships

among stocks. Specifically, given the stock representation r (i) (we
omit time t without loss of generality), we calculate a query vector

q(i), a key vector k(i)
and a value vectorv(i)

for stock i as

q(i ) =W (Q )r (i ), k (i ) =W (K )r (i ), v (i ) =W (V )r (i ), (14)



where W (Q )
, W (K )

and W (V )
are the parameters to learn. The

interrelationship of stock j to stock i is modeled as using the q(i)

of the stock i to query the key k(j)
of stock j, i.e.,

βi j =
q(i )⊤ · k (j )

√
Dk

, (15)

where Dk is a re-scale parameter setting following Ref. [24]. Then,

we use the normalized interrelationships {βi j } as weights to sum

the values {v(j)} of other stocks into an attenuation score:

a (i ) =
I∑
j=1

SATT

(
q(i ), k (j )

)
·v (j ), (16)

where the self-attention function SATT (·, ·) is a softmax normalized

interrelationships of βi j , i.e.,

SATT

(
q(i ), k (j )

)
=

exp

(
βi j

)∑I
j′=1

exp

(
βi j′

) . (17)

We use a fully connected layer to transform the attention vector

a(i) into a winner score as

s (i ) = sigmoid

(
w (s )⊤ · a(i ) + e (s )

)
, (18)

wherew(s)
and e(s) are the connection weights and the bias to learn.

The winner score s
(i)
t indicates the degree of stock i being a winner

in the t-th holding period. A stock with a higher score is more likely

to be a winner.

Incorporating price rising rank prior. In the basic CAAN, the

interrelationships modeled by Eq. (15) are directly learned from

data. In fact, we could use priori knowledge to help our model to

learn the stock interrelationships. We use c
(i)
t−1

to denote the rank

of price rising rate of stock i in the last holding period (from t − 1

to t ). Inspired by the method for modeling positional information

from the NLP field, we use the relative positions of stocks in the

coordinate axis of c
(i)
t−1

as a priori knowledge of the stock interrela-

tionships. Specifically, given two stocks i and j, we calculate their

discrete relative distance in the coordinate axis of c
(i)
t−1

as

di j =
⌊���c (i )t−1

− c (j )t−1

���/Q ⌋
, (19)

whereQ is a preset quantization coefficient. We use a lookup matrix

L = (l1, . . . , lL) to represent each discretized value of di j . Using
the di j as the index, the corresponding column vector ldi j is an
embedding vector of the relative distance di j .

For a pair of stocks i and j, we calculate a priori relation coeffi-

cientψi j using ldi j as

ψi j = sigmoid

(
w (L)⊤ldi j

)
, (20)

where w(L)
is a learnable parameter. The relationship between i

and j estimated by Eq. (15) is rewritten as

βi j =
ψi j

(
q(i )⊤ · k (j )

)
√
D

. (21)

In this way, the relative positions of stocks in price rising rate rank

are introduced as a weight to enhance or weaken the attention

coefficient. The stocks have similar history price rising rates will

have a stronger interrelationship in the attention and then have

similar winner scores.

Remark. As shown in Eq. (16), for each stock i , the winner score

s(i) is calculated according to the attention of all other stocks. In

this way, the interrelationships among all stocks are involved into

CAAN. This special attention mechanism meets the model design

requirement of Insight I in Section 2.2.

3.4 Portfolios Generator
Given the winner scores {s(1), . . . , s(i), . . . , s(I )} of I stocks,

our AlphaStock model generally buys the stocks with high winner

scores and sells those with low winner scores. Specifically, we first

sort the stocks in descending order by their winner scores and

obtain the sequence number o(i) for each stock i . Let G denote the

preset size of portfolio b+ and b−. If o(i) ∈ [1,G], stock i will enter
the portfolio b+(i), with the investment proportion calculated as

b+(i ) =
exp

(
s (i )

)
∑
o(i′)∈[1,G ] exp

(
s (i′)

) . (22)

If o(i) ∈ (I −G, I ], stock i will enter b−(i) with a proportion

b−(i ) =
exp

(
1 − s (i )

)
∑
o(i′)∈(I−G, I ] exp

(
1 − s (i′)

) . (23)

The rest stocks are unselected for the lack of clear buy/sell signals.

For simplicity, we can use one vector to record all the information

of the two portfolios. That is, we form the vector bc of length I ,

with bc(i) = b+(i) if o(i) ∈ [1,G], or bc(i) = b−(i) if o(i) ∈ (I −G, I ],
or 0 otherwise, i = 1, . . . , I . In what follows, we usebc and {b+,b−}
interchangeably as the return of our AlphaStock model for clarity.

3.5 Optimization via Reinforcement Learning
We frame the AlphaStock strategy into a RL game with discrete

agent actions to optimize the model parameters, where a T -period
investment is modeled as a state-action-reward trajectory π of a

RL agent, i.e., π = {state1, action1, reward1, . . . , statet , actiont ,
rewardt , . . . , stateT , actionT , rewardT }. The statet is the history
market state observed at t , which is expressed as Xt = (X (i)

t ). The
actiont is an I -dimensional binary vector, of which the element

action
(i)
t = 1 when the agent invests stock i at t , and 0 otherwise

2
.

According to statet , the agent has a probability Pr(action(i)t = 1) to
invest stock i , which is determined by AlphaStock as

Pr

(
action(i )

t = 1

��Xn
t , θ

)
=

1

2

G(i )(Xn
t , θ ) =

1

2

bc (i )t , (24)

where G(i)(Xn
t ,θ ) is part of AlphaStock that generates b

c(i)
t , θ de-

notes themodel parameters, and 1/2 is to ensure

∑I
i=1

Pr(action(i)t =
1) = 1. Let Hπ denote the Sharpe ratio of π , then rewardt is the

contribution of actiont to Hπ , with
∑T
t=1

rewardt = Hπ .
For all possible π , the average reward of the RL agent is

J (θ ) =
∫
π
Hπ Pr(π |θ )dπ , (25)

2
In the RL game, the actions of an agent are discrete states with the probability bc (i )t /2

indicating whether to invest stock i . In the real investment, we allocate capitals to

stocks i according the continuous proportion bc (i )t . This approximation is for the sake

of problem solving.



where Pr(π |θ ) is the probability of generating π from θ . Then,
the objective of the RL model optimization is to find the optimal

parameters θ∗ = arg maxθ J (θ ).
We use the gradient ascent approach to iteratively optimize θ at

round τ as θτ = θτ−1 + η∇J (θ )|θ=θτ−1

, where η is a learning rate.

Given a training dataset that contains N trajectories {π1, . . . , πn ,
. . . , πN }, ∇J (θ ) can be approximately calculated as [23]

∇J (θ ) =
∫
π
Hπ Pr(π |θ )∇ log Pr(π |θ )dπ .

≈ 1

N

N∑
n=1

(
Hπn

Tn∑
t=1

I∑
i=1

∇θ log Pr

(
action(i )

t = 1

��X(n)
t , θ

))
,

(26)

The gradient ∇θ log Pr(action(i)t = 1|X(n)
t ,θ ) = ∇θ log G(i)(Xn

t ,θ ),
which is calculated by the Back Propagation algorithm.

In order to ensure the proposed model can beat the market,

we introduce the threshold method [23] into our reinforcement

learning. Then the gradient ∇J (θ ) in Eq. (26) is rewritten as

∇J (θ ) = 1

N

N∑
n=1

((
Hπn − H0

) Tn∑
t=1

I∑
i=1

∇θ log G(i ) (Xn
t , θ

))
, (27)

where the threshold H0 is set as the Sharpe ratio of the overall mar-

ket. In this way, the gradient ascent only encourages the parameters

that can outperform the market.

Remark. The Eq. (27) uses (Hπn −H0) to integrally weight the

the gradients ∇θ log G of all holding periods in πn . The reward is

not directly given to any isolated step in πn but given to all steps

in πn . This feature of our model meets the far-sight requirement of

Insight II in Section 2.2.

4 MODEL INTERPRETATION
In the AlphaStock model, the LSTM-HA and CAAN networks

cast the raw stock features as winner scores. The final investment

portfolios are directly generated from the winner scores. A natural

follow-up question is: what kind of stocks would be selected as

winners by AlphaStock? To answer this question, we propose a

sensitivity analysis method [1, 25, 26] to interpret how the history

features of a stock influence its winner score in our model.

We use s = F (X ) to express the function of history featuresX of

a stock to its winner score s . In our model, s = F (X ) is a combined

network of LSTM-HA and CAAN. We use xq to denote an element

of X which is the value of one feature (defined in Section 3.1) at

a particular time period of the look-back window, e.g., the price
rising rate of a stock at the time of three months ago.

Given the history state X of a stock, the influence of xq to its

winner score s , i.e., the sensitivity of s to xq , is expressed as

δxq (X ) = lim

∆xq→0

F (X ) − F
(
xq + ∆xq, X¬xq

)
xq −

(
xq + ∆xq

) =
∂F (X )
∂xq

, (28)

where X¬xq denotes the elements of X except xq .
For all possible stock states in a market, the average influence of

the stock state feature xq to the winner score s is

¯δxq =
∫
DX

Pr(X )δxq (X ) dσ . (29)

where Pr(X ) is the probability density function of X , and

∫
DX

· dσ
is an integral over all possible value of X . According to the Large

Number Law, given a dataset that contains history states of I stocks
in N holding periods, the

¯δxq is approximated as

¯δxq =
1

I × N

N∑
n=1

I∑
i=1

δxq

(
X (i )
n

���X(¬i )
n

)
, (30)

where X (i)
n is the history state of the i-th stock at the n-th holding

period, and X(¬i)
n denotes the history states of other stocks that are

concurrent with the history state of i-th stock.

We use
¯δxq to measure the overall influence of a stock feature

xq to the winner score. A positive value of
¯δxq indicates that our

model tends to take a stock as a winner when xq is large, and vice

versa. For example, in the experiment to follow, we obtain
¯δ < 0

for the fine-grained volatility feature, which means that our model

trends to select low volatility stocks as winners.

5 EXPERIMENT
In this section, we empirically evaluate our AlphaStock model by

the data in the U.S. markets. The data in the Chinese stock markets

are also used for robustness check.

5.1 Data and Experimental Setup
The data of U.S. stock market used in our experiments are ob-

tained from Wharton Research Data Services (WRDS)
3
. The time

range of the data is from Jan. 1970 to Dec. 2016. This long time range

covers several well-known market events, such as the dot-com bub-

ble from 1995 to 2000 and the subprime mortgage crisis from 2007 to

2009, which enables the evaluation over diverse market states. The

stocks are from four markets: NYSE, NYSE American, NASDAQ,

and NYSE Arca. The number of valid stocks is more than 1000 per

year. We use the data from Jan. 1970 to Jan. 1990 as the training

and validation set, and the rest as the test set.

In the experiment, the holding period is set to one month, and

the number of holding periods T in an investment is set to 12, i.e.,
the Sharpe ratio reward is calculated every 12 months for RL. The

look-back window size K is set to 12, i.e., we look back on the 12-

month history states of stocks. The sizeG of the portfolios is set as

1/4 of number of all stocks.

5.2 Baseline Methods
AlphaStock is compared with a number of baselines including:

• Market: the uniform Buy-And-Hold strategy [13];

• Cross Sectional Momentum (CSM) [15] and Time Series Mo-

mentum (TSM) [18]: two classic momentum strategies;

• Robust Median Reversion (RMR): a newly reported reversion

strategy [13];

• Fuzzy Deep Direct Reinforcement (FDDR): a newly reported

RL-based BWSL strategy [3];

• AlphaStock-NC (AS-NC): the AlphaStock model without the

CAAN, where the outputs of LSTM-HA are directly used as the

inputs of the portfolio generator.

• AlphaStock-NP (AS-NP): the AlphaStock model without price

rising rank prior, where we use the basic CAAN in our model.

The baselines TSM/CSM/RMR represent the traditional financial

strategies. TSM and CSM are based on the momentum logic and

3
https://wrds-web.wharton.upenn.edu/wrds/
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RMR is based on the reversion logic. FDDR represents the state-of-

the-art RL-based BWSL strategy. AS-NC and AS-NP are used as a

contrast to verify the effectiveness of the CAAN and price rising

rank prior. The Market is used to indicate states of the market.

5.3 Evaluation Measures
The most standard evaluation measure for investment strategies

is Cumulative Wealth, which is defined as

CWT =

T∏
t=1

(Rt + 1 −TC) , (31)

where Rt is the rate of return defined in Eq. (5) and the transaction

cost TC is set to 0.1% in our experiments according to Ref. [3].

The preferences of different investors are varied. Therefore, we

also use some other evaluation measures including:

1) Annualized Percentage Rate (APR) is an annualized average

of return rate. It is defined as APRT = AT × NY , where NY is the

number of holding periods in a year.

2)Annualized Volatility (AVOL) is an annualized average of volatil-
ity. It is defined as AVOLT = VT ×

√
NY and is used to measure the

average risk of a strategy during an unit time period.

3) Annualized Sharpe Ratio (ASR) is the risk-adjusted annualized

return based on APR and AVOL. The formalized definition of ASR

is ASRT = APRT /AVOLT .
4) Maximum DrawDown (MDD) is the maximum loss from a

peak to a trough of a portfolio, before a new peak is attained. It

is the other way to measure the investment risk. The formalized

definition of MDD is

MDDT = max

τ ∈[1,T ]

(
max

t∈[1,τ ]

(
APRt − APRτ

APRt

))
. (32)

5) Calmar Ratio (CR) is the risk-adjusted APR based onMaximum

DrawDown. It is calculated as CRT = APRT /MDDT .
6) Downside Deviation Ratio (DDR) measures the downside risk

of a strategy as the average of returns when it falls below a mini-

mum acceptable return (MAR). It is the risk-adjusted APR based on

Downside Deviation. The formalized definition of DDR is given as

DDRT =
APRT

Downside Deviation

=
APRT√

E[min(Rt , MAR)]2
, t ∈ [1, T ].

(33)

In our experiment, the MAR is set to zero.

5.4 Performance in U.S. Markets
Fig. 2 is a cumulative wealth comparison of AlphaStock and the

baselines. In general, the performance of AlphaStock (AS) is much

better than other baselines, which verifies the effectiveness of our

model. Some interesting observations are highlighted as follows:

1) The performance of AlphaStock is better than AlphaStock-NP

and the performance of AlphaStock-NP is better than AlphaStock-

NC, which indicates that the stock rank priors and interrelation-

ships modeled by CAAN are very helpful for the BWSL strategy.

2) The FDDR is also a kind of deep RL investment strategy, which

extracts the fuzzy representations of stocks using a recurrent deep

neural network. In our experiment, the performance of AlphaStock-

NC is better than FDDR, indicating the advantage of our LSTM-HA

network in the stock representation learning.
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Figure 2: The Cumulative Wealth in U.S. markets.

Table 1: Performance comparison on U.S. markets.

APR AVOL ASR MDD CR DDR

Market 0.042 0.174 0.239 0.569 0.073 0.337

TSM 0.047 0.223 0.210 0.523 0.090 0.318

CSM 0.044 0.096 0.456 0.126 0.350 0.453

RMR 0.074 0.134 0.551 0.098 1.249 0.757

FDDR 0.063 0.056 1.141 0.070 0.900 2.028

AS-NC 0.101 0.052 1.929 0.068 1.492 1.685

AS-NP 0.133 0.065 2.054 0.033 3.990 4.618

AS 0.143 0.067 2.132 0.027 5.296 6.397

3) The TSM strategy performs well in the bull market but very

poorly in the bear market (the financial crisis in 2003 and 2008),

while the RMR has an opposite performance. This implies the tradi-

tional financial strategies can only adapt to a certain type of market

state without an effective forward-looking mechanism. This defect

is greatly addressed by the RL strategies, including AlphaStock and

FDDR, which perform much stably across different market states.

The performances evaluated by other measures are listed in Ta-

ble 1. For the measures underlined (AVOL, MDD), the lower value

indicates the better performance, while the situation is opposite for

the other measures. As shown in Table 1, the performances of Al-

phaStock, AlphaStock-NP and AlphaStock-NC are better than other

baselines with all measures, confirming the effectiveness and robust-

ness of our strategy. The performances of AlphaStock, AlphaStock-

NP and AlphaStock-NC are close in terms of ASR, which might be

due to all of these models are optimized for maximizing the Sharpe

ratio. The profits of AlphaStock and AlphaStock-NP measured by

APR are higher than that of AlphaStock-NC, at the cost of a little

bit higher volatility.

More interestingly, the performance of AlphaStock measured

by MDD, CR and DDR is much better than that of AlphaStock-

NP. The similar results could be observed by comparing MDD,

CR and DDR of AlphaStock-NP and AlphaStock-NC. The three

measures are used to indicate the extreme loss in an investment,

i.e., the maximum draw down and the returns below the minimum

acceptable threshold. The results suggest that the extreme loss

control ability of the three models are AlphaStock > AlphaStock-NP

> AlphaStock-NC, which highlights the contribution of the CAAN

component and the price rising rank prior. Indeed, CAANwith price

rising rank priors fully exploits the ranking relationship among

stocks. This mechanism can protect our strategy from the error

of “buying losers and selling winners”, and therefore can greatly

avoid extreme losses in investments. In summary, AlphaStock is

a very competitive strategy for investors with different types of

preferences.
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Figure 3: Influence of history trading features to winner scores.

Table 2: Performance comparison on Chinese markets.

APR AVOL ASR MDD CR DDR

Market 0.037 0.260 0.141 0.595 0.062 0.135

TSM 0.078 0.420 0.186 0.533 0.147 0.225

CSM 0.023 0.392 0.058 0.633 0.036 0.064

RMR 0.079 0.279 0.282 0.423 0.186 0.289

FDDR 0.084 0.152 0.553 0.231 0.365 0.801

AS-NC 0.104 0.113 0.916 0.163 0.648 1.103

AS-NP 0.122 0.105 1.163 0.136 0.895 1.547

AS 0.125 0.103 1.220 0.135 0.296 1.704

5.5 Performance in Chinese Markets
In order to further testify the robustness of our model, we run

the back-test experiments of our model and baselines over the

Chinese stock markets, which contains two exchanges: Shanghai

Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE). The

data are obtained from the WIND databese
4
. The stocks are the

RMB priced ordinary shares (A-share) and the total number of

stocks used for experiment is 1,131. The time range of our data is

from Jun. 2005 to Dec. 2018, with the period from Jun. 2005 – Dec.

2011 used as the training/validation set and the rest as the test set.

Since the Chinese markets cannot short sell, so we only use the b+

portfolio in the experiment.

The experimental results are given in Table 2. From the table we

can see that the performances of AlphaStock, AlphaStock-NP and

AlphaStock-NC are better than that of other baselines again. This

verifies the effectiveness of our model over the Chinese markets.

By further comparing Table 2 with Table 1, it turns out that the risk

of our model measured by AVOL and MDD in the Chinese markets

is higher than that in the U.S. markets. This might be attributable

to the market faultiness of emerging countries like China, with

more speculative capital but less effective governance. The lack of

short sell mechanism also contributes to the imbalance of market

forces. The AVOL and MDD of the Market and other baselines in

the Chinese markets are also higher than that in the U.S. markets.

Compared with these baselines, the risk control ability of our model

is still competitive. To sum up, the experimental results in Table 2

indicate the robustness of our model over emerging markets.

5.6 Investment Strategies Interpretation
Here, we try to interpret the underlying investment strategies

of AlphaStock, which is crucial for practitioners to better under-

standing this model. To this end, we use
¯δxp in Eq. (30) to measure

the influence of the stock features defined in Section 3.1 to Al-

phaStock’s winner selection. Figures 3(a)-3(b) plot the influences

from the trading features. The vertical axis denotes the influence

4
http://www.wind.com.cn/en/Default.html

strengths indicated by
¯δxq , and the horizontal axis denotes how

many months before the trading time. For example, the bar indexed

by “-12” of the horizontal axis in Fig. 3(a) denotes the influence of

stock price rising rate (PR) at the time of twelve months ago.

As shown in Fig. 3(a), the influence of history price rising rate is

heterogeneous along the time axis. The PR in long-termmonths, i.e.,
9 to 11 months ahead, has positive influence to winner scores, but

for the short-term months, i.e., 1 to 8 months ahead, the influence

becomes negative. This result indicates that our model tends to buy

the stocks with long-term rapid price increase (valid excellence) or

with short-term rapid price retracement (over undervalued). This

implies that AlphaStock behaviors like a long-term momentum but

short-term reversion mixed strategy. Moreover, since price rising

is usually accompanied by frequent stock trading, Fig. 3(b) shows

that the
¯δxp of trading volumes (TV) has a similar tendency with

the price rising rate (PR). Finally, as shown in Fig. 3(c), the volatili-

ties (VOL) have negative influence to winner scores for all history

months. It means that our model trends to select low volatility

stocks as winners, which indeed explains why AlphaStock can

adapt to diverse market states.

Fig. 3(d) further exhibits the average influences of different com-

pany features to the winner score, i.e., the ¯δxp averaged on all

history months. It turns out that Market Capitalization (MC), Price-

earnings Ratio (PE), and Book-to-market Ratio (BM) have positive

influences. The three features are important company valuation

factors for a listed company, which indicates that AlphaStock tends

to select companies with sound fundamental values. In contrast,

dividends mean a part of company values are returned to share-

holders and could reduce the intrinsic value of a stock. That is why

the influence of Dividends (DIV) is negative in our model.

To sum up, while AlphaStock is an AI-enabled investment strat-

egy, the interpretation analysis proposed in Section 4 can help to

extract investment logics from AlphaStock. Specifically, AlphaStock

suggests selecting the stocks as winners with high long-term growth,
low volatility, high intrinsic value, and being undervalued recently.

6 RELATEDWORKS
Our work is related to the following research directions.

Financial Investment Strategy: Classic financial investment

strategy includesMomentum,Mean Reversion, andMulti-factors. In

the first work of BWSL [14], Jegadeesh and Titman found “momen-

tum” could be used to select winners and losers. The momentum

strategy buys assets that have had high returns over a past period as

winners, and sells those that have had poor returns over the same

period. Classic momentum strategies include the Cross Sectional

Momentum (CSM) [15] and the Time Series Momentum (TSM) [18].

http://www.wind.com.cn/en/Default.html


The mean reversion strategy [20] considers asset prices always re-

turn to their mean over a past period, so it buys assets with a price

under their historical mean and sells above the historical mean.

The multi-factor model [7] uses factors to compute a valuation for

each asset and buys/sells those assets with price under/above their

valuations. Most of these financial investment strategies can only

exploit a certain factor of financial markets and thus might fail in

complex market environments.

Deep Learning in Finance: In recent years, deep learning ap-

proaches begin to be applied in the financial areas. In the literature,

L. Zhang et al. proposed to exploit frequency information to predict

stock prices [11]. News and social media were used in price pre-

diction in Refs. [12, 27]. Information about events and corporation

relationships were used to predict stock prices in Ref. [2, 4]. Most

of these works focus on price prediction rather than end-to-end

investment portfolio generation like us.

Reinforcement Learning in Finance:The RL approaches used
in investment strategies fall in two categories: the value-based and

the policy-based [8]. The value-based approaches learn a critic

to describe the expected outcomes of markets to trading actions.

Typical value-based approaches in investment strategies include

Q-learning [19] and deep Q-learning [16]. A defect of value-based

approaches is the market environment is too complex to be approxi-

mated by a critic. Therefore, policy-based approaches are considered

as more suitable to financial markets [8]. The AlphaStock model

also belongs to this category. A classic policy-based RL algorithm

in investment strategy is the Recurrent Reinforcement Learning

(RRL) [17]. The FDDR [3] model extends the RRL framework using

deep neural networks. In the Investor-Imitator model [6], a policy-

based deep RL framework was proposed to imitate the behaviors of

different types of investors. Compared with RRL and its deep learn-

ing extensions, which focus on exploiting sequential dependence in

financial signals, our AlphaStock model pays more attention to the

interrelationships among assets. Moreover, deep RL approaches are

often hard to deployed in real-life applications for unexplainable

deep network structures. The interpretation tools offered by our

model can solve this problem.

7 CONCLUSIONS
In this paper, we proposed a RL-based deep attention network

to design a BWSL strategy called AlphaStock. We also designed a

sensitivity analysis method to interpret the investment logics of

our model. Compared with existing RL-based investment strategies,

AlphaStock fully exploits the interrelationship among stocks, and

opens a door for solving the “black box” problem of using deep

learning models in financial markets. The back-testing and simula-

tion experiments over U.S. and Chinese stock markets showed that

AlphaStock performed much better than other competing strate-

gies. Interestingly, AlphaStock suggests buying stocks with high

long-term growth, low volatility, high intrinsic value, and being

undervalued recently.
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