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ABSTRACT
Increasing demand for fashion recommendation raises a lot of chal-
lenges for online shopping platforms and fashion communities. In
particular, there exist two requirements for fashion out�t recom-
mendation: the Compatibility of the generated fashion out�ts, and
the Personalization in the recommendation process. In this paper,
we demonstrate these two requirements can be satis�ed via building
a bridge between out�t generation and recommendation. �rough
large data analysis, we observe that people have similar tastes in
individual items and out�ts. �erefore, we propose a Personalized
Out�t Generation (POG) model, which connects user preferences
regarding individual items and out�ts with Transformer architec-
ture. Extensive o�ine and online experiments provide strong quan-
titative evidence that our method outperforms alternative methods
regarding both compatibility and personalization metrics. Further-
more, we deploy POG on a platform named Dida in Alibaba to
generate personalized out�ts for the users of the online application
iFashion.

�is work represents a �rst step towards an industrial-scale
fashion out�t generation and recommendation solution, which
goes beyond generating out�ts based on explicit queries, or merely
recommending from existing out�t pools. As part of this work, we
release a large-scale dataset consisting of 1.01 million out�ts with
rich context information, and 0.28 billion user click actions from
3.57 million users. To the best of our knowledge, this dataset is the
largest, publicly available, fashion related dataset, and the �rst to
provide user behaviors relating to both out�ts and fashion items.
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1 INTRODUCTION
Faced with seemingly abundant choices of ever changing styles,
fashion out�t recommendation becomes more and more impor-
tant for modern consumers and has thus a�racted interest from
the online retail industry. Fashion out�t is a set of fashion items,
which appears both visually compatible and functionally irredun-
dant [3] (see Figure 1 as an example). Compared to traditional
item recommendation, fashion out�t recommendation involves
a remarkably creative out�t generation process, which requires
both innovation and characteristic. �erefore, this task is usually
performed by fashion experts, and becomes popular in numerous
online fashion communities, such as Lookbook1 and Chictopia2.
In Taobao, the largest online consumer-to-consumer platform in
China, a new application iFashion is created to support fashion
out�t recommendation. Approximately 1.5 million content creators
were actively supporting Taobao as of March 31, 20183. Still, the
great gap between limited human labor and ever-growing market
demands a complementary or even substitution of manual work.
To alleviate this problem, we aim to assist the generation and rec-
ommendation process in iFashion.

�ere exist two requirements in fashion out�t generation and
recommendation: 1) the Compatibility of the generated fashion
out�ts, 2) the Personalization in the recommendation process. Com-
patibility is a measurement of how harmonious a set of items is.
Early studies mainly focus on learning compatibility metric be-
tween pairwise items [17, 30], or predicting the popularity of an
out�t [11]. Some recent works a�empt to generate out�ts by mod-
eling an out�t as an ordered sequence of items [3, 18]. However, it
is not reasonable because shu�ing items in the out�t should make
no di�erence on its compatibility. Personalization represents how
the recommendations meet users’ personal fashion tastes. In recent
works, personalization is achieved relying on explicit input (e.g.,
image or text) provided by the user [4, 15, 18]. �is type of fashion
generation works more like search than recommendation since it
needs explicit user queries. On the other hand, classic Collaborative

1h�ps://lookbook.nu/
2h�p://chictopia.com/
3h�ps://www.alibabagroup.com/en/news/press pdf/p180504.pdf
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Figure 1: A sample of iFashion application in Taobao. We
recommend fashion out�ts (sets of fashion items which in-
teract with each other) to users.

Table 1: �e percentage of the same brand, category, style,
and pattern of the items in users’ clicked out�ts appearing
in users’ latest clicked items.

Property brand category style pa�ern
Percentage 56.9% 81.3% 73.0% 53.9%

Filtering (CF) methods [14, 22] in recommendation mostly focus
on recommending individual items rather than out�ts.

In this work, we collect 1.21 billion user clicks on 4.68 million
items and 192 thousand out�ts from 5.54 million users in iFashion.
As shown in Table 1, 81.3% of the clicked out�ts contain the items
with the same categories which have been appeared in the latest
50 clicked items from the same user. We observe that the brand,
style, and pa�ern of the items in users’ clicked out�ts also have
high probabilities to appear in users’ latest clicked items(we choose
the latest 50 items for each user). Figure 2 illustrates three example
users with their behaviors on items and out�ts. All these results
show that users tend to keep similar tastes in individual items
and out�ts. We �nd that although fashion out�t generation and
recommendation have been studied intensively in recent years,
existing works usually study these two requirements separately.

�erefore, we a�empt to build the bridge between fashion out�t
generation and recommendation in a real-world application with
millions of users. More speci�cally, we generate personalized out-
�ts by capturing users’ interests and tastes from their historical
interactions on fashion items. For the Compatibility requirement,
we propose a Fashion Out�t Model (FOM) by learning the com-
patibilities between each item and all the other items within the
out�t. Each item should have di�erent weighted interactions to
the other items in the out�t. �us, we set up a masked item pre-
diction task based on the self-a�ention mechanism [29], which
masks one item at a time in the out�t, and predicts the masked
item based on the context from other items in the out�t. For the
Personalization requirement, by integrating user preference into
the pre-trained FOM, we propose a Personalized Out�t Generation
(POG) model, which can generate compatible and personalized
out�ts based on users’ recent behaviors. Speci�cally, POG uses

Figure 2: Illustration of user clicked items and out�ts. User
(a) is a young girl who likes clothes and out�ts in light colors
and sweet styles. User (b) is a college boy who clicks several
winter out�ts a�er clicking a lot of winter clothes. User (c)
is probably an o�ce lady who prefers OL style items as well
as out�ts.

a Transformer encoder-decoder architecture [29] to model both
signals from user preference and out�t compatibility. To the best of
our knowledge, this is the �rst study to generate personalized out-
�ts based on users’ historical behaviors with an encoder-decoder
framework. Last, we develop a platform named Dida, where POG
has been deployed, to assist out�t generation and recommendation
in large-scale online application iFashion.

�e contributions of this work are summarized as follows:

(1) We propose POG: an encoder-decoder model to generate
personalized fashion out�ts, which takes into account both
out�t compatibility and user personalization. It makes fash-
ion recommendations by generating personalized out�ts
based on users’ recent behaviors.

(2) We demonstrate that our model signi�cantly outperforms
other alternative methods through out�t compatibility ex-
periments, including pushing the FITB (Fill In �e Blanks)
benchmark to 68.79% (5.98% relative improvement) and CP
(Compatibility Prediction) benchmark to 86.32% (25.81%
relative improvement).

(3) We deploy POG on the real-world out�t generation plat-
form Dida. �rough extensive online experiments, we
show that POG clearly outperforms the CF method by 70%
increase in CTR (Click-�rough-Rate) metric.

(4) We release a dataset4 of 1.01 million out�ts, 583 thousand
fashion items associated with rich context information,
and 0.28 billion user click actions from 3.57 million users.

2 RELATEDWORK
Fashion is an important application domain of computer vision and
multimedia. Much research e�ort has been made in this domain,
focusing on fashion image retrieval [2, 32], clothing recognition
[16], clothing parsing [12, 33], a�ribute learning [5, 15], out�t
compatibility [3, 17, 27, 28, 30], and fashion recommendation [4,
8, 15]. �e goal of this work is to compose personalized fashion
out�ts automatically based on user behaviors, we hence focus on
the research areas of out�t generation and recommendation.

4h�ps://github.com/wenyuer/POG



2.1 Fashion Out�t Generation
Methods for fashion out�t generation usually fall within one of
two categories. Methods in the �rst category focus on calculating
a pairwise compatibility metric [17, 23, 30]. McAuley et al. extract
visual features to model human visual preference for a pair of items
of the Amazon co-purchase dataset [17]. Siameses network [30]
estimates pairwise compatibility based on co-occurrence in large-
scale user behavior data. Methods belonging to the second category,
such as presented in [11] and [3], are based on modeling a fashion
out�t as a set or an ordered sequence. Li et al. deploy an end-to-end
deep learning system which can classify a given out�t as popular
or unpopular [11]. Han et al. train a bidirectional LSTM model
to sequentially generate out�ts [3]. �ese methods generally use
simple pooling of item vectors to represent an out�t, or rely heavily
on the order of the out�t items. We note that methods belonging to
either category hardly consider all the interactions among the items
in an out�t. Besides, it is unreasonable to regard an out�t as an
ordered sequence, because shu�ing items in the out�t should make
no di�erence on its compatibility. We try to explicitly incorporate
this into our modeling architecture by requiring that each item
should have di�erent interaction weights with respect to other
items in one out�t. For example, a “red shirt” should have a higher
interaction weight with “blue jeans”, but a smaller weight with a
pair of “white gloves”.

2.2 Fashion Out�t Recommendation
Early works on recommendation typically use collaborative �lter-
ing to model users’ preferences based on their behavior histories
[14, 22]. However, previous works mostly restrict a�ention to
recommending individual items. �ere are a few approaches for
recommending the whole fashion out�ts. Si Liu et al. [15] propose
an occasion-oriented clothing recommendation method based on
a�ributes and categories. �e work in [17] and [3] requires image
or text queries to �nd complementary clothes. A functional tensor
factorization approach is used to suggest sets of items to users in
[4]. As these approaches all require user queries or user uploaded
data as input, they are likely to be perceived as less user-friendly by
a typical user. Moreover, we note that these approaches are rather
impractical to implement in an e�cient manner in a large-scale
online recommender system.

2.3 Self-Attention and Transformer
Self-a�ention is an a�ention mechanism relating di�erent positions
of a single sequence [29], which has been used successfully in a
variety of tasks [13, 19]. Transformer [29], a transduction model re-
lying on self-a�ention, has been widely used and greatly improved
the performance for language processing tasks [1, 21]. In recent lan-
guage representation research, bidirectional Transformer encoder
has exhibited the best performance (BERT [1]) when compared to
le�-to-right Transformer decoder (OpenAI GPT [21]) and bidirec-
tional LSTM (ELMo [20]). Recently, multi-head self-a�ention is
also introduced to model users’ behavior sequences for sequential
recommendation [9, 25]. Di�erent from them, in this paper, we
adopt the self-a�ention to model the compatibility in fashion out�t
generation.

Table 2: Statistics of the datasets.

Dataset #Out�ts #Users #Items
Out�t data 1,013,136 - 583,464
Item data - - 4,747,039
User data 127,169 3,569,112 4,463,302

3 DATASET
Taobao’s fashion experts create thousands of out�ts everyday. All
these manually created fashion out�ts are reviewed before they are
exhibited online. About 1.43 million out�ts have so far been created
and reviewed in this manner. We collect the 80 most frequent leaf
categories (e.g. sweater, coat, t-shirt, boots, and ring) from the
items in all these out�ts. All items in the less frequent categories
are removed from the out�ts. In the rest of the paper, we only
consider the items in these 80 leaf categories. A�er that, we �lter
the out�ts which contain fewer than 4 items. In total, 1.01 million
out�ts remained, which are composed of 583 thousand individual
items.

Moreover, we collect clicks on the items and out�ts from iFashi-
on’s users in recent three months. We select click behaviors from
3.57 million active users who have viewed more than 40 out�ts
in total. �e clicks on out�ts are recorded only when more than
10 item clicks happened before from the same user. �en, we
build a training sample by pairing an out�t click with the latest 50
item clicks prior to it from the same user. Finally, we obtain 19.2
million training samples which consist of 4.46 million items and
127 thousand out�ts. Every item in our dataset is associated with
white background image, title, and leaf category.

To the best of our knowledge, our dataset is the largest pub-
licly available dataset of fashion items with rich information com-
pared to existing datasets, such as WoW [15], Fashion-136K [6],
FashionVC [24], Maryland Polyvore [3], Polyvore Out�ts-D, and
Polyvore Out�ts [28]. Moreover, we are the �rst to provide out�t
data and associated user behavior data, which can be exploited for
future fashion recommendation research. We provide three datasets
describing the out�ts, the items, and the user behaviors separately.
�e statistics of the datasets are shown in Table 2.

4 METHODOLOGY
In this section, we introduce our methodology in detail. POG is built
within a three-step process: we �rst embed the items. Second, we
build FOM, which learns compatibilities of items within an out�t.
Last, once training is completed, we use the resulting pre-trained
FOM to initialize POG on a Transformer architecture.

As a �rst step, we represent all the items using a multi-modal
embedding model. �en we introduce FOM and POG in detail. Last,
we introduce our Dida platform in this section, which helps to
ensure the e�ciency and quality requirements in large-scale online
application of this work.

4.1 Multi-modal Embedding
For every fashion item f , we compute a nonlinear feature embed-
ding f . �e concept of fashion relies mostly on visual and textual
information. Most previous works suggest to leverage image and
text to learn multi-modal embeddings [3, 11]. In our work, we use



Figure 3: �e architecture of FOM. We mask the items in the out�t one at a time. For example, we mask a pair of jeans in the
out�t. �e model is learned to choose the correct jeans from a candidate pool, to complement other items in the out�t.

a multi-modal embedding model that takes the following input for
every item: (1) dense vector encoding the white background picture
of the item from a CNN model, (2) dense vector encoding the title
of the item obtained from a TextCNN network, which has been
pre-trained to predict an item’s leaf category based on its title, (3)
dense vector encoding a collaborative �ltering signal for the item
using Alibaba’s proprietary Behemoth Graph Embedding platform
[31], which generates item embeddings based on the co-occurrence
statistics of items in recorded user click sessions in the Taobao
Mobile Application.

Our goal is to obtain an embedding space, where similar items
are embedded nearby, and di�erent items lie in di�erent regions.
We concatenate the embeddings derived from image, text, and CF as
input for a �nal fully connected layer. �e output is a de -dimension
vector f . For each item f , we de�ne positive samples f + as those
items which belong to the same leaf category as f , and negative
samples f − are hence those items which do not fall into the same
leaf category. �e entire network is then trained using the triplet
loss via:

LE =
∑
f

max
(
d(f , f +) − d(f , f −) + α , 0

)
(1)

where the distance metric d represents Euclidean distance, and α
as the margin. By minimizing LE , the distance between f and f +

in the same category is forced to be smaller than the distance from
f − in a di�erent category by some margin α .

4.2 FOM: Fashion Out�t Model
Out�t is a set of items, where each item should have di�erent
weighted interactions to the other items in the out�t. To capture the
item interactions in an out�t, we design a masked item prediction
task based on a bidirectional Transformer encoder architecture.
Masking items one at a time in the out�ts, we require the model
to �ll in the blank with the correct item according to the context.
Since every item in the out�t is masked to fuse its le� and right
context, the compatibility between each item and all the other items
within the out�t can be learned from the self-a�ention mechanism.
Hence, the compatibility in the out�t can be learned by combining
all theses item compatibilities.

Let F denote the set of all out�ts. Given an out�t F ∈ F , F
= { f1, . . . , ft , . . . , fn }, where ft is the t-th item. Let ft be the
representation of item ft derived from multi-modal embedding
with dimension de . We use a particular embedding [MASK] for the

masked item. Non-masked items are represented by their multi-
modal embeddings. We then represent the set of input embeddings
as Fmask . Given Fmask , the task is to predict the masked item
rather than reconstructing the entire out�t. More formally, we
minimize the following loss function of FOM:

LF = −
1
n

n∑
mask=1

log Pr (fmask |Fmask ;ΘF ) (2)

whereΘF denotes the model parameters, and Pr (·) is the probability
of choosing the correct item conditioned on the non-masked items.

�e model architecture is shown in Figure 3. We do not use
position embedding like Transformer [29] does, because we take the
items in the out�t as a set, not a sequence with position information.
Let Fmask pass through two fully-connected layers with a Recti�ed
Linear Unit (ReLU) activation in between, to transfer all the input
embeddings from the single item space to an out�t space. We call
the two fully-connect layers as transition layer, and represent the
output as H0 ∈ Rn×dm :

H0 = ReLU(
[
fT1 ; . . . ; fTn

]T
W F

0 + b
F
0 )W

F
1 + b

F
1 (3)

where W F
0 ∈ R

de×dm , W F
1 ∈ R

dm×dm , bF0 ∈ R
n×dm , and bF1 ∈

Rn×dm are learnable parameters.
�e following Transformer encoder contains multiple layers.

Each layer contains a Multi-Head self-a�ention (MH) sub-layer, and
a Position-wise Feed-Forward Network (PFFN) sub-layer, where a
residual connection is employed around each of the two sub-layers,
followed by Layer Normalization (LN). �e de�nitions of MH and
PFFN are identical to the paper [29]. We de�ne the output of the
�rst sub-layer in layer i as H i

1 . �us each layer H i can be calculated
iteratively:

H i = Transformere(H i−1),∀i = 1, . . . , l (4)

Transformere(H i−1) = LN
(
H i−1

1 + PFFN(H i−1
1 )

)
(5)

H i−1
1 = LN

(
H i−1 + MH(H i−1,H i−1,H i−1)

)
(6)

A�er l layers, we obtain the output G = H l . Let дmask denote
the corresponding output of the input [MASK], we then append a
so�max layer on top of дmask to calculate the probability of the
masked item:

Pr (fmask |Fmask ;ΘF ) =
exp(дmaskhmask )∑
h∈H exp(дmaskh)

(7)



Figure 4: �e architecture of POG, which is an encoder-decoder architecture with a Per network and a Gen network. �e out�t
item is generated step by step according to the user preference signal from the Per network and the compatibility signal from
the Gen network.

where hmask is the ground truth transition embedding of the
masked item, andH contains the transition embeddings from all
the items in F . One can choose H to be the whole set of item
transition embeddings of all the items, however, this is not practical
due to the large number of high-dimensional embeddings. �ere-
fore, we obtain h by randomly sampling 3 items from the whole
transition set, which are not appeared in the out�t F , together with
hmask . �is allows the model to learn the compatibility informa-
tion from the out�t by looking at a diverse set of samples. Note that
hmask and h do not correspond to the original item embeddings,
but rather the outputs of the transition layer.

4.3 POG: Personalized Out�t Generation Model
A�er modeling out�t compatibility, we now consider a genera-
tion model which generates personalized and compatible out�t
by introducing user preference signals. Take the advantage of
encoder-decoder structure, we aim to translate an user’s historical
behaviors to a personalized out�t. LetU denote the set of all users
and F be the set of all out�ts. We use a sequence of user behaviors
U = {u1, . . . ,ui , . . . ,um } to characterize an user, where ui are the
clicked items by the user. F = { f1, . . . , ft , . . . , fn } is the clicked
out�t from the same user, where ft are the items in the out�t. At
each time step, we predict the next out�t item given previous out�t
items and user’s click sequence on items U . �us for pair (U , F ),
the objective function of POG can be wri�en as:

L(U ,F ) = −
1
n

n∑
t=1

log Pr
(
ft+1 | f1, . . . , ft ,U ;Θ(U ,F )

)
(8)

where Θ(U ,F ) denotes the model parameters. Pr (·) is the probability
of seeing ft+1 conditioned on both previous out�t items and user
clicked items.

�e model architecture is shown in Figure 4. In POG, the encoder
takes user clicked items as the input. Given a special token [START],
the decoder then generates an out�t by one item at a time. At
each step, the model is auto-regressive consuming the previously
generated items as input. �e generation stops when a special token
[END] appears. In the end, an out�t is generated by composing

the output items. We name the encoder as Per network, and the
decoder as Gen network. To be precise, the Per network provides a
user preference signal, and the Gen network can generate out�ts
based on both personalization signal and compatibility signal. In
the Per network, a�er a transition layer, a Transformer encoder
architecture is followed with a stack of p identical layers. �us the
user preference can be obtained via:

B0 = ReLU
( [
uT1 ; . . . ;uTm

]T
WU

0 + b
U
0

)
WU

1 + b
U
1 (9)

Bi = Transformere(Bi−1), i = 1, . . . ,p (10)
where B0 is the output of the transition layer. WU

0 ∈ Rde×dm ,
WU

1 ∈ Rdm×dm , bU0 ∈ R
m×dm , and bU1 ∈ R

m×dm are learnable
parameters. �e output of the Per network is C = Bp .

�e Gen network is initialized using the aforementioned pre-
trained FOM. In the Gen network, a�er the transition layer, a Trans-
former decoder architecture is followed. Each Transformer decoder
layer contains three sub-layers. �e �rst sub-layer is a Masked
Multi-Head self-a�ention (MMH) mechanism. �e masked design
ensures that the prediction for a certain item can depend only on
the known outputs of previous items. �e second sub-layer per-
forms Multi-Head a�ention (MH) over the output of user behavior
C , which aims at introducing user information to the out�t genera-
tion process. �e third sub-layer is a Position-wise Feed-Forward
Network (PFFN). Similarly, we employ residual connections around
each of the sub layers, followed by Layer Normalization (LN). De�ne
the output of the �rst sub-layer in layer i as H i

1, and the output of
the second sub-layer as H i

2, then each Transformer decoder layer
H i can be calculated iteratively:

H0 = ReLU
(
[fT1 ; . . . ; fTn ]TW F

0 + b
F
0

)
W F

1 + b
F
1 (11)

H i = Transformerd(H i−1), i = 1, . . . ,q (12)

Transformerd(H i−1) = LN
(
H i−1

2 + PFFN(H i−1
2 )

)
(13)

H i−1
2 = LN

(
H i−1

1 + MH(H i−1
1 ,C,C)

)
(14)

H i−1
1 = LN

(
H i−1 + MMH(H i−1,H i−1,H i−1)

)
(15)



Algorithm 1 Personalized Out�t Generation.
Input: Candidate set C; User clicked item sequence U .
Output: Personalized fashion out�t F .

1: Transform all items in C into out�t spaceHC .
2: Input U in the Per network.
3: Input [START] mark in the Gen network.
4: repeat
5: Get the outputvt of the t-th step.
6: Output the next item ft+1 inHC according to Equation 17.
7: Input ft+1 to the Gen network.
8: until (�e [END] mark appears.)

where H0 is the output of the transition layer, and q is the number
of layers of the Gen network. W F

0 ∈ R
de×dm , W F

1 ∈ R
dm×dm ,

bF0 ∈ R
n×dm , and bF1 ∈ R

n×dm are learnable parameters. �e �nal
output of POG is represented as V = Hq .

In one training sample with one clicked out�t and several clicked
items from the same user, the ground truth prediction is the items
in the out�t. We de�neht+1 as the ground truth transition vector of
the t-th outputvt . �us the probability of the next item is calculated
as:

Pr (ft+1 | f1, . . . , ft ,U ;Θ(U ,F )) =
exp(vtht+1)∑
h∈H exp(vth)

(16)

Again, H is composed of 3 randomly selected embeddings from
the transition layer, together with the ground truth vector ht+1.

In the inference process, for each output vector vt , we deploy
a similarity search to the candidate pool based on the following
objective function:

ht+1 = arg max
hC ∈HC

exp(vthC )∑
h∈HC

exp(vth)
(17)

whereC is the candidate item set. �en the item with the transition
embedding ht+1 is chosen to be the next item. �e generation stops
when the [END] mark appears. A detailed generation process is
described in Algorithm 1.

4.4 Dida Platform
In order to ensure an overall smooth user experience, strict quality
and e�ciency requirements have to be taken into consideration
when deploying POG into an online application with millions of
users. We thus develop a platform named Dida which is able to
generate personalized out�ts automatically at very large scales and
ensures necessary quality and e�ciency standards. Dida platform
consists of a number of services including item selection, out�t
generation, image composition, and personalized recommendation,
as shown in Figure 5. �e out�t generation and recommendation
work�ow, wherein POG is implemented and deployed, can be de-
scribed as follows:
• We support million scale item pools and assist operators to

select quali�ed images with clean background and chosen cate-
gories. Images, texts, and CF-data are extracted for selected items
and multi-modal embeddings are computed as described in Section
4.1. In the generation process as described in Algorithm 1, we use
Faiss [7] to implement the similarity search. To ensure the quality
of the generated out�ts, we restrict the similarity search according

Figure 5: Dida platform. We provide services including item
selection, out�t generation, image composition, and person-
alized recommendation.

to certain domain rules provided by fashion experts. For example,
if it speci�es that one t-shirt, one pair of jeans, and one sport shoes
as a category rule, then only jeans and sport shoes can be searched
in Faiss a�er the t-shirt.
• �e generated items from the �rst step will be composed to-

gether with their images in designed templates. A�er image compo-
sition, we recommend out�ts to users. �e personalized generated
out�ts from POG are recommended directly to the users. In addi-
tion, we also support other recommendation strategies including
random recommendation and CF recommendation.

Dida is widely used by more than one million operators at
Alibaba. About 6 million personalized out�ts are generated every-
day with high quality. So far, the out�ts have been recommended
to more than 5.4 million users.

5 EXPERIMENT
We describe our experiments and analyze the results in this section.
We conduct both o�ine and online experiments to compare the
compatibility and recommendation performances.

5.1 Fashion Out�t Compatibility
5.1.1 Implementation Details. For multi-modal embedding pro-

cess, we use 1536 dimensional CNN features derived from Inception
Resnet V2 model [26] as the image features. �e text representa-
tions are 300 dimensional vectors derived from TextCNN [10] with
a vocabulary size of 420,758. Graph embeddings are 160 dimen-
sional CF vectors from [31]. We set de = 128 as the �nal dimension
of the multi-modal embedding. Triplet margin is �xed as α = 0.1.
In FOM, the model is composed of a stack of l = 6 layers. We use 8
heads in all multi-heads a�entions, and dm = 64 as the dimension
of hidden layers.

5.1.2 Task Se�ings & Evaluation Metrics. To evaluate the per-
formances of multi-modal embeddings and models on predicting
the out�t compatibility, we adopted two wide-used tasks following
the practices in [3, 11, 18, 28].

Fill In the Blank (FITB). FITB is a task predicting an item
from multiple choices that is compatible with other items to �ll
in the blank. For o�ine evaluation, we split 10% of the data as
a test set. We mask one item at a time for each out�t in the test
set. �en for each masked item, we randomly select 3 items from
other out�ts along with the ground truth item to obtain a multiple
choice set. It is reasonable to believe that the ground truth item



Table 3: FITB and CP results of di�erent modalities.

Modality FITB CP
Image 62.85% 80.78%
Text 68.02% 85.17%
CF 51.38% 57.92%
Image+text 68.24% 85.41%
Image+text+CF 68.71% 86.09%

is more compatible with other items than the randomly selected
ones. Finally, the result is evaluated by the accuracy of choosing
the correct items.

Compatibility Prediction (CP). �e CP task is to predict wheth-
er a candidate out�t is compatible or not. For evaluation, we �rst
build a compatible out�t set which is 10% split from the dataset.
�en, we produce the same amount of incompatible out�ts as the
compatible out�ts for a balanced test set by randomly selecting fash-
ion items from the compatible out�t set. In the CP task, a candidate
out�t is scored as to whether its constitute items are compatible
with each other. �e performance is evaluated using the AUC (Area
Under Curve) of the ROC (Receiver Operating Characteristic) curve.

Speci�cally, in FOM, we solve the FITB task based on Equation
17, whereC is the choice set. For CP task, given an out�t, we simply
utilize the negative value of Equation 2 as the compatibility score.

5.1.3 Compare Di�erent Modalities. We compare each modality
and their combinations on compatibility evaluations. �e perfor-
mances are compared in Table 3, which shows that: (1) In both
FITB and CP tasks, text works best on its own, but image and CF
provide complementary information. (2) CF embedding alone does
not work very well, partly because it lacks semantic visual and tex-
tual information, which is important in fashion compatibility. (3)
�e 1536 dimensional CNN feature derived from Inception Resnet
V2 is compressed to 128 a�er the fully connected layer. �e result-
ing dimension is relatively small to contain the important visual
information of the fashion items, which partly explains that the
image only modality performs badly. Similar results can also been
observed from [11].

5.1.4 Compare Di�erent Models. To demonstrate the e�ective-
ness of our model FOM, we compared several alternative models.
For fair comparison, all the models share the same embeddings and
the dimension of hidden layers.
• F-LSTM[3] Given a sequence of fashion items in an out�t, a

forward LSTM is trained taking each item as an individual time
step.
• Bi-LSTM[3] A bidirectional LSTM adds a backward LSTM

compared to F-LSTM, thus predicting the next item can be per-
formed in the reverse order also.
• SetNN[11] SetNN uses a multi-instance pooling model to ag-

gregate information from individual fashion items to produce a
holistic embedding for the out�t. We use mean reduction as the
pooling method, which performs the best in experiments as [11]
shows. �e original SetNN predicts popularity of an out�t by la-
beling the out�t preferences. Since popularity does not always
indicate compatibility, for fair comparison, we change its train-
ing inputs with compatible out�ts, and incompatible out�ts by
randomly selecting items from the training set.

Table 4: FITB and CP results of di�erent models.

Model FITB CP
Unordered Ordered Unordered Ordered

F-LSTM[3] 58.07% 62.84% 63.78% 65.04%
Bi-LSTM[3] 58.21% 64.91% 63.82% 68.61%
SetNN[11] 49.24% 49.27% 58.31% 58.33%
FOM (ours) 68.71% 68.79% 86.09% 86.32%

• FOM (ours) Our Fashion Out�t Model by learning a masked
item prediction task described in Section 4.2.

In particular, F-LSTM and Bi-LSTM are sequence based models,
which take sequences of items as inputs. SetNN and FOM are
set based models, which do not enforce a speci�c order over the
fashion items as inputs. Considering the particular requirement
of sequence based models which need ordered inputs, we conduct
the experiments with both disordered inputs and ordered inputs.
�e order follows the guide in [3], which has a �xed order: tops,
bo�oms, shoes, and accessories, where we use leaf categories to
specify.

FITB Results. �e middle two columns of Table 4 shows the
results of our model compared with alternative models in the FITB
task. From this table, we make the following observations: (1)
Sequence based models are sensitive to the input order, while set
based models are not. Both F-LSTM and Bi-LSTM have be�er
performances with ordered inputs. SetNN and FOM have similar
results with di�erent inputs. �is demonstrates that sequence based
models can only work well in speci�c order. (2) Bi-LSTM has be�er
results than F-LSTM both in ordered inputs and unordered inputs.
�e combination of LSTMs in two directions o�ers higher accuracy
than one directional LSTM. Similar result is also observed in [3].
(3) FOM performs the best for both inputs. It exhibits a 18.04%
increase compared to the second best result (Bi-LSTM) in unordered
inputs, and a 5.98% increase compared to the second best result
(Bi-LSTM) in ordered inputs. We a�ribute this to the self-a�ention
mechanism in Transformer, which facilitates FOM to calculate the
weighted interactions of every item to the others, makes it suitable
for modeling compatibility in this task.

CP Results. �e last two columns in Table 4 shows the results
of our model and others for the CP task. Similar to FITB, sequence
based models are still sensitive to the input order. FOM obtains
the best performance by signi�cant margins. In unordered inputs,
FOM has a 34.90% increase compared to the second best (Bi-LSTM),
while in ordered inputs, FOM shows 25.81% increase compared
to the second best (Bi-LSTM). Although SetNN is directly trained
to predict set compatibility, it still performs the worst. Similar
results can also be found in [11]. We a�ribute the performance
of FOM to the multi-head self-a�ention mechanism. It learns the
compatibilities between each item and all the other items within the
out�t, and then an out�t compatibility can be learned by combining
all these item compatibilities.



5.2 Fashion Out�t Generation and
Recommendation

In this section, we conduct extensive online experiments on dif-
ferent fashion models and recommendation methods. �e perfor-
mance of out�t compatibility and recommendation can be evaluated
via CTR, which is an explicit metric representing the e�ectiveness
of di�erent models and methods. Further, we show some online
example cases based on our model.

5.2.1 Implementation Details & Task Se�ings. In POG, the Per
network is composed of a stack ofp = 6 layers, and the Gen network
is composed of a stack of q = 6 layers. We use 8 heads in all
multi-head a�entions, and dm = 64 as the dimension of hidden
layers. Our online test data is a manually selected item pool with
1.57 million items. Out�ts are generated and recommended via
di�erent generation models and recommendation methods on Dida
platform. We split the users equally into 8 buckets, each tests a
certain generation model with recommendation method.

5.2.2 Compare Di�erent Models and Methods. Since SetNN [11]
cannot generate out�ts, we focus on the comparisons among gen-
eration available models. It is worth mentioned that none of the
existing generation models, including F-LSTM and Bi-LSTM, are
available to do personalized recommendation. So we Randomly
Recommend (RR) these generated out�ts to the users. To compare
the recommendation performance be�er, we also deploy classic
CF [22] methods to recommend. We �rst estimate a user’s most
preferred item via measuring its similarities with the items in his
or her interaction history by calculating an item-to-item similarity
matrix, according to [22]. �en, the model generated out�t which
contains the user’s most preferred item is recommended. Online
experiments are listed as follows:
• F-LSTM[3]+RR Out�ts are generated by starting with every

item in the test set using the F-LSTM model. �e generated out�ts
are recommended randomly to users.
• Bi-LSTM[3]+RR Out�ts are generated as paper [3] presents

by taking every item in the test set as the query item. �e generated
out�ts are recommended randomly to users.
• Gen+RR (ours) Only Gen network is used for generation. We

input no user information to POG to evaluate the generation quality
only. �e generated out�ts are recommended randomly.
• F-LSTM[3]+CF Out�ts are generated by F-LSTM model. �e

generated out�ts are recommended using the CF method.
• Bi-LSTM[3]+CF Out�ts are generated by Bi-LSTM model.

�e generated out�ts are recommended using the CF method.
• Gen+CF (ours) Only Gen network is used for generation. �e

generated out�ts are recommended using the CF method.
• POG (ours) Both the Per network and the Gen network are

used in POG to generate and recommend personalized out�ts.
• POG+FOM (ours) �e Gen network is initialized using the

pre-trained FOM before generating personalized out�ts.
We record the CTR on out�ts over a period of seven days, and

report the results in Figure 6. �ree conclusions can be observed
from the �gure: (1) Although the CTR values vary during the seven
days, we still observe an obvious phenomenon that the recommen-
dation performance largely relies on the recommendation methods.
CF methods have higher CTR than all the RR methods, and POG
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Figure 6: CTR of online experiments. Methods based on
POG achieve the best performances. CF based methods are
better than RR methods.

methods outperform all the other. POG with pre-trained FOM has
the highest CTR in most of the time. It has an improvement of more
than 70% in CTR, compared to the state-of-the-art model Bi-LSTM
with CF recommendation. We a�ribute this to the di�erences be-
tween individual item recommendation and out�t recommendation.
�e most preferred item of one user may not indicate the most
preferred out�t. (2) �e compatibility performance of these models
ma�ers, but not in an obvious way. �is is partly because of the
rule based search in the generation process described in Section 4.4,
which avoids some extreme bad cases. In most of the time, Gen has
the highest CTR both in RR and CF methods. (3) �e performance
of POG with pre-trained FOM has a li�le improvement over POG
alone. We may conclude that the Gen network in POG is already
enough to learn the compatibility of out�ts.

5.2.3 Case Study. We randomly sample some online cases, and
present them in Figure 7. For users with various preferences on the
items, (e.g. the �rst two rows), POG can generate compatible out�ts
conditioned on the common properties of these items. For users
who clicked a lot of similar items, (e.g. the last two rows), POG
provides an out�t with the main item, which has similar properties
with the clicked items. �e out�ts may inspire the users with
be�er ideas of how to compose the items more properly, and even
in�uence them to buy the whole out�t.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a personalized out�t generation model to
build the bridge between compatibility and personalization, which
are two essential requirements in fashion generation and recom-
mendation. Our model is built in three steps: multi-modal em-
bedding, fashion out�t modeling, and personalized fashion out�t
modeling. We use Transformer in our model which helps to �nd
interactions of the items in the out�t, and also helps to connect
user behaviors on items and out�ts. Our model outperforms other
alternative models in out�t compatibility, out�t generation and
recommendation by signi�cant margins. Furthermore, we deploy



Figure 7: �e online cases of POG. Four rows correspond to
four users. �e �rst �ve columns are user clicked items sam-
pled from the latest 50 clicks, and the last column is the gen-
erated out�t by POG.

POG on the Dida platform to assist personalized out�t generation
in large-scale online application, which is widely used in Alibaba
now. We share our data in this paper for future research.

For the future work, we aim to solve the cold-start problem via
building user pro�les from similar user groups.
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