
ar
X

iv
:1

90
5.

08
97

7v
1

 [
cs

.D
S]

 2
2

M
ay

 2
01

9

A Memory-Efficient Sketch Method for Estimating
High Similarities in Streaming Sets

Pinghui Wang1,2,⋆, Yiyan Qi1,⋆, Yuanming Zhang1, Qiaozhu Zhai1, Chenxu Wang2,∗,
John C.S. Lui3, Xiaohong Guan2,1,4,∗

1NSKEYLAB, Xi’an Jiaotong University, Xi’an, China
2Shenzhen Research Institute of Xi’an Jiaotong University, Shenzhen, China

3The Chinese University of Hong Kong, Hong Kong
4Department of Automation and NLIST Lab, Tsinghua University, Beijing, China

{phwang,qzzhai,cxwang,xhguan}@mail.xjtu.edu.cn,{qiyiyan,zhangyuanming}@stu.xjtu.edu.cn,

cslui@cse.cuhk.edu.hk

ABSTRACT

Estimating set similarity and detecting highly similar sets are fun-

damental problems in areas such as databases, machine learning,

and information retrieval. MinHash is a well-known technique for

approximating Jaccard similarity of sets and has been successfully

used for many applications such as similarity search and large

scale learning. Its two compressed versions, b-bit MinHash and

Odd Sketch, can significantly reduce the memory usage of the orig-

inal MinHash method, especially for estimating high similarities

(i.e., similarities around 1). Although MinHash can be applied to

static sets as well as streaming sets, of which elements are given

in a streaming fashion and cardinality is unknown or even infi-

nite, unfortunately,b-bit MinHash and Odd Sketch fail to deal with

streaming data. To solve this problem, we design a memory effi-

cient sketch method, MaxLogHash, to accurately estimate Jaccard

similarities in streaming sets. Compared to MinHash, our method

uses smaller sized registers (each register consists of less than 7

bits) to build a compact sketch for each set. We also provide a

simple yet accurate estimator for inferring Jaccard similarity from

MaxLogHash sketches. In addition, we derive formulas for bound-

ing the estimation error and determine the smallest necessary mem-

ory usage (i.e., the number of registers used for a MaxLogHash

sketch) for the desired accuracy. We conduct experiments on a va-

riety of datasets, and experimental results show that our method

MaxLogHash is about 5 times more memory efficient than Min-

Hash with the same accuracy and computational cost for estimat-

ing high similarities.

⋆Pinghui Wang and Yiyan Qi contributed equally to this work.
∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330825

CCS CONCEPTS

• Mathematics of computing → Probabilistic algorithms; •

Information systems → Similarity measures; • Theory of

computation→ Sketching and sampling.

KEYWORDS

Streaming algorithms;Sketch;Jaccard coefficient similarity

ACM Reference Format:

PinghuiWang1,2,⋆ , Yiyan Qi1,⋆, Yuanming Zhang1, Qiaozhu Zhai1, Chenxu

Wang2,∗ , and JohnC.S. Lui3, XiaohongGuan2,1,4,∗ . 2019. AMemory-Efficient

Sketch Method for Estimating High Similarities in Streaming Sets. In The

25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD ’19), August 4–8, 2019, Anchorage, AK, USA.ACM,NewYork, NY, USA,

10 pages. https://doi.org/10.1145/3292500.3330825

1 INTRODUCTION

Data streams are ubiquitous in nature. Examples range from finan-

cial transactions to Internet of things (IoT) data, network traffic,

call logs, trajectory logs, etc. Due to the nature of these applica-

tions which involve massive volume of data, it is prohibitive to col-

lect the entire data streams, especially when computational and

storage resources are limited [1]. Therefore, it is important to de-

velop memory efficient methods such as sampling and sketching

techniques for mining large streaming data.

Many datasets can be viewed as collections of sets and comput-

ing set similarities is fundamental for a variety of applications in ar-

eas such as databases, machine learning, and information retrieval.

For example, one can view each mobile device’s trajectory as a set

and each element in the set corresponds to a tuple of time t and

the physical location of the device at time t . Then, mining devices

with similar trajectories is useful for identifying friends or devices

belonging to the same person. Other examples are datasets encoun-

tered in computer networks, mobile phone networks, and online

social networks (OSNs), where learning user similarities in the sets

of users’ visited websites on the Internet, connected phone num-

bers, and friends on OSNs is fundamental for applications such as

link prediction and friendship recommendation.

One of the most popular set similarity measures is the Jaccard

similarity coefficient, which is defined as
|A∩B |
|A∪B |

for two setsA and

B. To handle large sets, MinHash (or, minwise hashing) [2] is a

powerful set similarity estimation technique, which uses an array

http://arxiv.org/abs/1905.08977v1
https://doi.org/10.1145/3292500.3330825
https://doi.org/10.1145/3292500.3330825

of k registers to build a sketch for each set. Its accuracy only de-

pends on the value of k and the Jaccard similarity of two sets of

interest, and it is independent from the size of two sets. MinHash

has been successfully used for a variety of applications, such as

similarity search [3], compressing social networks [4], advertising

diversification [5], large scale learning [6], and web spam detec-

tion [7]. Many of these applications focus on estimating similarity

values close to 1. Take similar document search in a sufficiently

large corpus as an example. For a corpus, there may be thousands

of documents which are similar to the query document, therefore

our goal is not just to find similar documents, but also to provide a

short list (e.g., top-10) and ranking of the most similar documents.

For such an application, we need effective methods that are very

accurate and memory-efficient for estimating high similarities. To

achieve this goal, there are two compressed MinHash methods, b-

bit MinHash [8] and Odd Sketch [9], which were proposed in the

past few years to further reduce the memory usage of the original

MinHash by dozens of times, while to provide comparable estima-

tion accuracy especially for large similarity values. However, we

observe that these two methods fail to handle data streams (the

details will be given in Section 3).

To solve the above challenge, recently, Yu and Weber [10] de-

velop a method, HyperMinHash. HyperMinHash consists of k reg-

isters, whereas each register has two parts, an FM (Flajolet-Martin)

sketch [11] and ab-bit string. Theb-bit string is computed based on

the fingerprints (i.e., hash values) of set elements that are mapped

to the register. Based on HyperMinHash sketches of two sets A

and B, HyperMinhash first estimates |A ∪ B | and then infers the

Jaccard similarity ofA and B from the number of collisions of b-bit

strings given |A∪B |. Later in our experiments, we demonstrate that

HyperMinHash not only exhibits a large bias for high similarities,

but it is also computationally expensive for estimating similarities,

which results in a large estimation error and a big delay in query-

ing highly similar sets. More importantly, it is difficult to analyti-

cally analyze the estimation bias and variance of HyperMinHash,

which are of great value in practice–the bias and variance can be

used to bound an estimate’ error and determine the smallest neces-

sary sampling budget (i.e., k) for a desired accuracy. In this paper,

we develop a novel memory efficient method, MaxLogHash, to es-

timate Jaccard similarities in streaming sets. Similar to MinHash,

MaxLogHash uses a list of k registers to build a compact sketch for

each set. Unlike MinHash which uses a 64-bit (resp. 32-bit) regis-

ter for storing the minimum hash value of 64-bit (resp. 32-bit) set

elements, our method MaxLogHash uses only 7-bit register (resp.

6-bit register) to approximately record the logarithm value of the

minimum hash value, and this results in 9 times (resp. 5 times)

reduction in memory usage. Another attractive property is that

ourMaxLogHash sketch can be computed incrementally, therefore,

MaxLogHash is able to handle streaming-sets. Given any two sets’

MaxLogHash sketches, we provide a simple yet accurate estimator

for their Jaccard similarity, and derive exact formulas for bound-

ing the estimation error. We conduct experiments on a variety of

publicly available datasets, and experimental results show that our

method MaxLogHash reduces the amount of memory required for

MinHash by 5 folds to achieve the same desired accuracy and com-

putational cost.

The rest of this paper is organized as follows. The problem for-

mulation is presented in Section 2. Section 3 introduces preliminar-

ies used in this paper. Section 4 presents our method MaxLogHash.

The performance evaluation and testing results are presented in

Section 5. Section 6 summarizes related work. Concluding remarks

then follow.

2 PROBLEM FORMULATION

For ease of reading and comprehension, we say that each set be-

longs to a user, elements in the set are items (e.g., products) that

the user connects to. Let U denote the set of users and I denote

the set of all items. Let Π = e(1)e(2) · · · e(t) · · · denote the user-

item stream of interest, where e(t) = (u(t), i(t)) is the element of Π

occurred at discrete time t > 0, u(t) ∈ U and i(t) ∈ I are the ele-

ment’s user and item, which represents a connection from useru(t)

to item i(t). We assume that Π has no duplicate user-item pairs1,

that is, e(i) , e(j) when i , j. Let I
(t)
u ⊂ I be the item set of user

u ∈ U , which consists of items that user u connects to before and

including time t . Let ∪(t)(u1,u2) denote the union of two sets I
(t)
u1

and I
(t)
u2

, that is, ∪(t)(u1,u2) = I
(t)
u1
∪ I
(t)
u2
. Similarly, we define the

intersection of two sets I
(t)
u1

and I
(t)
u1

as ∩(t)(u1,u2) = I
(t)
u1
∩ I
(t)
u2
.

Then, the Jaccard similarity of sets I
(t)
u1

and I
(t)
u2

is defined as

J
(t)
u1,u2

=

| ∩(t) (u1,u2)|

| ∪(t) (u1,u2)|
,

which reflects the similarity between users u1 and u2. In this paper,

we aim to develop a fast and accurate method to estimate J
(t)
u1,u2

for any two users u1 and u2 over time, and to detect pairs of high

similar users. When no confusion arises, we omit the superscript

(t) to ease exposition.

3 PRELIMINARIES

In this section, we first introduce MinHash [2]. Then, we elaborate

two state-of-the-art memory-efficient methods b-bit MinHash [8]

and Odd Sketch [9] that can decrease the memory usage of the orig-

inal MinHash method. At last, we demonstrate that bothb-bit Min-

Hash and Odd Sketch fail to handle streaming sets.

3.1 MinHash

Given a random permutation (or hash function2) π from elements

in I to elements in I , i.e., a hash function maps integers in I to

distinct integers in I at random. Broder et al. [2] observed that the

Jaccard similarity of two sets A,B ⊆ I equals

JA,B =
| ∩ (A,B)|

| ∪ (A,B)|
= P(min(π (A)) = min(π (B))),

where π (A) = {π (w) : w ∈ A}. Therefore, MinHash uses a se-

quence of k independent permutations π1, . . . , πk and estimates

JA,B as

ĴA,B =

∑k
i=1 1(min(π1(A)) = min(π1(B))

k
,

1Duplicated user-item pairs can be easily checked and filtered using fast and memory-
efficient techniques such as Bloom filter [12].
2MinHash assumes no hash collisions.

where 1(P) is an indicator function that equals 1 when the predi-

cate P is true and 0 otherwise. Note that ĴA,B is an unbiased esti-

mator for JA,B, i.e., E(ĴA,B) = JA,B , and its variance is

Var(ĴA,B) =
JA,B(1 − JA,B)

k
.

Therefore, instead of storing a set A in memory, one can compute

and store its MinHash sketch SA, i.e.,

SA = (min(π1(A)), . . . ,min(πk (A))),

which reduces the memory usage when |A| > k . The Jaccard sim-

ilarity of any two sets can be accurately and efficiently estimated

based on their MinHash sketches.

3.2 b-bit MinHash

Li and König [8] proposed a method, b-bit MinHash, to further

reduce the memory usage. b-bit MinHash reduces the memory re-

quired for storing a MinHash sketch SA from 32k or 64k bits3 to

bk bits. The basic idea behind b-bit MinHash is that the same hash

values give the same lowest b bits while two different hash values

give the same lowest b bits with a small probability 1/2b . Formally,

let min(b)(π (A)) denote the lowest b bits of the value of min(π (A))

for a permutation π . Define the b-bit MinHash sketch of set A as

S
(b)
A
= (min(b)(π1(A)), . . . ,min(b)(πk (A))).

To mine set similarities, Li and König [8] first compute SA for each

set A, and then store its b-bit MinHash sketch S
(b)
A

. At last, the

Jaccard similarity JA,B is estimated as

Ĵ
(b)
A,B
=

∑k
i=1 1(min(b)(πi (A)) = min(b)(πi (B))) − k/2

b

k(1 − 1/2b)
.

Ĵ
(b)
A,B

is also an unbiased estimator for JA,B , and its variance is

Var(Ĵ
(b)
A,B
) =

1 − JA,B

k

(
JA,B +

1

2b − 1

)
.

3.3 Odd Sketch

Mitzenmacher et al. [9] developed a method Odd Sketch, which

is more memory efficient than b-bit MinHash when mining sets

of high similarity. Odd Sketch uses a hash function h that maps

each tuple (i,min(πi (A))), i = 1, . . . ,k , to an integer in {1, . . . ,z}

at random. For a setA, its odd sketch S
(Odd)
A

consists of z bits. Func-

tion h maps tuples (1,min(π1(A))), . . . , (k,min(πk (A))) into z bits

of S
(Odd)
A

at random. S
(Odd)
A
[j], 1 ≤ j ≤ z, is the parity of the number

of tuples that are mapped to the jth bit of S
(Odd)
A

. Formally, S
(Odd)
A
[j]

is computed as

S
(Odd)
A
[j] = ⊕i=1, ...,k1(h(i,min(πi (A))) = j), 1 ≤ j ≤ z.

The Jaccard similarity JA,B is then estimated as

Ĵ
(Odd)
A,B

= 1 +
z

4k
ln

©­
«
1 −

2
∑z
i=1 S

(Odd)
A
[j] ⊕ S

(Odd)
B
[j]

z

ª®
¬
.

3A 32- or 64-bit register is used to store each min(πi (A)), i = 1, . . . , k .

Mitzenmacher et al. demonstrate that Ĵ
(Odd)
A,B

is more accurate than

Ĵ
(b)
A,B

under the same memory usage (refer to [9] for details of the

error analysis of Ĵ
(Odd)
A,B

).

3.4 Discussion

MinHash can be directly applied to stream data. We can eas-

ily find that MinHash sketch can be computed incrementally. That

is, one can compute the MinHash sketch of set A ∪ {v} from the

MinHash sketch of set A as

min(π (A ∪ {v})) = min(min(π (A)), π (v)).

Variants b-bit MinHash and Odd Sketch cannot be used to

handle streaming sets. Let π (b)(v) denote the lowest b bits of

π (v). Then, one can easily show that

min(b)(π (A ∪ {v})) , min(min(b)(π (A)),π (b)(v)).

It shows that computingmin(b)(π (A∪{v})) requires the hash value

π (w) of eachw ∈ A∪{v}. In addition, we observe that min(b)(π (A))

cannot be approximated as minw ∈A π
(b)(w), which can be com-

puted incrementally, because minw ∈A π
(b)(w) equals 0 with a high

probability when |A| ≫ 2b . Similarly, we cannot compute the odd

sketch of a set incrementally. Therefore, both b-bit MinHash and

Odd Sketch fail to deal with streaming sets.

4 OUR METHOD

4.1 Basic Idea

Let h be a function that maps any element v in I to a random num-

ber in range (0, 1). i.e., h(v) ∼ Uni f orm(0,1). Define the log-rank

of v with respect to hash function h as r (v) ← ⌊− log2 h(v)⌋. We

compute and store

MaxLog(h(A)) = max
v ∈A

r (v) = max
v ∈A
⌊− log2 h(v)⌋.

Let us now develop a simple yet accurate method to estimate Jac-

card similarity of streaming sets based on the following properties

of function MaxLog(h(A)).

Observation 1.MaxLog(h(A)) can be represented by an integer of

no more than ⌈log2 log2 |I |⌉ bits with a high probability. For each

v ∈ I , we haveh(v) ∼ Uni f orm(0, 1), and thus r (v) ∼ Geometric(1/2),

supported on the set {0, 1, 2, . . .}, that is,

P(r (v) = j) =
1

2j+1
, P(r (v) < j) = 1 −

1

2j
, j ∈ {0, 1, 2, . . .}.

Then, one can easily find that

P(MaxLog(h(A)) ≤ 2 ⌈log2 log2 |I | ⌉ − 1) =

(
1 −

1

22
⌈log2 log2 |I |⌉

) |A |
.

For example, whenA ⊆ {1, . . . , 264} and |A| ≤ 254, we only require

6 bits to store MaxLog(h(A)) with probability at least 0.999.

Observation2.MaxLog(h(A)) can be computed incrementally. This

is because

MaxLog(h(A∪ {v})) = max(MaxLog(h(A)), ⌊− log2 h(v)⌋).

Observation 3. JA,B can be easily estimated from MaxLog(h(A))

andMaxLog(h(B))with a little additional information.We find that

γ =P(MaxLog(h(A)) , MaxLog(h(B)))

=

+∞∑
j=1

|A \ B |

2j+1

(
1 −

1

2j+1

) |A\B |−1 (
1 −

1

2j

) |B |

+

+∞∑
j=1

|B \A|

2j+1

(
1 −

1

2j+1

) |B\A |−1 (
1 −

1

2j

) |A |
.

Due to the limited space, we omit the details of how γ is derived.

Similar toMinHash, we have P(max(h(A)) , max(h(B))) = 1− JA,B.

Therefore, we have γ < 1 − JA,B . Although γ can be estimated

similar to MinHash using k hash functions h1, . . . ,hk , that is,

E(γ) =

∑k
i=1 1(MaxLog(hi (A)) , MaxLog(hi (B)))

k
,

unfortunately, it is difficult to compute JA,B from γ . To solve this

problem, we observe

P(MaxLog(h(A)) , MaxLog(h(B)) ∧ δA,B = 1) ≈ 0.7213(1 − JA,B),

where δA,B = 1 indicates that there exists one and only one ele-

ment in A ∪ B of which log-rank equals MaxLog(h(A∪ B)).

Based on the above three observations, we propose to incre-

mentally and accurately estimate the value of P(MaxLog(h(A)) ,

MaxLog(h(B))∧δA,B = 1) using k hash functions h1, . . . ,hk . Then,

we easily infer the value of JA,B .

4.2 Data Structure

TheMaxLogHash sketch of a useru , i.e., Su , consists ofk bit-strings,

where each bit-string Su [i], 1 ≤ i ≤ k , has two components, su [i]

andmu [i], i.e., Su [i] = su [i] ‖ mu [i]. At any time t ,mu [i] records

the maximum hash value of items in I
(t)
u with respect to hash func-

tion ri (·) = ⌊− log2 hi (·)⌋, i.e.,mu [i] = max
w ∈I

(t)
u
ri (w), where I

(t)
u

refers to the set of items that useru connected to before and includ-

ing time t ; su [i] consists of 1 bit and its value indicates whether

there exists one and only one itemw ∈ Iu such that ri (w) =mu [i].

As wementioned, we can use ⌈log2 log2 |I |⌉ bits to record the value

ofmu [i] with a high probability (very close to 1). Whenmu [i] ≥

2 ⌈log2 log2 |I | ⌉ , we use a hash table to record tuples (u, i,mu [i]) for

all users.

4.3 Update Procedure

For each user u ∈ U , when it first connects with an item w in

stream Π, we initialize the MaxLogHash sketch of useru as Su [i] =

1 ‖ ri (w), i = 1, . . . ,k, where ri (w) = ⌊− log2 hi (w)⌋. That is,

we set indicator su [i] = 1 and register mu [i] = ri (w). For any

other item v that user u connects to after the first item w , i.e., an

user-item pair (u,v) occurring on stream Π after the user-item pair

(u,w), we update it as follows: We first compute the log-rank of

item v , i.e., ri (v) = ⌊− log2 hi (v)⌋, i = 1, . . . ,k . When ri (v) is

smaller thanmu [i], we perform no further operations for updating

the user-item (u,v). When ri (v) = mu [i], it indicates that at least

two items in Iu has a log-rank valuemu [i]. Therefore, we simply

set su [i] = 0. When ri (v) >mu [i], we set Su [i] = 1 ‖ ri (v).

4.4 Jaccard Similarity Estimation

Define variables

χu1,u2 [i] = 1(mu1[i] ,mu2[i]), i = 1, . . . ,k,

ψu1,u2 [i] =



su1 [i], mu1 [i] >mu2[i]

su2 [i], mu1 [i] <mu2[i]

−1, mu1 [i] =mu2 [i].

Let δu1,u2 [i] = 1(χu1,u2 [i] = 1)1(ψu1,u2[i] = 1). Note thatδu1,u2 [i] =

1 indicates that there exists one and only one element in set∪(u1,u2)

of which log-rank equals maxw ∈∪(u1,u2) ri (w)with respect to func-

tion ri . Then, we have the following theorem.

Theorem 1. For non-empty sets Iu1 and Iu2 , we have P(δu1,u2[i] =

1) = 0, i = 1, . . . ,k , when | ∪ (u1,u2)| = 1. Otherwise, we have

P(δu1,u2 [i] = 1) = α |∪(u1,u2) |(1 − Ju1,u2), i = 1, . . . ,k,

where αn = n
∑
+∞
j=1

1
2j+1

(
1 − 1

2j

)n−1
, n ≥ 2.

Proof. Let r∗ be the maximum log-rank of all items in ∪(u1,u2).

When two items w and v in Iu1 or Iu2 has the log-rank value r∗,

we easily find thatψu1,u2[i] = 0. When only one itemw in Iu1 and

only one item v in Iu2 have the log-rank value r∗, we easily find

that χu1,u2[i] = 0. Let

∆(u1,u2) = (Iu1 \ Iu2) ∪ (Iu2 \ Iu1) = ∪(u1,u2) \ ∩(u1,u2).

Then, we find that event χu1,u2 [i] = 1∧ψu1,u2 [i] = 1 happens (i.e.,

δu1,u2[i] = 1) only when one item w in ∆(u1,u2) has a log-rank

value larger than all items in ∪(u1,u2) \ {w}. For any item v ∈ I ,

we have hi (v) ∼ Uni f orm(0,1) and so ri (v) ∼ Geometric(1/2),

supported on the set {0, 1, 2, . . .}. Based on the above observations,

when | ∪ (u1,u2)| ≥ 2, we have

P(δu1,u2 [i] = 1 ∧ r∗ = j)

=

∑
w ∈∆(u1,u2)

P(ri (w) = j)
∏

v ∈∪(u1,u2)\{w }

P(ri (v) < j)

=

|∆(u1,u2)|

2j+1

(
1 −

1

2j

) |∪(u1,u2) |−1

.

Therefore, we have

P(δu1,u2[i] = 1) =

+∞∑
j=0

P(δi = 1 ∧ r∗ = j)

=

∑
w ∈∆(u1,u2)

P(rw = j)
∏

v ∈∪(u1,u2)\{w }

P(rv < j)

=

+∞∑
j=0

|∆(u1,u2)|

2j+1

(
1 −

1

2j

) |∪(u1,u2) |−1

=

+∞∑
j=1

|∆(u1,u2)|

| ∪ (u1,u2)|
·
| ∪ (u1,u2)|

2j+1

(
1 −

1

2j

) |∪(u1,u2) |−1

= α |∪(u1,u2) |(1 − Ju1,u2),

where the last equation holds because |∆(u1,u2)| = | ∪ (u1,u2)| −

| ∩ (u1,u2)|. �

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

n

α n

Figure 1: Value of αn , n = 2, . . . , 106 where |α2 − 0.7213| =

0.0546, |αn − 0.7213| ≤ 0.007 when n ≥ 3.

Define variable k̂ =
∑k
i=1 1(δu1,u2[i] = 1). From Theorem 1, the

expectation of k̂ is computed as

E(k̂) = E

(
k∑
i=1

1(δu1,u2 [i] = 1)

)

=

k∑
i=1

E(1(δu1,u2[i] = 1))

= kα |∪(u1,u2) |(1 − Ju1,u2). (1)

Therefore, we have

Ju1,u2 = 1 −
E(k̂)

kα |∪(u1,u2) |
.

Note that the cardinality of set ∪(u1,u2) (i.e. | ∪ (u1,u2)|) is un-

known. To solve this challenge, we find that

αn =
n

2

+∞∑
j=1

1

2j

(
1 −

1

2j

)n−1

=

n

2

+∞∑
j=1

1

2j

n−1∑
l=0

(
n − 1

l

) (
−
1

2j

)n−l−1

=

n

2

n−1∑
l=0

(−1)n−l−1
(
n − 1

l

) +∞∑
j=1

1

2j(n−l)

=

n

2

n−1∑
l=0

(−1)n−l−1
(
n − 1

l

)
1

2n−l − 1
.

Figure 1 shows that the value of αn , n = 2, 3, We easily find

that αn ≈ α = 0.7213 when n ≥ 2. Therefore, we estimate Ju1,u2 as

Ĵu1,u2 = 1 −
k̂

kα
.

4.5 Error Analysis

The error of our method MaxLogHash is shown in the following

theorem.

Theorem 2. For any users u1,u2 ∈ U , we have

E(Ĵu1,u2) − Ju1,u2 = (1 − β |∪(u1,u2) |)(1 − Ju1,u2),

where βn =
αn
α . The variance of Ĵu1,u2 is computed as

Var(Ĵu1,u2) =
β |∪(u1,u2) |(1 − Ju1,u2)(α

−1 − β |∪(u1,u2) |(1 − Ju1,u2))

k
.

When | ∪ (u1,u2)| ≥ 3, we have |β |∪(u1,u2) | − 1| ≤ 0.01, and so

E(Ĵu1,u2) ≈ Ju1,u2 and Var(Ĵu1,u2) ≈
(1−Ju1,u2)(Ju1,u2+0.3864)

k
.

Proof. From equation (1), we easily have

E(Ĵu1,u2) = E

(
1 −

k̂

kα

)

= 1 −
kα |∪(u1,u2) |(1 − Ju1,u2)

kα
= β |∪(u1,u2) | Ju1,u2 + 1 − β |∪(u1,u2) | .

To derive Var(Ĵu1,u2), we first compute

E(k̂2) = E
©­
«
(
k∑
i=1

1(δu1,u2 [i] = 1)

)2ª®
¬

=

k∑
i=1

E

(
(1(δu1,u2[i] = 1))2

)

+

∑
i,j,1≤i, j≤k

E
(
1(δu1,u2 [i] = 1)1(δu1,u2[j] = 1)

)
= kα |∪(u1,u2) |(1 − Ju1,u2) + k(k − 1)α

2
|∪(u1,u2) |

(1 − Ju1,u2)
2
.

Then, we have

Var(k̂) = E(k̂2) − (E(k̂))2

= kα |∪(u1,u2) |(1 − Ju1,u2)(1 − α |∪(u1,u2) |(1 − Ju1,u2)). (2)

From the definition of Ĵu1,u2 , we have

Var(Ĵu1,u2) = Var

(
1 −

k̂

kα

)
=

Var(k̂)

k2α2
.

Then, we easily obtain a closed-form formals of Var(Ĵu1,u2) from

equation (2). �

4.6 Reduce Processing Complexity

Inspired by OPH (one permutation hashing) [13], which signif-

icantly reduces the time complexity of MinHash for processing

each element in the set, we can use a hash function which splits

items in Iu into k registers at random, and each register Su [i], 1 ≤

i ≤ k , records MaxLog(h({v : v ∈ Iu ∧ h(v) = j})) as well as the

value of indicator su [i], which is similar to the regularMaxLogHash

method. We name this extension as MaxLogOPH. MaxLogOPH re-

duces the time complexity of processing each item from O(k) to

O(1).When |u1∪u2 | ≫ k , our experiments demonstrate thatMaxL-

ogOPH is comparable to MaxLogHash in terms of accuracy.

5 EVALUATION

The algorithms are implemented in Python, and run on a computer

with a Quad-Core Intel(R) Xeon(R) CPU E3-1226 v3 CPU 3.30GHz

processor. To demonstrate the reproducibility of the experimental

results, we make our source code publicly available4.

4http://nskeylab.xjtu.edu.cn/dataset/phwang/code/MaxLog.zip

0.8 0.85 0.9 0.95 1

J
A,B

0

0.02

0.04

0.06

0.08

0.1

R
M

S
E

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(a) (balanced) RMSE, k = 128

0.8 0.85 0.9 0.95 1

J
A,B

0

0.02

0.04

0.06

0.08

0.1

R
M

S
E MaxLogHash

MinHash
HyperMinHash r=1
HyperMinHash r=4

(b) (balanced) RMSE, k = 256

0.8 0.85 0.9 0.95 1
J

A,B

0

0.02

0.04

0.06

0.08

0.1

R
M

S
E

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(c) (unbalanced) RMSE, k = 128

0.8 0.85 0.9 0.95 1
J

A,B

0

0.02

0.04

0.06

0.08

0.1

R
M

S
E

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(d) (unbalanced) RMSE, k = 256

0.8 0.85 0.9 0.95 1

J
A,B

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

B
ia

s MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(e) (balanced) Bias, k = 128

0.8 0.85 0.9 0.95 1
J

A,B

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

B
ia

s

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(f) (balanced) Bias, k = 256

0.8 0.85 0.9 0.95 1

J
A,B

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

B
ia

s

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(g) (unbalanced) Bias, k = 128

0.8 0.85 0.9 0.95 1
J

A,B

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

B
ia

s MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(h) (unbalanced) Bias, k = 256

Figure 2: Estimation error of our method MaxLogHash in comparison with MinHash and HyperMinHash on both balanced

and unbalanced set-pairs.

5.1 Datasets

For simplicity, we assume that elements in sets are 32-bit numbers,

i.e., I = {0, 1, . . . , 232 − 1}. We evaluate the performance of our

method MaxLogHash a variety of datasets.

1) Synthetic datasets. Our synthetic datasets consist of set-

pairs A and B with various cardinalities and Jaccard similarities.

We conduct our experiments on the following two different set-

tings:

• Balanced set-pairs (i.e., |A| = |B |). We set |A| = |B | = n and

vary JA,B in {0.80, 0.81, ..., 1.00}. Specially, we generate set A by

randomly selecting n different numbers from I and generate set B

by randomly selecting |A∩B | =
JA,B |A |
1+JA,B

different numbers from set

A andn−|A∩B | different numbers from set I\A. In our experiments,

we set n = 10, 000 by default.

• Unbalanced set-pairs (i.e., |A| , |B |). We set |A| = n and |B | =

JA,Bn, where we vary JA,B ∈ {0.80, 0.81, ..., 0.99}. Specially, we

generate set A by randomly selecting n different numbers from I

and generate set B by selecting JA,Bn different elements from A.

2) Real-world datasets. Similar to [9], we evaluate the perfor-

mance of our method on the detection of item-pairs (e.g., pairs of

products) that always appear together in the same records (e.g.,

transactions).We conduct experiments on two real-world datasets5:

MUSHROOM and CONNECT, which are also used in [9]. We gen-

erate a stream of item-record pairs for each dataset, where a record

can be viewed as a transaction and items in the same record can

be viewed as products bought together. For each record x in the

dataset of interest and every item w in x , we append an element

(w, x) to the stream of item-record pairs. In summary,MUSHROOM

5http://fimi.ua.ac.be/data/

and CONNECT have 8, 124 and 67, 557 records, 119 and 127 distinct

items, and 186, 852 and 2, 904, 951 item-record pairs, respectively.

5.2 Baselines

Our methods use k 6-bit registers to build a sketch for each set. We

compare our methods with the following state-of-the-art methods:

•MinHash [2]. MinHash builds a sketch for each set. A MinHash

sketch consists of k 32-bit registers.

• HyperLogLog [15]. A HyperLogLog sketch consists of k 5-bit

registers, and is originally designed for estimating a set’s cardinal-

ity. One can easily obtain a HyperLogLog sketch ofA∪B by merg-

ing the HyperLogLog sketches of sets A and B and then use the

sketch to estimate |A ∪ B |. Therefore, HyperLogLog can also be

used to estimate JA,B by approximating
|A |+ |B |− |A∪B |
|A∪B |

.

• HyperMinHash [10]. A HyperMinHash sketch consists of k q-

bit registers and k r -bit registers. The first k q-bit registers can be

viewed as a HyperLogLog sketch. To guarantee the performance

for large sets (including up to 232 elements), we set q = 5.

5.3 Metrics

We evaluate both efficiency and effectiveness of our methods in

comparison with the above baseline methods. For efficiency, we

evaluate the running time of all methods. Specially, we study the

time for updating each set element and estimating set similarities,

respectively. The update time determines the maximum through-

put that a method can handle, and the estimation time determines

the delay in querying the similarity of set-pairs. For effectiveness,

we evaluate the error of estimation Ĵ with respect to its true value J

usingmetrics: bias and rootmean square error (RMSE), i.e., Bias(Ĵ) =

E(Ĵ)− J and RMSE(Ĵ) =

√
E((Ĵ − J)2). Our experimental results are

102 103 104

n

0.05

0.06

0.07

0.08

0.09

R
M

S
E

MaxLogHash
HyperLogLog

(a) m = 29 , JA,B = 0.8

102 103 104

n

0.035

0.04

0.045

0.05

0.055

0.06

R
M

S
E

MaxLogHash
HyperLogLog

(b) m = 29, JA,B = 0.9

102 103 104

n

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
E

MaxLogHash
HyperLogLog

(c) m = 210 , JA,B = 0.8

102 103 104

n

0.02

0.03

0.04

0.05

0.06

R
M

S
E

MaxLogHash
HyperLogLog

(d) m = 210 , JA,B = 0.9

Figure 3: Estimating error of our method MaxLogHash in

comparison with HyperLogLog on synthetic set-pairs A and

B with the same memory spacem bits, where |A| = |B | = n.

empirically computed from 1, 000 independent runs by default. We

further evaluate our method on the detection of association rules,

and use precision and recall to evaluate the performance.

5.4 Accuracy of Similarity Estimation

MaxLogHash vsMinHash andHyperMinHash. From Figures 2

(a)-(d), we see that our method MaxLogHash gives comparable re-

sults to MinHash and HyperMinHash with r = 4. Specially, the

RMSEs of these three methods differ within 0.006 and continually

decrease as the similarity increases. The RMSE of HyperMinHash

with r = 1 significantly increases as JA,B increases. We observe

that the large estimation error occurs because HyperMinHash ex-

hibits a large estimation bias. Figures 2 (e)-(h) show the bias of

our method MaxLogHash in comparison with MinHash and Hy-

perMinHash. We see that the empirical biases of MaxLogHash and

MinHash are both very small and no systematic biases can be ob-

served. However, HyperMinHash with r = 1 shows a significant

bias and its bias increases as the similarity value increases. To be

more specific, its bias raises from−0.06 to −0.089when the similar-

ity increases from0.80 to 0.99. One can increase r to reduce the bias

of HyperMinHash. However, HyperMinHash with large r desires

more memory space. For example, HyperMinHash with r = 4 has

comparable accuracy but requires 1.5 times more memory space

compared to our method MaxLogHash. Compared with MinHash,

MaxLogHash gives a 5.4 times reduction in memory usage while

achieves a similar estimation accuracy. Later in Section 5.6, we

show that our method MaxLogHash has a computational cost sim-

ilar to Minhash, but is several orders of magnitude faster than Hy-

perMinHash when estimating set similarities.

102 103 104

n

0.03

0.04

0.05

0.06

R
M

S
E

MaxLogHash
MaxLogOPH

(a) balanced

102 103 104

n

0.03

0.04

0.05

0.06

R
M

S
E

MaxLogHash
MaxLogOPH

(b) unbalanced

Figure 4: Estimation error of our methodsMaxLogHash and

MaxLogOPH on both balanced and unbalanced synthetic

data pairsA andBwith the samenumber of registers,k = 128,

and JA,B = 0.9. (a) |A| = |B | = n. (b) |A| = JA,B |B | = n.

MaxLogHash vs HyperLogLog. To make a fair comparison, we

allocate the same amount of memory space, m bits, to each of

MaxLogHash and HyperLogLog. As discussed in Section 4, the

attractive property of our method MaxLogHash is its estimation

error is almost independent from the cardinality of sets A and B,

which does not hold for HyperLogLog. Figure 3 shows the RMSEs

of MaxLogHash and HyperLogLog on sets of different sizes. We

see that the RMSE of our method MaxLogHash is almost a con-

stant. Figures 3 (a) and (b) show the performance of HyperLogLog

suddenly degrades whenm = 29 and the cardinalities of A and B

are around 200, because HyperLogLog uses two different estima-

tors for cardinalities within two different ranges respectively [15].

As a result, our method MaxLogHash decreases the RMSE of Hy-

perLogLog by up to 36%.As shown in Figures 3 (c) and (d), similarly,

the RMSE of our method MaxLogHash is about 2.5 times smaller

than HyperLogLog whenm = 210 and the cardinalities of A and B

are around 500.

MaxLogHash vs MaxLogOPH. As discussed in Section 4.6, the

estimation error of MaxLogOPH is comparable to MaxLogHash

when k is far smaller than the cardinalities of two sets of inter-

est. We compare MaxLogOPH with MaxLogHash on sets with in-

creasing cardinalities to provide some insights. As shown in Fig-

ure 4, MaxLogOPH exhibits relatively large estimation errors for

small cardinalities. When k = 128 and the cardinality increases

to 200 (about 2k), we see that MaxLogOPH achieves similar ac-

curacy to MaxLogHash. Later in Section 5.6, MaxLogOPH signif-

icantly accelerates the speed of updating elements compared with

MaxLogHash.

5.5 Accuracy of Association Rule Learning

In this experiment, we evaluate the performance of our method

MaxLogHash, MinHash, and HyperMinHash on the detection of

items (e.g., products) that almost always appear together in the

same records (e.g., transactions). We conduct the experiments on

real-world datasets: MUSHROOM and CONNECT. We first esti-

mate all pairwise similarities among items’ record-sets, and retrieve

every pair of record-sets with similarity J > J0. As discussed pre-

viously (results in Figure 3), HyperLogLog is not robust, because it

exhibits large estimation errors for sets of particular sizes. There-

fore, in what follows we compare our method MaxLogHash only

withMinHash andHyperMinHash. As shown in Figure 5,MaxLogHash

gives comparable precision and recall to MinHash and HyperMin-

Hash with r = 4. We note that MaxLogHash gives up to 5.4 and

2.4 times reduction in memory usage in comparisonwithMinHash

and HyperMinHash respectively.

5.6 Efficiency

We further evaluate the efficiency of our method MaxLogHash

and its extension MaxLogOPH in comparison with MinHash and

HyperLogLog. Specially, we present the time for updating each

coming element and computing Jaccard similarity, respectively.We

conduct experiments on synthetic balanced datasets. We omit the

similar results for real-world datasets and synthetic unbalanced

datasets. Figure 6 (a) shows that the update time of MaxLogOPH

and HyperLogLog is almost a constant and our method outper-

forms other baselines. The update time of HyperMinHash is almost

irrelevant to its parameter r and thus we only plot the curve for

r = 1. Specially, MaxLogOPH is about 2 and 420 times faster than

HyperMinHash and MinHash. Figure 6 (b) shows that our meth-

odsMaxLogHash andMaxLogOPH have estimation time similar to

MinHash, while they are about 10 times faster than HyperLogLog

and 4 to 5 orders of magnitude faster than HyperMinHash.

6 RELATED WORK

Jaccard similarity estimation for static sets. Broder et al. [2]

proposed the first sketch method MinHash to compute the Jaccard

similarity of sets, which builds a sketch consisting of k registers

for each set. To reduce the amount of memory space required for

MinHash, [8, 9] developedmethodsb-bitMinHash andOdd Sketch,

which are dozens of times more memory efficient than the original

MinHash. The basic idea behind b-bit MinHash and Odd Sketch is

to use probabilistic methods such as sampling and bitmap sketch-

ing to build a compact digest for each set’s MinHash sketch. Re-

cently, several methods [13, 16–18] were proposed to reduce the

time complexity of processing each element in a set from O(k) to

O(1).

Weighted similarity estimation for static vectors. SimHash

(or, sign normal random projections) [19] was developed for ap-

proximating angle similarity (i.e., cosine similarity) of weighted

vectors. CWS [20, 21], ICWS [22], 0-bit CWS [23], CCWS [24],

Weighted MinHash [25], PCWS [26], and BagMinHash [27] were

developed for approximating generalized Jaccard similarity of weighted

vectors6, and Datar et al. [28] developed an LSH method using p-

stable distribution for estimating lp distance for weighted vectors,

where 0 < p ≤ 2. Campagna and Pagh [29] developed a biased sam-

pling method for estimating a variety of set similarity measures

beyond Jaccard similarity.

Similarity estimation for data streams. The above weighted

similarity estimation methods fail to deal with streaming weighted

vectors, whereas elements in vectors come in a stream fashion. To

solve this problem, Kutzkov et al. [30] extended AMS sketch [31]

6The Jaccard similarity between two positive real value vectors ®x = (x1, x2, . . . , xp)

and ®y = (y1, y2, . . . , yp) is defined as J (®x, ®y) =

∑
1≤j≤p min(xj ,yj)∑
1≤j≤p max(xj ,yj)

.

for the estimation of cosine similarity and Pearson correlation in

streaming weighted vectors. Yang et al. [32] developed a stream-

ing method HistoSketch for approximating Jaccard similarity with

concept drift. Set intersection cardinality (i.e., the number of com-

mon elements in two sets) is also a popular metric for evaluating

the similarity in sets. A variety of sketch methods such as LPC [33],

FM [11], LogLog [34], HyperLogLog [15], HLL-TailCut+ [35], and

MinCount [36] were proposed to estimate the stream cardinality

(i.e., the number of distinct elements in the stream), and can be

easily extended to estimate |A∪B | by merging the sketches of sets

A and B. Then, one can approximate |A ∩ B | because |A ∩ B | =

|A|+ |B | − |A∪B |. To further improve the estimation accuracy, Co-

hen et al. [37] developed amethod combiningMinHash and Hyper-

LogLog to estimate set intersection cardinalities. Our experiments

reveal that these sketch methods have large errors when first es-

timating |A ∩ B | and |A ∪ B |, and then approximating the Jaccard

similarity JA,B . As mentioned in Section 3, MinHash can be eas-

ily extended to handle streaming sets, but its two compressed ver-

sions,b-bitMinHash andOdd Sketch fail to handle data streams. To

solve this problem, Yu andWeber [10] developed a method, Hyper-

MinHash, which can be viewed as a joint of HyperLogLog and b-

bit MinHash. HyperMinHash consists of k registers, whereas each

register has two parts, an FM sketch and a b-bit string. The b-bit

string is computed based on the fingerprints (i.e., hash values) of

set elements that map to the register. HyperMinhash first estimates

|A ∪ B | and then infers the Jaccard similarity of sets A and B from

the number of collisions of b-bit strings given |A ∪ B |. Our exper-

iments demonstrates that HyperMinHash exhibits a large bias for

high similarities and it is several orders of magnitude slower than

our methods when estimating the similarity.

7 CONCLUSIONS AND FUTUREWORK

We develop a memory efficient sketch method MaxLogHash to es-

timate the similarity of two sets given in a streaming fashion. We

provide a simple yet accurate estimator for Jaccard similarity, and

derive exact formulas for the estimator’s bias and variance. Exper-

imental results demonstrate that MaxLogHash can reduce around

5 times the amount of memory required for MinHash with the

same desired accuracy and computational cost. Comparedwith our

method MaxLogHash, the state-of-the-art method HyperMinHash

exhibits a larger estimation bias and its estimation time is 4 to 5 or-

ders of magnitude larger. Although HyperLogLog can be extended

to estimate Jaccard similarity, its estimation error (resp. estimation

time) is about 2.5 times (resp. 10 times) larger than our methods.

In the future, we plan to extend MaxLogHash to weighted stream-

ing vectors and fully dynamic streaming sets that include both set

element insertions and deletions.

ACKNOWLEDGMENT

The research presented in this paper is supported in part by Na-

tional Key R&DProgram of China (2018YFC0830500), National Nat-

ural Science Foundation of China (U1736205, 61603290), Shenzhen

Basic Research Grant (JCYJ20170816100819428), Natural Science

Basic Research Plan in Shaanxi Province of China (2019JM-159).

The work of John C.S. Lui is supported in part by the GRF R4032-

18.

0 100 200 300 400 500

k

0.4

0.6

0.8

1

P
re

ci
si

on

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(a) (MUSHROOM) Precision, J0 = 0.8

0 100 200 300 400 500
k

0.8

0.85

0.9

0.95

1

R
ec

al
l MaxLogHash

MinHash
HyperMinHash r=1
HyperMinHash r=4

(b) (MUSHROOM) Recall, J0 = 0.8

0 100 200 300 400 500

k

0.7

0.8

0.9

1

P
re

ci
si

on

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(c) (MUSHROOM) Precision, J0 = 0.9

0 100 200 300 400 500

k

0.7

0.8

0.9

1

R
ec

al
l

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(d) (MUSHROOM) Recall, J0 = 0.9

0 100 200 300 400 500

k

0.7

0.8

0.9

1

P
re

ci
si

on

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(e) (CONNECT) Precision, J0 = 0.8

0 100 200 300 400 500

k

0.75

0.8

0.85

0.9

0.95

1

R
ec

al
l MaxLogHash

MinHash
HyperMinHash r=1
HyperMinHash r=4

(f) (CONNECT) Recall, J0 = 0.8

0 100 200 300 400 500

k

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(g) (CONNECT) Precision, J0 = 0.9

0 100 200 300 400 500

k

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

MaxLogHash
MinHash
HyperMinHash r=1
HyperMinHash r=4

(h) (CONNECT) Recall, J0 = 0.9

Figure 5: Precision and recall of ourmethodMaxLogHash in comparisonwithMinHash andHyperMinHash on datasetsMUSH-

ROOM and CONNECT.

20 22 24 26 28 210

 k

10-6

10-5

10-4

10-3

T
im

e
(s

ec
on

d)

HyperMinHash
MaxLogHash
MaxLogOPH
HyperLogLog
MinHash

(a) update time

20 22 24 26 28 210

 k

10-8

10-5

10-2

101

T
im

e
(s

ec
on

d) HyperMinHash r=1

HyperMinHash r=4

MaxLogHash

MaxLogOPH

HyperLogLog

MinHash

(b) estimation time

Figure 6: Computational cost of our methods MaxLogHash

and MaxLogOPH in comparison with MinHash, Hyper-

LogLog and HyperMinHash.

REFERENCES
[1] Kaiyu Li and Guoliang Li. Approximate query processing: What is new and

where to go? Data Science and Engineering, 2018.
[2] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.

Min-wise independent permutations. J. Comput. Syst. Sci., 60(3):630–659, June
2000.

[3] A. Broder. On the resemblance and containment of documents. In SEQUENCES,
1997.

[4] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi,MichaelMitzenmacher, Alessan-
dro Panconesi, and Prabhakar Raghavan. On compressing social networks. In
KDD, pages 219–228, 2009.

[5] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result di-
versification. InWWW, pages 381–390.

[6] Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd Christian König.
Hashing algorithms for large-scale learning. In NIPS., pages 2672–2680, 2011.

[7] Tanguy Urvoy, Emmanuel Chauveau, Pascal Filoche, and Thomas Lavergne.
Tracking web spam with html style similarities. ACM Trans. Web, 2(1), March
2008.

[8] Ping Li and Arnd Christian König. b-bit minwise hashing. In WWW, pages
671–680, 2010.

[9] Michael Mitzenmacher, Rasmus Pagh, and Ninh Pham. Efficient estimation for
high similarities using odd sketches. In WWW, pages 109–118, 2014.

[10] Yun William Yu and Griffin Weber. Hyperminhash: Jaccard index sketching in
loglog space. CoRR, abs/1710.08436, 2017.

[11] Philippe Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base applications. J. Comput. Syst. Sci., 31(2):182–209, October 1985.

[12] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
CACM, 13(7):422–426, 1970.

[13] Ping Li, Art B. Owen, and Cun-Hui Zhang. One permutation hashing. In NIPS,
pages 3122–3130, 2012.

[14] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev
Motwani, Jeffrey D. Ullman, and Cheng Yang. Finding interesting associations
without support pruning. IEEE Trans. on Knowl. and Data Eng., 13(1):64–78, Jan-
uary 2001.

[15] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyper-
loglog: The analysis of a near-optimal cardinality estimation algorithm. InAOFA,
2007.

[16] Anshumali Shrivastava and Ping Li. Improved densification of one permutation
hashing. In UAI, pages 732–741, 2014.

[17] Anshumali Shrivastava and Ping Li. Densifying one permutation hashing via
rotation for fast near neighbor search. In ICML, pages 557–565, 2014.

[18] Anshumali Shrivastava. Optimal densification for fast and accurate minwise
hashing. In ICML, pages 3154–3163, 2017.

[19] Moses Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, pages 380–388, 2002.

[20] Mark Manasse, Frank McSherry, and Kunal Talwar. Consistent weighted sam-
pling. Technical report, June 2010.

[21] Bernhard Haeupler, Mark S. Manasse, and Kunal Talwar. Consistent weighted
sampling made fast, small, and easy. CoRR, abs/1410.4266, 2014.

[22] Sergey Ioffe. Improved consistent sampling, weightedminhash and L1 sketching.
In ICDM, pages 246–255, 2010.

[23] Ping Li. 0-bit consistent weighted sampling. In KDD, pages 665–674, 2015.
[24] Wei Wu, Bin Li, Ling Chen, and Chengqi Zhang. Canonical consistent weighted

sampling for real-value weighted min-hash. In ICDM, pages 1287–1292, 2016.
[25] Anshumali Shrivastava. Simple and efficient weightedminwise hashing. InNIPS,

pages 1498–1506, 2016.
[26] Wei Wu, Bin Li, Ling Chen, and Chengqi Zhang. Consistent weighted sampling

made more practical. In WWW, pages 1035–1043, 2017.
[27] Otmar Ertl. Bagminhash - minwise hashing algorithm for weighted sets. CoRR,

abs/1802.03914, 2018.

[28] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In SOCG, pages 253–
262, 2004.

[29] Andrea Campagna and Rasmus Pagh. Finding associations and computing sim-
ilarity via biased pair sampling. Knowl. Inf. Syst., 31(3):505–526, 2012.

[30] Konstantin Kutzkov, Mohamed Ahmed, and Sofia Nikitaki. Weighted similarity
estimation in data streams. In CIKM, pages 1051–1060, 2015.

[31] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. In STOC, pages 20–29, 1996.

[32] Dingqi Yang, Bin Li, Laura Rettig, and Philippe Cudré-Mauroux. Histosketch:
Fast similarity-preserving sketching of streaming histograms with concept drift.
In ICDM, pages 545–554, 2017.

[33] KyuyoungWhang, Brad T. Vander-zanden, andHowardM. Taylor. A linear-time
probabilistic counting algorithm for database applications. IEEE Transaction of
Database Systems, 15(2):208–229, June 1990.

[34] Marianne Durand and Philippe Flajolet. Loglog Counting of Large Cardinalities,
pages 605–617. Springer Berlin Heidelberg, 2003.

[35] Qingjun Xiao, You Zhou, and Shigang Chen. Better with fewer bits: Improving
the performance of cardinality estimation of large data streams. In INFOCOM,
pages 1–9, 2017.

[36] Frederic Giroire. Order statistics and estimating cardinalities of massive data
sets. Discrete Applied Mathematics, 157(2):406 – 427, 2009.

[37] Reuven Cohen, Liran Katzir, and Aviv Yehezkel. A minimal variance estimator
for the cardinality of big data set intersection. In KDD, 2017.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Preliminaries
	3.1 MinHash
	3.2 b-bit MinHash
	3.3 Odd Sketch
	3.4 Discussion

	4 Our Method
	4.1 Basic Idea
	4.2 Data Structure
	4.3 Update Procedure
	4.4 Jaccard Similarity Estimation
	4.5 Error Analysis
	4.6 Reduce Processing Complexity

	5 Evaluation
	5.1 Datasets
	5.2 Baselines
	5.3 Metrics
	5.4 Accuracy of Similarity Estimation
	5.5 Accuracy of Association Rule Learning
	5.6 Efficiency

	6 Related Work
	7 Conclusions and Future Work
	References

