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ABSTRACT
Modern search engines increasingly incorporate tabular content,

which consists of a set of entities each augmented with a small set

of facts. The facts can be obtained frommultiple sources: an entity’s

knowledge base entry, the infobox on its Wikipedia page, or its row

within a WebTable. Crucially, the informativeness of a fact depends

not only on the entity but also the specific context (e.g., the query).
To the best of our knowledge, this paper is the first to study the

problem of contextual fact ranking: given some entities and a con-

text (i.e., succinct natural language description), identify the most

informative facts for the entities collectively within the context.

We propose to contextually rank the facts by exploiting deep

learning techniques. In particular, we develop pointwise and pair-
wise ranking models, using textual and statistical information for

the given entities and context derived from their sources. We en-

hance the models by incorporating entity type information from

an IsA (hypernym) database. We demonstrate that our approaches

achieve better performance than state-of-the-art baselines in terms

of MAP, NDCG, and recall. We further conduct user studies for two

specific applications of contextual fact ranking—table synthesis and

table compression—and show that our models can identify more

informative facts than the baselines.
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1 INTRODUCTION
Today’s search engines employ rich structured data as advanced fea-

tures such as entity cards (e.g., Google’s Knowledge Panel or Bing’s

Satori). The importance of displaying facts that are meaningful and

informative in the context of those features has been demonstrated

in [1, 12]. E.g., given the query [nu couché] (a famous painting by

Amedeo Modigliani), users would generally prefer general facts for

the entity, such as artist-name and year-completed, to idiosyn-

cratic ones such as venue-of-sale.
Now consider the following two queries: [paintings by amedeo

modigliani] and [most expensive paintings sold]. The infor-
mativeness of associated facts is different in these two cases. For ex-

ample, artist-name is redundant for the former while informative

for the latter. Facts like medium (e.g., canvas) and year-completed
are arguably more informative for the former while price and
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buyer are informative for the latter. Clearly, the informativeness

of a fact depends not only on the entities but also on their context.

In this paper, we study the problem of contextual fact ranking:

given a set of entities accompanied by a succinct natural language

description (in the form of a title or query), identify the most infor-

mative facts from a universe of candidate facts. We focus on the

following two use cases.

Table synthesis. Answering list-seeking queries using tables

on the Web has become a staple feature for search engines [1].

However, there is a lack of content for torso/tail queries, hence

the ability to automatically synthesize tables to expand coverage is

desirable. The raw sources for those synthesized tables can come

from named lists on the Web [15] or Wikipedia category pages
1
. In

both cases, a collection of entities are added to the synthesized table

and facts are retrieved from their respective Wikipedia infoboxes.

For example, from the Wikipedia category page Open world video
games2, a synthesized table can be constructred for all such games,

leading to a carousel [12] as depicted in Figure 1. Naturally, the

ability to rank facts according to their informativeness to the query

context is crucial to the quality of the synthesized table.

Figure 1: Carousel from a Synthesized Table

Table compression. Even when a table exists to support a ta-

ble answer, it is often not suitable for presentation as is due to

limited visual real estate and needs to be “compressed.” For ex-

ample, given the query [future tallest buildings], Google
used to show the table (Figure 2, left) that is generated by project-

ing the first four columns of the original table (Figure 2, right).

Most users, however, would prefer facts such as height, floors, or
year-of-completion, which are more informative to query terms

future and tallest. This again motivates our problem of ranking

facts based on the context.

While existing work has considered fact ranking for entity sum-

marization and table augmentation (see Section 2 for more details),

to the best of our knowledge this is the first paper to study con-

textual fact ranking given a set of entities and a textual context

as input. We take a supervised deep learning approach and make

1
https://en.wikipedia.org/wiki/Help:Category

2
https://en.wikipedia.org/wiki/Category:Open_world_video_games
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Figure 2: Table Answer (left), underlying Wikipedia Table (right)

the following contributions. First, we compiled a training corpus at

scale by making use of existing relational tables from Wikipedia

after significant preprocessing to annotate tables based on page

signals. Second, using this training data, we designed a novel multi-

tower neural architecture for learning an LSTM-based model for

contextual fact ranking.We considered both pointwise and pairwise

variants using the learning-to-rank paradigm. Finally, we present

a comprehensive set of experiments against multiple non-trivial

baselines and demonstrate the superiority of our approach.

2 RELATEDWORK
Our study of the contextual fact ranking problem is in many ways

inspired by prior research and production work onWebTables [5, 7].

[25] considers the problem of table synthesis by stitching together
multiple tables of the same schema; this is fundamentally differ-

ent from the table synthesis application we are interested in. A

related research problem on WebTables is table augmentation.
The overarching idea here is to extend a given table by slot-filling

the missing fact values, adding more entity rows, or extending to

more fact columns [6, 19, 20, 32, 41]. The core technique for fact col-

umn extension is to leverage attribute/attribute or entity/attribute

correlations from the WebTable corpus [6, 41] or search query ses-

sions [19], and rank the facts based on what’s already in the table.

The problem is different from contextual fact ranking because no

textual context is considered. Nevertheless, the idea of attribute

correlation is noteworthy and our experimental results in Section 7

demonstrate the superiority of our deep learning approach over the

correlation-based approach. [42] goes beyond simple table content

based extension by incoporating user provided instructions such

as a query and looks at the problem of, given a user query and a

knowledge base, composing a table that can answer the user’s query.

However, the main motivation here is to answer the user query and
not to suggest or rank facts. For example, given a query [database
company revenue], the table answer would contain only two facts,

name and revenue. In contextual fact ranking, however, facts like

market-capitalization or headquarter are also potentially in-

formative, but cannot be retrieved by [42]. Furthermore, it is not

clear how [42] can handle queries like [tallest buildings in
the world], where there is no explicit notion of “tallest” in the

knowledge base.

Most of the research on table compression investigates sam-

pling strategies for choosing table rows so as tominimize information-

loss metrics (e.g., [9, 38]). One exception is [14], which studies at-

tribute ordering for SQL query results over a table that return a

ranked subset of rows. Gao et. al. [16] studies table compression

for archival in order to reduce storage, by making use of attribute

correlation and arithmetic coding. Those works are only marginally

related to our work here.

Learning to rank refers to training a ranking model using ma-

chine learning techniques. Li et. al. [24] summarized different ap-

proaches of learning to rank into three categories: pointwise [13, 37],

pairwise [4, 21], and listwise approach [8, 43]. Specifically, the point-

wise approach transforms the ranking task into a classification

problem and the loss function is defined on each single object. The

pairwise approach transforms the ranking task into a classification

on the order of the object pair, and the loss function is defined on

each pair. Finally, the listwise approach looks at the entire list all

together and the loss function considers the position of all objects

per query at a time. Following those directions, we consider both

pointwise and pairwise approaches in our design of the deep learn-

ing ranking model. Listwise approach is hard to be applied in our

case due to the difficulty in obtaining list-like labels.

In the semanticweb community, entity summarization, namely

selecting top-k facts for a given entity, has received some attention.

Specifically, SUMMARUM [40] ranks triples based on PageRank

scores of the involved entities, LinkSum [39] considers both PageR-

ank and BackLink in their ranking function, and RELIN [11] further

extends the random surfer model by taking the informativeness

of a fact and the relatedness of each edge into consideration. Fur-

thermore, FACES [17] tries to improve the conprehensiveness by

selecting diversified facts via clustering. In addition to single entity,

REMES [18] considers the problem of finding top-k facts collec-

tively for a set of entities and formulates it as a joint optimization

problem. In this way, different entities can potentially augment with

each other by maximizing the relatedness of different entities’ facts.

Semantic association ranking is to rank the semantic relation-

ship for a given entity pair. RankSVM [10] and actively learning [2]

has been proposed for personalized ranking and minimizing labels

collected from the user. None of those entity summarization and

semantic association work, however, incorporate a context as part

of the ranking consideration.

Finally, long short-term memory network (LSTM), which has

seen increased adoption in NLP tasks [27, 33, 34, 36], is a special

kind of recurrent neural network that can capture the long-term de-

pendency. It can fall short in encoding the input sentence concisely

when the input sequence is long. Attention mechanism jointly

learns the embedding and alignments between different modalities.

Similar to the visual attention of human, attention mechanism dis-

tributes different focus over different input parts and summarizes

the input into a more accurate embedding. We exploit LSTM net-

work without attention in our ranking task. This is because word

sequences in title and facts are short and using memory cells like

LSTM can already capture the term dependency. Siamese neural net-

works have been proposed for different tasks [3, 23, 30]. A siamese

neural network consists of twin NNs with exactly the same archi-

tecture and weight, each taking an input modality, e.g., sentence or

image. The outputs of these two NNs are then fed into a contrastive
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loss layering, comparing against each other and calculate the loss.

Our pairwise model (Section 6) can be considered as a siamese

neural network.

3 PROBLEM FORMULATION
We consider the problem of ranking candidate facts given a descrip-

tive title
3
(e.g., [future tallest buildings]) and a collection of

entities (e.g., Jeddah Tower, Wuhan Greeland Center, etc.). We as-

sume a universe of entities where each entity E is associated with a

set of facts Φ(E) = {F } and each fact F = ⟨f1, f2, . . . , f |F |⟩ is a word
sequence denoting a fact name (e.g., country, year-of-completion,
etc.); the associated facts are indexed on E and could come from

a knowledge base, Wikipedia infoboxes, WebTables, etc. For the

purposes of this paper, we use Wikipedia infoboxes. Let F denote

the union of facts over a set of entities E, that is, FE =
⋃
E∈E Φ(E).

Problem (Contextual Fact Ranking). Given a context T =
⟨t1, t2, . . . , t |T |⟩, where ti are word tokens, and a collection of asso-
ciated entities, E, rank the candidate facts FE (or simply F when
context is clear).

In both table synthesis and table compression applications, we

use context available on the web page instead of user queries, i.e.,

page title and table caption. As a natural byproduct of the problem

definition above, we can retain only the top-k facts, where k is

dictated by the application. For instance, if we would like to display

them as a table answer in mobile search, k is usually set to 3 in

order to fit the table on the phone screen.

Admittedly, when judging the informativeness of a fact for a

collection of entities within a context, there is some level of sub-

jectivity. However, there are many cases where much agreement

would be expected. As an example, for the context [paintings by
amedeo modigliani], the fact artist is clearly redundant, hence

uninformative, because all painting entities that match the context

would have the same value (i.e., Amedeo Modigliani). Furthermore,

we hypothesize that for a given context, humans are often more

capable of judging the relative informativeness of two facts, than

judging the absolute informativeness of a single fact, and that ag-

gregation over multiple individuals provides a reliable measure of

informativeness. Therefore, we propose to rank facts via supervised

learning on a crowdsourced dataset. Unfortunately, there is no large

scale labeled dataset of entities with a described context and a “gold

standard” of which facts are informative and which are not; hence,

we resort to a weak supervision approach based on which attributes

are included in Wikipedia relational tables and assuming those that

are not included are less informative, as we discuss in more detail

in Section 4.

We would like our model to develop an appropriate representa-

tion that carries semantics for the context and each fact, inferring

only from their respective word sequences but learning across lots

of training examples. With that in mind, we develope two deep

learning approaches, pointwise (Section 5) and pairwise (Section 6),

for the ranking task leveraging the train data generation process

we describe in Section 4.

4 TRAINING DATA GENERATION
One natural way to collect the training data is through human

labelling. However, human labelling can be costly and developing

an effective deep learning model typically requires large amount

3
We use the terms context and title interchangeably.

of training data. Thus, we propose to collect training labels auto-

matically at scale from the open Web. Specifically, we make use of

the human-constructed WebTables in Wikipedia. The assumption

is that, w.r.t. the table title, facts
4
that are picked by the editors to

constitute columns of the table are more salient to the title than

facts that are not picked. For instance, Figure 2 (right) is a table

from Wikipedia, and we regard facts in the table, e.g., height and

year-of-completion, to be more important than facts that are

not in the table, e.g., management and owner, w.r.t. title [future
tallest buildings].

Note that not all columns in the table are facts: the rank column,

in the above example, does not contain values that are intrinsic to

the entities. Thus, the first challenge in this training data generation

approach is to identify which columns are entities and facts. For

the entities, we adopt methods introduced in [12], which are shown

to be very effective. We describe how to identify fact columns

next. As defined in Section 3, Φ(E) is the set of facts stored in each

entity E’s profile. When generating the training data, we use each

entity’s Wikipedia infobox as the main profile.
5
However, matching

columns in a table and facts from infoboxes of entities in the table is

not a trivial problem. We exploit some heuristic methods to achieve

the potentially fuzzy alignment. First, for each fact name, we check

its synonyms in a dictionary which can be built based on method

described in [7]. We say a fact is mapped to a column if their names

are synonyms to each other. Second, we check the values for each

fact. If a column shares most of its cells’ string content (60% in our

study) with the fact values in the corresponding entity profile, we

consider it a match. Finally, for the remaining columns in the table

that do not have any aligned facts in the infobox, we try to search

each cell’s string content in its associated entity’s Wikipedia page,

respectively. If most of the cells (60% in our study) in the column

can be matched, we also consider the column as a fact and adds

the column to the profile. This is reasonable because infobox has

limited space to include all the facts. The unmapped columns are

ignored.

The next challenge is to ensure the model being aware of the

difference among facts recognized from table columns, e.g., height
should be ranked higher than country in Figure 2. The answer is

to rely on redundancy in the WebTable corpus. Besides [future
tallest buildings], Wikipedia also has [tallest buildings
in the world], [tallest buildings before 1900], etc. As they
are constructed by different people, their schemas are not always

the same but the most cirtical columns likely will be shared.

We use ⟨T , F , I ⟩ and ⟨T , F1, F2, I ⟩ to denote the individual training
example needed by pointwise and pairwise approaches, respectively.

HereT and F denote title and fact, respectively, and I is the indicator
denotes the labeling. For pointwise, I = 1 indicates the fact is

informative for the title, and for pairwise, I = 1 indicates F1 is more

informative than F2. In the following, we will describe in details

how to generate ⟨T , F , I ⟩ and ⟨T , F1, F2, I ⟩. First, among all candidate

facts F for T , let FT
+ ⊆ F denote the ones mapped to column(s) of

the table, and the unmapped ones as FT
− , i.e., FT

− = F − FT
+ .

Pointwise.Given a titleT , we generate a training record ⟨T , F+, I =
1⟩ for each fact F+ ∈ FT

+ and ⟨T , F−, I = 0⟩ for each fact F− ∈ FT
− .

That is, we consider the facts in the table as informative to the

title, while other facts that are not in the table as not informative.

4
When referring to WebTables, we use the terms fact and attribute interchangeably.

5
Note that access to each entity’s Wikipedia infobox is easy because an entity in the

table often is linked to its Wikipedia page.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

287



Table 1: Statistics of training data sets

Dataset #pages #tables #examples #positives #negatives

Pointwise 45K 82K 1.1M 0.25M 0.86M

Pairwise 45K 82K 3.2M - -

Continuing the example in Figure 2, the facts in the table, e.g.,

height, year-of-completion, etc., are labelled as positive for the

title [future tallest buildings]. While facts that are in each

entity’s profile but not in the table, are labelled as negative.

Pairwise.Given a titleT , we generate a training record ⟨T , F+, F−, I =
1⟩ for each pair (F+, F−) ∈ FT

+ × FT
− . That is, we consider the facts

in the table as more informative to the title than those that are

not. Continuing the example in Figure 2, the facts in the table, e.g.,

height, year-of-completion, etc., are labelled as more informa-

tive than those that are not in the Wiki table, with respect to the

title [future tallest buildings].
In the pointwise data set, we observed conflicts in labels about

whether or not the same fact is informative for similar tables. This

is because the pointwise approach assumes a clear distinction be-

tween informative and uninformative facts, which is a subjective

notion where people may disagree. Nonetheless, aggregated over

the many tables in our corpus, we believe the overall training

data quality is solid and leads to good performing models as we

show in Section 7. This problem is less severe for the pairwise

approach since the labels are relative and the model is optimized

for ranking accuracy. As a concrete example, consider two tables

with similar titles [tallest buildings in (los angeles|new
york city)], respectively. Both tables have fact height and nei-

ther has fact management. Only the los angeles table has fact

primary-purpose. The pointwise approach may attribute the in-

clusion/exclusion of primary-purpose to the difference between

los angeles and new york city, hence causing overfitting. The

pairwise approach, however, would handle this case nicely by learn-

ing height > primary purpose > management.
Finally, while there is less noise in the pairwise training data set,

only the pointwise approach can predict whether or not a given

fact is informative to a title. And since we have a much larger

training set for the pairwise approach, training can be more time-

consuming for the pairwise approach than for pointwise. To have

a better understanding of the pros and cons of the two approaches,

we study both of them and compare their performances empirically.

Table 1 provides statistics of the two training sets. After removing

tables with too few columns or rows (≤ 3), and requring a valid table

to contain at least one matched fact column as well as a title, we are

left with around 82K tables from 45K Wikipedia pages. From these

tables, we obtained 1.1M training examples from the pointwise

approach and 3.2M for pairwise.

5 POINTWISE APPROACH
The pointwise approach considers the ranking task in Problem 3

as a binary classification problem, i.e., classifying whether a fact

F is informative with respect to a title T and associated entities E.

In this section, we describe the basic model (Section 5.1), followed

by the enhanced model (Section 5.2) that incorporates knowledge

from the mapping between entities and notable collections.

5.1 Basic Model
Figure 3 depicts our basic dual encoder architecure, similar to [26],

with six layers. Note again that the main inputs are the title T
and fact F , both are raw text tokenized into a sequence of words.

Additional statistical features are extracted from the fact values

of entity members. Next, theWord Embedding Layer prepares the
words from input title and fact as embedding vectors. Those vectors

are refined using LSTM in the Contextual Embedding Layer and
in turn aggregated back into a title vector and a fact vector in the

Summarization Layer. The Scoring Layer measures the semantic

similarity between the two vectors, ST ,F . Finally, the Output Layer
combines ST ,F with statistical features from Input Layer to output

дT ,F as the probability that fact F is informative to title T . We

describe each layer in details next.

Figure 3: Model for Pointwise Approach

(1) Input Layer. As shown in the bottom part of Figure 3, we

use both the textual information and the statistical features ex-

tracted from the fact values of entity members as our input. The

textual information is represented by two word sequences, i.e.,

T = {t1, t2, · · · , t |T |} and F = { f1, f2, · · · , f |F |}; by ingesting such

textual information into our model, we expect our model to learn

the semantic similarity between each title T and fact F . The statis-
tical features include coverage—the percentage of entity members

with the fact; and distinct—a boolean indicating whether this fact

always has the same value across all entity members.

These two classes of information are orthorgonal to each other,

and can be combined to improve our model’s performance. We will

describe this in the last layer, i.e., output layer.

(2) Word Embedding Layer. Given a word sequence (a title or a

fact), we first map each word to a high-dimensional vector space

using fastText [28] pre-trained word embeddings.
6
The reason for

using pre-trained word embedding is two-fold. First, using one-hot

encoding for each word would result in a vector space of very high

dimension, which leads to more trainable parameters in the model

and increases the training time complexity. Second, pre-trained

word embedding can serve as a good initialization for our model

and help improve our model’s performance, especially when our

training data is not sufficiently large and certain words are not

mentioned many times.

(3) Contextual Embedding Layer. In this layer, we try to trans-

form each word’s initial pre-trained embedding to a trained embed-

ding that is specific to our ranking task. Specifically, we feed the

sequence of initialized word embeddings into a recurrent neural

network with LSTM cell, where the output embedding of each word

6
We tried word2vec [29] and Glove [31] and fastText turned out to be slightly better.
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also depends on its preceding words. Note that the LSTM cells in

the title and fact are with independent trainable parameters. Let

V (ti ) and V (fj ) be the output of each LSTM cell for word ti ∈ T
and fj ∈ F respectively, as shown in Figure 3. Assume the output

size of each LSTM cell is d for both title and fact, then we have

V (ti ),V (fj ) ∈ R
d
. Intuitively, we want our LSTM cell to map the

pre-trained embeddings to a refined embedding space, where se-

mantically related title and fact are placed close to each other. As

validated in our experiments, compared to the pre-trained word

embedding (input of this layer), the trained embedding (output of

this layer) has higher quality and achieves significant improvement

for our ranking task. This contextual embedding layer plays an

important role in our model.

(4) Summarization Layer. After obtaining the trained embedding

for each word in the title and fact, we can now fuse these embed-

dings into one representative embedding for the title T and fact F ,
denoted asV (T ) andV (F ), respectively. As shown in Equation 1, the
representative embedding is formulated as a weighted embedding

across all words, wherewi encodes the importance of each word

and

∑
i wi = 1.

V (T ) =
∑
i
wiV (ti )

V (F ) =
∑
j
w jV (fj )

(1)

We have tried different strategies in determining the weight wi ,

including simple pre-defined strategies and more advanced at-

tention mechanism. For pre-determined weights, we can either

use the last word’s embedding as our representative embedding,

i.e., V (T ) = V (t |T |), or distribute equal weight to each word, i.e.,

V (T ) =
∑
i V (ti )
|T |

. Furthermore, we also tried using the prevailing

attention mechanism. Specifically, in order to computewi for each

word ti in the title T , we first calculate its similarity score between

ti and each word fj in the fact, then perform a max pooling over all

words fj and use this similarity score aswi . Such attention mech-

anism aims to assign larger weights to more salient words which

are closer to the other side. However, since the number of words

in each title and fact is quite small (smaller than 15 in most cases),

exploiting memory cells like LSTM can already capture the long-

term dependency and there is not much gain in using attention

mechanism. We choose the pre-determined equal weight strategy

due to its efficiency and comparable performance to the others in

our experiments.

(5) Scoring Layer. Now that we have the representative embed-

dings V (T ) and V (F ), we can then measure the semantic similarity

betweenT and F based on some similarity metric. Here the similar-

ity metric can be as simple as dot product with no learned variable,

or similarity metric with lots of variables to be learned, e.g., bilinear

function. We observed similar performance across these similarity

metric in our experiments. Thus, we opt for the simple dot product

as our scoring function, formulated as below in Equation 2.

ST ,F = V (T ) · V (F ) (2)

(6) Output Layer. In this layer, we try to combine the textual

signal (ST ,F ) with other signals extracted from entity members

(e.g., coverage). Specifically, we treat the similarity score ST ,F as

one feature based on the semantic meaning and feed it, together

with other statistical features, into a dense layer with two classes

as the output, i.e., informative or not. We then perform a softmax

over the two output classes and obatin the probability of whether

fact F is informative to title T , i.e., P(I = 1|T , F ) = дT ,F .

Loss Function. As a classification task, it is natural to use cross en-

tropy as our loss function as shown in Equation 3, where ℓpt (T , F , I )
denotes the cross entropy for each title T and fact F , while Lpt
represents the overall loss across all title-fact pairs. Specifically,

ℓpt (T , F , I ) takes the label I and the predicted probability дT ,F as

the input, and compute the two-class cross entropy.

Lpt =
∑
T

∑
F ∈F

ℓpt (T , F , I )

ℓpt (T , F , I ) = −(I log(дT ,F ) + (1 − I ) log(1 − дT ,F ))

(3)

5.2 Enhanced Model
In this section, we aim to improve our model by incorporating extra

information from the Knowledge Base. This is motivated by the

observation that some phrases in the title are not very informative

even after applying pre-trained embeddings. For instance, it is hard

for the model to recognize that Amedeo Modigliani is a painter

known for graceful portrayal of the human form. To mitigate this

problem, we replace (when applicable) recognized entities with

the corresponding notable collection in an internal IsA Knowledge

Base. In this way, the title [paintings by Amedeo Modigliani]
can be mapped to [paintings by painting artist]. In order to

distinguish these two title representations, we call the title be-

fore replacement original title, denoted as To , and the mapped title

collection title, denoted as Tc . We propose an enhanced model by

exploiting both To and Tc , as illustrated in Figure 4. Compared to

the initial model in Figure 3, the input layer and output layer are the

same in our enhanced model. There are three new layers: mapping

layer, embedding & scoring layer, and title-weighting layer.

Figure 4: Enhanced Model with Collection Mapping

Mapping layer. Mapping layer generates a collection title Tc by
referring to a IsA Knowledge Base. Note that we do not map the

fact F , as F is in general interpretable and there is no benefit to

substitute the fact name. After the mapping layer, we now have the

original title To , the collection title Tc , and the fact F .

Embedding & Scoring Layer. In this layer, we try to calculate the

semantic similarity between To and F and that between Tc and F ,
respectively. This is exactly the same as what we have done for

title T and fact F in Section 5.1. Thus, we apply the embedding &

scoring module (the red dotted area in Figure 3) for the two title-fact

pairs, ⟨To, F ⟩ and ⟨Tc , F ⟩. As a result, we get a semantic similarity

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

289



score along with the representative embeddings for each pair, i.e.,

⟨STo ,F ,Vo (T ),Vo (F )⟩ and ⟨STc ,F ,Vc (T ),Vc (F )⟩.

Title-weighting Layer. With two alternative semantic similarity

scores STo ,F and STc ,F , the remaining question is how to combine

them as our final similarity score ST ,F . In some cases, the collection

titleTc is generic and can guide the model to pick the right fact, e.g.,

painting artist. However, in some other cases the collection title

can be too broad to be useful, e.g., person. Thus, we need to inte-

grate these two alternative scores differently based on the context.

In particular, we let our model learn the importance for STo ,F and

STc ,F in different scenarios, denoted aswo andwc respectively. The

weight is computed by first calculating a score for each title-fact

pair (Equation 4), followed by a softmax normalization (Equation 5).

γx =Wx · [Vx (T ); STx ,F ] (4)

wx =
exp(γx )∑

x ′∈{c ,o} exp(γx ′ )
(5)

where x ∈ {c,o};Wx ∈ Rd+1 is a trainable weight vector; [;] is a
vector concatenation. Finally, we can represent ST ,F as a weighted

sum of STo ,F and STc ,F , formalized in Equation 6.

ST ,F = woSTo ,F +wcSTc ,F
STo ,F = Vo (T ) · Vo (F )

STc ,F = Vc (T ) · Vc (F )
(6)

6 PAIRWISE APPROACH
An alternative approach is to frame the ranking task in Problem 3

as a pairwise classification problem, i.e., classifying the relative

ordering of two facts (F1, F2) by their informativeness in relation

to the title T . Yet we would like to ensure the ranking is transitive,

i.e. if δT (F1, F2) > 0 and δT (F2, F3) > 0, then δT (F1, F3) > 0, where

δT (F1, F2) > 0 represents F1 is more informative than F2 for title
T . Therefore we use Siamese network [23] to learn a informative

scoring function дT ,F as an intermediate step towards the ranking

function δT (F1, F2). As shown on Figure 5(a), a Siamese network

consists of two identical base neural networks with the same archi-

tectures and weights. Each base model is itself a pointwise scoring

function дT ,F that maps title-fact pairs to ranking scores. As a re-

sult, although we train a Siamese network on examples consisting

of pairs of facts, we can use just one of these base models at serv-

ing time (illustrated in Figure 5(b)), by producing a score дT ,F for

individual fact and ranking the candidate facts accordingly. Hence

we can always obtain consistent pairwise comparisons among all

facts F and thus derive a ranking in descending order of дT ,F .

Figure 5: Model for Pairwise Approach

More specifically, for a given training example ⟨T , F1, F2, I ⟩, we
feed ⟨T , F1⟩ pair in the left twin base model and ⟨T , F2⟩ pair in

the right twin base model. For the base model, we simply use the

enhanced model (Figure 4) described in the pointwise approach.

Afterwards, we feed the output of each base model into the output

layer, where we differentiate between the pointwise score дT ,F1
and дT ,F2 and output the contrastive score δT (F1, F2) as illustrated
in Equation 7.

δT (F1, F2) = дT ,F1 − дT ,F2 (7)

Loss Function. A typical pairwise loss function used in the litera-

ture is hinge loss [22]. We formalized the loss function in Equation 8

below, where Lpr can be interpreted as the summation of each fact

pair’s hinge loss across all titles, while ℓpr (T , F1, F2) takes δT (F1, F2)
and the real label I as the input. However, since ⟨T , F1, F2, I = 1⟩

is equivalent to ⟨T , F2, F1, I = 0⟩, we can get rid of the redundant

fact pairs and only use ⟨T , F+, F−, I = 1⟩ as our training examples.

Thus, I is always 1 and ℓpr (T , F+, F−) can be simply formulated as

a hinge loss function on δT (F+, F−).

Lpr =
∑
T

∑
F+∈FT+

∑
F−∈FT−

ℓpr (T , F+, F−)

ℓpr (T , F+, F−) = max(1 − δT (F+, F−), 0)
(8)

7 EXPERIMENTS
In this section, we present empirical results in order to validate the

two proposed approaches, organized as follows. First, we assess the

model performance on a hold-out test set from data generated as

described in Section 4. Then, we examine whether the proposed

models are effective in the two applications mentioned in Section 1,

namely table synthesis and table compression, based on a user study.

Finally, a case study is presented to illustrate when our models do

or do not work.

7.1 Performance on Test Set
Our first goal is to evaluate whether the proposed approaches are

effective in learning a good ranking function дT ,F on the training

set described in Section 4. To ensure fairness, we created a hold-out

set at training to avoid label leaks. Specifically, training and test

sets were generated from separate Wikipedia pages
7
so that they

are less likely to share the same table schemas.

Recall that at serving time, the prediction score дT ,F from point-

wise and pairwise approaches are not directly comparable due to

their different neural architectures at training time. To address this

problem, for each of around 14, 000 test examples, we define a total

order on the union of all candidate facts F over the entities, based

on each method’s respective ranking function, and apply standard

IR metrics [35] in comparison to the existing table facts as follows:

• MAP:mean average precision over each recall size from 1 . . . |F |

• Average NDCG: average of normalized discounted cumulative

gain for each ⟨T , F ⟩.

• Average Recall@k: average of recall at k for each ⟨T , F ⟩.

In addition, we compare the pointwise and pairwise approaches

with two baselines that can be trained on the same data sets and

leave variations of our own model in the later model study:

• FactCorrelations: In [7], a greedy algorithm was proposed to

leverage fact correlation statistics for table schema auto-completion.

Here we start from a full set of candidates and use their heuristic

to iteratively prune one fact while trying to maximize schema

coherence.

7
We grouped Wikipedia pages by titles after removing numbers as further restriction.
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Figure 6: Peformance comparison on test set

Table 2: Quality contribution (MAP) by components

Model All -LSTM -Statistical Features -Collection Title

Pointwise 0.862 0.605 0.838 0.853

Pairwise 0.902 0.632 0.842 0.882

• TitleFactCorrelations: Generalizing the idea from FactCorrela-
tions, one can also leverage co-occurrences between entities

from the table title and facts from respective table schema to

condition fact statistics on the given table title.

The results are available in Figure 6. Both pointwise and pairwise

approaches significantly outperform the two baselines across all

metrics. This is not surprising because the proposed models are sup-

posed to learn deeper patterns underlying the training data while

the baselines only exploit shallow correlation statistics. Among

the baselines, TitleFactCorrelations beats FactCorrelations since the
latter ignores the title completely.

Between the two proposed approaches, pairwise slightly out-

performs pointwise mainly due to the noise during training data

generation for the latter discussed in Section 4. We note that the

performance gap between the proposed approaches is much smaller

than that between baselines, indicating the noise in pointwise train-

ing labels does affect model quality, but not significantly. Another

interesting observation is that the two approaches have similar av-

erage recall@5 but pairwise achieves better average recall@3. This

makes us believe that the pairwise approach is stronger at picking

the most critical facts among a set of informative fact candidates.

Model Study. Since the overal neural architecture has several com-

ponents, it is interesting to experiment these model variations after

removing certain parts, as a justification of the effectiveness of the

combined models. Table 2 lists the MAPmetric after removing three

major components separately. The highest number from multiple

runs is reported. First of all, it is clear that the models integrating all

three components achieve the best performance. Next, comparing

the remaining columns, removing LSTM (which transforms each

word’s initial pre-trained embedding to a trained embedding) led

to the biggest drop in performance, indicating the importance of

learning word embeddings based on our training data. It is also

worth noting the similarity of this setting with RankSVM [22]

where features fed to SVM objective is static and the only variable

is the weight matrix/vector. Realizing the gain brought by training

LSTM, we further conduct experiments that allows pre-trained em-

beddings to be adaptable at the word embedding layer with and

without LSTM layer. Unfortunately, we observe lower performance

and we conjecture this is due to the lack of large amount of training

data. Meanwhile, it is also worth noting that statistical features is

quite helpful as it provides complementary structural information

which cannot be inferred from textual context. Finally, the last col-

umn confirms the effectiveness of the enhanced model proposed in

Figure 7: Side-by-side comparison on table synthesis

Section 5.2, which can improve generalizability by utilizing an IsA

Knowledge Base. Compared to the other two components, the gain

brought by collection title is considerably smaller. The reasons are

twofold. Firstly, there can be annotation errors in our IsA Knowl-

edge Base which undermines our collection title quality. Secondly,

collection titles benefit more when the original title has long-tail

entities, unlike statistical features and LSTM, which are equally

applicable to all inputs.

7.2 Performance on Applications
We conducted a user study to evalute our proposed models in the

two applications of table synthesis and compression and report

the performance here, using a production crowdsourcing platform

similar to Mechanical Turk to collect ratings. We focus on the

pairwise ranking model here, since it exhibited better performance

than the pointwise model on the test set, and compare it against

various baselines as described below. (The pointwise model gave

similar results but with slightly worse numbers compared to the

pairwise model. Detailed results are omitted due to space limit.)

Each task consists of a title and two sets of facts (three facts

each) generated by the methods being compared, for the same set

of three entities (chosen based on popularity
8
). Each entity was

presented as a thumbnail image with an entity name below it;

clicking on either of these would open a new tab in the browser to

the entity’s Wikipedia page in case the rater needed background

on the entity for the task. The two sets of facts are presented side-

by-side (randomly swapped; each side has a similar look and feel

to Figure 1). Each task is rated independently by 3 raters who were

asked which side contains a better set of facts. To ensure rater

diversity, each rater can rate no more than 6 tasks.

We observe overall 85% of the tasks with at least 2/3 majority

votes, with no significant differences across tasks and approaches.

7.2.1 Table Synthesis. We made use of the titled entity lists ex-

tracted fromWikipedia category pages such as https://en.wikipedia.

org/wiki/Category:Open_world_video_games and selected themost

popular categories. We pruned categories according the following

criteria (which yielded a total of ∼1K categories): (1) Categories

containing either too many (>200) or too few (<5) entities were

dropped; (2) Categories having simple titles that can be annonated

by single entity (e.g., [video games]) were dropped; (3) Only entity
members belonging to the category’s dominant type (e.g., games for
[open world video games]) based on having the same Infobox tem-

plates were considered; (4) Only facts common to enough entities

(at least 60%) were considered for ranking.

In the previous subsection, we were studying the quality of dif-

ferent approaches and neural structures learning from the same

training data set. For the table synthesis task, we compared our pair-

wise approach with the previous two correlation statistics baselines

as well as the following new methods: (1) MentionOrder : Facts are
8
Wikipedia pageview can be obtained from https://tools.wmflabs.org/pageviews.
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Figure 8: Side-by-side comparison on table compression

ranked based on Infobox template position on the assumption that

more important facts are placed higher; (2)MentionFrequency: Facts
are ranked based on the frequency of mentions among all entity In-

foboxes from the category with ties broken using Infobox template

position order; (3) QueryPopularity: Similar to TitleFactCorrelations,
we take entity-attribute queries [19] from a search engine query

stream and find the most frequent attributes that co-occur with any

entity from the title.

Side-by-side results for the various methods compared against

pairwise are listed in Figure 7. Assuming scores of raters pre-

ferring pairwise approach, baseline and considering a tie are 1,

-1 and 0, respectively, we obtained using the bootstrap method

the 95% confidence intervals for each of the five baseline meth-

ods as [0.184, 0.281], [0.145, 0.241], [0.082, 0.183], [0.04, 0.134] and

[0.135, 0.227]—all in favor of the pairwise method. The bars for

FactCorrelations and TitleFactCorrelations are consistent with those

reported in the test set evaluation, indicating the effectiveness of

our training sets for the purpose of fact ranking in this application.

MentionOrder and MentionFrequency, neither of which consider

title, received better ratings than the other baselines. This confirms

that position ordering inWiki Infoboxes does indeed capture impor-

tance. However, they are clearly limited since they ignore the title.

For example, for [skyscraper office buildings in chicago],
type is ranked among top 3 by both methods, but it is uninforma-

tive as it is redundant w.r.t. the title (“office” building).

7.2.2 Table Compression. We selected 100 Wikipedia tables due to

their value for knowledge exploration given a set of news articles

published during a 3-month window across topics such as politics,

sports, entertainment, technology and economy. Some examples

include [largest trading partners of china], [fifa world cup
top goalscorers], etc. We conducted similar side-by-side evalu-

ations (between the pairwise model and the baselines) as we did

for table synthesis; however, we dropped MentionFrequency as a

baseline since all columns in the table have the same number of

mentions among all table rows.

Results are shown in Figure 8 with 95% confidence intervals

as [0.324, 0.415], [0.104, 0.206], [0.036, 0.120] and [0.106, 0.195]—

again all favoring the pairwise method. One notable difference

from Figure 7 is that MentionOrder had the second best win-loss

ratio. This shows the default order of columns in the table in many

cases can be directly applied for compression, just like what search

engines are currently doing. However, in some cases like Figure 2

where informative columns can also be put on the right, deeper

understanding of the table semantics is necessary. This aside, the

numbers look very similar to those in table synthesis, indicating

that the two applications are closely related. It is interesting to see

that QueryPopularity has many tasks rated as “about the same”,

but on the other tasks, raters agree that pairwise performs much

better. This means QueryPopularity can work reasonably well in

some cases but poorly in others. We checked its loss cases, such as

[champion hurdle winners], and found that this is generally due

to the low coverage of queries on long-tail entities.

Figure 9: Average informative score (left: table synthesis,
right: table compression)

7.2.3 Pairwise vs. Pointwise. A separate side-by-side experiment

was conducted to compare pointwise and pairwise models, in which

we saw slightly more wins by the pairwise model. We observed

that often the same facts were chosen but in different orders. So

we asked raters to assign an informative level to each fact using

one of the four ratings: Crticial(4), Informative(3), Uninformative(2)

and Unrelated(1). Average scores over top-k positions are shown

in Figure 9 with standard deviation ommited for clarity. For table

sythesis tasks (Fig. 9-left), slightly higher scores are observed for

the pairwise at the top two positions. The two models behave

similarly when we extend to top three positions, implying the facts

retrieved by the two methods are close but ranked differently. For

table compression tasks (Fig. 9-right), we observed higher ratings

than in table synthesis, where facts were from entities’ Wikipedia

Infoboxes, because table columns are created to be informative

even without ranking. Specifically, pairwise did a better job at

the top position. Pointwise attained even higher score at second

position compared to its first position. Based on this, we conclude

that pointwise is not as good as pairwise in terms of recognizing

the most informative facts although the overall ratings of the two

are very close when k = 2 and k = 3.

7.3 Case Study
Table 3 shows several representative examples that illustrate where

the pairwise model succeeds and fails. We use “loss” (second col-

umn) as the performance indicator, which is computed as the per-

centage of ratings for the same title for which facts from any one of

the baselines were preferred over that from pairwise. The example

titles were then grouped row-wise into four categories based on

our understanding of factors affecting their performance.

For each of the four titles in the first group, there exist many

examples (count in the fourth column) in the training data sharing

the same title pattern (the third column). The model was capable

of generalizing across these patterns to rank candidate facts sim-

ilarly. Conversely, the learning-based approaches did not work

well on titles in the second group, due to lack of similar titles in

the training data. Incompleteness and noise in training data gen-

eration has also had negative impact on our model. For example,

for the title [nba championship head coaches], raters considered
coaching career as an informative fact. However, it did not appear

in Infoboxes or Wikiepdia page content, hence not included in the

training corpus. As another example, in [musicians from ohio],
the fact genre was not identified by the pairwise model despite

the existence of a [list of musicians from chicago] table with a

related known for fact, as we failed to align the two facts in training

data generation. Lastly, our model is not good at cases when the

title requires background or context to interpret its semantics, like

[doctor who doctors] where it is necessary to understand that

the second mention of doctor in the title refers to the doctor role in

the TV series Doctor Who instead of physician.
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Table 3: Grouped titles with similar model performance.

Title Loss (%) Title Pattern # Similar Titles in Training Why Pairwise Model Succeeds (or Fails)
songs written by taylor swift 0 songs written by ... 51

mass shootings in the united states 0 mass shootings in ... 10 Exists plenty of similar training examples

hurricanes in bermuda 0 hurricanes in ... 50 so that model can predict well

fifa world cup top goalscorers 0 ... goalscorers 12

stock exchanges in india 0.5 stock exchanges in ... 0

Lack of training data

french noble families 0.42 ... noble families 0

nba championship head coaches 0.5 ... head coaches 76

Noisy training data

musicians from ohio 0.44 musicians from ... 5

missions to mars 0.44 - -

Understanding title semantics is hard

doctor who doctors 0.44 - -

8 CONCLUSIONS & FUTUREWORK
We studied the problem of contextual fact ranking—given a set of

entities and a contextual description (e.g., a title), rank the candidate

facts based on their informativeness to the context. We built deep

learningmodels to accomplish this ranking task and employedweak

supervision by making use of the relational tables in Wikipedia.

Specifically, we developed pointwise and pairwise models with

multi-tower neural architecture, and fuse textual and statistical

features across the entities, the context, and the fact. We demon-

strate that our approaches outperform other state-of-art algorithms,

measured by the standard information retrieval metrics for rank-

ing, including MAP, average NDCG, and average recall. We further

show, via ratings collected from a production crowd evaluation

platform, that our proposed models did indeed provide more in-

formative facts in table synthesis and compression applications

compared to baseline approaches.

Beyond enhancing search experience, we are actively exploring

other applications that can benefit from contextual fact ranking

such as programmatic Wikipedia content generation and enrich-

ment of news content via structured data. We are also looking for

ways to improve model quality, such as expanding the training data

generation beyond Wikipedia tables, exploiting real user queries,

identifying semantic entities from the string representations of ti-

tles and facts, leveraging correlation statistics, etc., all of which are

beyond the scope of this paper, but are interesting as future work.
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