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ABSTRACT
Hypothesis generation (HG) refers to the task of mining meaning-
ful implicit association between disjoint biomedical concepts. The
majority of prior studies have focused on uncovering these implicit
linkages from static snapshots of the corpus, thereby largely ignor-
ing the temporal dynamics of medical concepts. More recently, a few
initial studies attempted to overcome this issue by modelling the
temporal change of concepts from natural language text. However,
they still fail to leverage the evolutionary features of concepts from
contemporary knowledge-bases (KB’s) such as semantic lexicons
and ontologies. In practice such KB’s contain up-to-date informa-
tion that is important to incorporate, especially, in highly evolving
domains such as biomedicine. Furthermore, considering the com-
plementary strength of these sources of information - corpus and
ontology - a few natural questions arise: Can joint modelling of (co)-
evolutionary dynamics from these resources aid in encoding the
temporal features at a granular level? Can the mutual evolution be-
tween these intertwined resources lead to better predictive effects?
To answer these questions, in this study, we present a novel HG
framework that unearths the latent associations between concepts
by modeling their co-evolution across complementary sources of
information. More specifically, the proposed approach adopts a
shared temporal matrix factorization framework that models the
co-evolution of concepts across both corpus and KB. Extensive ex-
periments on the largest available biomedical corpus validates the
effectiveness of the proposed approach.
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1 INTRODUCTION
The constant influx of scientific articles and their easy accessibility
via the World Wide Web (WWW) has made medical informatics
a fast growing field [11]. Practitioners in the field have thrived to
make sense of huge number of academic publications, discovery
notes, electronic medical records and other text materials (a.k.a
"big biomedical data") leading to advancements of practical signifi-
cance [5]. While this swift availability of scientific information has
acted as an impetus for pacing research innovation, at the same time,
it has also overwhelmed researchers trying to survey published
studies and construct novel research hypotheses. For instance, con-
sider a novice researcher attempting to formulate a new hypothesis
for the cures of Diabetes. In doing so, at this point in time, one
might have to survey tens of thousands of existing publications
(more than 400,000 in PubMed [11] alone) already written on Dia-
betes. This overloaded amount of information presents a bottleneck,
as it is almost impossible for one to process and analyze such a
large volume of available material. Moreover, it introduces delays
in scientific productivity, as biomedical researchers are faced with
a daunting task of choosing postulates/hypotheses - based upon
the manual inspection of literature - for possible in-vitro clinical
trials. To mitigate these issues, there has been a growing research
interest among data/text mining practitioners to develop computa-
tional models that are able to assist biomedical experts in forging
analytically probable and medically sensible hypothesis. Towards
this end, Hypotheses generation (HG), a sub-problem of biomedical
text-mining, aims to discover cross-silo connections (also known
as undiscovered public knowledge) by chaining together the al-
ready known and established scientific facts that remain dispersed
across the disparate research fields [18]. Simply put, given an input
concept of interest (e.g., disease or gene), HG attempts to find im-
plicit links (e.g., potential drug target or novel indicator of disease’s
mechanism) that connects them in a previously unknown but se-
mantically meaningful way. Finding such meaningful associations
is the crux of the problem that this paper attempts to address.

Over the past few decades, numerous studies have been con-
ducted to tackle this problem. Broadly, they can be categorized
into three major groups: a) distributional approaches [15, 22], b)
graph-based methods [2, 20] , and c) supervised machine learning
based approaches [19]. Arguably, these studies made significant
advances, however, they still contain a few inherent drawbacks.
First, a majority of these preceding approaches rely on a pre-defined
structure (e.g., graph) and hence possibly risk missing links that are
not included in their route. Second, almost all of these studies as-
sume that the domain is static. This is limiting because it is known
that the biomedical domain is a highly evolving field with new
facts being added and old ones being obsolete every single day [4].
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To overcome these issues, more recently, a few studies [9, 21] at-
tempted to formulate this problem in latent space and generated
hypotheses by modeling the temporal evolution of concepts based
on the diachronic biomedical corpora. While these studies sub-
stantiated the importance of leveraging the temporal component,
they still neglected the evolutionary features of concepts present in
contemporary biomedical ontologies. Such ontologies/taxonomies
in biomedical domain are constantly updated by subject-matter-
experts to reflect the up-to-date knowledge of the field. Thus, to gain
a holistic understanding of temporal change, it is crucial to factor in
the semantic change of medical concepts from these subject-matter-
experts maintained KB too. Furthermore, in practice, a significant
amount of information is also encoded in the (co)-evolutionary dy-
namics of medical concepts between these complementary sources
of information (i.e., corpus and ontology). Considering the com-
plementary strength of both these resources, a few natural ques-
tions arise: Would the joint modelling of co-evolutionary dynamics
lead to the generation of robust temporal embeddings? Would the
mutual interaction between these intertwined resources simulate
better predictive effects and thus benefit tasks such as hypothesis
generation? To answer these questions, in this study, we model the
co-evolution of medical concepts driven by the complex interac-
tion between concepts’ linguistic usage (reflected in local context
information) and their structural localities (reflected in domain
ontology). More specifically, we achieve this by adopting a shared
temporal matrix factorization framework, wherein the subspaces
between multiple related matrices are jointly learned by sharing
information between them. By collaboratively exploiting the evolu-
tionary features of medical concepts from both corpus and domain
knowledge, the proposed approach yields hypotheses that are med-
ically sensible and of potential interest to the domain experts. In
this study, our contributions can be summarized as:

(1) We propose a general framework for the task of hypothesis
generation that is capable of inferring previously unknown
but potentially interesting cross-silo connections by captur-
ing the subtle cues manifested in the temporal drift.

(2) The proposed approach for capturing the temporal change
models the (co)-evolutionary dynamics of medical concepts
across both the complementary sources of information - cor-
pus and domain knowledge - thereby generating temporal
embeddings that are robust and useful for a variety of down-
stream biomedical text-mining tasks.

(3) We propose an effective technique to leverage the evolving
topological properties of biomedical KB, resulting in vec-
tor representations that encode the temporal dynamics at a
granular level.

2 RELATEDWORK
Discovering hidden, previously unknown and potentially useful
associations between biomedical concepts is a problem of practi-
cal value in the research area of biomedical text-mining [14]. For
a recent survey, please refer [3, 14]. The initial works [16, 18] in
this area of study elucidated that the novel implicit links (e.g., Fish
Oils

treats
−−−−→ Raynaud’s disease) can be discovered by connecting

independent nuggets of information remaining dispersed across
the literature. While these pioneering studies laid the foundational

groundwork, they were extremely time-consuming. Consequently,
the subsequent studies focused on automating it. Primary stud-
ies such as [15, 22] applied statistical co-occurrence techniques
(term frequency, inverse document frequency, record frequency
and so on) to quantify the statistical strength between links. Simi-
larly, [7, 22] adopted associate rule mining technique to estimate the
strength of co-occurrences between concepts. While these purely
co-occurrence based methods were progressive, a major drawback
lies in their over-reliance on term frequencies. A greater statistical
association implies strong but not necessarily semantically mean-
ingful (real biological significance) association. To circumvent this
drawback, we choose to model the problem of HG in latent space
wherein the system is capable of capturing the implicit semantics
between concepts, thereby finding connections that have greater
semantic association.

Meanwhile, another line of research focused on modeling the
problem of HG in a graph-based setting. Since graph based meth-
ods provide a natural way of representing concepts and their re-
lationship, this line of research has attracted considerable atten-
tion. In [20], the authors presented a novel graph-based approach
utilizing semantic predicates (subject-predicate-object), where sub-
ject/object refer to the entities (nodes) and predicates refer to the
relationship (edge) between them. Another popular graph based
HG system is Obvio [2]. Given a user input, Obvio, first constructs
a graph on-the-fly and then uses the context information to auto-
matically create semantically meaningful sub-graphs. One major
contribution of this study is their ability to elucidate the meaning
of complex associations between medical concepts along the mul-
tiple thematic dimensions. While graph-based approaches [2, 20]
remain more successful than their distributional counterparts, they
are still unable to find implicit connections. This is because the
graph-based techniques still rely on a pre-defined structure/schema.
More recently, some of the studies such as [19] applied supervised
machine-learning based techniques to find the hidden connections.
However, they require the domain expertise to generate the train-
ing data. This is both time-consuming and monetarily expensive.
Despite important advances made, all of the aforementioned stud-
ies assumed the biomedical domain to be static. This is limiting
because the domains in general (and in particular biomedicine) are
usually dynamic with updates being made every now and then. To
overcome this issue, recently, a few studies [9, 21] incorporated the
temporal component by modelling the semantic evolution of medi-
cal concepts present in the historical biomedical corpus. However,
these studies still neglect the semantic change of concepts from KB
and thus fail to leverage the (co)-evolutionary dynamics of medical
concepts.

Some of the motivation for this study stems from the research
area of temporal network modelling [24, 25].While close in spirit,
we differ from them in two aspects: a) Our focuses are different.
b) Unlike modelling the temporal dynamics from multiple views
of a network, in the current problem setting, our objective is to
model the (co)-evolutionary features of medical concepts from their
linguistic usage and structural localities in a concurrent manner.
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3 METHODOLOGY
In this section, we describe our proposed framework in detail. Re-
call that the input to our hypothesis generation system is a topic
of interest (A), date (d), and the goal is to predict previously un-
known implicit links (C) at (d + 1). To tackle this problem, the key
intuition behind our proposed approach is the following: If two
medical concepts (A and C) are known to be primarily disjoint
(i.e., no known relationship exists), and yet their implicit semantics
continue to grow closer to each other over time, then these two
terms have a higher chance of materializing a meaningful connec-
tion in the near future. In other words, our core objective is to
capture the temporal ‘proximity’ between the medical concepts
by modelling their semantic change over time. Generally speak-
ing, this can be achieved by adopting a two-step solution: a) apply
the temporal word embedding model [21] and generate the time-
aware vector representations of concepts, b) quantify the degree of
proximity between concepts by measuring the distance between
their vector representations. While effective in practice, this class
of techniques generate temporal embeddings in an isolated man-
ner (e.g., corpus/ontology alone), and thus neglect the prevalent
(co)-evolutionary features of medical concepts. To overcome this,
in this study, we aim to generate the temporal embeddings that
are infused with (co)-evolutionary dynamics generated due to the
mutual influence of both complementary sources of information
- corpus and ontology. Technically, we achieve this by adopting
a shared temporal matrix factorization framework, wherein the
sub-spaces between multiple related matrices are mutually learned
by sharing the information between them. Further details on this
are provided in the subsequent sub-sections. Section 3.1 and Sec-
tion 3.2 introduce the two building blocks (modelling corpus-based
and ontology-based evolutionary dynamics) of the proposed model.
Then, in Section 3.3, we describe the joint co-evolution framework.

3.1 Corpus-Based Evolutionary Dynamics
To obtain the corpus-based temporal embeddings, we first need
a text corpus collected across time (e.g., time-stamped scientific
articles). Given this corpus, the objective is to generate the temporal
word embeddings for each word present in the corpus. Traditionally,
these temporal word embeddings could be generated by applying
the neural network inspired language models such as Skip-gram
(augmented with temporal component) [12] to the input sequential
text. Simply put, the objective function of skip-gram is to predict
the surrounding words within a fixed window, given a focus word.
Following similar research direction, more recently in a related
study [10], the authors proved that the objective function that the
neural network attempts to solve in case of Skip-gram model with
negative sampling is the same as the matrix factorization of Shifted
Positive Point-wise Mutual Information (SPPMI) matrix obtained
from the co-occurrence matrix of the corpus. As a result, the word
and its corresponding context vectors can be obtained from the
matrix decomposition of SPPMI matrix. This result is attractive
as it enables the adoption/extension of techniques from the well-
established area of matrix factorization. In this study, we utilize
this equivalence result and propose a temporal matrix factorization
based framework to obtain our temporal embeddings.

Formally, let us denote Dt as our time-stamped text corpus,
where time-stamp t represents a discrete and ordered variable that
varies from 1 toT . Given this corpus, we first collect all the concepts
occurring in the corpus and prepare an overall vocabulary V =
{w1, ...,wv } of size |V |, where eachwi corresponds to an individual
term. Note that this vocabulary is common to both the corpus and
chosen ontology. Next, we construct a term-by-term Y(t) Pairwise
Mutual-Information Matrix (PMI), whose i, j-th entry is:

PMI (i, j)t = log
(
#(i, j)t .|Dt |

#(i)t .#(j)t

)
(1)

where #(i, j)t counts the number of times the words wi and w j
co-occurs within a document over the corpus D at time t, #(i)t and
#(j)t denotes the total number of times wordswi andw j occur in
the corpus at time t alone. |Dt | is the total number of word tokens
in the corpus at time t. Following this, we compute the shifted
positive point-wise mutual information matrix (SPPMI) specific to
a corpus D at time t, whose (i,j)-th entry is:

SPPMI (i, j)t =max(PMI (i, j)t − logk, 0) (2)

where logk refers to a global constant. The constant logk acts
as a prior on the probability of observing a positive example ver-
sus a negative example. A higher value of k implies that negative
examples are more likely.

Following this idea, now our objective is to obtain a dense, low-
dimensional vector representationV′

(t) = [v′w1 (t), v
′
w2 (t), ..., v

′
wv

(t)]

∈ R |V |×n , n ≪ |V | for each word w ∈ V , at each time-period t.
v′wi

(t) denotes the embedding vector for the i-th word at time-
stamp t , and n is the number of dimensions. To achieve this, we
adopt a standard matrix factorization framework and set up a least
square optimization problem, so that the PPMI matrix Y(t)matches
U.V

′

(t)T as closely as possible. The formulated optimization is
shown below:

min
U,V′(t )≥0

T∑
t=1

h(t)

2 | |Y(t) − U · V
′

(t)T | |2F (3)

BothU and V′(t) are |V | ×n matrices. The main difference between
U and V′(t) is that U is a constant matrix and V′(t) is a time-
dependent matrix. While it is possible to make both U and V′(t)
time-dependent, as shown in [24], a simpler model can achieve
good approximation and also avoid over-fitting. The function V′(t)
can take on any canonical form, such as linear models, polynomial
models and so on. h(t) refers to a decay function that regulates
the importance between current and historical snapshots. This acts
as an smoothing. The exponential function is chosen as a decay
function with parameter θ > 0.

h(t) = e−θ (T−t ) (4)
One challenge in this setting is that the PPMI matrix Y(t) is large
and difficult to fit into memory. However, as most of the real-world
networks are usually sparse, the computation can be made efficient.
In most of the real-world scenarios, the presence of a co-occurrence
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conveys more significant information than the absence of a co-
occurrence. This is because the absence of a co-occurrence could
mean: a) either there exists no association between the two con-
cepts. b) there might exist a possible association between them in
the near future. The presence of co-occurrence is seemingly more
meaningful and thus the aforementioned objective function is ad-
justed to prioritize the presence of co-occurrence rather than the
absence of co-occurrence. However, a small number of negative
co-occurrence is needed to properly train the model. Suppose E(t)
be the set of word-pairs (wi ,w j ) such that the value of yi jt = 0, and
F (t) be the set of word-pairs (wi ,w j ) such that the value of yi jt > 0.
Then, total set of co-occurrences is shown below:

G(t) = E(t) ∪ F (t) (5)
Now, one can express the objective function as:

min
U,V′(t )≥0

T∑
t=1

h(t)

2
∑

(wi ,w j )∈G(t )

(yi jt − (U · V
′

(t)
T
)i j )

2 (6)

Note that non-negativity is imposed on the factors for the purpose
of greater interpretability.

3.2 Ontology-Based Evolutionary Dynamics
Ontologies/Hierarchies usually represented as Trees are known to
provide a natural way of categorizing the knowledge of a particular
domain. Such ontologies, also referred to as knowledge-bases (KB’s),
are abundantly present in the biomedical domain. Some common
examples include Medical Subject Headings (MeSH), Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED-CT), and In-
ternational Classification of Diseases (ICD9). These KB’s are peri-
odically updated by the subject-matter-experts in order to reflect
the contemporary knowledge of the field. Given that these KB’s are
manually curated and showcase the prevailing knowledge of the
field, our speculation is that integrating the evolutionary features of
concepts from these resources will result in more accurate temporal
representation of biomedical concepts. In our present study, the KB
chosen is hierarchical (i.e., IS-A relationships) in nature (further
details in experiments). Basically, the edges between concepts in the
Tree denotes "parent-child" relationship, and the depth of a concept
from the root indicates its level of specificity. Note that greater the
depth of a concept in the tree the greater is its semantic richness.
To leverage this valuable information, we adopt a technique similar
to Section 3.1, and later extend our objective function. More specif-
ically, we first convert the given hierarchical KB into a semantic
distance matrixM(t)1, and then approximate the semantic distance
matrix by the product of two smaller matrix.

M(t) ≈ U.V
′′

(t)T (7)

Here bothU andV′′

(t) are |V |×nmatrices withn << |V |,n denotes
the number of dimensions. The semantic distance matrix M(t)
between concepts is calculated based on two factors: a) shortest
path between concepts, and b) the depth of least common subsumer
(LCS). The LCS refers to the immediate common parent of two

1Note that the hierarchical KB is released every year and thus evolves over time.

concepts. Given two conceptswi ,w j at time t , the distance between
them is calculated by the formula below:

li j = log2([path(wi ,w j ) + 1]
∗ [D ′ − depth(lcs(wi ,w j ))])

(8)

where path(wi ,w j ) is the shortest distance between concept wi ,
w j at time t , depth(lcs(wi ,w j )) is the depth of lcs(wi ,w j ) at time t ,
D ′ is the maximum depth of the taxonomy, and lcs(wi ,w j ) is the
lowest common subsumer ofwi andw j . Prior research studies [13]
have shown that the exploitation of these two factors is an effective
strategy to leverage the ontology specific features. Having obtained
our semantic distance matrix M(t), our next step is to generate
the ontology-specific temporal embeddings. To do so, similar to
Equation 3, the optimization problem is formulated as shown below:

min
U,V′′(t )≥0

T∑
t=1

h(t)

2 | |M(t) − U · V
′′

(t)T | |2F (9)

Though intuitive, in practice, this basic formulation does not fully
leverage the typical topological properties of given hierarchical KB.
To overcome this issue, we propose an enhanced strategy that ex-
ploits the topological properties of the available taxonomy in amore
effective manner. Basically, we consider a practical assumption that
in the hierarchical KB, the meaning of a particular concept is particu-
larly influenced by its ancestors in the following order: direct-parents
(strongest), grand-parents (stronger), higher-ancestors (lower) and
root (least). As an example, consider the concept "Diabetes Mellitus,
Lipoatrophic". This concept forms its semantics by inheriting the ba-
sic properties from its ancestor concepts ("Diabetes Mellitus, Type
2", "Diabetes Mellitus", "Endocrine System" and "root")2, and also
adds its own specific properties. Accordingly, the vector representa-
tion of a conceptwi should bemodelled by quantifying the semantic
contribution for each of its ancestor wi j . We define the strategy
to quantify semantic contribution by exploiting the principles of
label propagation [1, 25], usually adopted in network modeling
tasks. Simply put, the idea in label propagation is to preserve the
local spatial consistency of network by nudging the neighbourhood
concepts to have similar feature vectors. Much alike, we mould its
principles to fit the current hierarchical structure of KB, and argue
that the features of a concept should be particularly influenced by
their ancestors in accordance to their level of specificity.

b
(t )
i j =

1
√
λ

(10)

λ denotes the depth of ancestor concept (wi j ) in the tree. Note that
the semantic contribution value of each concept changes over time
based on their evolving structural locality. Having calculated the
semantic contribution value, now, each concept in the tree adjusts
(updates) its feature vectors based on its ancestors. Suppose that the
initial feature vector of conceptwi is vi (t), and the updated vector
is v′′

(t) at timestamp t . Then, the feature vector update process
from vi (t) to v

′′

(t) can be modeled by the following optimization
problem.

2https://meshb.nlm.nih.gov/record/ui?ui=D003920
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min
v′′ (t )

α
∑
i

| |v
′′

i (t ) − vi (t ) | |2 + (1 − α )
∑

j∈Ancestors (wi )

b (t )j j | |v
′′

i (t ) − vi j (t ) | |2

(11)

In the above Equation 11, the first term is known as the fitting
constraint. This constraint penalizes large deviation from the initial
feature vectors. The second term ensures that the feature vectors
of concepts are updated in accordance to the semantic contribution
of its ancestors. α balances the contribution of each part of the
equation. As the formulation in Equation 11 is convex, its solution
can be found by solving a system of linear equations. The closed
updates are give below:

v
′′

i (t ) = (1 − α )(I − αB(t ))−1vi (t ) (12)

where I ∈ R |V |× |V | is an identity matrix.B(t) is defined as the depth
matrix. Next, we substitute the analytical solution of Equation 11
in Equation 9.

S(t) = (1 − α)(I − αB(t))−1 (13)

V
′′

(t) = S(t)V(t) (14)

min
U,V′′(t )≥0

T∑
t=1

h(t)

2 | |M(t) − U · S(t) · V(t)T | |2F (15)

In this regard, one might ask: What is the necessity of adopting
this route when the semantic distance matrixM(t) already captures
the global hierarchical information? In our research we found two
reasons for it: a) the strategy to exploit the typical ancestral prop-
erty of a given concept acts as a "local regularization" and thus
aids to leverage the taxonomic features in a more effective way. b)
it provides a good initialization (generates basis vectors that are
much closer to the best basis vectors found) for the Non-negative
matrix factorization (NMF) formulation, resulting in improved con-
vergence speed and accuracy.

3.3 Corpus-Ontology Based (Co)-Evolutionary
Dynamics

Both Section 3.1 and Section 3.2 can obtain the temporal embed-
dings for biomedical concepts. The former exploits the local context
information from natural language text and the later leverages upon
the topological properties of given taxonomy. However, these two
components should not be isolated from one another as they provide
complementary sources of information. Furthermore, a significant
amount of information is encoded in their (co)-evolutionary dy-
namics with respect to one another. To address this, we propose to
jointly model the co-evolution of biomedical concepts from these
interdependent sources of information. The objective function to
be optimized is shown below:

min
U,V(t ),V′(t )≥0

T∑
t=1

h(t)

2 | |Y(t) − U · V
′

(t)
T
| |2F

+| |M(t) − U · S(t) · V(t)T | |2F

(16)

As it can be observed, the first and second part of objective function
models the temporal change of concepts from natural language
text and ontology respectively. To facilitate the joint learning and
mutual sharing of information, the latent factor U is shared by
both parts of the objective function. As mentioned before, both
V, V′ can take any canonical form (e.g., linear, polynomial and so
on). For simplicity of the model, we choose a linear function. For
instance: V(t) = Xt + Y. As V(t) ≥ 0, both X ≥ 0 and Y ≥ 0. Now,
after adding regularization terms the expanded form of Equation 16
becomes:

J (U,X′,Y′,X,Y) =
T∑
t=1

h(t)

2
∑

(wi ,w j )∈G(t )

(yi jt − U · (X
′

t + Y′)T )i j+

∑
(wi ,w j )∈G(t )

(mi jt − U · S(t) · (Xt + Y)T )i j +
β

2 | |U| |
2

+
γ1
2 | |X| |2 +

ω1
2 | |Y| |2 +

γ2
2 | |X′ | |2 +

ω2
2 | |Y′ | |2

(17)

whereG(t) refers to the set of co-occurrence set as defined in Equa-
tion 6. The bound-constraint formulation of the above objective
function is shown below:

min
U,X′,Y′,X,Y

J (U,X′,Y′,X,Y)

subject to U,X′,Y′,X,Y ≥ 0
(18)

Next, we find the update rules for our cost function J (U,X′,Y′,X,Y)
with respect to each of the model parameters { U,X′,Y′,X,Y } and
run the stochastic gradient descent. The choice of optimization
method is agnostic to the model and thus anything that success-
fully solves Equation 18 should generate quality temporal vector
representations. Note that the update requires calculating inverse
of a matrix (Refer Equation 13). This step is computationally expen-
sive. Thus, to overcome this, we adopt an iterative approach (See
below) similar to [1] and obtain our solution.

S(t) = (1 − α)
B∑
b=1

(αB(t))b−1 (19)

where B refers to the number of iterations. Once the iterative al-
gorithm converges, we can obtain our time-aware embeddings as
V

′

(t) = X
′

t + Y
′ . As our vector representations are parameterized

with time, it allows us to predict the future co-occurrence matrix
Y(t + 1) ≈ UV

′

(t + 1)T . The entry values in Y(t + 1) quantify the
likelihood of future association (hypothesis) between biomedical
concepts. Now, given an input concept of interest (A), the candi-
date concepts (C) are ranked based on their predicted future co-
occurrence value and then presented to the user for further analysis
and investigation. Having described the nuances of our methodol-
ogy, in the next section we describe our experimental protocol and
perform extensive analysis to validate the effectiveness of proposed
approach.
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4 EXPERIMENTS
In this section, we demonstrate the efficacy of our proposed frame-
work. Towards this end, we perform both qualitative and quantita-
tive evaluations. The qualitative evaluation determines the extent to
which our approach is capable of rediscovering the already known
knowledge (and potentially new knowledge), whereas the quan-
titative evaluation is intended to analyze the overall quality of
predictions/discoveries made by the system.

Dataset Description: MEDLINE3, the largest available scien-
tific repository, is used as the primary source of information for
performing experiments. At present, it provides access to more
than 24 million time-stamped articles primarily from the domain of
life-sciences and bio-medicine. Among others, each article in MED-
LINE contains the following attributes: a) unique identifier known
as PMID, b) title, c) abstract, d) publication date and e) Medical
Subject Headings (MeSH) terms. Previous studies [22] have shown
that using concepts from raw title/abstract may introduce noise to
the system and prove computationally expensive. To circumvent
this problem, a majority of studies [7, 15, 23] conduct their inves-
tigation studies by choosing MeSH terms as their unit of analysis.
MeSH terms in MEDLINE refer to a set of special keywords that
are assigned to each article by the subject-matter-experts. As the
experts annotate these terms based on the full-content of the article,
they can be assumed to represent the conceptual meaning of an
article. Being manually curated, they are highly accurate and find
their utility in a multitude of downstream biomedical applications.
Considering its high input quality and broader applicability, in this
study, we use MeSH terms as our unit of analysis4. Fortunately,
these MeSH terms are also arranged in a hierarchical/taxonomic
structure5. In our study, this taxonomic structure of MeSH terms
serve as our Knowledge-base. As of year 2018, there are approxi-
mately 28,000 MeSH terms (V ). For our experiments, we generate
the temporal embeddings for these medical concepts. As recom-
mended in some of the prior studies [10, 12], we set the dimension-
ality of our temporal embeddings to n = 200. The hyper-parameter
for exponential decay function is set to θ = 0.3. The regularization
weights β =γ1 =γ2 =ω1 =ω2 = is 0.01. The value of α in Equation 11
is empirically set to 0.5. Finally, the number of iteration for model
and the value of B in Equation 19 are both set to 200.

4.1 Qualitative evaluation
To perform qualitative assessment, we borrow experimental settings
from the hypotheses generation literature [15, 23]. A common way
of performing evaluation is to replicate the five golden test-cases
(enumerated below) reported by the pioneers in this area of study.
For the sake of uniformity, we adopt the same setting and run the
proposed model on these test-cases and probe for the results.

(1) Raynaud’s Disease (RD) and Fish Oils (FO) (1985)
(2) Migraine Disorder (MIG) and Magnesium (MG) (1988)
(3) Arginine (ARG) and Somatomedin C (IGF1) (1994)
(4) Alzheimer Disease (AD) Indomethacin (INN) (1989)
(5) Schizophrenia (SZ) and Calcium - Independent Phospholi-

pase A2 (PA2) (1997)

3https://www.nlm.nih.gov/bsd/medline.html
4https://github.com/kishlayjha/hypotheses-generation-coEvolution
5https://www.nlm.nih.gov/mesh/intro_trees.html

To recapitulate our problem statement, the input to our hypoth-
esis generation algorithm is a topic of interest (A) (e.g., Raynaud’s
disease), date (d) (e.g., 1985) and the goal is to find new biological
relationships (C) (e.g., Fish Oils). The date (d) in the input acts as
a cut-off threshold. Both the proposed model and baseline algo-
rithms are run on the pre-cut-off segment (before date d) and the
obtained results (predicted connections) are evaluated in the post-
cut-off segment (after date d). To analyze the predicted results, we
need a ground truth. However, there is no standard ground truth
available and creating one remains an open problem [23]. There-
fore, for the purpose of quantitative analysis, a supposedly ground
truth is constructed. All those connections that co-occur with the
input concept of interest in the post-cut-off segment but not in the
pre-cut-off segment are assumed to be valid connections. These
valid connections are ranked based on their TF-IDF co-occurrence
score with the input concept of interest. The candidate set for target
‘C’ terms are all the concepts present in vocabulary besides - A
and Co-occur(A). Co-occur(A) refers to the set of terms that have
co-occurred with A before the threshold date d. All the possible
target terms are ranked based on their predicted co-occurrence
score with the input concept of interest. Then, the top-k results are
presented to the user (Refer Table 1). We would like to note the
readers that the results in Table 1 are present both with/without
pre-defined semantic filter. Semantic filters are needed because in
the biomedical domain practitioners have a diverse range of inter-
est. Some experts working in a specific area (ex: Genes or Drugs)
might be interested only in those terms that have a possible genetic
linkages or posses certain chemical properties. On the other hand,
a novice biomedical scientist might have a general interest and is
possibly looking for a surprising (or radical) connection. To handle
this broad range of interest, Table 1 reports the target terms both
with/without semantic filtering. Note that the semantic category
information for biomedical concepts can be obtained from Unified
Medical Language Systems (UMLS) 6. To emphasize our focus on
finding potential therapeutic preventions (and in the interest of
space), we report results only for the semantic category "Drugs".
Now, in the rest of this section, we discuss the ability of proposed
model to rediscover the already known knowledge.

Raynaud’s Disease (RD) and Fish Oils (FO): To replicate this
knowledge, we seeded our HG system with input concept (A) as
"Raynaud disease" and a date (d) as "1985". The objective is to find
possible treatments (e.g, "Fish Oils") or other terms of biological
significance in the top-k results. The top-k results for this and all
other test cases are reported in Table 1, along with the evidences in
the form of PMIDS. As it can be observed from Table 1, the target
term "Fish Oils" in ranked 3. If we filter the terms by Semantic
category "Drug", the term "Fish Oils" obtain rank 1.

MigraineDisorder (MIG) andMagnesium (MG): In 1988, the
authors in [17] studied the possible linkage between "Migraine Dis-
order" and "Magnesium". In their conclusion, the authors reported
eleven previously unknown connections. In our results (Refer Ta-
ble 1), we found the target term at rank 5 (overall) and rank 2
(semantic filter - Drug) respectively.

6https://semanticnetwork.nlm.nih.gov
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FO-
RD

eicosapentaenoic
acid
(PMID: 2403828)

lipoproteins, vldl
(PMID: 2536517)

fish oils
(PMID: 1626282)

lipoproteins, hdl
(PMID: 1626282)

glycerides
(PMID: 2536517)

fish oils
(PMID: 2536517)

oils
(PMID: 2536517)

linolenic acids
(PMID:19410347)

cardiolipins
(PMID: 11080015)

lipid peroxides
(No evidence)

MG-
MI

tritium
(PMID: 27140442)

adioisotopes
(PMID: 26160074)

AMPA receptors
(PMID: 25916335)

Technetium
(PMID: 25533715)

magnesium
(PMID: 24512583)

nicergoline
(PMID: 24182946)

magnesium
(PMID: 23808884)

benzamides
(No evidence)

blood preeclampsia
(PMID: 23634460)

iodine radioisotope
(No evidence)

AD-
INN

Amyloid
beta-Peptides
(PMID: 23028221)

Sulfones
(PMID: 22746060)

Sulindac
(PMID: 19486646)

Lactones
(PMID: 18213383)

Diclofenac
(PMID: 17627676)

receptors,
prostaglandin
(PMID: 16914866)

Cyclooxygenase
Inhibitors
(PMID: 16763096)

Sulindac
(PMID: 16195368)

Ibuprofen
(PMID: 16169124)

Nanocapsules
(No evidence)

IGFI-
ARG

Biomarkers
(PMID: 29217318)

Somatomedin C
(PMID: 29150243)

Indomethacin
(PMID: 29098662)

IGF1 protein
(PMID: 28302957)

Multiple Sclerosis
(PMID: 28295976)

Interferon beta-1b
(PMID: 28177374) Galactosemias Indomethacin

(PMID: 27982500)
Fibroblasts
(PMID: 27272689)

Galactosephosphate
(PMID: 27225493)

SZ-
PA2

Antipsychotic
Agents
(PMID: 29164477)

biomarkers
(PMID: 28651698)

Phospholipase A2
(PMID: 28549837)

PLA2G6 protein
(PMID: 27434078)

phosphatidic acid
(PMID: 27333658)

PLA2G6 protein
(PMID: 27095818)

Phospholipase A2
(PMID: 26938821)

Fatty Acids,
Unsaturated
(PMID: 26894921)

phosphatidylserines
(PMID: 26160611)

Erythrocytes
(PMID: 23587695)

Table 1: The terms in left and right block of the above table are top-5 terms with and without semantic filter ("Drugs")

Arginine (ARG) and Somatomedin C (IGF1): In this test-
case, the authors [18] explored the relationship between a growth-
regulating peptide (i.e., Somatomedin C) and an amino acid (i.e.,
Arginine). In our results, we found the target concept Somatomedin
C at rank 2 (overall) and 3 (semantic filter - Drug) respectively.

Alzheimer Disease (AD) Indomethacin (INN): The objective
of this case-study was to find a possible connection between In-
domethacin (an anti-inflammatory agent) and Alzheimer Disease
(a progressive disorder that cause memory loss and other mental
issues) [18]. The target term "Indomethacin" is ranked 5 (Overall)
and 2 (Semantic filter - Drug) respectively.

Schizophrenia (SZ) and Calcium - Independent Phospho-
lipase A2 (PA2): Schizophrenia is a chronic disorder that affects
person’s ability to think, feel and reason clearly [18]. In our results,
the target term Phospholipase A2 (PA2) was ranked 3 (Overall) and
2 (Semantic - Filter) respectively.

Discovery example for the case of Autism: In our experi-
ments, we tried to analyze the results of proposed approach on new
test cases. To do so, we choose a disease of biomedical significance:
Autism. Autism is a serious development disorder found in children
that impairs the ability to communicate and interact. We seeded our
algorithm with input as "Autism", date (d) as "2014" and analyzed
the top-k results. The top term found was "calcineurin" (a protein
phosphate). Upon manually inspecting the medical literature, we
found that there might exist an indirect link between the calcineurin
and autism via terms such as "Bcl-2", "calmodulin" and "synaptic
plasticity". Although clinical trails are needed to corroborate any
hypothesis, several recent studies [8] suggest that these terms are
of potential clinical interest.

From the results of above qualitative analysis, one can infer
that the proposed HG system is able to successfully replicate the
known knowledge and potentially discover new practical knowl-
edge. While this form of evaluation provides insight into the quality
of top-ranked results, a quantitative form of evaluation is necessary
to gain an understanding of overall results.

4.2 Quantitative evaluation
The objective of this section is to examine the overall quality of
prediction/discoveries generated. To achieve this, we split the cor-
pus into pre-segment/post-segment (Refer Section 4.1), and obtain
the ranked set for both generated connections and ground truth.
Then, Spearman coefficient is used to measure the performance. As
a post-processing step, all the trivial connections (check-tags [11]
such as "humans", "male", "female" and so on) are removed from

both the ground truth and predicted set. Next in this section, we
report the quantitative results and discuss our findings on all the
five test-cases enumerated in Section 4.1. In this regard, one might
question: How is the performance of HG systems in test-cases other
than the traditional five test-cases? To answer this, we choose 200
diseases of biomedical significance and conducted experiments us-
ing the same timeslicing scheme. Specifically, for each of these 200
diseases, we set the cut-off date to January 1, 2014, which resulted
in a pre-cut-off set composed of 19,895,212 million documents pub-
lished before January 1, 2014 and a post-cut-off set composed of
4,587,929 documents published after January 1, 2014. The results
obtained are reported and analyzed later in this section.

Evaluation baselines for quantitative evaluation: To com-
pare the performance of proposed model with existing hypothesis
generation systems, the following six baseline algorithms are im-
plemented.
(1) Jaccard: Jaccard is a popular link prediction technique. The

formula to calculate the strength of association between two
concepts is given below:
Association(A,C) =| CountA ∩CountC | /| CountA ∪CountC |,

where Counti refers the set of terms that co-occur with i .
(2) Preferential Attachment: Preferential Attachment is another

classical link prediction technique. The formula to calculate
preferential attachment is given below:
Association(A,C) =| CountA | + | CountC |, where Counti
refers the set of terms that co-occur with i .

(3) Arrowsmith: Arrowsmith is a popular hypothesis generation
system proposed in [18].

(4) BITOLA: BITOLA is a recent hypothesis generation algorithm
proposed in [6].

(5) Static Embeddings: Static embeddings refers to the word embed-
dings generated from given corpus without incorporating any
temporal component. The static embeddings are generated by
training the standard CBOW [12] model on the entire MED-
LINE corpus. All the hyper-parameters for CBOW are chosen
as suggested in the study [12].

(6) Dynamic MeSH Embedding [21]: DME refers to a recent HG
algorithm that models the semantic evolution of medical con-
cepts from the diachornic biomedical corpora alone. It does not
incorporate the (co)-evolving features of medical concepts from
contemporary knowledge bases.
Note that the first two algorithms (Jaccard and Preferential At-

tachment) are from the link prediction literature. As we formulated
the current task into a weighted link prediction problem, it is of
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Table 2: Spearman’s Correlation for FO-RD

Algorithm k=200 k=800 k=1000 k=1500
Jaccard 0.012 0.011 0.017 0.102

Preferntial attachment 0.004 0.006 0.009 0.101
Arrowsmith 0.018 0.013 0.012 0.106
BITOLA 0.019 0.021 0.018 0.119

Static (No evolution) 0.027 0.031 0.019 0.127
DME (No co-evolution) 0.068 0.081 0.101 0.189

Proposed 0.189 0.205 0.301 0.407

Table 3: Spearman’s Correlation for MG-MIG

Algorithm k=200 k=800 k=1000 k=1500
Jaccard 0.017 0.023 0.009 0.109

Preferntial attachment 0.019 0.026 0.011 0.112
Arrowsmith 0.021 0.041 0.017 0.115
BITOLA 0.023 0.042 0.019 0.127

Static (No evolution) 0.034 0.061 0.027 0.136
DME (No co-evolution) 0.078 0.092 0.109 0.193

Proposed 0.179 0.275 0.389 0.469

Table 4: Spearman’s Correlation for AD-INN

Algorithm k=200 k=800 k=1000 k=1500
Jaccard 0.012 0.014 0.018 0.100

Preferential attachment 0.011 0.013 0.017 0.112
Arrowsmith 0.014 0.023 0.038 0.118
BITOLA 0.027 0.032 0.047 0.124

Static (No evolution) 0.036 0.045 0.101 0.137
DME (No co-evolution) 0.058 0.079 0.112 0.187

Proposed 0.197 0.292 0.362 0.447

interest to compare the results with classical link prediction tech-
niques.

Evaluation metrics for quantitative evaluation: Two evalu-
ation metrics are used to quantify our results: 1) Spearman Coeffi-
cient@k and 2) Mean Average Precision (MAP@k).

Results: Table 2, 3, 4, 5, 6 reports the Spearman-Coefficient@k
for each of the five golden datasets enumerated in Section 4.1.
The value of K is gradually increased from top 200 to 1500 and
results are reported. Table 7 reports the MAP@K by consolidating
numbers across 200 diseases (excluding the five golden test-cases)
of biomedical significance.

Discussion: From Tables 2, 3, 4, 5, 6 and 7 it can be observed
that the proposed model consistently outperforms all the existing
baselines in terms of both Spearman-Coefficient@K and MAP@K.
This result indicates the ability of proposed framework to find se-
mantically meaningful connections at top ranks. Analyzing the
overall results from different perspectives, we detect various trends.
First, the contemporary HG systems - ARROWSMITH and BITOLA
- perform better than classical link prediction techniques. This high-
lights the challenges that are unique to HG task and encourages us
to develop solutions tailored to HG. Second, we notice that though

Table 5: Spearman’s Correlation for IGF1-ARG

Algorithm k=200 k=800 k=1000 k=1500
Jaccard 0.018 0.026 0.013 0.101

Preferntial attachment 0.022 0.012 0.017 0.103
Arrowsmith 0.022 0.031 0.017 0.104
BITOLA 0.026 0.032 0.018 0.119

Static (No evolution) 0.033 0.082 0.028 0.157
DME (No co-evolution) 0.092 0.097 0.125 0.194

Proposed 0.280 0.385 0.425 0.487

Table 6: Spearman’s Correlation for SZ-PA2

Algorithm k=200 k=800 k=1000 k=1500
Jaccard 0.024 0.014 0.095 0.112

Preferntial attachment 0.023 0.015 0.017 0.121
Arrowsmith 0.089 0.029 0.102 0.136
BITOLA 0.092 0.031 0.108 0.143

Static (No evolution) 0.017 0.095 0.129 0.195
DME (No co-evolution) 0.098 0.164 0.157 0.278

Proposed 0.187 0.224 0.384 0.416

Table 7: Mean Average Precision@k for 200 disease

Algorithm k=200 k=800 k=1000 k=1500
Jaccard 0.012 0.013 0.017 0.102

Preferntial attachment 0.011 0.012 0.015 0.103
Arrowsmith 0.018 0.011 0.012 0.106
BITOLA 0.019 0.021 0.018 0.119

Static (No evolution) 0.027 0.031 0.019 0.127
DME (No co-evolution) 0.068 0.081 0.101 0.189

Proposed 0.185 0.262 0.392 0.435

the contemporary HG algorithms perform better than link predic-
tion techniques, they fall behind the Static embedding approach.
Upon manual inspection of results, we found that this is mainly
due to two factors: a) over reliance on co-occurrence statistics,
b) failing to capture the implicit semantics of medical concepts.
To elaborate, the baseline HG algorithms (Number 3 and 4) are
purely distributional in nature. This results in promoting those
terms that are "contextually generic". Contextually generic terms
are those terms that co-occur frequently with the input concept
of interest but have meager semantic meaning associated to them.
For instance, consider the example of "Migraine Disorder". Some
of the related terms that frequently co-occur with Migraine are
"headache", "pain". While these terms are statistically associated
to "Migraine", they have poor semantic association. As baseline
HG algorithms rely strongly on statistical co-occurrence, these
contextually generic terms are ranked higher. This proves counter-
intuitive as these same terms are ranked lower in the ground truth.
Another point we wish to highlight is that, as embeddings based
approaches are capable of capturing the implicit semantics, they
successfully promote those terms that have functional relationship
with input concept of interest. Recall that the word embeddings
can capture special features such as linear analogical relationships
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vec("ibuprofen") - vec("headache") ≈ vec("treats"). This special fea-
ture provides leverage to embedding based techniques over other
approaches. Third, we observe that a recent temporal embedding
based approach [21] performs better than Static embedding [12].
This result highlights the importance of leveraging the semantic
change of concepts for predictive tasks such as Hypothesis gener-
ation. Lastly, we would like to highlight that the proposed model
outperforms the existing temporal embedding approach. This is
because the existing temporal embedding based approach [21] fails
to leverage the (co)-evolutionary features of medical concepts from
contemporary KB’s. In our experiments, we found that such subject-
matter-expert maintained KB’s have invaluable information and
their incorporation is important to generate robust temporal embed-
dings. Furthermore, we noticed that the collaborative exploitation of
semantics from natural language text and KB’s proved particularly
helpful for domain-specific (rare) words. As an illustration, consider
the medical concept "Adioisotopes". This concept rarely co-occurs
with "Magnesium" but is known to have strong semantic associa-
tion with it. The recent temporal word embedding approach [21]
(without external knowledge) fails to identify this term (and such
domain-specific words in general) in top-ranks, due to the lack
of sufficient statistical information. While such domain-specific
words lack local-context information, their semantics can be mined
from human curated KB’s. As the proposed framework effectively
leverages the KB’s, such domain-specific terms are successfully
promoted to higher ranks in our predicted set, thereby resulting
in improved performance. In summary, from our both qualitative
and quantitative experiments, we conclude that jointly leveraging
the local-context information from natural language text and topo-
logical features from knowledge-base aids to generate temporal
embeddings that are both robust and posses better predictive power,
thereby, generating effective hypothesis.

5 CONCLUSIONS
In this study, we proposed a general framework for hypothesis
generation that models the temporal (co)-evolution of biomedial
concepts from two complementary sources of information - corpus
and domain knowledge. By synthesizing the mutual evolution of
concepts from these intertwined resources, the proposed model
generates temporal embeddings that are both robust and posses
higher predictive effects. Technically, the model achieves this by
adopting a temporal co-factorization framework wherein the sub-
spaces between multiple related matrices are learned by sharing
a constant factor. Both qualitative and quantitative experiments
conducted on the largest biomedical corpora validates the efficacy of
the proposed approach, and suggests that the proposed framework
has potential for generating new practical knowledge.
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