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ABSTRACT ACM Reference Format:

Machine learning applications are often plagued with confounders
that can impact the generalizability of the learners. In clinical
settings, demographic characteristics often play the role of con-
founders. Confounding is especially problematic in remote digital
health studies where the participants self-select to enter the study,
thereby making it difficult to balance the demographic characteris-
tics of participants. One effective approach to combat confounding
is to match samples with respect to the confounding variables in
order to improve the balance of the data. This procedure, however,
leads to smaller datasets and hence negatively impact the inferences
drawn from the learners. Alternatively, confounding adjustment
methods that make more efficient use of the data (such as inverse
probability weighting) usually rely on modeling assumptions, and
it is unclear how robust these methods are to violations of these
assumptions. Here, instead of proposing a new method to control
for confounding, we develop novel permutation based statistical
tools to detect and quantify the influence of observed confounders,
and estimate the unconfounded performance of the learner. Our
tools can be used to evaluate the effectiveness of existing confound-
ing adjustment methods. We evaluate the statistical properties of
our methods in a simulation study, and illustrate their application
using real-life data from a Parkinson’s disease mobile health study
collected in an uncontrolled environment.
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1 INTRODUCTION

Machine learning (ML) algorithms have been increasingly used as
diagnostic tools in biomedical research(7, 8, 10]. The widespread
availability of smartphones and other health tracking devices gen-
erates high volumes of sensor data, and makes machine learning
uniquely well posed to impact clinical research using digital health
tools. In clinical applications, gender, age, and other demographic
characteristics of the study participants often play the role of con-
founders. Confounding is particularly prevalent in mobile health
studies run under uncontrolled conditions outside clinical and labo-
ratory settings, where we have little control over the demographic
and clinical characteristics of the cohort of participants that self-
select to participate in a study.

In the context of predictive modeling, we define a confounder as
a variable that causes spurious associations between the features
and response variable. In machine learning applications, the pres-
ence of confounding can lead to ambiguous inference and poor
generalizability of models. Confounding is usually present when
the joint probability distribution of the confounder and response
variables is different in the data available to develop the learner
(which we from now on denote as the “development dataset") rela-
tive to the population where the learner will be applied (denoted
as the “target population")[22]. For example, consider a diagnostic
application where most cases are old aged while most controls
are young, but where age is not associated with disease status in
the target population (e.g., the target population is composed of
older patients only). If the classifier can more efficiently detect
age-related signals than disease-related signals, then it will likely
perform poorly when deployed in the target population.

Confounding adjustment is an active area of research in machine
learning. The goal is to prevent an algorithm from learning the
confounding signal. Since any variable that confounds the feature-
response relationship has to be associated with both the features
and the response, most of the methods proposed in the literature can
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be divided into two approaches: (i) methods that remove the associ-
ation between the confounder and the response; or (ii) methods that
remove the association between the confounder and the features.
A standard example of the first approach is to match subjects from
the development data in order to obtain a subsample that more
closely resembles the target population. This strategy, however,
results in a smaller number of participants to train and evaluate
the machine learning algorithm, and, in highly unbalanced situa-
tions, might lead to the exclusion of most of the participants from
the analyses. Alternative methods that make more efficient use of
the data include inverse probability weighting approaches[18, 22],
which weight the training samples in order to make model train-
ing better tailored to the target population. A canonical example
of the second approach (i.e., reduce the association between the
confounders and the features) is to separately regress each feature
on the confounders, and use the residuals as the predictors in the
machine learning algorithm. Other approaches that do not fall into
categories (i) or (ii) include penalized learners[16] and backdoor
adjustment[13].

In this paper, we present statistical methods to detect and quan-
tify the influence of observed confounders, and to estimate the
actual (i.e., unconfounded) predictive performance of a learner. We
use a large Parkinson’s digital health study cohort to illustrate how
our methods can be used to evaluate the effectiveness of standard
confounding adjustment methods.

2 METHODS

We adopt restricted permutations[9, 22] to isolate the contribution
of the confounder from the predictive performance of a learner.
The key idea is to shuffle the response data within the levels of
a categorical/ordinal confounder (as illustrated in the Figure 1)
in order to destroy the direct association between the response
and the features while still preserving the indirect association due
to the confounder. Algorithm 1 describes the procedure for an
arbitrary performance metric, m (such as the area under the receiver
operating characteristic curve, AUC, or root mean square error).

Algorithm 1 Restricted Monte Carlo permutation null distribution
for performance metric m

1: Input: Number of permutations, b. Development data set fea-
ture matrix, response vector, and confounder vector, X, Yy, C.
Training and test set indexes, isrqin, irest

. Split X, y and c into training and test sets

fori=1,2,....,bdo

Y}, 4in < RestrictedShuffle(y,, ;- Crrain)!

Yiesr < RestrictedShuflle(y, g, crest)

Train a ML algorithm on the X;,4in and y’t‘min data

Evaluate the algorithm on the Xyesy and yj,, data

Compute the performance metric, m;, on the shuffled data

. end for

: Output: m?, m;,

R B A A

*
amb

_ =
-

: IThe pseudo code for the RestrictedShuffle function is presented in the Supplement.

Building upon the restricted permutation null distribution, we
developed two statistical tools to deal with confounding:
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samples

(confounder) (response)

Figure 1: Panels a, b, and c, represent the features (X), con-
founder (C), and response (Y) data, respectively. In this car-
toon example, we have 16 samples, and both C and Y are bi-
nary (light and dark cells represent 0 and 1 values, respec-
tively). The confounder vector (panel b) was sorted, and the
red line splits the data relative to the levels of C (i.e., the top 7
samples have confounding value 1, while the bottom 9 have
confounding value 0). Note that in panel ¢ we have 4 posi-
tive response values (dark cells) above the red line, and 2 be-
low it. Panel d illustrates the restricted permutation scheme.
Each column shows a distinct permutation. In all permuta-
tions, we still have 4 dark cells above the red line and 2 be-
low it. The restricted permutations destroy the association
between Y and X, while still preserving the association be-
tween Y and C. Panel e illustrates the standard permutation
scheme, where we shuffle the response values freely across
the entire response vector (now, each column is no longer
constrained to have 4 dark cells above the red line and 2 be-
low it). The standard permutations destroy the association
between Y and C and between Y and X.

(i) First, we estimate the “unconfounded" predictive perfor-
mance of a learner by building a mapping from the restricted
permutation null to the standard permutation null (where
the standard permutation null distribution is generated by
shuffling the labels in the usual unconstrained manner). As
fully described in Section 2.1 (see below), for any perfor-
mance metric that can be expressed as a (generalized) U-
statistic[6, 11, 15, 25] (e.g., AUC), or expressed as a simple
average (e.g., mean square error, mean absolute error, and
classification accuracy), we have that an asymptotic estimate
of the unconfounded performance metric is given by,

y = (mo —az-) =
Sq=

+ g, 1
where m, represents the uncorrected metric value; a4+ and
512% . represent the sample average and variance of the re-
stricted permutation null; and a3+ and sf% .. represent the
analogous quantities for the standard permutation null.

Second, by noticing that the location of the restricted per-
mutation null provides a natural measure of the amount of
confounding signal learned by the algorithm, we adopt the
average of the restricted permutation null as a test statistic,

(i)
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and develop a statistical test to compare the hypotheses,

Hp : the ML algorithm has not learned the

)

confounding signal ,

HY : the ML algorithm has learned the

confounding signal ,

and detect confounding learning per se. Section 2.2 (see
below) describes this statistical test in detail.

2.1 The unconfounded metric estimate

The observed metric m, captures the contributions of both response
and confounder learning. In order to estimate the “unconfounded”
value, my,, we need to determine what value would the observed
performance metric have assumed, had the response variable not
been associated with the confounder. In other words we need to
map a value sampled from a distribution where the response and
confounder are associated to a distribution where they are not.
To this end, we construct a mapping from the restricted permuta-
tion null distribution (where the association between the response
and the confounder is preserved) to the standard permutation null
(where this association is removed).

Let F+ and Fr+ represent, respectively, the restricted and stan-
dard permutation null distributions, and F+ and F ;. represent the
respective Monte Carlo versions of these permutation distributions.
An obvious mapping would be to define my, = my — az- + az,
where a3+ and a;+ correspond, respectively, to the sample mean
of F4- and F4--. This mapping, however, only focus on the means
and fails to take into consideration the different spreads of the re-
stricted and standard permutation null distributions. Ideally, we
should define a mapping that accounts for the entire probability
distributions. Therefore, we define and estimate the unconfounded

metric my, by equating Fy«(my,) to Fy-(m,),
Fre(tiy) = Fpe(mo) & 1y = F;xl* (Frr(mo)) .

®)

Note that, equating F=(mo) to Fy=(my,) is equivalent to equating
the p-values, as illustrated in Figure 2.

Afm]ﬂﬂﬂmﬂ]m‘

rr° 1T 1T 1T 1
0.45 0.50

15

Density

0.40 0.55

AUC

0.60 0.65 0.70

Figure 2: The figure shows an example of the restricted (blue)
and standard (red) permutation null distributions for the
AUC metric. The cyan line represents the observed AUC
value (m,), while the orange line shows the unconfounded
estimate (771,,). Note that the tail probabilities to the right of
the cyan and orange lines are the same (i.e., the p-values are
preserved).

In general, F;- and F;+ are unknown distributions. However,
because popular performance metrics such as the mean square er-
ror, mean absolute error, and the classification accuracy correspond
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to averages, while metrics such as the AUC correspond to gen-
eralized U-statistics[6, 15], we have that the distribution of these
statistics can be well approximated by Gaussian distributions when
the test set is large enough (due to central limit theorems associated
with averages, and to the asymptotic normality of (generalized)
U-statistics[11, 25]). Hence, in practice, we will often be able to
approximate E4+ and Fj-- by,

N (aﬁ* S si) S

2 ; i-
and s%.. correspond, respectively, to the sample vari

Fpe = Fapo = N(af,w, si) s (4)

2

G
ances of F;- and ﬁﬁw, and a3+ and aj;«+ represent, as before, the
respective sample averages. (The blue and red densities on top of
the histograms in Figure 2 correspond, respectively, to the normal
approximations in (4).) Now, by replacing F« and F+ in equation
(3) by the approximate Gaussian distributions in (4) we have that,

“ff*“) - @(mo‘“ﬁ*) < Faelmo), (5)

S

where s

Faoe i) ~ @('"”;x

T

where ®(.) represents the cumulative distribution function of a
standard normal random variable, and we can estimate 1, using
the estimator presented in eq. (1).

At this point, it is important to mention that we don’t view the
unconfounded metric estimation as an adjustment method (in the
sense that it does not prevent an algorithm from learning the con-
founding signal in the first place). It simply quantifies the amount
of response signal learned by the algorithm, after the algorithm has
had a chance to learn both confounding and response signals.

2.2 A statistical test to detect confounding

In the presence of confounding, the restricted permutation null
distribution will be shifted away from the baseline random guess
value, and this shift can be used to informally infer the presence of
confounding. Here, we present a hypothesis test to formally test
the hypotheses presented in eq. (2).

We adopt the sample mean of the restricted permutation null,

(6)

=1

as a test statistic, since it represents a natural measure of confound-
ing. Note that under the null hypothesis that an algorithm has not
learned the confounding signal, the restricted permutation null will
have the same distribution as the standard permutation null. Hence,
for large enough test sets we have that M* = N(az;-, sfr) and
our test statistic is asymptotically distributed as,

N (aﬁx» , slz%*x/b) . (7)

Note that the variance of this null distribution depends on the num-
ber of permutations (b) used to generate the restricted permutation
null, and gets smaller as we increase b. As a consequence, we can
easily obtain a statistically significant result by increasing the num-
ber of permutations. In order to avoid this artifact, we replace b by
the number of test set samples in the computation of the p-value,

M =

p-value = 1-® (aﬁ* I ) . 3)

sier/\n
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By doing so, we guarantee that we will only be able to detect small
confounding effects when we are truly well powered to do so. In
Section 3, we report the results of a simulation study evaluating
the empirical performance of the confounding test.

2.3 Analytical results for the AUC metric

For the AUC metric, additional analytical results are available for
approximating the standard permutation null distribution and, in
practice, we usually don’t need to generate the standard permuta-
tion null. Next, we show how these analytical approximations can
be used in the computation of the unconfounded AUC estimate and
the confounding statistical test.

It has been shown[2] that, when there are no ties in the predicted
class probabilities used for the computation of the AUC, the test
statistic of the Wilcoxon rank sum test (also known as the Mann-
Whitney U test), U, is related to the AUC statistic by, U = np ny(1—
AUC), where np and ny represent the number of negative and
positive labels in the test set (see Section 2 of reference[19] for
details). For large test sets, and under the null hypothesis that the
ML algorithm has not learned the response and the confounding
signal, this distribution can be approximated[19] by

npn npnpnp +np +1
U~N nnp 7 n p( n p ) ) )
2 12
Now, from the relation AUC = 1 - U/(np np) it follows that,
1 np+np+1
AUC ~ N|-, =—2 "\ (10)
27 12npnmy

so that the standard permutation null distribution, F;», can be
approximated by the above normal distribution.

Now, by approximating a;« by 1/2 and si by (nn + np +
1)/(121n, np), we have that the unconfounded AUC estimate is
given by,

hp +np+1
aucy = (aucy — az+) —— +05.
12n, Np S,

and the null distribution and p-value for the confounding statistical
test can be approximated by,

(11)

b
- np+ny+1
AUC" =b7' 3" AUC; —r

i=1

) L

1
~ N|=,
G

12npnpn

and,

(13)

p=1-0 (az+ =0.5)\12nynpn
\in +np +1 ’

where, as described before, we replaced the number of permutations,
b, by the number of samples in the test set, n.

3 SIMULATION EXPERIMENTS

Here, we investigate the statistical power and type I error rates
of the confounding statistical test (H; vs Hy). We simulated data
according to the model in Figure 3, where C represents a binary
confounder, Y represents the disease status, X1, X2, X3 represent
the features, and 6 and f represent, respectively, the confounding
and disease effects. In order to generate an association between C
and Y (i.e., C & Y) we jointly sample these binary variables from a
bivariate Bernoulli distribution[5] (described in Section 7.2 in the
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Supplement). We performed several simulation experiments based
on data generated with:
(i) confounding and disease signal (i.e., under H; and H{i);
(ii) confounding but no disease signal (i.e., under H{ and H(‘)i );
(iii) no confounding or disease signal (i.e., under H; and Hgl );
(iv) disease but no confounding signal (i.e., under Hy and Hfl )-
In each experiment we generated 3,000 data sets. (Details about

the simulation parameter choices are provided in Section 7.3 in the
Supplement.)

%ﬁ
Figure 3: Graphical model representation of the data gen-

eration process used to simulate the synthetic datasets em-
ployed in the simulation study.

Figures 4a and b report the empirical power curves for data
simulated under H; in both the presence of disease signal (i.e., under

Hij ) in panel a, and in the absence of disease signal (i.e., under Hgl )
in panel b. Each panel shows three power curves, corresponding to
datasets simulated with increasing amounts of confounding signal,
0. (We estimated empirical power by recording the proportion of
times that we rejected the null hypothesis across a grid of nominal
significance levels varying from 0 to 1.) As expected, the empirical
power to detect confounding increased with the strength of the
confounding signal. Figures 4c and d report the distribution of
the confounding test p-values for data simulated under the null
hypothesis Hf in the presence (panel c) and in the absence (panel
d) of disease signal. As expected, the distribution is close to the
uniform distribution in the [0, 1] interval, showing well controlled
type I error rates.

For the sake of completeness, we also checked if our estimator
of unconfounded performance was working as expected in the
simulations. Figure 5 shows the distributions of the observed AUC
scores, AUCy (cyan boxplots), and unconfounded estimates, AUC,,
(orange boxplots), for each of the four simulation experiments. As
expected, in the presence of confounding (panels a and b), the
AUC, values tended to be higher than the AUC,, scores (recall that
AUC, captures the contribution of both the disease and confounder
signals, while AUC,, captures only the disease signal). Accordingly,
in the absence of confounding (panels c and d), the AUC, and AUCy,
values closely matched each other. Note, as well, that in the absence
of disease signal (i.e., under Hg) the AUC,, scores tended to be
distributed around 0.5 (panels b and d), while the AUC,, scores were
still above 0.5 in the presence of confounding signal (panel b), but
around 0.5 in the absence of confounding (panel d).

4 REAL DATA ILLUSTRATIONS

A key practical application of our tools is to evaluate if an adjust-
ment method is working as expected. This is important in practice
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Figure 4: Simulation results. Panels a and b show the empir-
ical power curves for data simulated with confounding (i.e.,
under Hy) in the presence (panel a) and absence (panel b) of
disease signal. Panels ¢ and d show the distribution of the
p-values for data simulated in the absence of confounding
(i-e., under H) in the presence (panel c) and absence (panel
d) of disease signal.

since most of these methods rely on assumptions, and it is gener-
ally unclear how robust they are to violations of these assumptions.
Here we illustrate the application of our tools to two confounding
adjustment methods: sample matching, and approximate inverse
probability weighting (IPW) based on the propensity score[24].

Our development data was collected in a digital health study on
Parkinsons disease[3, 26] and consists of features generated from
30 second inertial sensor readings captured during walking. We
focused on walking, as walking patterns are influenced by age and
gender[12] in addition to Parkinson’s disease. The development data
was split into training and test sets with similar joint distributions
for the age, gender, and disease status (Figure 6).

We applied the adjustment methods to both training and test
sets, and the analyses were based on a combined gender/discretized
age confounder with levels: young male, young female, middle age
male, middle age female, senior male, and senior female. Note that
while, in theory, we can only perform restricted permutations us-
ing categorical/ordinal confounders, in practice we can discretize
and evaluate continuous confounders as well. Clearly, if the dis-
cretization is too coarse the discretized confounder might not be
able to fully capture the association between the confounder and
the response, and we might end up underestimating the amount
of confounding learned by the algorithm. In practice, one should
experiment with distinct discretizations, as illustrated in Figure 7.
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Figure 5: Distributions of the observed AUC scores, AUC,
(cyan boxplots) and of the unconfounded estimates, AUC,,
(orange boxplots), for each of the 4 simulation experiments.

Figures 8 and 9 show the results based on logistic regression
and random forest classifiers, respectively. In all panels, the blue
histograms represent the restricted permutation null distributions
generated by Algorithm 1, the red curves represent the normal
approximation for the standard permutation null distribution pre-
sented in eq. (10), the orange line shows the unconfounded estimate
of AUC computed using eq. (11), and the cyan line represents the
observed AUC.

For the sake of comparison, panel a in Figures 8 and 9 report
the results when no confounding adjustment is performed. Both
logistic regression and random forest classifiers are clearly learn-
ing confounding signal since the restricted permutation nulls are
centered around 0.7, and the confounding test p-values (eq. 13) are
highly significant (p < 1071°). Hence, the high AUC scores (cyan
lines above 0.81) reflect the classifiers’ ability to detect both dis-
ease and confounding signals, while the unconfounded estimates
(orange scores around 0.66) are considerably more modest.

Panel b in Figures 8 and 9 show the results based on a matched
subset of participants. The fact that the restricted permutation nulls
are centered around 0.5, and closely match the standard permuta-
tion null density (red curve), suggests that matching effectively pre-
vented the classifier from learning the confounding signal (p < 0.51
and p < 0.58, respectively) and that the classifiers are only learning
the disease signal. As expected, the observed and unconfounded
AUC scores match each other closely in this situation. Finally, note
that the much larger spread of the null distributions (in comparison
to panel a) is due to the smaller test set available after matching.

Panel c in Figures 8 and 9 report the results for the approximate
IPW approach. This method makes use of the entire data set and
attempts to prevent confounding learning by weighting the samples
according to the inverse of their estimated propensity scores (i.e.,
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Figure 6: Age and gender associations in the mPower data.
Panels a and b show that, for both training and test sets,
the age distributions of PD and control participants have
reduced overlap, with control participants being usually
younger than PD participants leading to a strong association
between age and disease status. Panels ¢ and d present mo-
saic plot of disease status by gender, showing again an as-
sociation between these variables (with a larger proportion
of female participants in the PD group than in the control
group). The training and test sets are composed, respectively
of 658 and 331 cases and 2,144 and 1,255 controls.

the conditional probability that a participant has the disease given
its gender and age). While several approaches have been proposed
in the literature for the estimation of propensity scores[14, 20], here,
we adopt the most commonly used method based on logistic re-
gression. (A detailed description of the approximate IPW approach
is presented in Section 7.4 in the Supplement.) The panels show
that the approximate IPW approach managed to reduce the amount
of confounding (the blue histograms are closer to 0.5 compared
to panel a). However, it didn’t remove it completely (p < 10716).
This suggests that the estimated inverse probability weights did not
generate a well balanced augmented data set. (Figure 10 confirms
this is indeed the case.) Most likely, the reason for this subopti-
mal performance is that propensity score estimation using logistic
regression makes the strong assumption that the observed asso-
ciations between the confounders and disease labels can be well
described by the logistic function. This example illustrates how
the violation of a parametric modeling assumption can lead to an
inefficient confounding adjustment.

5 ACCOUNTING FOR THE CONFOUNDER /
RESPONSE ASSOCIATION STRUCTURE IN
THE TARGET POPULATION

For the sake of clarity, our illustrations have focused on the case
where confounder and response are associated in the development
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Figure 7: Here, we illustrate how the granularity of the dis-
cretization can influence the amount of confounding signal
detected by the restricted permutation null. As pointed out
in the main text, if the discretization is too coarse the dis-
cretized confounder might not be able to fully capture the as-
sociation between the confounder and the response, and we
might underestimate the amount of confounding learned by
the algorithm. Here, we experiment with distinct discretiza-
tions of the age confounder, namely, categorizing age into
2, 3, 4, and 5 levels. (These level categorizations are given,
respectively, by the following age ranges {[18,58],[59,99]},
{[18, 44], [45, 65],[66, 99]}, {[18, 35], [36, 50], [51, 65],[66, 99]}, and
{[18,30], [31, 45], 46, 60], [61, 75],[76, 99]}.) Inspection of the re-
sults suggest that the discretization based on 4 levels seems
to be enough for this feature set, as increasing the discretiza-
tion to 5 levels does not shift the restricted null. Clearly,
splitting age into 2 levels is not enough since the restricted
permutation null is located at much lower AUC values,
showing that a fair amount of confounding signal was not
captured by this coarse discretization. Splitting age into 3
levels still seem to miss some of the association, as we obtain
a slightly stronger confounding signal using 4 levels. (In the
illustrations from this paper, however, we continue to use
the 3 level categorization, as it already captures enough age
signal.)

set but not in the target population. We can, however, still apply
our methodology when response and confounder are known to
be associated in the target population but have a different joint
probability distribution compared to the development data.

To account for the association structure in the target population,
we need to derive a baseline null distribution that preserves this
structure, and then use this distribution to replace the standard
permutation null in our tools. For concreteness, we present next a
synthetic data example describing the approach.

Suppose that it is known, a priori, that a disease affects one
third of the population and is two times more common in males
than in females in the target population. The mosaic plot in Figure
11a describes the joint distribution of gender and disease status in
the target population. Suppose, as well, that we have access to a
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logistic regression (no adjustment)
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Figure 8: Comparison of confounding adjustment methods
using the logistic regression classifier. In all panels, the blue
histogram represents the restricted permutation null, the
red curve represents the normal approximation for the stan-
dard permutation null, and the cyan and orange lines show,
respectively, the observed and unconfounded AUC scores.
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Figure 9: Comparison of confounding adjustment methods
using the random forest classifier.

development set containing 10,000 samples, but that, due to self-
selection mechanisms, gender and disease status are more strongly
associated in the development dataset than in the target population.
Figure 11b shows a mosaic plot describing the joint distribution of
gender and disease status in the development dataset. (The data
was generated as described in Section 7.2 in the Supplement.)
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Figure 10: Checking confounder balancing achieved by the
approximate IPW and the matching approaches. The panels
show mosaic plots for the combined age/gender confounder
versus the disease status (age was discretized into young,
middle, and senior age categories). For the sake of compari-
son, panels a to b show the results for the original data. Pan-
els b to ¢ show the respective plots for the augmented train-
ing and test sets generated by the approximate IPW method.
While the method clearly improved the balance (in compar-
ison to the results in the top panels), it still did not man-
age to generate truly well balanced training and test sets.
Panels e and f show the results for the matching approach.
The mosaic plots show a perfect balance for the combined
age/gender confounder versus the disease status.

To account for the association structure in the target population,
we first sub-sample (from the development population) a training
and a test set showing the same joint distribution of gender and
disease status as the target population. Figures 11c and d show
the mosaic plots for these baseline sets. Next, we apply restricted
permutations to these subsets in order to generate the baseline
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Figure 11: An example on how to account for the confounder/response association structure in the target population. See the

text for details.

null distribution (green histogram in Figure 11e), which captures
the gender/response association structure of the target population.
(Note how this null distribution is shifted away from 0.5, due to the
association between gender and disease status.)

Once the association structure in the target distribution has been
quantified, the next step is to measure the amount of association in
the development data. This is so that we can quantify how much
of the observed predictive performance of the classifier is actually
due to the stronger association structure in the development data.
To this end, we generate a restricted permutation null distribution
based on a random split of development dataset into training and
test sets that preserve the joint distribution observed in Figure 11b.
We call these subsets the “development training set" and the “devel-
opment test set". Figures 11f and g show the respective mosaic plots.
The blue histogram in Figure 11e shows the restricted permutation
null derived from the development training and test sets!.

Now, in order to compute the unconfounded predictive perfor-
mance of the classifier (relative to the target population) we only
need to use the baseline null distribution (green histogram in Fig-
ure 11e) in place of the standard permutation null (red density in
Figure 11e). For instance, setting a; and s;, to represent the mean
and standard deviation of the baseline null, and letting a;« and
sz« represent, as before, the mean and standard deviation of the

!Note that, in order to make the restricted null distribution (blue histogram) and
baseline null distribution (green histogram) comparable, the development test set
should have the same size as the baseline test set. (Recall that the spread of the
permutation null distribution decreases with increasing sample sizes.) In Figure 11,
both the baseline (panel d) and development test set (panel g) contain 1,467 samples.
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restricted permutation null (blue histogram in Figure 11e), we can
estimate the unconfounded AUC value as,

s

(AUCy — a3 )~L +ay . (14)
Sz

The green line in Figure 11e represents the above estimate (while,

for the sake of comparison, the orange one shows the estimate with

respect to the standard null distribution).

Similarly, we can still test for the presence of confounding (which
in this example is measured by the amount to association between
the confounder and the response that goes beyond the associa-
tion present in the target population). To this end, we can use the
N(ay, si /n) distribution as an approximate null and compute the
p-value for the confounding test as,

az- —ap )
sp/n

Note that the estimator in eq. (14) and the p-value in eq. (15)
correspond, respectively, to the estimator in eq. (1) and the p-value
in eq. (8) with a4+ and s3+- replaced by aj, and sj,.

p:l—(b( (15)

6 FINAL REMARKS

Digital health enabled diagnostic systems have the potential to pro-
vide low cost remote diagnostic tools to underserved communities
that lack easy access to medical care. However this opportunity
cannot be fully realized without (i) efficient approaches to combat
confounding (without which we run the risk of making spurious in-
ferences from the data) and (ii) rigorous methods to evaluate these
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adjustment methods. The tools proposed in this paper address the
second need.

To the best of our knowledge, the use of restricted permuta-
tions in the context of predictive modeling has only been leveraged
by[22]. These authors, however, use restricted permutations to test
if a ML algorithm has learned the response signal in the presence
(or absence) of confounders, but not to detect and quantify con-
founding learning per se, as proposed in this paper.

While this paper provides a practical approach to assess the
influence of potential confounders, a few noteworthy limitations
remain. For instance, the approach might become impractical in
situations where the feature/response association is confounded
by a relatively large number of confounders containing a relatively
high number of levels per confounder. Furthermore, because the ap-
proach can only investigate the influence of observed confounders,
the performance of a ML algorithm might still be biased by unob-
served confounders.

All illustrations presented in this paper were based on shallow
classifiers. In this setting, the features are fixed and the restricted
permutations allow us to evaluate if the ML algorithm was able to
learn the confounding signal from the fixed features. Deep models,
on the other hand, learn the feature representations from the raw
data. As a consequence, if we train a deep model using shuffled
labels generated by restricted permutations, the deep model might
learn feature representations that can capture the confounding sig-
nal?. These feature representations, however, do not correspond to
the feature representations the deep model would have learned, had
the labels not been shuffled. (It is well known that deep models show
distinct learning behaviors when trained with totally or partially
shuffled labels[1, 27].) Hence, in order to quantify the amount of
confounding signal contained in the feature representation learned
by a deep model trained under natural conditions, one should first
train the model using the original labels, and then use the features
learned by the deep model as inputs in a shallow model trained with
labels shuffled by restricted permutations. Supplementary Figure
S2 presents an illustration using a feature set learned by a deep
model as the input variables in a random forest classifier.

The methodology presented in this paper relies on asymptotic
approximations and, therefore, requires test sets of reasonable size.
We point out, however, that it is still possible to perform a permuta-
tion test to check if the ML algorithm has learned the confounding
signal in small test set settings (see Section 7.5 in the Supplement
for details).

Finally, we point out that while this paper has focused on digi-
tal health applications, the proposed tools can be more generally
applied to any other areas impacted by confounders.
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7 SUPPLEMENT

Algorithm 2 RestrictedShuffle

: Input: Response data vector, y; confounder data vector, ¢
: Get vector with the levels of ¢, clevel < Unique(c)
: Count the number of levels, n; « Length(clevels)
. Initialize vector of shuffled labels, y* « y
forj=1,...,n;do
Get level indexes, idx <« Which(c = clevel[j])
y*[idx] < StandardShuffle(y[idx])
end for
: Output: Vector of shuffled labels, y*

Nl B = S R

Note that the StandardShuffle function simply generates an
unrestricted permutation of the elements of a vector.

7.1 Model fitting

The real data illustrations were performed using logistic regression
(implemented using the glm function in R[21]) and random forest
classification[4] (implemented using the randomForest[17] R pack-
age, using the default tuning parameter settings). The simulation
studies and synthetic data illustrations were based on the random
forest classifier. Classification performance was evaluated using
the area under the receiver operating characteristic curve (AUC)
metric implemented in the pROC[23] R package.

7.2 Synthetic data generation

In the simulation study and synthetic data illustration presented
in the main text (Sections 3 and 5, respectively), we generated
data from a binary classification task influenced by confounders
according to the graphical model presented in Figure 3 in the main
text.

In order to generate an association between C and Y (i.e.,C < Y)
we jointly sampled these binary variables from a bivariate Bernoulli
distribution[5], with probability density function given by,

1-c) (1- 1-y)(1-
p(Y.C) = p¥f piime) pllmle pli=ullizo) (16)
wherepij = P(Y =1, C= ]), andp11 + P10 + po1 + poo = 1.
Note that the covariance between Y and C is given by[5],
Cov(Y,C) = p11poo — po1p10 (17)

and we can tune the strength of the association between Y and C
by changing these parameters. Once, we have sampled a {y, ¢} pair
from this distribution, we sample the features from a multivariate
normal distribution,

Ni((yp+cO)1, %), (18)

where 1 represents the vector of ones, f and 0 are the regression
coefficients, and T represents a correlation matrix with ijth element
given by pll'Jl.

7.3 Parameter choices for the simulation
studies

We performed four simulation experiments (Section 3 in the main
text) based on data generated with: confounding and disease signal
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(H{ and Hf ); confounding but no disease signal (H; and Hg); no
confounding or disease signal (H and H(‘)i ); and disease but no
confounding signal (H and Hii ). In each experiment we generated
3,000 data sets. Each data set was generated (according to the model
described in Figure 3 in the main text) using a unique combination of
simulation parameter values. The simulation parameters included:
the sample size, n; the disease effect, f5; the confounding effect, 8; the
feature’s correlation strength, p; and the probability p;; = P(Y =
1,C = 1). Table S1 presents the ranges of the simulation parameter
values employed in each experiment. In each simulation, each of
these parameters were independently sampled from a uniform
distribution in the respective parameter range.

exp. 1 exp. 2 exp. 3 exp. 4

par.  HE HY Hf, HE HE, HE HE, HE

n {300,...,500} {300,...,500} {300,...,500} {300,...,500}
B [0.1, 1.0] 0 0 [0.1, 1.0]
0 [0.5, 2] [0.5, 2.0] 0 0

p [0.2, 0.8] [0.2, 0.8] [0.2, 0.8] [0.2, 0.8]
p11 [0.05, 0.45]  [0.05, 0.45]  [0.05, 0.45]  [0.05, 0.45]
Poo pu P11 0.5—pn 0.5—p11
P10 0.5—-pu 0.5-pn Pu P

Po1 0.5—p11 0‘5—]711 0‘5—}711 0,5—])11

Table S1: Simulation study parameters.

In order to better control the amount of correlation between the
response and the confounder, we sampled the p1; values freely in
the range [0.05, 0.45], but constrained the parameters p1g, po1 and
poo to specific values. (Recall that Couv(Y,C) = p11poo — po1 Pio-)
For instance, in Experiments 1 and 2 we constrained poo = p11
and p1p = po1 = 0.5 — p11 so that Coov(C,Y) = pipi1 — (0.5 —
£11)(0.5—p11) = p11—0.25. Now, because the marginal distributions
for Y and C correspond, respectively, to Bernoulli distributions
with probability of success equal to p1g + p11 and po1 + p11[5],
these constraints imply that Var(Y) = (p1o + p11)(1 — p1o — p11) =
(0.5—p11+p11)(1=0.5+p11—p11) = 0.25 and Var(C) = 0.25, so that
Cor(C,Y) = Cou(Y,C)/Var(Y) Var(C) = 4p11 — 1. Therefore, it
follows that sampling p11 from a uniform distribution in [0.05, 0.45]
is equivalent to imposing that Cor(C, Y) is uniformly distributed in
the range [—0.8, 0.8] in Experiments 1 and 2.

In Experiments 3 and 4, on the other hand, we constrained p19 =
p11 and poo = po1 = 0.5 — p11 so that Cov(C,Y) = p11(0.5 = p11) —
£11(0.5 = p11) = 0 and Cor(C,Y) = 0.

7.4 The approximate IPW algorithm

Following reference[18] we implemented the approximate IPW
adjustment as follows:

(i) For each sample, estimate the propensity score, p; = P(Y; =
1] Cy).

(if) For each sample, estimate the inverse probability weight
ti = 1/(p; 1{Y; = 1} + (1 - p;)1{Y; = 0}) and round it to the
nearest integer if £; > 1 (otherwise set it to 1).

(iii) Create an augmented dataset of size 3; {; by over-sampling
each sample #; times.

(iv) Train a classifier using the augmented training set and eval-
uate its performance in the augmented test set.
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In this paper, we adopted logistic regression to estimate the
propensity scores (that is, we regressed the binary labels on the
confounders using logistic regression and used the estimated prob-
ability that a sample belonged to the positive class class (p;), as the
propensity score.

7.5 A permutation test to detect confounding

In situations where the test set is small, it might not be reasonable
to approximate the null distribution of the m™* statistic by a normal
distribution. In this case, however, it is still possible to test if an
algorithm has learned the confounding signal using a permutation
test.

To this end, we need to generate a permutation null distribution
(for the m* statistic) where the indirect association mediated by the
confounder is destroyed. Accordingly, we shuffle the confounder
vector in a standard fashion, before computing the m* statistic, as
described in Algorithm 3 below.

Algorithm 3 Monte Carlo permutation null distribution to detect
confounding

1: Input: Number of standard permutations, bg; X; y; c; training
and test set indexes, i;rqin, itest

2: Split X, y and c into training and test sets

3: Set the number of restricted permutations to the test set size,
by « Length(izes;)

4: fori=1,2,...,bs do

5: Cirain < StandardShuffle(crain)

6: ¢}os; — StandardShuffle(c;ess)

7: forj=1,2,...,b do

8: Y rain < RestrictedShuffle(y,, ;5 €77 gin)

9: Y;es; < RestrictedShuffle(y,, ;. ¢jeg,)

10: Train a ML algorithm on the X;,4in and y’t‘min data
11: Evaluate the algorithm on the X esy and y7j,, data
12: Compute the perf. metric, m;, on the shuflled data
13: end for

14: Compute and store m} = b Z;’;l m;;

15: end for

*

B — %
16: Output: My, M, s 1,

Figure S1 compares the permutation and normal approximation
null distributions for test set sizes 10 and 100. The blue curve corre-
sponds to a density estimate of the permutation null distribution
generated using Algorithm 3. The red curve corresponds to the
normal approximation based on eq. (12).

The main drawback of this permutation approach is its computa-
tional demands (note that for each of the bs standard permutations,
we need to perform b, restricted permutations).

7.6 Code availability

All the R[21] code used to generate the results in this paper is
available at:
https://github.com/echaibub/codeForkDD2019
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Figure S1: Permutation versus normal approximation null
distributions for test set sizes 10 and 100. Results based on
10,000 permutations.

7.7 Supplementary Figures
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Figure S2: Comparison of confounding adjustment meth-
ods using the random forest classifier trained with a set of
features generated by a deep learning model. This feature
set [https://www.synapse.org/#!Synapse: syn10949406] cor-
responds to the winning submission of sub-challenge 1 of
the Digital Biomarker Dream Challenge.





