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Abstract

In the clinical domain, it is important to understand whether an adverse drug reaction (ADR) is 

caused by a particular medication. Clinical judgement studies help judge the causal relation 

between a medication and its ADRs. In this study, we present the first attempt to automatically 

infer the causality between a drug and an ADR from electronic health records (EHRs) by 

answering the Naranjo questionnaire, the validated clinical question answering set used by domain 

experts for ADR causality assessment. Using physicians’ annotation as the gold standard, our 

proposed joint model, which uses multi-task learning to predict the answers of a subset of the 

Naranjo questionnaire, significantly outperforms the baseline pipeline model with a good margin, 

achieving a macro-weighted f-score between 0.3652 – 0.5271 and micro-weighted f-score between 

0.9523 – 0.9918.
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1 INTRODUCTION

Causal inference remains an unsolved task in statistical and machine learning. In the clinical 

domain, identifying the causality between a medication and its adverse drug reaction (ADR) 

is essential for pharmacovigilance and drug safety surveillance. An ADR is defined as any 

noxious, unintended and undesired effect of a drug after doses used in humans for 

prophylaxis, diagnosis, or therapy [22]. ADRs are the single largest contributor to hospital-

related complications in inpatient settings [7]. ADRs affect more than two million hospital 

stays annually [16], and prolong hospital length of stay by 1.7 to 4.6 days [2, 6]. 

Anticoagulants are among the most commonly implicated drug classes in ADRs, accounting 

for approximately 1 in every 10 of all drug-related adverse outcomes (e.g., bleeding) in 

hospital settings [18].

However, identifying the causality between a medication and its ADRs is challenging. 

Clinical pharmacologists frequently disagree when analyzing the causality of ADRs [22]. As 

described by [22], the challenges include that manifestations of ADRs are nonspecific, that 

the suspected medication is usually confounded with other causes, and that the adverse 

reaction often cannot be distinguished from manifestations of the disease.

As a result, the Naranjo scale was developed to standardize assessment of causality for all 

adverse drug reactions [22]. The Naranjo scale comprises a list of 10 questions (Table 1). A 

causality scale (e.g., probable) is then assessed based on the answers to those questions. 

Naranjo scale has showed a marked improvement in between-raters and within-raters 

agreement while assessing ADRs as compared to other approaches. The reproducibility of 

the scale has been maintained on retesting along with a high intra-class correlation 

coefficient of reliability [22]. Therefore, Naranjo scale has been widely used as a standard 

since its inception.

Previous clinical judgement studies have solely been conducted on manual chart reviews of 

electronic health records (EHRs). In this work, we have developed natural language 

processing (NLP) techniques to for automated Naranjo question answering assessment. 

Researchers have developed different NLP approaches for electronic health records (EHRs) 

applications, including medical entity extraction [15], and relation identification [17]. 

Previously, ADRs have been detected based on context or linguistic cues (e.g., “caused by”) 

indicative of the causal relations between a medication and ADRs [21]. There have also been 

studies to identify ADRs [13, 14] using statistical models [12]. However, inferring the 

causality of ADRs using either linguistic cues or statistical models have significant 

limitations. For example, physicians may not explicitly describe the causality between a 

medication and its ADEs, and statistical correlation is far from causality. Therefore, the 

ADRs detected by both methods still need to be clinically validated.

In this study, we propose a joint model (JM) for automatically answering the Naranjo 

questionnaire by computing the causality scale as explained in Section 3.1. The joint model 

utilizes multi-task learning to identify relevant sentences and learns from their answers for 

different questions. To evaluate our model, we evaluated whether a widely used 

anticoagulant, Coumadin, causes an ADR using longitudinal EHRs. Coumadin is a 
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commonly prescribed drug for patients with cardiovascular diseases. It can have interim side 

effects such as nausea or loss of appetite as well as serious side effects such as internal 

bleeding, which can continue for up to a week after discontinuing the medication.

To build the joint model (JM), we first built an annotated EHR cohort to be used for training 

and evaluation. We selected the clinical notes (mainly discharge summaries) of patients who 

were administered Coumadin. To increase the chance that the notes also contain ADRs, we 

focused on patients who had any signs of internal bleeding such as gastrointestinal bleeding, 

blood clots or black tarry stools as these are the most common ADRs of anticoagulants. 

Physician annotators manually examined those notes and provided answers for each Naranjo 

question. The physicians provided highly granular information by annotating the relevant 
text in the EHR and then the answer of the related Naranjo question as one of the three 

answers: ‘Yes’, ‘No’ and ‘Do not know’.

This provides us two important information: the relevant sentence and answer for each 

question in the questionnaire, although not all questions are answered in EHRs because there 

might be no relevant or conclusive information to answer them. The questionnaire and the 

dataset are described in more detail in Section 3. The problem formulation for the multi-task 

learning has been provided in Section 4.1 and our methodology is described in Section 4 

followed by results and analysis of models in Section 5. We found that our proposed model 

outperformed the baseline Pipeline model for 4 out of 5 questions and achieves macro-

averaged f-score in the range of 0.3652 – 0.5271 for all selected questions.

Our contributions are mainly three fold:

(1) We infer causality between a medication and its adverse drug reaction(s) by 

building a computational model to automatically answer the clinically validated 

Naranjo questionaire using EHRs. Our work is a significant contribution to 

patient drug safety surveillance and pharmacovigilance, as the current practice 

relies on the labour-intensive process of domain-experts who manually chart-

review the EHRs.

(2) We formulate this Naranjo questionnaire as a novel end-to-end multi-task 

learning problem. Our multi-task joint model uses multi-attentions, enriched 

with contextual information. Our joint model also integrates cost-sensitive 

learning and down sampling to mitigate the data imbalance challenge.

(3) To the best of our knowledge, our work is the first computation model for 

clinical question answering using EHRs. Our model could be used as a strong 

baseline for any further research work in this area.

2 RELATED WORKS

Multiple studies have been conducted using the Naranjo Scale [22] to identify the causal 

relationship between an ADR and a medication [1, 8]. Most of these clinical judgment 

studies have been conducted using manual chart reviews [8, 23, 25] whereas only some of 

them performed statistical analysis on the relationships between medications and adverse 
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drug reactions [9]. The statistical analysis was also performed manually after extracting the 

dosage of the medications and occurrence of ADRs.

There have been efforts on identifying the ADRs and medications using different statistical 

methods [12, 14, 15]. However, these methods did not identify the causal relations between 

them. There have been further studies to extract the relations between ADRs and 

medications [10, 21, 27], but still they just focused on extracting if there is a relation 

between a pair of entities, and failed to answer the causality. Moreover, these studies focused 

on local context and did not use the information from the whole clinical note.

In order to utilize both the powerful deep learning techniques and information provided by 

the Naranjo Scale, we built a question answering model. Enormous efforts have been put in 

to develop effective question answering techniques [20, 26, 28]. Seo et al. [26] designed a 

bi-directional attention model to make full use of query and context information. Although 

we also leveraged the attention method, our task is essentially different from extractive 

question answering since our task needs models to perform various inferences related to the 

Naranjo Scale Questionnaire.

Our work is also related to multi-task learning [5], since we designed a joint model to 

perform relevant sentence detection and answer prediction simultaneously. There have been 

efforts on training question answering models via multi-task learning as well [3, 4]. These 

studies leveraged evidences and answers, which are both provided within the text. They also 

utilized queries to find the evidences in the context. However, in our case the questions are 

fixed, which makes it more difficult to train models. Furthermore, we did not only utilize the 

evidence of the answer, but also recognize whether a sentence is relevant to the answer of 

our Naranjo questions. Hence, we focused on developing a question answering technique 

which can answer the Naranjo questions for each clinical record by focusing on two 

objectives: classifying relevant sentences and predicting correct answers. Thereafter, our 

model could be utilized to calculate the Naranjo causal score as explained in section 3.1.

3 NARANJO SCALE AND DATASET

3.1 Naranjo Scale

The Naranjo Scale Questionnaire consists of 10 questions which are administered for each 

patient’s clinical note. Each question can be answered as “Yes”, “No” or “Do not know”, 

where “Do not know” is marked when the quality of the data does not allow an affirmative 

(yes) or negative (no) answer.

A score of {−1, 0, 1, 2} is assigned to each question as shown in Table 1. The Naranjo scale 

assigns a causality score, which is the sum of the scores of all Naranjo questions, that falls 

into one of four causality types: doubtful (≤ 0), possible (1−4), probable (5−8), and definite 

(≥ 9). In clinical settings, it is typically rare to find answers to all 10 Naranjo questions. The 

Naranjo scale is designed so that it is valid even if the answers for only a subset of the 

Naranjo questionnaire can be found.
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3.2 Dataset

Our EHR dataset consists of the discharge summaries of 446 patients with cardiovascular 

diseases. Since some of the patients were admitted more than once, there are 584 discharge 

summaries in total. Four trained annotators, supervised by a senior physician, annotated the 

Naranjo scale questionnaire for each of these discharge summaries. Each discharge summary 

was annotated by one of the four annotators independently. Reconciliation was done by a 

senior physician who examined every annotation and discussed the difference with other 

physicians. Each discharge summary could have multiple ADRs, each of which could have 

multiple Naranjo questionnaires. Our joint model attempts to detect all of the ADRs and the 

corresponding questionaires and answers.

Since we are only interested in the questions that can be answered within a discharge 

summary, we omitted question 1 from our study. For the remaining questions, most of the 

answers, 90% or more, for questions 4, 6, 8 and 9 were “Do not know”. As described earlier, 

the imbalanced answer distribution is typical for the Naranjo scale assessment and it would 

still be clinically meaningful even if only a subset of the Naranjo questions could be 

answered. To build effective computational models with sufficient amount of data, we 

focused on the remaining 5 questions: 2, 3, 5, 7 and 10. The distribution of classes for these 

questions is given below in Table 2. For each model, the training, validation and test split 

was 60 : 20 : 20. In the selected 5 questions, we tried to account for class imbalance during 

modeling which is discussed in Section 4.5.

4 METHODOLOGY

4.1 Problem Formulation

As mentioned in the previous section, a discharge summary can have multiple ADRs and 

their corresponding Naranjo questions. Our annotators went through each of the clinical note 

meticulously and annotated all the ADRs with their corresponding Naranjo question-

answers. The annotation resulted in two types of information: relevant sentence for which 

the Naranjo question has been answered and answer (“Yes”, “No”, and “Do not Know”) for 

the specific Naranjo question. For example, the sentence “In ED, she was found to have a 

hgb of 9, INR 3.6, and rectal exam in ED revealed maroon stool” as shown in Figure 1 was 

annotated as a relevant sentence to answer the Naranjo question 2 for the ADR “maroon 

stool” (the answer is “yes”).

In summary, we have the answers of Naranjo questions as well as the sentences which 

contain the relevant information for answering the questions. The tasks are summarized as 

follow:

(1) Classifying Relevant Sentences: Each sentence from the discharge summary 

would be passed to the relevance model which would classify the sentence as: 

Relevant or Non-Relevant.

(2) Predicting Answers: The relevant sentences are then passed to the question 
answering (QA) model which would predict the answer of the Naranjo question 

as: “Yes”, “No” or “Do not know”.
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We developed both a pipeline model as well as a multi-task joint model for every Naranjo 

question. Building a pipeline model is straight-forward but building an end-to-end joint 

model (JM) is more challenging. For example, if the sentence relevant model makes a 

mistake during the training (for example, classifying a Non-Relevant sentence as Relevant), 
the QA model would have no answer label to train on. To deal with this problem, we added 

an extra label for the QA model as False. If a statement is Non-Relevant, its gold-standard 

label for the QA model would be set to False. Therefore, the QA model predicts one of the 

four answers (“Yes”, “No”, “Do no know” or “False”) for each statement.

4.2 Baseline Pipeline Model

For the pipeline model, we built two different sub-models for classifying relevant sentences 

and for predicting answers, respectively. Each model is explained in details below:

4.2.1 Relevance Model.—The relevance model is a binary-classification model. To 

build this model, we used the bidirectional long short-term memory network [11] with 

global attention (BiLSTM-Attn) [19] over the tokens. The BiLSTM has 2 LSTM units where 

the first unit LSTM propagates in the forward direction and the second LSTMpropagates in 

the backward direction. The hidden states from both LSTM units are concatenated to form 

the final hidden state.

LSTM xt + LSTM xt = ht + ht = ht, (1)

where X ∈ x1, x2, ……xn  denotes a sentence and its tokens, ht indicates the hidden state at 

the time step t.

These hidden representations H = [h1,h2....ht...hn] are then passed through an affine layer 

(Wa) and a softmax layer to get the location-based global attention [19], given by:

at = so f tmax Waht , (2)

where at denotes the weight of each hidden state and the final hidden representation h′ can 

be obtained by the weighted sum operation:

h′ = atht . (3)

This final hidden representation (h′) is used to predict the relevance for the sentence. An 

illustration of the relevance model is shown in Fig. 1.

4.2.2 Question Answering Model (QA).—The QA model is trained on only relevant 

sentences which have one of the three labels: “Yes”, “No” or “Do not know”. We evaluated 

whether the contextual information (meaning the sentences before or after the annotated 

relevant sentences) could be useful or not by adding the before and after sentences in our 

model. We tuned the context window as a hyper-parameter. An illustration of the QA model 

is shown in Fig. 1. Each sentence is passed through a BiLSTM-Attn model as explained 

earlier to get the final hidden representation (h′).
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If we have a context window of 3, we would have 7 final hidden representations: 

h−3′ , h−2′ , h−1′ , h0′ , h1′ , h2′ , h3′ . These hidden representations are then passed through another 

BiLSTM-Attn model. After that, we get the final representation at the context level hsent′

which is used to predict the answer for the Naranjo question.

4.2.3 Inference.—Each sentence first goes through the relevance model. If the model 

predicts that the sentence is Non-relevant, it becomes the final predicted label for the sentence. 

If the model predicts that the sentence is Relevant, the sentence along with its context 

sentences pass through the QA model. The answer predicted by the QA model becomes the 

final predicted label for that sentence.

4.3 Joint Model (JM)

As shown in Fig. 1, the joint model (JM) also has two sub-models, same as the ones 

explained in the last section. The main differences between the JM and pipeline models are 

as follow:

(1) JM is trained using multi-task learning [5] where both the objectives of 

classifying the relevance of the sentence and the Naranjo answer for that sentence 

are considered simultaneously. This is implemented by adding a virtual gold 

label False for Non-relevant sentence, as explained in Section 4.1. During training, 

the loss function of the joint model (LossJointModel) is formalized as:

LossJointModel = LossRelevance + LossAnswer (4)

Both LossRelevance and LossAnswer are negative log likelihood losses [24] for their respective 

label predictions.

(2) The BiLSTM layer in JM are shared by the relevance and QA sub-models, as 

shown in Fig. 1. Concretely, the same BiLSTM units are used for getting the 

hidden outputs from the tokens of the sentence. The two submodels share the 

BiLSTM units as well as the parameters of the attention layer. Such a “shared 

model” is reasonable because both sub-models use similar sentence context for 

the classification. A separate BiLSTM attention layer is used for the final 

representations of the sentence and its’ context sentences. Here the attention 

layer is different because the attention is over sentences and not tokens now.

4.3.1 Inference.—If the Naranjo answer for the sentence is predicted as Yes, No or Do 
not know by the QA sub-model of JM, it is recognized as relevant. If the label of the 

sentence is False, it is recognized as None-Relevant. Therefore, only the answer predicted by 

the QA sub-model is necessary for evaluation.

4.4 Joint Model with Doc Representation (JM-Doc)

JM utilizes the information from the sentence and its surrounding context to predict the 

answer of a Naranjo question. In addition to the surrounding context, we believe that the 

global information from the entire discharge summary (doc) could be useful for the Naranjo 
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questionnaire. In order to accommodate the document information, we added a BiLSTM-

Attn sub-model to get the document representation, as shown in Fig. 1.

4.4.1 Document Representation.—The entire discharge summary is first tokenized 

and then passed through a BiLSTM-Attn network. This BiLSTM network shares its 

parameters with the BiLSTM network used to build the representation for the sentences. The 

sentence-level BiLSTM-Attn network remains the same but we used another attention layer 

to generate the document representation. This document-level attention layer can learn how 

to transfer important global information to the further layers.

The final representation of the discharge summary hdoc′  is then concatenated with the final 

representation of the sentence and its context to get the vector hanswer′ = hsent′ , hdoc′ . The 

concatenated vector hanswer′  is then passed through the inference layer to predict the answer 

for the sentence: Yes, No, Do not know or False. The sentence and its context representation 

represent the local information while the representation of the whole discharge summary 

represent the global information. Our results show that both help answer a specific Naranjo 

question. The inference for this model is same as JM.

4.5 Class Imbalance

We can observe in Table 2 that the answers to Naranjo questions are quite unbalanced. This 

becomes an even bigger problem when we try to learn the joint model (JM). Take question 2 

as an example, the ratio of labels for the Pipeline model is Yes : No : Do not know = 1299 : 

124 : 547, the ratio for JM, however, changes to False : Yes : No : Do not know= 36799 : 

1299 : 124 : 547 because we also add another label (False) for all the Non-relevant 
sentences. This poses a challenge for the JMs as this unbalancing is quite significant. In 

order to tackle this problem, we employ two techniques.

4.5.1 Weighted Loss for Class Imbalance.—We implemented weighted loss 

technique [29] where the total loss is calculated as weighted sum of loss according to the 

class. Log weighting helps in smoothing the weights for highly unbalanced classes, which is 

the case in our dataset as shown in Table 2

wc, q =
1, 0
log(a ∗ Tq/Tc − q) if(wc, q < 01.0) (5)

Where q ∈ {2, 3, 5, 7, 10} represents one of the 5 questions and c ∈ {Yes, No, Do not know, 

False} and we tuned α as a hyperparamter which came out to be = 15. Tq is the count for 

question q and Tc,q is the count of a particular class c for question q.

4.5.2 Down-sampling.—In order to level the training data, one of the most common 

technique is to down-sample the datapoints of the most frequent labels. In our case, False 
label has incredibly large amount of data when compared to other three labels. Hence, we 

employed down-sampling on data for False label during training. Before each training 
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epoch, we randomly reduced the training data for False label by X. We tuned X as a 

hyperparameter for the model, which came out to be X = 40%.

For experiments, we applied weighted loss technique to all the models, but we only applied 

down-sampling to the Joint Model with doc representation since we aimed to observe the 

incremental value of down-sampling. This model has been referred to as JM-Doc down 
model in the further sections.

4.6 Evaluation Metrics

We evaluated our models on precision, recall and f-score metrics as the answer for each 

question is limited to four classes: Yes, No, Do not know, False. We reported both macro-

averaged and microaveraged precision recall and f-score for all models across questions in 

Table 3. Micro-average reports the average of instance-level performance and therefore is 

biased to the label with the highest frequency count which is why the micro-averaged metric 

values are quite high for all models as they are biased towards the False label. Macro-

averaged metrics are calculated by averaging the performance across the labels and thus 

provide better insight on model’s performance across different labels.

5 RESULTS AND ANALYSIS

We reported both macro-averaged and micro-averaged precision, recall and f-score. Micro-

average reports the average of instancelevel performance and therefore is biased to the label 

with the larger ratio, while macro-average reports the average performance of different 

labels.

Based on micro-averaged f-scores, the JM outperformed the pipeline model on all five 

questions. In contrast, based on the macroaveraged f-score, the joint models perform better 

than the pipeline model in four out of the five selected questions. In question 3, the Pipeline 

model (macro F1=0.3675) performs slightly better than the joint models (macro F1=0.3652), 

but the JM outperformed the Pipeline model in micro F1 scores (0.9918 vs 0.9809). As 

shown in Table 3, the joint models with document representation generally outperform the 

models that only uses local information, i.e., sentence and its context. We provide further 

analyses for each question, as follow.

5.1 Question 2

Did the adverse event occur after the suspected drug was administered?—All 

three joint models perform better than the pipeline model based on macro-averaged as well 

as micro-averaged metrics. The joint model with the doc representations performs better 

than other joint models. Our hypothesis is that document representation helps the model in 

learning difficult patterns of the sentences as well. We analyzed multiple sentences to 

understand the patterns where the JM models with document representation perform better. 

An example for a sentence is shown below:

Sentence :Never had bleeding like this before.

Answer :Yes.
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In the sentence above, the patient experiences bleeding after the anticoagulant is 

administered to the patient hence the answer for question 2 is ‘Yes’.

The variant of joint models with document representation predicts the correct answer for this 

sentence whereas the two other models got it wrong. In this EHR note, the information that 

the anticoagulant is administered to the patient is mentioned quite early in the discharge 

summary and is not captured in the context sentences of the above sentence. The document 

representation helps in summarizing this information. This is also validated in Fig. 2 which 

shows how the token level attention varies over different words. The pipeline model and 

joint model focuses attention over different word than bleeding. The joint model most likely 

got confused because of the presence of the word never at the start of the sentence because 

of its’ negative connotation. Whereas the two variants of joint models with document 

representation focuses its attention on the bleeding event which is an ADR for the 

anticoagulant. We observed such similar patterns of attention shift in other examples as well.

5.2 Question 3

Did the adverse reaction improve when the drug was discontinued or a specific antagonist 
was administered?

For this question, the performance of the pipeline model is the best when we look at the 

macro-averaged classification metrics, although the difference in the macro-weighted f-score 

is small (0.026) and not statistically significant. In contrast, the JM has the highest 

performance based on micro-weighted f-score (0.9918), which is more than 0.01 higher than 

the pipeline model.

The mix results may be caused by the fact that question 3 has the least amount of data for 

training (281, 21, 181 for Yes, No, and Do not know, respectively), which is in contrast to 

other questions (for example, question 10 has 1683, 678, and 227 for Yes, No, and Do not 

know). Among all five questions, question 3 has the least frequency counts because most of 

the time the patient’s visit is not long enough to have a conclusive answer regarding whether 

the ADR improved once the drug was discontinued. It is usually a suggestion to patients 

during discharge to discontinue the medicine or use an antagonist along with it. Hence, it is 

unlikely in the discharge summary to suggest whether the patient observed any improvement 

or not.

5.3 Question 5

Are there alternative causes that could have on other own cause the reaction?
—This question has the highest number for training (2186, 221, and 316 for Yes, No and Do 

not know) and yet the performance (the highest macro-F1 score is 0.3936) is not highest 

compared to other Naranjo questions. The joint model with document representation and 

down-sampling performs the best for both macro and micro-weighted f-score. After 

manually examining multiple examples, we observed certain patterns (e.g., triggers that can 

cause the ADRs) can be mentioned in negative connotation as well as positive connotation in 

the discharge summary and the models may not have sufficient amount of data, even though 

the training size of this question is the highest among all the Naranjo questionnaire. Two 

examples are shown below to illustrate this problem in more detail.
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Statement No history of diverticulosis, has never had a colonoscopy.

Answer: No.

Diverticulosis is the condition of having multiple pouches in the colon that are not generally 

inflammed. This can cause painless rectal and is usually the main cause of lower 

gastrointestinal bleeding. Since the patient does not have a history of diverticular disease 

which rules out the possibility that it could have acted like a trigger or alternative cause for 

ADR, hence the answer is marked as ‘No’.

None of the models were able to predict the correct answer for this sentence. In Fig. 3, all 

the models focused their attention over tokens such as diverticulosis and colonoscopy which 

can confuse the model as trigger for the ADR, if the negative connotation for that trigger is 

not considered with the help of the first token of the sentence: No.

Statement Impression: - Diverticulosis sigmoid colon, descending colon and ascending 

colon.

Answer: Yes.

In the above example, the physician observes that there are diverticulosis colons in the 

patient. As mentioned earlier, diverticulosis colons can result in rectal bleeding which is why 

the answer for this sentence with respect to question 5 is Yes.

All the joint models were able to correctly predict the answer for this sentence with respect 

to question 5. We can observe in Fig. 4 that except the Pipeline model all the other models 

were able to focus their attention on the token diverticulosis and predicting the correct 

answer accordingly after recognizing the trigger for bleeding.

Here we saw two examples for question 5 which had the same token, diverticulosis, but 

according to the context the answers were different. The models learned to identify the 

triggers in the sentence but were not able to learn the negative connotation mentioned along 

with it. This problem can easily occur because of less data.

5.4 Question 7

Was the drug detected in the blood (or other fluids) in concentration known to 
be toxic?—Similar to other questions, this question also presents a data imbalance 

challenge. In Table 3, all three joint models outperformed the pipeline model. Among the 

JMs, JM-Doc performed the best. We analyzed different datapoints of wrongly predicted 

answers, and found that the models are not able to capture compound information. Examples 

are shown below:

Statement Pt required multiple blood transfusions daily and had many transfusions of FFP 

to achieve a hgb > 8 and INR < 1.5.

Answer Yes.
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The above statement suggests that the patient was given multiple transfusions to get his/her 

INR (international normalized ratio) below 1.5. INR test values are used to determine the 

clotting tendencies of the blood and the normal values are usually below 1.5.

All of the models predicted the answer for this statement with respect to question 7 

correctly. The above figure shows that all the models were able to focus their attention on 

the INR token which is provided in the statement and predicted the ‘Yes’ token accordingly. 

Though it should be noted that none of the models fixed their attention on the < sign or the 

value of INR test (1.5).

Statement INR was 1.4, and he was given 80 mg enoxaparin.

Answer No.

In the statement above, the INR level of the patient are below 1.5 and hence it is within the 

normal range which is why the answer for this statement is No.

All the models predicted wrong asnwer for this sentence. When we look at the token level 

attention in Fig. 6, we observe that all the models focused their attention on the INR token 

but since the models are not compounding the information of the whole sentence, they end 

up predicting wrong answer for such sentences.

5.5 Question 10

Was the adverse event confirmed by any objective evidence?—For this question, 

all the variants of joint models achieved their personal best performance across questions. 

The joint model with document representation along with downsampling (JM-Doc down) 

performs the best with the macro-weighted f-score of 0.5271. For this question, we tried to 

analyze where the models failed to predict the correct answers.

Statement The following day he had a significant increase in his hematuria, and the catheter 

stopped draining.

Answer Yes.

Hematuria is the presence of red blood cells in the urine. The increase in hematuria acts as 

an evidence for the existence of an ADR such as bleeding, hence the answer for this 

sentence with respect to question 10 is ‘Yes’.

All the models predicted wrong answer for the sentence mentioned above. In Fig. 7, the 

attention of all the models is focused on different tokens except hematuria which should be 

the evidence for the adverse event (bleeding). By looking at more examples, it became clear 

that the models were not able to focus on tokens which have few count in the dataset. 

Different tokens which do not appear frequently in our dataset tend to be harder to recognize 

by the model resulting in predicting wrong answers for the sentence. Increasing the data 

over more patients and discharge summaries would help in boosting the accuracy of models 

for this question.

Rawat et al. Page 12

KDD. Author manuscript; available in PMC 2019 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.6 Statistical Analysis

In order to check if our results are significant or not, we calculated significance p-values by 

performing paired t-test on multiple pairs of Pipeline and joint models using their f-score 

values. For each model pair, we performed the t-test across the questions. As we can observe 

in Table 4, the performance improvement of JM-Doc and JM-Doc down is significant over the 

performance of Pipeline model as their respective p-values are less than 0.05. The p-value of 

Pipeline-JM pair is quite close to 0.05 and hence the performance improvement of JM over 

Pipeline can also be considered significant.

6 CONCLUSION

In this paper, we built question answering models for automatically answering the Naranjo 

questionnaire [22] using EHR notes. The Naranjo scale is well accepted in the medical 

domain for assessing the causality between a medication and its ADRs. We built an 

innovative end-to-end multi-task joint model which generally outperformed the pipeline 

model for automatically answering the Naranjo questionnaire. We employed different 

techniques to account for data imbalancing challenge. We also explored different contextual 

information. Our results show that both the global context (document-level context) and 

down sampling help improve the performance of joint models. Our study presents the first 

computation model in EHR-based clinical question answering and in automated Naranjo 

scale assessment, and therefore would be the baseline model for any future work in these 

areas.
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Figure 1: 
Joint Model with document representation. The first attention layer attends to the words in a 

sentence. The second attention layer attends to the sentence and it’s neighbouring sentences 

which act as the local context for the sentence. The document vector is created separately 

which provides global context to the model. The BiLSTM parameters shared between 

different parts of the model are color-coded so that the same color represents shared 

parameters
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Figure 2: 
Token level attention of a sentence for question 2.
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Figure 3: 
Token level attention of a sentence for question 5.
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Figure 4: 
Token level attention of a sentence for question 5.
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Figure 5: 
Token level attention of a sentence for question 7.
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Figure 6: 
Token level attention of a sentence for question 7.
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Figure 7: 
Token level attention of a sentence for question 10.
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Table 1:

Naranjo Scale Questionnaire.

# Naranjo Questions Yes No Do not know

1. Are there previous conclusive reports on this reaction? 1 0 0

2. Did the adverse event occur after the suspected drug was administered? 2 −1 0

3. Did the adverse reaction improve when the drug was discontinued or a specific antagonist was 
administered?

1 0 0

4. Did the adverse reaction reappear when the drug was readministered? 2 −1 0

5. Are there alternative causes (other than the drug) that could have on their own cause the reaction? −1 2 0

6. Did the reaction reappear when a placebo was given? −1 1 0

7. Was the drug detected in the blood (or other fluids) in concentrations known to be toxic? 1 0 0

8. Was the reaction more severe when the dose was increased or less severe when the dose was decreased? 1 0 0

9. Did the patient have a similar reaction to the same or similar drugs in any previous exposure? 1 0 0

10. Was the adverse event confirmed by any objective evidence? 1 0 0
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Table 2:

Distribution of answers for selected 5 questions.

Question # Yes No Do not know

2 1633 139 666

3 381 21 181

5 2186 221 316

7 619 29 76

10 1683 678 227
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Table 4:

Model pairs and their t-test p-values.

Pairs p-value

Pipeline - JM 0.0797

Pipeline - JM-Doc 0.0259*

Pipeline - JM-Doc down 0.0306*

*
p<0.05
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