skip to main content
10.1145/3292500.3330656acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Enabling Onboard Detection of Events of Scientific Interest for the Europa Clipper Spacecraft

Authors Info & Claims
Published:25 July 2019Publication History

ABSTRACT

Data analysis and machine learning methods have great potential to aid in planetary exploration. Spacecraft often operate at great distances from the Earth, and the ability to autonomously detect features of interest onboard can enable content-sensitive downlink prioritization to increase mission science return. We describe algorithms that we designed to assist in three specific scientific investigations to be conducted during flybys of Jupiter's moon Europa: the detection of thermal anomalies, compositional anomalies, and plumes of icy matter from Europa's subsurface ocean. We also share the unique constraints imposed by the onboard computing environment and several lessons learned in our collaboration with planetary scientists and mission designers.

References

  1. Jon Ballast, T. Amort, M. Cabanas-Holmen, E. H. Cannon, R. Brees, C. Neathery, S. Fischer, and W. Snapp. 2015. A method for efficient radiation hardening of multicore processors. In Proceedings of the IEEE Aerospace Conference. IEEE, Big Sky, MT.Google ScholarGoogle Scholar
  2. Todd Bayer, B. Buffington, J. F. Castet, M. Jackson, G. Lee, K. Lewis, J. Kastner, K. Schimmels, and K. Kirby. 2017. Europa mission update: Beyond payload selection. In Proceedings of the IEEE Aerospace Conference. IEEE, 1--12.Google ScholarGoogle Scholar
  3. Diana L. Blaney, R. N. Clark, J. B. Dalton, A. G. Davies, R. O. Green, M. M. Hedman, C. A. Hibbits, Y. Langevin, J. I. Lunine, T. B. McCord, C. Paranicas, S. L. Murchie, F. P. Seelos, and J. M. Soderblom. 2017. The Mapping Imaging Spectrometer for Europa (MISE) investigation: Exploring Europa's habitability using compositional mapping. In Proceedings of the 48th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, TX. Abstract #2244.Google ScholarGoogle Scholar
  4. Diana L. Blaney, C. Hibbitts, R. O. Green, R. N. Clark, J. B Dalton, A. G. Davies, Y. Langevin, J. I. Lunine, M. Hedman, T. B. McCord, S. L. Murchie, C. Paranicas, F. P. Seelos IV, J. M. Soderblom, S. Diniega, M. Cable, D. Thompson, C. Bruce, A. Santo, R. Redick, D. Hahn, H. Bender, B. Van Gorp, J. Rodriguez, P. Sullivan, T. Neville, S. Lundeen, M. Bowers, J. Hayes, B. Bryce, R. Hourani, J. Mize, F. Graham, E. Zarate, L. Moore, K. Maynard, I. M. McKinley, D. Johnson, P. Aubuchon, J. Fedosi, R. Wehbe, R. Calvet, and P. Mouroulis. 2019. The Europa Clipper Mapping Imaging Spectrometer for Europa (MISE): Using compositional mapping to understand Europa. In Proceedings of the 50th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, TX.Google ScholarGoogle Scholar
  5. Rebecca Castano, Kiri L. Wagstaff, Steve Chien, Timothy M. Stough, and Benyang Tang. 2007. On-board analysis of uncalibrated data for a spacecraft at Mars. In 13th Int'l Conf. on Knowledge Discovery and Data Mining. 922--930. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chein-I Chang and Shao-Shan Chiang. 2002. Anomaly detection and classification for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing , Vol. 40, 6 (2002), 1314--1325.Google ScholarGoogle ScholarCross RefCross Ref
  7. Steve Chien, Brian Bue, Julie Castillo-Rogez, Dero Gharibian, Russell Knight, Steve Schaffer, David R. Thompson, and Kiri L. Wagstaff. 2014. Agile science: Using onboard autonomy for primitive bodies and deep space exploration. In Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS).Google ScholarGoogle Scholar
  8. Steve Chien, J. Doubleday, D. R. Thompson, K. L. Wagstaff, J. Bellardo, C. Francis, E. Baumgarten, A. Williams, E. Yee, E. Stanton, and J. Piug-Suari. 2017. Onboard autonomy on the Intelligent Payload EXperiment CubeSat mission. Journal of Aerospace Information Systems, Vol. 14, 6 (2017), 307--315.Google ScholarGoogle ScholarCross RefCross Ref
  9. National Research Council. 2011. Vision and Voyages for Planetary Science in the Decade 2013--2022 .National Academies Press.Google ScholarGoogle Scholar
  10. Ingrid J. Daubar, A. S. McEwen, S. Byrne, M. R. Kennedy, and B. Ivanov. 2013. The current martian cratering rate. Icarus , Vol. 225, 1 (2013), 506--516.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ashley G. Davies, S. Chien, R. Wright, A. Miklius, P. R. Kyle, M. Welsh, J. B. Johnson, D. Tran, S. R. Schaffer, and R. Sherwood. 2006. Sensor web enables rapid response to volcanic activity. Eos , Vol. 87, 1 (2006), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  12. Eric W. Ferguson, Steve S. Wissler, Ben K. Bradley, Pierre F. Maldague, Jan M. Ludwinski, and Chistopher R. Lawler. 2018. Improving spacecraft design and operability for Europa Clipper through high-fidelity, mission-level modeling and simulation. In Proceedings of the SpaceOps Conference.Google ScholarGoogle Scholar
  13. Georg Fischer, M. D. Desch, P. Zarka, M. L. Kaiser, D. A. Gurnett, W. S. Kurth, W. Macher, H. O. Rucker, A. Lecacheux, W. M. Farrell, and B. Cecconi. 2006. Saturn lightning recorded by Cassini/RPWS in 2004. Icarus , Vol. 183, 1 (2006), 135--152.Google ScholarGoogle ScholarCross RefCross Ref
  14. Raymond Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Monta no, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein. 2017. AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Science Robotics , Vol. 2, 7 (2017).Google ScholarGoogle Scholar
  15. Neil Gehrels and Péter Mészáros. 2011. Gamma-ray bursts. Science , Vol. 337, 6097 (2011), 932--936.Google ScholarGoogle ScholarCross RefCross Ref
  16. Ronald Greeley, P. L. Whelley, R. E. Arvidson, N. A. Cabrol, D. J. Foley, B. J. Franklin, P. G. Geissler, M. P. Golombek, R. O. Kuzmin, G. A. Landis, M. T. Lemmon, L. D. V. Neakrase, S. W. Squyres, and S. D. Thompson. 2006. Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit. Journal of Geophysical Research: Planets, Vol. 111, E12 (2006).Google ScholarGoogle Scholar
  17. Candice J. Hansen, L. Esposito, A. I. F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, and R. West. 2006. Enceladus' water vapor plume. Science , Vol. 311, 5766 (2006), 1422--1425.Google ScholarGoogle Scholar
  18. Paul O. Hayne, P. R. Christensen, J. R. Spencer, O. Abramov, C. Howett, M. T. Mellon, F. Nimmo, S. Piqueux, and J. A. Rathbun. 2017. Possible nature and detectability of endogenic thermal anomalies on Europa. In Lunar and Planetary Science Conference, Vol. 48. Lunar and Planetary Institute, Houston, TX.Google ScholarGoogle Scholar
  19. Lukas Mandrake, U. Rebbapragada, K. L. Wagstaff, D. Thompson, S. Chien, D. Tran, R. T. Pappalardo, D. Gleeson, and R. Castano. 2012. Surface sulfur detection via remote sensing and onboard classification. ACM Transactions on Intelligent Systems and Technology , Vol. 3, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nasser M. Nasrabadi. 2014. Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Processing Magazine, Vol. 31, 1 (2014), 34--44.Google ScholarGoogle ScholarCross RefCross Ref
  21. Robert T. Pappalardo, D. A. Senske, H. Korth, D. Blaney, D. Blankenship, P. Christensen, S. Kempf, K. Retherford, E. P. Turtle, J. H. Waite, J. Westlake, G. C. Collins, K. Hand, J. Lunine, M. McGrath, F. Nimmo, C. Paty, J. Soderblom, J. R. Spencer, C. Paranicas, S. Solomon, and the Europa Science Team. 2017. The Europa multiple-flyby mission: Synergistic science to investigate habitability. In Proceedings of the 48th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, TX. Abstract #2732.Google ScholarGoogle Scholar
  22. Carolyn C. Porco, P. Helfenstein, P. C. Thomas, A. P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T. V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J. A. Burns, A. D. DelGenio, L. Dones, C. D. Murray, and S. Squyres. 2006. Cassini observes the active south pole of Enceladus. Science , Vol. 311, 5766 (2006), 1393--1401.Google ScholarGoogle Scholar
  23. Julie A. Rathbun, Nathaniel J. Rodriguez, and John R. Spencer. 2010. Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties. Icarus , Vol. 210, 2 (2010), 763--769.Google ScholarGoogle ScholarCross RefCross Ref
  24. Irving S. Reed and X. Yu. 1990. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustic Speech and Signal Processing , Vol. 38 (1990), 1760--1770.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lorenz Roth, Joachim Saur, Kurt D. Retherford, Darrell F. Strobel, Paul D. Feldman, Melissa A. McGrath, and Francis Nimmo. 2014. Transient water vapor at Europa's south pole. Science , Vol. 343, 6167 (2014), 171--174.Google ScholarGoogle Scholar
  26. William B. Sparks, K. P. Hand, M. A. McGrath, E. Bergeron, M. Cracraft, and S. E. Deustua. 2016. Probing for evidence of plumes on Europa with HST/STIS. The Astrophysical Journal, Vol. 829, 2 (2016).Google ScholarGoogle ScholarCross RefCross Ref
  27. William B. Sparks, B. E. Schmidt, M. A. McGrath, K. P. Hand, J. R. Spencer, M. Cracraft, and S. E Deustua. 2017. Active cryovolcanism on Europa? The Astrophysical Journal Letters, Vol. 839, 2 (2017), L18.Google ScholarGoogle ScholarCross RefCross Ref
  28. Samantha K. Trumbo, Michael E. Brown, and Bryan J. Butler. 2017. ALMA thermal observations of a proposed plume source region on Europa. The Astronomical Journal, Vol. 154, 4 (2017), 148.Google ScholarGoogle ScholarCross RefCross Ref
  29. Elizabeth Turtle and Alfred McEwen. 2018. Investigating Europa's geology, ice shell, and potential for current activity with the Europa Imaging System (EIS). In 42nd COSPAR Scientific Assembly. Abstract B5.3--52--18.Google ScholarGoogle Scholar
  30. Kiri L. Wagstaff, Alphan Altinok, Steve Chien, Umaa Rebbapragada, Steve Schaffer, David R. Thompson, and Daniel Tran. 2017. Cloud filtering and novelty detection using onboard machine learning for the EO-1 spacecraft. In Proceedings of the IJCAI Workshop on AI in the Oceans and Space.Google ScholarGoogle Scholar
  31. Kiri L. Wagstaff and Benjamin Bornstein. 2009. K-means in Space: A Radiation Sensitivity Evaluation. In Proceedings of the Twenty-Sixth International Conference on Machine Learning. 1097--1104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kiri L. Wagstaff, Nina L. Lanza, David R. Thompson, Thomas G. Dietterich, and Martha S. Gilmore. 2013. Guiding scientific discovery with explanations using DEMUD. In Proceedings of the Twenty-Seventh Conference on Artificial Intelligence. AAAI, Palo Alto, CA, 905--911. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kiri L. Wagstaff, David R. Thompson, Brian D. Bue, and Thomas J. Fuchs. 2014. Autonomous real-time detection of plumes and jets from moons and comets. The Astrophysical Journal, Vol. 794, 1 (2014).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Enabling Onboard Detection of Events of Scientific Interest for the Europa Clipper Spacecraft

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader