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ABSTRACT
Bidding in real-time auctions can be a difficult stochastic control
task; especially if underdelivery incurs strong penalties and the
market is very uncertain.

Most current works and implementations focus on optimally
delivering a campaign given a reasonable forecast of the market.
Practical implementations have a feedback loop to adjust and be
robust to forecasting errors, but no implementation, to the best of
our knowledge, uses a model of market risk and actively anticipates
market shifts.

Solving such stochastic control problems in practice is actually
very challenging. This paper proposes an approximate solution
based on a Recurrent Neural Network (RNN) architecture that is
both effective and practical for implementation in a production
environment. The RNN bidder provisions everything it needs to
avoid missing its goal. It also deliberately falls short of its goal when
buying the missing impressions would cost more than the penalty
for not reaching it.

CCS CONCEPTS
• Mathematics of computing → Probability and statistics; •
Applied computing→ Online auctions.
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1 INTRODUCTION
Since its advent in 2009, Real-Time Bidding (RTB), a.k.a. program-
matic media buying, has been growing very fast. In 2018, more than
80% of digital display ads are bought programmatically in the US
[eMarketer 2018].
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RTB is allowing advertisers (buyers) to buy ad-spaces to digital
publishers (sellers) at a very fine-grained level, down to the user
and the particular ad impression. The problem of using all the in-
formation available about each user exposed to some ad-placement
to deliver a certain amount of impressions, clicks or viewable im-
pressions, in an optimal way, is called the optimal bidding problem.

The optimal bidding problem may come in different flavors. It
may be about maximizing a given Key Performance Indicator (KPI):
impressions, clicks or views, given a certain budget, or about mini-
mizing the cost of reaching some KPI goal. It is often formulated
in a second price auction setup, but different setups, like first price
auction or other exotic setups, are common on the market.

In this paper, we focus on the problem of optimizing one cam-
paign, competing with the market in second price auctions. The
campaign is aiming at a daily KPI goal, with a penalty for falling
short of the goal. This restriction does not harm the generality of
this work as most of it is generalizable to other sorts of goals and
time spans. The campaign is small enough so that the impact of its
delivery on the market is negligible.

Market data is eventually observable, which means it is possible
to know, after some time (possibly hours), at what price a given
impression would have been bought even if it was lost. This last
assumption is valid in our practical setup where a company controls
both an inventory and a bidder buying its own inventory on behalf
of external advertisers, possibly in competition with third party
bidders. This assumption can be relaxed though, at the cost of a
more complex training process.

This paper puts a strong emphasis on the way market uncer-
tainty is handled in a context where a fixed goal is to be achieved
despite the stochastic nature of the market. Without uncertainty,
our problem reduces to a relatively simple optimal control problem,
adding randomness makes it an intractable stochastic control prob-
lem. In this paper we propose a characterization of the solution in
terms of a Partial Differential Equation (PDE) and an approximate
solution using a Recurrent Neural Network (RNN) representation.

The main contributions of this paper can be summarized as
follows:

(1) It formalizes in section 3 the optimal bidding problem as a
stochastic control problem, where market volume and prices
are stochastic,

(2) It solves numerically a simple case in section 4 and comments
qualitatively the solutions,

(3) It builds a practical RNN that approximate the theoretical
solution in section 5,

(4) The RNN is trained and tested at scale on amajor ad-exchange
as described in section 6.
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2 RELATED PAPERS
A description of the various challenges brought by the impression-
level user-centric bidding compared to bulk, inventory-centric-
buying is done in [Yuan et al. 2013].

[Zhang 2016; Zhang et al. 2014] gives a very broad overview of
the optimal bidding problem.

[Chen et al. 2011] solves a bidding problem with multiple cam-
paigns and from the perspective of the publisher using linear pro-
gramming and duality. A similar question is solved in [Balseiro
et al. 2014; Jauvion and Grislain 2018]. In those papers, the pub-
lisher wants to allocate impressions to campaigns in competition
with third party RTB campaigns. [Jauvion and Grislain 2018] allows
for underdelivery by introducing a penalty for underdelivery in its
optimization program.

[Ghosh et al. 2009] describes a solution to the bidding problem
with budget constraints and partially observed exchange.

To account for market uncertainty, the optimal bidding prob-
lem is solved using a Markov Decision Process (MDP), constantly
adapting to the new state of the campaign on the market. [Gallego
and Van Ryzin 1994] proposes a heuristic in the field of yield man-
agement. [Karlsson 2014, 2016, 2018] propose to use a Proportional
Integral (PI) controller to control the bidding process and add some
randomness to the bid to help exploration in a partially observed
market and alleviate the exploration-exploitation dilemma. [Cai
et al. 2017] uses dynamic programming to derive an optimal pol-
icy auction by auction. Modelling the problem auction by auction,
makes the proposed methodology slightly impractical. [Fernandez-
Tapia et al. 2016] gives a very rigorous statement of the problem and
solves it in cases where impressions are generated by homogeneous
Poisson processes and market prices are independent and identically
distributed (IID).

The general bidding problem with nonstationary stochastic vol-
ume and partially observed market is a complex Reinforcement
Learning (RL) problem tackled in [Wu et al. 2018] using tools from
the deep reinforcement learning literature. [Wu et al. 2018] uses, as is
done in this paper, the common approach of bidding proportionally
to the predicted KPI probability and solves a control problem over
this proportionality factor every few minutes instead of optimizing
for every impression. It makes the approach practical for real uses.

[Wu et al. 2018] finds the use of immediate reward misleading
during the training, pushing to solutions neglecting the budget
constraint. The approach proposed in this paper introduces budget
constraints in the reward by simply adding a linear penalty. The
bidder may explore the costly scenarios where it falls short of its
goal and avoid them.

Also, the MDP trained in [Wu et al. 2018] uses a state engineered
by the author, mainly: the current time step, the remaining budget,
the budget consumption rate, the cost per mille at the last period,
the last win-rate and the last reward. This choice is reasonable but
the memory of the MDP is reduced to the remaining budget and
what can be inferred from the last period. The approach proposed
in this paper does not specify the state space and state transition,
the Recurrent Neural Network (RNN) state is learned from the data.
In particular it can learn and encode the type of day or the type of
shocks the market is undergoing and reacts accordingly.

3 THE BIDDING PROBLEM UNDER
UNCERTAINTY

In this section, the bidding problem is considered in the specific
context of a bidder aiming at delivering campaigns in competition
with the market, on media owned by itself. This does not harm
the generality of the work, but explains the availability of sell-side
data for training and the kind of objective considered: number of
impression at minimum cost. Without sell-side data, the training
of the model exposed below would be made more complex by the
censorship of market data for lost auctions.

3.1 Formal statement of the bidding problem
In this presentation, let

(
Ω,F ,P

)
be a probability space equipped

with a filtration
(
Ft

)
t ∈R+. A bidder is assumed to bid against the

market representing all the competition. Let
(
Ht

)
t ∈R+ denote the

sub-filtration encoding the restricted information accessible to the
bidder.

All bidders receive ad requests modeled by the jumps of a Poisson
process (It )t with intensity ιt . For each impression opportunity
i , happening at ti the bidder receives xi 1 the current features of
the impression: timestamp, auction_id, user_id, placement_id,
url, device, os, browser or geoloc.

Based on xi and, more generally, on all past history Hi ∈ Hi a
bid ai is chosen ai = a (Hi ). The bidder wins the auction whenever
ai > bi , where bi is the highest of the other bids in the market.

Each impression has some value ui to the bidder. When trying to
buy clicks, ui is 0 or 1 depending on the occurrence of a click. The
bidder is assumed to know its expected value vi (Hi ) = E

(
ui |Hi

)
.

In this paper, the bidder is assumed not to have a significant influ-
ence on the market. The bidder has also access to some distribution
of bi conditional onHi .

This paper characterizes an optimal bidding strategy a (Hi ).

3.2 The bidding problem over a short period of
time

The bidder’s spend follows the process:

dSt = bIt 1a(Ht )>bIt dIt ,

and the cumulative value follows:

dVt = v(Ht )1a(Ht )>bIt dIt .

Let us consider a short period of time δ such that conditionally
on Ht , ιt is predictable with average value ι and xi , bi , ui are inde-
pendent, identically distributed (IID) over [t , t + δ ]. Let us consider
that δ and ι are such that δ · ι is large and its relative standard
deviation small2:

1
√
δ · ι
<< 1.

Over a period of time [t , t + δ ], the set of impression is noted It
and the number of impression is almost deterministic It = δ · ιt .
Because xi , bi , ui are IID, each auction is brand new and the only

1Variables X are indifferently noted Xti or Xi .
2 In practice δ would be in the order of magnitude of 100 seconds while ι close to 1000
events per second so the relative error would be around 1%.
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relevant information for the bidder is xi , that is a(Hi ) = a(xi ). In a
Second Price Auction setup3, the spend is

SI (a) =
∑
i ∈I

bi1a(xi )>bi

and the value is

VI (a) =
∑
i ∈I

ui1a(xi )>bi .

Because the xi , bi and ui are IID and the values summed over a
large number of impressions, everything becomes deterministic
and reduces to

SI (a) ≈ I · Ex

[∫ a(x )

0
b f (b;x) db

]
and

VI (a) ≈ I · Ex
[
v(x)F

(
a(x);x

) ]
,

where f (b;x) is the Probability Density Function (PDF) of b condi-
tional on x and F (b;x) is the Cumulative Density Function (CDF)
associated.

The optimization program of the bidder can be written

min
a

C(a) = min
a

[
SI (a) + K max

(
0,G −VI (a)

) ]
.

It can be read: the bidder chooses a bidding strategy a such that
its overall cost C is minimized, while its goal G (in number of im-
pressions of clicks) is reached. The cost is composed of the spend
SI incurred by the purchase of impressions, and a possible linear
penalty K

(
G −VI (a)

)
paid if one falls short of the goal G4. This

is not the most common formulation of the problem but it fits the
practical need described above5. The Karush-Kuhn-Tucker (KKT)
conditions give the following6:

a(x)f
(
a(x);x

)
= λv(x)f

(
a(x);x

)
, ∀x ,

a(x) = λv(x), ∀x ,
with λ ∈ [0,K].

Thismeans that the optimal strategy is to bid a value proportional
to v(x). If we restrict to the case where the bidder tries to buy a
certain amount of impression at the best possible price, then the
optimal strategy is to bid a constant bid. For the rest of this work,
and without loss of generality, the bidder aims at buying a certain
amount of impression, hence all ui are 1, v(x) = 1 and

a(x) = λ ∈ [0,K] , ∀x .
Most of these results do not hold for longer than δ if the auctions

are no longer IID or ιt non predictable. In practice, random external
factors affect the total volume of impressions ιt in unpredictable
ways. The market conditions is also prone to large shifts, e.g.when a

3See, e.g., [Roughgarden 2016] for an introduction to second price auctions.
4Note that the penalty does not have to be paid at the end of the short period of time,
because the goal is additive, this short period of time can be combined with other
periods of time as in the next section.
5 A more common formulation would be to maximize the value, with a penalty for
exceeding some budget:

max
a

U (a) = max
a

VI (a) − Lmin
(
0, SI (a) − B

)
.

This is equivalent in the sense that very similar first order conditions are derived from
both approaches.
6 KKT covers the case when the goal is attained, the more general result would be
derived from first order sub-gradient condition for convex minimization.

very large campaign crowds out the other campaigns on a particular
inventory.

As much as it is safe to assume everything is usually well pre-
dictable for the next few minutes, it is no longer the case for longer
timescales.

3.3 The bidding problem over a full day
Because the market is unpredictable, the bidder knows that no
matter what he plans based onHt ∈ Ht , he has to adjust constantly
to new available information to reach its daily goal. For this reason,
the bidding strategy is now modeled as a Markov Decision Process
(MDP) as in [Cai et al. 2017; Gallego and Van Ryzin 1994; Karlsson
2014, 2016, 2018; Wu et al. 2018], see Figure 1.

H M

a(H)

S,V

C

c

Figure 1: In theMDP approach all the information available,
e.g. all past spends S and volume purchased V , is embedded
into the state H , the bid a(H ) is built out of H and submitted
to the market M . Market response (S and V ) is fed back to
the bidder and constitutes the reward/cost c, adding up to
the total cost C.

The full day is split in T periods of duration δ . For each period,
the bidder sets a based on t , the remaining goal Gt and a state
Ht coding for everything he learnt from past experience that is
relevant, and he observes the common distribution of all bi whose
PDF and CDF are noted f (b;Ht ) and F (b;Ht ). Note that the bid
distribution is fully determined by the current state Ht .

The expected spend given knowledge of the state H is

S (H ,a) = I (H ) ·
∫ a

0
b f (b;H ) db

and the expected volume of impression is:

V (H ,a) = I (H ) ·
∫ a

0
f (b;H ) db = I (H ) · F (a;H ) .

Let Ct (G,H ) be the lowest cost achievable to deliver G impres-
sions over [t ,T ] given knowledge H .

Ct (G,H ) = min
(as )s≥t

Et


∑
s≥t

S (H ,as ) + K max ©«0,G −
∑
s≥t

V (H ,as )
ª®¬


Ct (G,H ) is simply the sum of all spends S plus the penalty K times
the shortfall given the optimal bidding strategy.

The optimal control is therefore fully characterized by the fol-
lowing Bellman equation:{
Ct (G,H ) = mina Et

[
S (H ,a) +Ct+1

(
G −V (H ,a) ,Tt (H )

) ]
,

CT (G,H ) = K max (0,G) .
(1)
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where Tt is the transition function, taking the current state Ht and
returning the next stateHt+1 = Tt (Ht ,at ). Because a has no impact
on the market, the transition function can be noted Ht+1 = Tt (Ht ).

The first order condition on a gives:

at (G,H ) = Et
[
∂

∂G
Ct+1

(
G −V

(
H ,at (G,H )

)
,Tt (H )

)]
.

It can be noted that at each period t , the bidder optimizes for
the current period, knowing it has to optimize for the remaining
periods, up toT . Also, the optimal a is chosen equal to the marginal
expected cost. When the goal is far from being reached, a will be
high, else it will be low.

It can also be proved that a is in the interval [0,K]. It is clearly
the case for t = T , but it is also the case for t as long at is it true
for t + 1, because Ct as a function of G is a mixture of Ct+1, which
suffices to show

at ∈ [0,K] , ∀t . (2)
In the special case where δ is small enough and Ht continuous,

the problem can be usefully expressed in continuous time.

3.4 Solution in continuous time
Let us solve the optimal bidder problem in a continuous time setting
with a simple Brownian motion model of available volume:

dHt = µ(t ,Ht ) dt + σ (t ,Ht ) dWt , (3)

whereWt is a one-dimensional Wiener process. The spend intensity
at t is

S (Ht ,a) = I (Ht ) ·
∫ a

0
b f (b) db

and the volume intensity is

V (Ht ,a) = I (Ht ) ·
∫ a

0
f (b) db = I (Ht ) · F (a) .

In this model, the available volume is stochastic but the bid distri-
bution is constant.

The minimization problem writes

C(t ,G,H ) = min
(as )t≤s≤T

Et

[∫ T

t
S (Hs ,as ) ds

+K max

(
0,G −

∫ T

t
V (Hs ,as ) ds

) .
The Hamilton-Jacobi-Bellman (HJB) equation states that

∂C

∂t
+
∂C

∂H
µ(t ,Ht ) +

1
2
∂2C

∂H2 σ
2(t ,Ht )

+min
at

[
S (Ht ,at ) −

∂C

∂G
V (Ht ,at )

]
= 0,

with the limit condition C(T ,G,H ) = K max (0,G).
At the minimum at verifies the first order condition

I (Ht ) · at f (at ) =
∂C

∂G
(t ,Gt ,Ht ) I (Ht ) · f (at ) ,

which reduces to:

at =
∂C

∂G
(t ,Gt ,Ht ) .

The HJB equation can be solved in a (t ,G,H ):

∂a

∂t
+
∂a

∂H
µ(t ,H ) + 1

2
∂2a

∂H2 σ
2(t ,H ) − I (Ht ) · F (a)

∂a

∂G
= 0,

with the limit conditions:
a(T ,G,H ) = 0, if G < 0,
a(T ,G,H ) ∈ [0,K] , if G = 0,
a(T ,G,H ) = K , if G > 0.

4 A NUMERICAL RESOLUTION
In the special case where µ(t ,H ) = 0, σ (t ,H ) = σ , I (H ) = H and F
is the CDF of a gaussian distribution, a solves the partial differential
equation

∂a

∂t
+
1
2
σ 2 ∂

2a

∂H2 − H · F (a) ∂a
∂G
= 0, (4)

which can be solved numerically for various levels of uncertainty.
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Figure 2: The resolution of Eq. 4 with σ = 0. The blue curve
shows the remaining goal to achieve across time. The orange
curve shows the bid level. One can notice the sharp increase
in bid after the shock and the goal shortfall.

The numerical solutions in Fig. 2 and Fig. 3 show that the intro-
duction of uncertainty σ = 3 in the market induces some provision-
ing behavior in the optimal strategy. This provisioning for risk is
materialized by a decreasing bid with time whenever the risk does
not materialize, which is the case in those simulations where H is
constant except for a shock at the end of the day.

The MDP approach solves the bidding problem under uncer-
tainty in a satisfactory way, but in the general case the relevant
information in all the information available: H , is not obviously
observable and using all H requires working in spaces too large to
be practical.

The general case can be approximated. Such an approximation
needs to be chosen in a functional space rich enough to capture the
desired features. In Section 5, RNNs are tested to this end.
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Figure 3: The resolution of Eq. 4 with σ = 3. The bidder front-
loads some of its delivery.

5 PRACTICAL MDP BIDDING
As demonstrated above, a robust bidding strategy should adjust
its bidding behavior continuously based on the last information
available, but also based on the fact it has to adjust in the future.

Building such a system is complex. Let us say a bidder records
the history of all the bids bi , spends Si , purchased volumes Vi and
any other relevant information xi for each auction i . This sequence
is noted

Hi = (X0,X1, · · · ,Xi−1,Xi ) ∈ X∗,

where Xi = (bi , Si ,Vi ,xi ) ∈ X.
A bidding strategy should be a function a (t ,G,H ) of time, re-

maining goal and the finite sequences H ∈ X∗ to R. Solving a
minimization problem on such a space is largely intractable, even
numerically, so we rely on some finite dimensional representation
Ĥ ∈ Rn of H , enabling a fair approximation of the solution:

a
(
t ,G, Ĥ

)
≈ a (t ,G,H ) .

The state Ĥt is not updated for every auction, but instead at a
regular pace. It is computed based on Ĥt−1, the remaining time to
deliverT − t , the remaining volume to reachGt = Gt−1 −Vt−1 and
the last spend St−1:

Ĥt = T
(
Ĥt−1,Vt−1, St−1;θ

)
.

The transition function T(·;θ ) is trained to minimize the cost of
the campaign (cf. Fig. 4).

In the next two sections, two different practical implementations
of a bid controller to provide an approximation of the solution are
presented: the Proportional Integral controller in Section 5.1, and
the Recurrent Neural Network controller in Section 5.2.

5.1 The Proportional Integral controller
The Proportional Integral (PI) controller7 is widely used in various
industries [Desborough and Miller 2002]. [Karlsson 2014; Zhang
2016] propose to apply it to the bidding problem.
7See [Åström and Murray 2008, Chapter 10] for an introduction to the PI control.

H M

a(H)

S,V

C

c

Ĥ

S,V

^

Figure 4: In the practical MDP approach all the information
available, e.g. all past spends S and volume purchased V are
used to update a finite dimensional proxy state Ĥ . The bid
a(Ĥ ) is submitted to the marketM . The state transition func-
tion (the way Ĥ is updated) is trained from data to minimize
total cost C.

The interaction between the bidding agent and the market can
be modeled as a feedback system composed of a feedback controller
and a block M representing the RTB market. The system receives
as input a reference signal V̂t = V̂ (t ,Gt ;θV ): a target volume for
the next time period.

From the feedback Vt received from the market, the controller
computes a control error et = V̂t −Vt . Based on it, the controller
maintains a state and uses it to generate a new control variable (or
action of bidding at a specific bid level) at

at = θPet + θI

t∑
s=0

es , (5)

where θP , θI are two parameters called the proportional and integral
gains.

In the PI setup, the state and its transition function T(·;θ ), where
θ = (θV ,θP ,θI ), can be expressed

Ĥt =
©«
0, 0, 0
0, 1, 0
0,θI , 0

ª®®¬ Ĥt−1 +
©«

1
1

θP + θI

ª®®¬
(
V̂ (t − 1,Gt−1;θV ) −Vt−1

)
(6)

and

a(t ,Gt , Ĥt ) = ⟨
©«
0
0
1

ª®®¬ , Ĥt ⟩. (7)

Training the PI controller is done in two steps: a reference fore-
casted volume process V̂ is defined and trained, and then the gains
are tuned using Stochastic Gradient Descent.

Although simple and robust, this approach comes with some
flaws.

(1) It depends on a separate forecaster V̂ .
(2) It is designed to target a current value, not to optimize a

lifetime cost function; this is mitigated by the fact the pa-
rameters are tuned against the lifetime cost.

(3) The uncertainty about the market is not modeled, it is barely
taken into account through the cost function, but no compo-
nent of the state Ĥ really reflects anything about risk.

(4) The important gap between the small number of parame-
ters of the PI model and the large amount of data available
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suggests probable underfitting. Capacity can be added to the
model by allowing adaptive gains, setting thresholds and
special cases, but those are merely local patches.

To overcome these flaws, we introduce in the next section a new
approach leveraging a Recurrent Neural Network to approximate
the bidding problem solution. A PI controller is used as benchmark
to the RNN approach.

5.2 The RNN controller
The Recurrent Neural Network (RNN)8 controller unit used in all
the experiments presented in this paper is a Gated Recurrent Unit
(GRU, see [Cho et al. 2014])9, with

input: a vector(T − t ,Gt ,Vt , St ),
state: a vector Ĥ with dimension 1610,
activation: a hyperbolic tangent function rescaled for the first

component of the state Ĥ to be between 0 and the penalty
level K11,

and where the bid level is given by the first component of the state
Ĥ of the GRU layer:

a(t ,Gt , Ĥt ) = ⟨

©«
1
0
...

0

ª®®®®®¬
, Ĥt ⟩. (8)

Through the recurrent connections the model can retain infor-
mation about the past in its state, enabling it to discover temporal
correlations between events and its interactions with the environ-
ment even when these are far away from each other in the data.
Using a RNN allows to take advantage of a much richer family of
functions to learn an approximate solution to the bidding problem.

6 EXPERIMENTS
6.1 Practical setting
In practice, the massive number of auctions occurring simultane-
ously makes unrealistic the resolution of the optimal control (1) for
each auction and campaign. Fortunately, taking periodic control
decisions (e.g. every 5 minutes) on aggregated feedback is sufficient.
It is thus possible to handle a very large number of campaigns, with
the following steps:

• at the beginning of each period, choose a level for the control
variable a,

• get an aggregated feedback (realized volume and spend) from
the previous period in response to the level a.

This kind of architecture introduces discontinuity in the response
of the controlled advertising system. Yet, the problem can be turned
into a continuous control problem (cf. [Karlsson 2016, 2018]).

Furthermore, response curves exhibit discontinuities (cf. Fig. 5,
left plot). These discontinuities can be smoothed out (right part

8See [Goodfellow et al. 2016, Chapter 10].
9Long Short-Term Memory (LSTM, cf [Hochreiter and Schmidhuber 1997]) was also
experimented with but the results were similar to the GRU ones.
10Simple trials were also conducted to assess the interest of using more neurons in
recurrent units in the RNN architecture, be it wider or deeper. No significant gain was
found, and a detailed assessment lies beyond the scope of this paper.
11K is the highest possible bid in an optimal strategy, cf Eq. (2)

of Fig. 5) by not bidding a constant bid level during the time pe-
riod but by drawing bid prices according to some distribution (e.g.
log-normal, Gamma, etc.) around the control variable a, such as
proposed in [Karlsson 2014, 2018].

This leads to the following loop:
• at the beginning of each period, choose a level for the control
variable a,

• for each auction occurring in the period, draw a bid price
according a distribution based on a.

• get an aggregated feedback (realized volume and spend) from
the previous period.
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Figure 5: An example of bid level to volume mapping evolu-
tion through the day. Left: no noise (Dirac bids). Right: vol-
ume obtained by Gamma-distributed bids around each bid
level.

Note that contrary to the general setup of the bidding prob-
lem that suffers from censorship due to the ad auction selection
(cf. [Zhang 2016]), one can alleviate this particular issue in this
practical setup since publisher data is available. In the absence of
uncensored data, the bid randomization would further help, by
realizing some of the exploration effort in the explore vs exploit
dilemma introduced by bid-dependent censorship.

6.2 Data used
Two types of datasets are used in the numerical experiments pre-
sented in this paper:

(1) Simulated synthetic data sets, generated by applying various
transformations (shocks or random walk) throughout time
to a base linear volume curve, that helps in appreciating
salient features of the RNN models,

(2) Production RTB data, constituted by 5-minute snapshots of
the actual price-volume mapping for all display ad place-
ments with significant daily volume12 from large publishers
on one of the leading Supply Side Platform (SSP) and Ad
Exchange globally. The ad placements here can be seen as
proxys of segments targeted by campaigns. In production,

12Restricted to the placements with a minimum of 1000 daily impressions.
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the RNN would have to be trained on currently running
campaigns.

The production dataset is created using logs from actual RTB
auctions run on around 1000 ad placements over 8 days, containing
about 115M won impressions. All these impressions are used to
build winning bid distributions for 5-minutes periods over a full
day (T = 288) of each ad placement. The winning bid distributions
are discretized on a CPM bid scale with 100 exponential increments
between 0.01 and 100.

For offline training and evaluation purposes on production data,
a bidding problem instance is comprised of a random draw of an
actual bid-volume mapping process and of a random volume goal,
uniformly drawn between 10 and 1000. The controller therefore is
exposed to scenarios with not enough of volume to meet the target
given the penalty level, as well as scenarios where enough volume
was available.

The production data is split into non-overlapping training, vali-
dation and evaluation datasets using different days. The training
set of models on production data contains 1 million different bid-
ding problems and evaluation is performed on a set of around 110K
bidding problems of increasing difficulty. For the simulated case
study, given the simplified setting, training is stopped after learning
from 20K bidding problems.

6.3 Training and evaluation
The implementation of both the benchmark (PI controller) and the
RNN controller is done in TensorFlow [Abadi et al. 2015]. The input
data instances are randomly shuffled and processed by batches of
size 100.

The aim is to minimize the total cost of a campaign, so the
training lossC is composed of the sum of the spend and the penalty
terms over a full day:

C :=
T∑
s=0

Ss + K max ©«0,G −
T∑
s=0

Vs
ª®¬ (9)

where the spend St and volume won Vt are computed from the bid
level at of the MDP bidding controller by simulating the feedback
using the input bid distribution at each time step and propagating
the state over the full sequence of time periods.

Models are trained using Stochastic Gradient Descent (SGD) with
an inverse-time decay of the learning rate13. To help alleviate possi-
ble exploding gradients issues, gradient clipping is used as described
in [Pascanu et al. 2012]. Other more sophisticated optimization
methods have been tried without significant impact on the results.

Cross-validation is performed regularly during the training on
a fixed set of validation bidding problems and the optimal model
parameters are picked as the best evaluation seen on the valida-
tion set during the training. In practice, no model presented any
overfitting issue as performance results generalized well to unseen
data.

6.4 Numerical results

13The learning rate schedule is the following: α (n) = α0
1+η ⌊ nN ⌋ with initial learning

rate α0 = 0.1, decay rate η = 0.5, and decay steps N = 400.

Mean final cost (std. dev.), shortfall probability
Evaluation scenario

σ = 0.1 σ = 10.
Learning σ = 0.1 $271 ($13), 5% $915 ($516), 82%
scenario σ = 10. $431 ($9), 0% $764 ($405), 57%

Table 1: Simulation results of RNNmodels trained and eval-
uated under high or low noise scenarios.

6.4.1 Simulated case study. Afirst experimental setup on simulated
data goes back to the simplified setting from Section 4. Figure 6
displays the bid level, volume and spend during the day, along with
the final delivery cost decomposed into the final spend and penalty
for five different RNN models. Each RNN model is trained on a
simulated dataset for which the volume process follows Eq. 3 with
a different level of noise (and no drift term). Each column evaluates
the same model on six cases without noise, for which a permanent
shock in the available volume happens for all dates t ≥ 65. A shock
factor of δ means that after the shock the available volume given
the same bid level is divided by δ .

Note that the RNN model is able to learn a good approximation
of the optimal strategy derived theoretically. The RNN controller
exhibits the same behavior as the one evidenced in Figures 2 and 3
by exact resolutions of the control problem. Indeed, the bid strategy
is constant when noise is absent during the training. Hence the
volume acquired and spend linearly grow through time in the sce-
nario without any shock in the available volume. In scenarios with
permanent shock factors, this model carries on bidding at the same
level, thus falling short of the volume target of 100 impressions. As
the final volume shortfall grows with the shock factor, the bigger
the shock occurs, the bigger the end penalty is.

One can observe that the more noise a RNN controller model
was trained with, the higher it starts bidding and the easier it
absorbs shocks in the available volume. The models trained with
more uncertainty in the available volume tend to provision for the
shortfall risk by bidding higher and earlier than the optimal level in
the absence of noise. To the extreme, the optimal solution is to buy
as fast as one can (without bidding higher than the penalty). This
obviously entails a higher spend when the risk does not materialize.
However, the more risk was anticipated by a model through its
training, the lower the final spend and penalty are when risk do
realize, demonstrated here by increasing level of permanent shocks.

In a second experimental setup on simulated data, two RNN
models were trained with either a low or high14 level of noise and
evaluated under both a low or high noise scenario. Main results
are shown in Table 1. The experiment shows as expected that for
both models the cost of delivery and the bidding problem difficulty
(probability of shortfall) are higher in the evaluation scenario with
high noise. However, given an evaluation scenario, i.e. an amount
of noise that realizes, the delivery cost is lower for the model that
has been trained on data with the same amount of uncertainty.

6.4.2 Training on production data. Performance results on actual
market data are available in Table 2. As a benchmark, a PI controller
14The high noise scenario is calibrated to be consistent with the average level of daily
noise observed on our real data, its interquartile range being [7., 18.]. So the low noise
scenario does represent a situation where risk is deeply underestimated.
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Figure 6: Bid strategy of RNN controller models trained with an increasing level of noise, and their reaction to permanent
volume shock scenarios. Each column shows the bid level, volume and spend throughout time as well as the final cost (sum
of spend and penalty) of the same RNN model trained on simulated data with an increasing level of noise. Columns 1 to 5
respectively correspond to standard deviations of 0, 0.2, 1., 5., and 10. during the training. The models are here evaluated on
deterministic data without noise. In each column, the six lines or bars represent various shock factors impacting the available
volumes for all dates t ≥ 65. A shock factor of x means that after the shock the available volume given the same bid level
is divided by x . The bottom row decomposes the final cost incurred into the spend for buying the final impressions (bottom
dark-colored bars) and the penalty that may be received if the volume target is not reached (light-colored stacked bars).

is tuned to follow a reference pacing curve fitted on the training
data. Indeed, a good approximation of the internet traffic intraday
seasonality can be obtained using a model with only two harmonics
[Karlsson 2014].

Table 2 details the average total cost of delivering campaigns of
increasing daily volume goals for both the PI model and the RNN
model. Overall, the RNN model is able to reduce delivery cost by
about 20% compared to the PI model. As the volume target increases,
so does the bidding problem difficulty as the total available volume
under the penalty level is constraining the bid strategy for a larger

share of the dataset. Eventually, for very large volume goals the
optimal strategy is to bid the penalty level, capturing all the volume
below this level and paying the penalty for each missed impression.
Thus lower performance improvements are expected for the larger
goals, relative to the size of the targeting.

7 CONCLUSION AND FUTUREWORKS
The RNN controller model proposed in this paper provides both an
effective and practical method to solve the optimal bidding problem.
It has the advantage not to rely on manually engineered features



Recurrent Neural Networks for Stochastic Control
in Real-Time Bidding KDD ’19, August 04–08, 2019, Anchorage, Alaska – USA

Delivery cost ($CPM) ratio
Goal (imps) PI RNN RNN/PI

100 1.02 0.82 0.80
500 1.28 1.02 0.79
1000 1.60 1.27 0.80
1500 2.06 1.76 0.85

Table 2: Model performance comparison on actual market
data.

to represent knowledge about the current state or history that
could be leveraged in a bidding strategy, but instead infers it from
the data. For instance, a more advanced, adaptative, PI controller
could be employed to tackle the control problem, e.g. by using
splines modeling the price-volume mapping to efficiently store
the response gain at various price points. However, such a model
would still lack useful elements from the very complex state space it
evolves in, mainly because it overlooks the impact that uncertainty
about future market volume and bid landscape has on the optimal
strategy.

Numerical experiments demonstrate that the proposed approach
is able to improve significantly on existing bidding controllers,
while being trainable and usable at production scale. The approxi-
mation of the state and space transition provided by the RNN leads
to a solution that captures a key aspect of the solution, namely
provisioning against the risk of underdelivery.

This work could be extended in many ways:
• The observability of all bids including those of lost auctions
is convenient in the case of our work. This assumption could
nevertheless be relaxed. The reconstruction of bid distribu-
tions for training would probably be more complex and the
noise added to the bid would need to be used as an explo-
ration device.

• In practice, setting multiple goals would be an interesting
feature to add, e.g. buying impressions with some guarantee
of viewability. The equations would be marginally changed.

• The first price and exotic auction cases add a significant
amount of complexity to this approach, however those ques-
tions would be resolved at the impression scale, while the
macroscopic (5 min) scale control problem would probably
hold in a similar way.

• Giving the RNN some more feedback, based on the noise
injected in the bid could probably help.

More generally, this paper shows how RNNs can be applied to
complex control problem with success.
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