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ABSTRACT
Graph convolutional neural networks have attracted increasing
attention in recent years. Unlike the standard convolutional neural
network, graph convolutional neural networks perform the convo-
lutional operation on the graph data. Compared with the generic
data, the graph data possess the similarity information between dif-
ferent nodes. Thus, it is important to preserve this kind of similarity
information in the hidden layers of graph convolutional neural net-
works. However, existing works fail to do that. On the other hand, it
is challenging to enforce the hidden layers to preserve the similarity
relationship. To address this issue, we propose a novel CRF layer for
graph convolutional neural networks to encourage similar nodes to
have similar hidden features. In this way, the similarity information
can be preserved explicitly. In addition, the proposed CRF layer is
easy to compute and optimize. Therefore, it can be easily inserted
into existing graph convolutional neural networks to improve their
performance. At last, extensive experimental results have verified
the effectiveness of our proposed CRF layer.
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1 INTRODUCTION
In recent years, deep convolutional neural networks have achieved
great success in a wide variety of tasks, such as image classification
[18, 25], image generation [4, 13, 25], and machine translation [36].
The basic idea of convolutional neural networks is to conduct the
convolutional operation in a local neighborhood to explore the local
correlation. For image data, there is a grid-like structure so that the
implicit spatial order makes it easy to perform the convolutional op-
eration in the local neighborhood. In practical applications, graph
is a natural representation of numerous real-world data, such as
social networks, knowledge graphs, citation networks. However,
graphs have no the regular grid-like structure so that it is difficult
to determine the local neighborhood to conduct the convolutional
operation. To address this issue, the graph convolutional neural net-
work has been proposed, which is designed to perform convolution
on the complicated graph data. It has shown superior performance
in various tasks, such as node classification [23], recommender
system [44]. As a result, graph convolutional neural networks have
attracted much attention in recent years.

Generally speaking, graph convolutional neural networks can
be categorized into two classes: spatial approaches and spectral
approaches. Specifically, spatial approaches [2, 11, 17, 34] conduct
convolutions directly on the graph. More specifically, this kind of
methods first construct a fixed-size neighborhood for each node in
the graph and then perform regular convolution on this neighbor-
hood. For instance, [34] proposes to construct the neighborhood
from a fixed-size node sequence and then conduct the convolutional
operation. Spectral approaches [5, 10] perform the convolutional
operation in the spectral domain. In this way, spectral approaches
do not need to construct the neighborhood explicitly for the com-
plicated graph data. For instance, [5] defines the convolution in the
Fourier domain which can be done in the eigenspace of the graph
Laplacian. [10] proposes the fast localized spectral filtering for
graph convolutional neural networks to avoid the expensive eigen-
decomposition. Recently, [23] further simplifies the spectral ap-
proach by directly aggregating the 1-hop neighboring nodes. With
these development, graph convolutional neural networks have been
successfully applied to a couple of tasks [21, 23, 27, 28, 33, 38, 41, 46],
such as node classification [23, 41], relation extraction [46].

Although the aforementioned graph convolutional neural net-
works can deal with the graph data, yet they fail to fully utilize the
properties of graphs. For the graph data, there exist edges which
indicate the similarity relationship between different nodes. Two
connected nodes imply that they are similar to each other while
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disconnected nodes indicate the dissimilarity between them. Ex-
isting graph convolutional neural networks can utilize this kind
of connectivity information when performing the convolutional
operation. For instance, the GCN proposed in [23] aggregates the
1-hop neighboring nodes such that the connectivity information
is encoded into the new representation. On the other hand, the
connectivity (similarity) information should also be preserved in
the new representation (hidden features) obtained from the convo-
lutional operation. However, although the convolutional operation
can incorporate the connectivity information, yet it cannot guaran-
tee the obtained hidden features preserve the similarity relationship
explicitly. If this kind of relationship is violated in the hidden fea-
tures, the downstream tasks will be degenerated severely. Thus,
it is important and necessary to preserve the similarity informa-
tion explicitly in the hidden layers of graph convolutional neural
networks.

To preserve the similarity relationship in the new representation,
numerous methods [1, 19, 37] have been proposed. The most widely
used method is the Laplacian regularization, which has been used
for various tasks, such as manifold learning [1, 19]. However, this
method usually requires the expensive eigendecomposition. Thus,
it is not suitable for large-scale neural networks. On the other
hand, since we need to enforce the hidden layers of the graph
convolutional neural network to satisfy the similarity constraint, it
is necessary and important to use a lightweight operation which
has small computational overhead and is easy to optimize by the
backpropagation. Hence, it is challenging to restrict the behavior
of the hidden layers of the graph convolutional neural network.

To address the aforementioned issues, in this paper, we propose
a novel CRF layer to regularize the standard graph convolutional
neural network to preserve the similarity relationship. Specifically,
we resort to the CRF model to restrict the hidden feature of the
graph convolutional layer. Then, we find that the solution of the
CRF model can be viewed as an individual layer to encourage sim-
ilar nodes to have similar hidden representations. As shown in
Figure 1, this novel CRF layer can be inserted into standard graph
convolutional neural networks to regularize the output of the con-
volutional operation. Furthermore, the proposed CRF layer is easy
to compute and optimize. Thus, it is an efficient regularization layer
to regularize the behavior of the hidden layers of graph convolu-
tional neural networks. At last, we summarize the contribution of
this paper as follows:

• We propose a novel CRF layer for graph convolutional neural
networks to encourage similar nodes to have similar hidden
features.

• The proposed CRF layer is easy to compute and optimize.
It can be inserted into existing graph convolutional neural
networks easily.

• Extensive experimental results have verified the effective-
ness of our proposed CRF layer.

2 RELATEDWORKS
In this section, we will review related works about existing graph
convolutional neural networks.

Recently, deep learning for the graph data has attracted increas-
ing attention. A wide variety of methods [2, 5, 10–12, 14, 15, 17,

(a) Standard Graph Convolutional Neural
Network

(b) Graph Convolutional Neural Network
with CRF Layer

Figure 1: The comparison between the standard graph con-
volutional neural network and thatwith theCRF layer.With
the proposed CRF layer, the output features are expected
to preserve the similarity better than those of the standard
GCN.

23, 34] have been proposed for this task. Among them, the graph
convolutional neural network becomes more and more popular.
Essentially, it is to conduct the convolutional operation on the
non-Euclidean graph data. Compared with the regular convolu-
tional neural network, there exists a challenge since different nodes
in the graph have different size of the neighborhood while the
regular convolutional operation requires a fixed-size neighbor-
hood for each node. To address this issue, different approaches
[1, 2, 5, 8, 10, 11, 17, 20, 23, 24, 34, 48] have been proposed. In terms
of how to perform convolution, existing works can be categorized
into two classes: spatial approaches and spectral approaches.

Spatial approaches [2, 11, 17, 34] conduct convolution directly
on the graph. Recall that the regular convolution requires that the
size of the neighborhood is fixed and nodes in the neighborhood are
ordered. However, different nodes in a graph usually have different
size of neighborhoods and have no ordering information. Thus, the
goal of spatial approaches is to construct a fixed-size and ordered
neighborhood to conduct the generic convolutional operation. For
instance, [34] first selects a fixed-size sequence of nodes and then
constructs the desired neighborhood from this sequence. As a result,
the standard convolutional operation can be performed on this
fixed-size neighborhood. [2] proposes a parametric construction
method to obtain the neighborhood. [17] introduces an inductive
method which randomly selects a fixed-size neighborhood and then
aggregates the feature of these nodes in a specific manner.

Unlike spatial approaches, spectral approaches [5, 10, 23] try to
perform the convolutional operation in the spectral domain rather
than the spatial domain. In this way, spectral approaches do not
require to explicitly construct the fixed-size neighborhood. For in-
stance, [5] defines the convolution in the Fourier domain which
can be done in the eigenspace of the graph Laplacian. However, the
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computational overhead is large due to the eigendecomposition. To
address this issue, [10] proposes the fast localized spectral filtering
for graph convolutional neural networks. Specifically, this method
resorts to the Chebyshev expansion of the graph Laplacian to avoid
the eigendecomposition. Thus, it has the same linear computational
complexity as the standard CNN. Later, [23] further simplifies the
spectral approach. In detail, [23] proposes to restrict the filters to
perform only on the 1-hop neighboring nodes. In this way, it only
needs to aggregates the features of these neighboring nodes, which
is efficient compared with previous works. Then, graph convolu-
tional neural networks become more and more popular and widely
used for a wide variety of tasks. Recently, [41] proposes the graph
attention network (GAT) which applies the attention mechanism to
graph convolutional neural networks. Specifically, compared with
standard graph convolutional neural network which aggregates
features of neighboring nodes uniformly, GAT assigns different
weights according to the importance of the neighboring node to
the reference node.

Although the aforementioned methods can apply the convo-
lutional operation to the graph data, yet they share a common
drawback. Unlike the standard data, the graph data possess the con-
nectivity information between different nodes. This connectivity
information encodes the similarity relationship. In particular, two
connected nodes indicate that they are similar, while disconnected
nodes imply the dissimilarity between them. Although existing
graph convolutional neural networks can utilize this kind of in-
formation when conducting the convolutional operation, yet they
cannot guarantee the obtained new features from the convolutional
operation satisfy the similarity constraint. Thus, if the new features
violate the implicit constraint, the learned features will degenerate
downstream tasks. All in all, it is important and necessary to enforce
the learned new features to preserve the similarity relationship.

In fact, to deal with the similarity relationship, various works
[1, 19, 37] have been proposed. For instance, the graph regular-
ization method [1, 19] is a widely used approach to restrict the
new features to preserve the similarity. This method has been suc-
cessfully used for conventional machine learning models, such as
manifold learning [19]. However, this method requires the expen-
sive eigendecomposition of the graph Laplacian. Thus, it is not
efficient for large-scale graphs. In addition, to handle the similarity
relationship, the conditional random field (CRF) method is another
potential choice. CRF is a probabilistic graphical model which can
model the pairwise relationship. It is first proposed in [26] for pre-
dicting labels of the sequential data. After that, it has been applied
to different tasks to encourage similar data points to have similar
predictions. For instance, in the image segmentation task [9], CRF
is used to refine the coarse pixel-level prediction by exploring the
relationship between each pixel and their contexts. Recently, CRF
is also applied to the information retrieval task [7] by modeling the
pairwise similarity between the query data point and the gallery
data point. Besides, a contemporary work, Conditional Graph Neu-
ral Field (CGNF) [30], also applies CRF to the graph convolutional
neural network. In particular, CGNF utilizes CRF to exploit the
correlation of node labels like the conventional CRF model [9, 26].
Conversely, our method does not use node labels in the CRF part.
Thus, our method is totally different from CGNF.

3 PRELIMINARY KNOWLEDGE
In this section, we will provide some preliminary knowledge about
the conditional random field which is important for our proposed
method.

Conditional random field (CRF) is a probabilistic graphical model,
which is first proposed in [26] for predicting labels of the sequential
data. Later, CRF is introduced to different tasks for structured pre-
diction, such as image segmentation [9], information retrieval [7].
Essentially, CRF is capable of modeling the pairwise relationship
between the reference data point and its context to refine the final
prediction. Formally, given the input data xi , CRF aims at predicting
yi by maximizing the conditional probability as follows:

P(yi |xi ) =
1

Z (xi )
exp(−E(yi |xi )) , (1)

where Z (xi ) denotes the partition function which serves as the
normalization factor, E(yi |xi ) represents the energy function. Here,
the definition of yi depends on the specific task. For instance, in
the image segmentation task, yi represents the label for each pixel.
In our task, yi denotes the new representation.

As for the energy function, it includes two components: the
unary energy component and the pairwise energy component. The
unary energy function gives the prediction for each individual
data point. The pairwise energy function aims at capturing the
correlation between the individual data point and its context to
regularize the unary energy function. As a result, the prediction
for each individual data point can benefit from its own information
and its neighboring data points’ information. Formally, the energy
function is defined as follows:

E(yi |xi ) = ψu (yi ,xi ) +
∑
j
ψp (yi ,yj ,xi ,x j ) , (2)

whereψu (yi ,xi ) denotes the unary energy functionwhileψp (yi ,yj ,xi ,x j )
represents the pairwise energy function. For instance, in the image
segmentation task, the unary energy function predicts the label
for individual pixels in terms of the property of each pixel. The
pairwise energy function provides the context information to en-
courage similar pixels to have similar label assignment. Finally, the
mean-field approximation method is usually used to optimize the
CRF model.

Inspired by its capability of capturing the pairwise relationship
between the reference data point and its context, we will propose to
apply CRF to the graph convolutional neural network to preserve
the similarity in hidden layers.

4 METHODOLOGY
Assume the input graph G = {A,X } includes the adjacency matrix
A ∈ ℜn×n and the node feature matrix X ∈ ℜn×d where n de-
notes the number of nodes and d represents the dimension of node
features. Specifically, A = [ai j ] ∈ ℜn×n gives the connectivity in-
formation between different nodes where ai j > 0 represents there
exists an edge between node i and node j , otherwise ai j = 0. Based
on these terminologies, the standard graph convolutional neural
network (GCN) proposed in [23] can be represented as follows:

H (l+1) = σ (ÂH (l )W (l+1)) , (3)

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

278



where H (l ) denotes the representation of the graph nodes in the
l-th layer,W (l ) stands for the model parameter in the l-th layer,
σ (·) represents the non-linear activation function. Additionally, Â
represents the normalized graph adjacency matrix Â = D̃− 1

2 ÃD̃− 1
2 .

Here, Ã = A + I where I is an identity matrix, and D̃ is a diagonal
matrix with diagonal elements being D̃ii =

∑n
j=1 Ãi j .

Intuitively, GCN in Eq. (3) first aggregates features of neighbor-
ing nodes in terms of the adjacency matrix by using ÂH (l ) and then
conducts the rest transformation. For the graph data, nodes are
connected by edges. These edges carry the similarity relationship
between different nodes. Thus, to learn effective representations
H (l+1) from GCN, it is necessary to enforce H (l+1) to preserve the
similarity relationship. Otherwise,H (l+1) cannot fully represent the
input graph data, degenerating the downstream task. To address
this issue, we will propose a novel method to restrict the behavior
of H (l+1).

4.1 CRF Layer
In this paper, following [23, 41], we consider the node classification
problem whose objective function is defined as follows:

J (W ;X , Â,Y ) = L(Y ; F (X , Â,W )) , (4)

where Y denotes the label of nodes,W represents the all model
parameters of graph convolutional neural networks, F (·, ·, ·) indi-
cates the graph convolutional neural network mapping, and L(·, ·)

stands for the loss function. Following [6], the objective function
of graph convolutional neural networks can be reformulated as the
following one with the quadratic penalty:

J (W ;X , Â,Y ) = L(Y ; FL(H (L−1), Â,W (L)))

+

L−1∑
l=1

γ

2
∥H (l ) − Fl (H

(l−1), Â,W (l ))∥2F ,
(5)

where γ > 0, L represents the total number of layers, and Fl (·, ·, ·)
denotes the mapping in the l-the layer. For the GCN defined in
Eq. (3), Fl (·, ·, ·) is σ (ÂH (l−1)W (l )). In terms of [45], under mild
conditions, the solution of Eq. (5) converges to that of Eq. (4) when
γ → ∞. From this new formulation, it is easy to find that there
is no any constraint for H (l ) to enforce it to satisfy the similarity
constraint that a graph possesses. To address this problem, the high-
level idea of our method is to enforce a regularization for H (l ) to
make it satisfy the similarity relationship. Specifically, our general
objective function is defined as follows:

J (W ;X , Â,Y ) = L(Y ; FL(H (L−1), Â,W (L)))

+

L−1∑
l=1

γ

2
∥H (l ) − Fl (H

(l−1), Â,W (l ))∥2F + R(H
(l )) ,

(6)

where R(·) denotes a regularization function for implementing
the similarity constraint. In fact, there are numerous works for
such kind of regularization in the traditional machine learning
and data mining models. However, since our purpose is to restrict
the behavior of the layers of graph convolutional neural networks,
there exist several challenges:

• The regularization term should be easy to compute. It cannot
have expensive computation.

• The regularization term should be friendly to the backprop-
agation strategy. Then, the neural network can still be opti-
mized in the backpropagation way.

• The regularization term should be easy to plug into existing
graph convolutional neural networks.

All in all, it is critical and challenging to get an efficient and effective
regularization term.

To address the aforementioned challenges, we resort to the con-
ditional random field (CRF) which can capture the pairwise re-
lationship between different nodes. Specifically, the node repre-
sentation H (l ) is viewed as random variables {H (l )

i · } where H
(l )
i ·

represents the i-th row ofH (l ), corresponding to the representation
of node i . These random variables are conditioned on {B

(l )
i · } where

B
(l )
i · = Fl (H

(l−1)
i · , Â,W (l )) stands for the preliminary representation

of node i obtained from the convolutional operation. Based on these
terminologies, we have the following CRF model:

P(H (l ) |B(l )) =
1

Z (B(l ))
exp(−E(H (l ) |B(l ))) , (7)

where Z (·) serves as the normalization factor and E(·) is the energy
function. As we discussed earlier, the energy function includes two
components: the unary energy component and the pairwise energy
component. In this paper, the unary function is defined as follows:

ψu (H
(l )
i · ,B

(l )
i · ) = ∥H

(l )
i · − B

(l )
i · ∥

2
2 . (8)

In fact, minimizing this unary function will enforce the node repre-
sentation H

(l )
i · to be close to that obtained from the convolutional

operation. To capture the similarity relationship between different
nodes, the pairwise function is defined as follows:

ψp (H
(l )
i · ,H

(l )
j · ,B

(l )
i · ,B

(l )
j · ) = дi j ∥H

(l )
i · − H

(l )
j · ∥

2
2 , (9)

where дi j denotes the similarity between node i and node j. Intu-
itively, when дi j is large, minimizing ψp (H

(l )
i · ,H

(l )
j · ,B

(l )
i · ,B

(l )
j · ) will

enforce H (l )
i · to be close to H (l )

j · . Otherwise, it will push H
(l )
i · away

from H
(l )
j · . As a result, similar nodes will be encouraged to have

similar representations.
Finally, the energy function for node i is defined as follows:

E(H
(l )
i · |B

(l )
i · ) = α ∥H

(l )
i · − B

(l )
i · ∥

2
2 + β

∑
j ∈Ni

дi j ∥H
(l )
i · − H

(l )
j · ∥

2
2 ,

(10)
where Ni denotes the neighborhood of node i . Here, we introduce
two parameters α > 0 and β > 0 to adjust the importance of the
two energy functions. Obviously, the energy function defined in
Eq. (10) will enforce the new representation in the l-th layer to
be close to that obtained from the convolutional operation and
encourage similar nodes to have similar new representations. In
addition, comparing with Eq. (6), the pairwise energy function in
Eq. (10) actually acts as the regularization to encourage the new
representations H (l ) to preserve the similarity relationship.

After obtaining the energy function, we need to derive a tractable
and efficient updating rule for the new representations H (l ). Here,
we resort to the mean-field approximation method. The basic idea is
to find a simple distribution to approximate P(H (l ) |B(l )) rather than
computing P(H (l ) |B(l )) exactly. Specifically, we employ the simple
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distribution Q(H (l )) to approximate P(H (l ) |B(l )). This simple distri-
bution can be represented by the product of independent marginal
distributions as Q(H (l )) =

∏n
i=1Qi (H

(l )
i · ). Then, we minimize the

KL divergence between the original distribution P(H (l ) |B(l )) and
the simple distribution Q(H (l )) as follows:

minKL(Q(H (l ))| |P(H (l ) |B(l ))) . (11)

As a result, we can get the optimal distribution Q∗
i (H

(l )
i · ) as follows:

lnQ∗
i (H

(l )
i · ) = Ej,i [ln P(H

(l )
j · |B

(l )
j · )] + const . (12)

According to Eq. (7) and Eq. (10), we can get

Q∗
i (H

(l )
i · ) ∼ exp

(
α ∥H

(l )
i · − B

(l )
i · ∥

2
2 + β

∑
j ∈Ni

дi j ∥H
(l )
i · − H

(l )
j · ∥

2
2

)
,

(13)
which indicates that Q∗

i (H
(l )
i · ) is a Gaussian function. As a result,

the maximum probability is achieved at the expectation ofQ∗
i (H

(l )
i · ).

Then, by computing its expectation, we have the updating rule for
the new representations H (l ) as follows:

(H
(l )
i · )

k+1 =
αB

(l )
i · + β

∑
j ∈Ni дi j (H

(l )
i · )

k

α + β
∑
j ∈Ni дi j

. (14)

Note that it is an iterative updating rule and (H (l )
i · )

k denotes H (l )
i · in

the k-th iteration. After K iterations, we set H (l )
i · = (H

(l )
i · )

K , which
is the final node representations in the l-th layer. From Eq. (14),
it can be seen that H (l )

i · depends on not only the representation
B
(l )
i · which is obtained from the convolutional operation but also

the representation of its neighboring nodes. Especially, when the
coefficient дi j is large, which means that node j is more similar with
node i , it will contribute more to H

(l )
i · . In this way, similar nodes

will have similar representations.
In Eq. (14), we need to compute the coefficient дi j between two

nodes. In fact, there are a couple of choices to implement it. In this
paper, we employ two approaches, which is shown as follows.

Gaussian The most straightforward approach is to use the
Gaussian function to compute дi j as follows:

дi j = exp
( B

(l )
j · B

(l )T
i ·

∥B
(l )
j · ∥2∥B

(l )
i · ∥2

/σ 2
)
, (15)

where σ is set as a learnable parameter in this paper. Note that B(l )i ·
is a row vector. Intuitively, a large inner product implies a large
similarity. Then, node j will contribute more to the representation
of node i . After obtaining дi j , it is easy to update H

(l )
i · without

expensive operations.
Neural Network Another choice to compute дi j is the flexi-

ble neural network, which has a larger capability than Gaussian
function to deal with the similarity between node i and node j.
Specifically, we employ a one-layer MLP to compute it as follows:

дi j =
exp(si j )∑

k ∈Ni exp(sik )
, (16)

where
si j = (WθB

(l )T
i · )T (WβB

(l )T
j · ) . (17)

Here,Wθ andWβ are the weights of neural networks. All these
weights are learnable parameters which can be optimized with
those of standard graph convolutional neural networks.

Finally, Eq. (14) can serve as an individual layer to plug into
the existing graph convolutional neural networks. Specifically, as
shown in Figure 1, for the GCN proposed in [23], we may have the
following layer configuration:

Conv Layer : B(l ) = σ (ÂH (l−1)W (l )) ,

CRF Layer : (H (l )
i · )

k+1 =
αB

(l )
i · + β

∑
j ∈Ni дi j (H

(l )
i · )

k

α + β
∑
j ∈Ni дi j

.
(18)

Here, we call Eq. (14) as the CRF layer. In addition, for the CRF
layer, we initialize (H (l )

i · )
0 = B

(l )
i · and set the number of iterations

to 2 in our paper.
Obviously, with our proposed CRF layer, similar nodes will be

encouraged to have similar representations. Consequently, the sim-
ilarity relationship can be preserved in the layers of graph convo-
lutional neural networks. In addition, it can also be find that it is
friendly to back propagation. Thus, we can still use the backpropa-
gation strategy to optimize this kind of neural networks. At last,
we summarize our method in Algorithm 1.

Algorithm 1 Graph convolutional neural network with CRF layer.
Require: the number of iterations K
Ensure: (H (l ))K

1: Graph Convolutional Layer

B(l ) = σ (ÂH (l−1)W (l ))

2: CRF Layer
3: for k = 0, 1, · · · ,K − 1 do

4: (H
(l )
i · )

k+1 =
αB(l )

i · +β
∑
j∈Ni дi j (H

(l )
i · )

k

α+β
∑
j∈Ni дi j

5: end for

4.2 Discussion
Recently, [41] applies the attention mechanism to the graph convo-
lutional neural network. That is the graph attention network (GAT)
whose convolutional layer is defined as follows:

H
(l+1)
i · = σ (

∑
j ∈Ni

αi jH
(l )
j · W

(l+1)) , (19)

where H (l+1)
i · denotes the feature of the i-th node, αi j represents

the attention coefficient between the i-th node and the j-th node.
In this way, if αi j is large, which indicates that the j-th node is an
important neighbor to the i-th node, it will contribute more to the
new feature of the i-th node.

In our proposed CRF layer, there is also a coefficient дi j which
represents the coefficient between two nodes. However, the mech-
anism of our method is different from that of GAT. Specifically,
although both GAT and our method aggregate neighboring nodes
in terms of the similarity between different nodes, yet GAT acts
before the non-linear activation function while our method hap-
pens after the non-linear activation function. Since the non-linear
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Table 1: Descriptions of benchmark datasets.

Dataset # Nodes #Edges #Features #Classes
Citeseer 3,327 4,732 3,703 6
Cora 2,708 5,429 1,433 7
Pubmed 19,717 44,338 500 3

function cannot guarantee to preserve the structure of node distri-
butions, the similarity may not be preserved after the convolutional
operation. On the contrary, our method acts on the output of the
non-linear activation function directly. Thus, it can guarantee the
output of the convolutional layer to preserve the similarity relation-
ship. In addition, our method is an iterative approach which can
be dynamically affected by the updating of the neighboring nodes.
Thus, our method is more flexible.

5 EXPERIMENTS
In this section, we will conduct extensive experiments to verify the
performance of proposed CRF layer.

5.1 Datasets
The datasets used in our experiments are same as [23, 41]. Specifi-
cally, there are three datasets: Cora, Citeseer, and Pubmed [39]. The
nodes of these networks are documents from different topics. The
citation between documents serves as the edges. The content of
documents corresponds to node features. Here, node features are
represented by the bag-of-words of the corresponding document.
The details about these documents are described as follows:

• Citeseer is a research paper citation network. There are 3,327
papers from 6 topics. The total number of citations is 4,732.
The dimension of node features is 3,703.

• Cora is also a citation network. It has 2,708 documents from
7 topics. Each document has 1,433 features. The number of
citations between different documents is 5,429.

• Pubmed is another citation network. It consists of 19,717
documents from 3 classes. Each document has 500 features.

The statistics of these datasets are summarized in Table 1.
In our experiments, we conduct two tasks to evaluate the per-

formance of our proposed method. They are semi-supervised node
classification and supervised node classification. As for the semi-
supervised task, following [23, 41], 20 nodes per class are labeled
as the training set. 500 nodes are selected as the validation set to
conduct model selection. After that, the trained model is evaluated
on the testing set which has 1,000 nodes. As for the supervised task,
following [8], we keep the same validation and testing sets as the
semi-supervised task. The rest nodes are all labeled as the training
set.

5.2 Experiment Settings
To evaluate the performance of our proposedmethod, we compare it
with various state-of-the-art methods. Following [41], the following
semi-superivsed methods are employed as the baseline methods.
They are Label Propagation (LP) [47], Semi-supervised Embedding
(SemiEmb) [42], Manifold Regularization (ManiReg) [3], DeepWalk
[35], Iterative Classification Algorithm (ICA) [29], Planetoid [43],

the graph convolutional neural network with Chebyshev filters
[10], and the MoNet method [32].

To show the performance of the CRF layer, we apply it to two
existing graph convolutional neural networks, including GCN [23]
and GAT [41]. Here, we call them CRF-GCN and CRF-GAT. As for
CRF-GCN, we employ the same network configuration as GCN.
Specifically, there are two convolutional layers. The dimension of
the hidden layer is 16. In our experiments, we insert the CRF layer
after the first convolutional layer. All the weights are initialized
with the Glorot method [16]. Additionally, we apply dropout [40]
to all convolutional layers and the dropout ratio is set to 0.5. Fur-
thermore, the weight decay whose parameter is 0.0005 is employed
to regularize model parameters. The Adam [22] optimizer with a
learning rate of 0.01 is utilized to optimize CRF-GCN.

As for CRF-GAT, there are also two convolutional layers. Simi-
larly, we insert the CRF layer after the first convolutional layer. The
other configuration is almost same with that of the original GAT.
Specifically, for Cora and Citeseer, the first convolutional layer has
8 attention heads, each of whom has 8 features. The second con-
volutional layer has only one attention head and the number of its
features equals the number of classes. Similar with CRF-GCN, the
weight decay with λ = 0.0005 is employed to regularize the weights
of the neural network. Additionally, the dropout with drop rate
being 0.6 is applied to all convolutional layers and the normalized
attention coefficients. For Pubmed, there are 8 attention heads at
the second convolutional layer. In addition, the weight decay is
increased to λ = 0.001. At last, all models are optimized by Adam
[22] optimizer.

5.3 Results and Analysis
5.3.1 Semi-supervised Task. In Table 2, we report the classification
accuracy of the semi-supervised task. Here, the results of state-
of-the-art methods are extracted from the original GAT [41]. In
addition, CRF-GCN-Gaussian denotes that дi j is computed by us-
ing the Gaussian function while CRF-GCN-NN denotes that it is
computed by using the neural network. So does CRF-GAT. Note
that since the dimension of the hidden layer of GAT is 64, we also
report the result of GCN-64 which has 64 hidden features either.

From Table 2, it can be seen that the proposed CRF regulariza-
tion layer does be helpful to improve the performance of existing
graph convolutional neural networks. Specifically, both CRF-GCN-
Gaussian and CRF-GCN-NN can beat the counterpart GCN for
almost all datasets. For instance, CRF-GCN-NN can improve upon
the standard GCN by 1.0% and 1.8% for Cora and Citeseer, respec-
tively, which indicates that preserving the similarity relationship is
beneficial. As for CRF-GAT-Gaussian, it improves upon the stan-
dard GAT by 1.6% and 0.6% for Cora and Citeseer, respectively. This
further verifies the effectiveness of our proposed method.

To further show the effectiveness of our proposed method, we
visualize the learned features in the last layer of GCN for Citeseer
dataset. Specifically, in Figure 2. we plot the learned features of
the testing set by using T-SNE [31]. It can be seen that the learned
features from our proposed methods have a more compact structure
than those learned from the standard GCN. In other words, the
similarity relationship does be preserved better than the standard
GCN. Thus, our method has a better classification performance.
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Table 2: The accuracy of semi-supervised node classification. Our results are marked in bold.

Methods Cora Citeseer Pubmed
ManiReg [3] 0.595 0.601 0.707
SemiEmb [42] 0.590 0.596 0.717
LP [47] 0.680 0.453 0.630
DeepWalk [35] 0.672 0.432 0.653
ICA [29] 0.751 0.691 0.739
Planetoid [43] 0.757 0.691 0.739
Chebyshev [10] 0.812 0.698 0.744
MoNet [32] 0.817 - 0.788
GCN [23] 0.815 0.703 0.790
CRF-GCN-Gaussian (ours) 0.828 0.718 0.790
CRF-GCN-NN (ours) 0.825 0.721 0.792
GCN-64 0.814 0.709 0.790
GAT [41] 0.830 0.725 0.790
CRF-GAT-Gaussian (ours) 0.846 0.731 0.791
CRF-GAT-NN (ours) 0.841 0.726 0.790

(a) GCN (b) CRF-GCN-Gaussian (c) CRF-GCN-NN

Figure 2: The visualization of features from the last layer for Citeseer.

(a) GCN (b) Input of the CRF layer (c) Output of the CRF layer

Figure 3: The visualization of features from the hidden layer of GCN and CRF-GCN-Gaussian for Citeseer.

Furthermore, to show the effect of the CRF layer, we visualize
the hidden features of the CRF layer. Specifically, in Figure 3(a),
we show the output feature of the first convolutional layer of the
standard GCN for Citeseer dataset. In Figure 3(b) and Figure 3(c),

we visualize the input and output feature of the CRF layer which
follows the first convolutional layer of our proposed CRF-GCN-
Gaussian, respectively. Compared Figure 3(b) with Figure 3(c), it
can be seen that the output feature of the CRF layer have a more
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compact structure than the input. In other words, the CRF layer
makes the features more compact to preserve the similarity. All
these results have verified the effectiveness of our proposed method.

Figure 4: The semi-supervised classification accuracy of dif-
ferent MLP methods with different layers for Cora.

At last, to comprehensively verify the effectiveness of the CRF
layer, we apply it to the standard fully connected neural networks.
In detail, we insert the CRF layer after each fully connected layer
other than the last layer. Here, we call them CRF-MLP-Gaussian
and CRF-MLP-NN. In detail, the dimension of the hidden layer is
set to 64. The training configuration, such as learning rate, weight
decay parameter, dropout ratio, is same with CRF-GCN. In Figure 4,
we demonstrate the testing accuracy of the semi-supervised classi-
fication for Cora. Here, we show the result of MLP with different
layers. It can be seen that CRF-MLP-Gaussian and CRF-MLP-NN
can outperform the standard MLP consistently and significantly.
IN particular, the standard MLP performs worse when increasing
the number of layers while our methods do not. The possible rea-
son is that the hidden layer of the standard MLP cannot preserve
the similarity. As a result, the learned representations violate the
similarity relationship more severely when stacking more layers.
On the contrary, due to the regularization of the CRF layer, our
methods perform well when stacking multiple layers. Thus, we can
conclude that the proposed CRF layer can preserve the similarity
relationship between different nodes effectively.

5.3.2 Supervised Task. To further demonstrate the performance of
our proposedmethod, we conduct the supervised node classification
task as [8]. Specifically, we also insert the CRF layer after the first
convolutional layer of GCN. Additionally, in this task, we employ
the residual connection in the CRF layer as follows:

Ĥ (l ) = (H (l ))K + B(l ) , (20)

where (H (l ))K is the last iteration of the CRF layer.
Similar with the semi-supervised task, we use the early stop

strategy to terminate the training procedure when the loss function
is not further decreased. The classification result is reported in
Figure 5. It can be seen that our proposed methods outperform
the standard GCN for almost all cases, which demonstrates the
effectiveness of our proposed method.

Figure 5: The supervised classification accuracy of different
supervised GCN methods.

Table 3: The supervised classification accuracy of MLP.

Dataset Cora Citeseer Pubmed
MLP 0.733 0.757 0.863
CRF-MLP-Gaussian 0.873 0.799 0.886
CRF-MLP-NN 0.852 0.783 0.884

Furthermore, we also apply the proposed CRF layer to fully
connected neural networks for the supervised task. Following the
configuration of the semi-supervised task, the dimension of hidden
layers is also set to 64. In this experiment, there is only one hidden
layer and the proposed CRF layer is inserted after the hidden layer.
The classification result is shown in Table 3. It can be seen that MLP
with the proposed CRF layer significantly outperforms the standard
MLP. The underlying reason is that the proposed CRF layer can
preserve the similarity relationship in the hidden layer. As a result,
the learned representation for nodes is discriminative, benefiting
the classification task.

5.3.3 Ablation Study. In the proposed CRF layer, there are two
important parameters: α and β , which are used to adjust the impor-
tance of B(l ) and H (l ). In this paper, we set them as the learnable
parameters. To show the importance of these parameters, we com-
pare it with the variants: CRF-GCN-Gaussian-const and CRF-GCN-
NN-const, which set α = 1 and β = 1. In Table 4, we report the
semi-supervised classification accuracy. It can be seen that these
two variants degrade the performance significantly for almost all
cases. Thus, it is necessary to learn these two parameters automati-
cally.

6 CONCLUSION
In this paper, we propose a novel CRF layer for the graph convolu-
tional neural network. Specifically, by resorting to the CRF model
for the hidden layers of graph convolutional neural networks to
explore the similarity relationship, we obtain an efficient CRF layer,
which can encourage the hidden features to preserve the similarity
between different nodes. In addition, the proposed CRF layer is easy
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Table 4: The semi-supervised classification accuracy of Cora
dataset. The “const” variant represents α = 1 and β = 1.

Dataset Cora Citeseer Pubmed
CRF-GCN-Gaussian 0.828 0.718 0.790
CRF-GCN-Gaussian-const 0.813 0.698 0.791
CRF-GCN-NN 0.825 0.721 0.792
CRF-GCN-NN-const 0.811 0.700 0.788

to compute and optimize so that it can be inserted into existing
graph convolutional neural networks to improve their performance.
The extensive experimental results have verified the effectiveness
of our proposed method.
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