
On Problems Equivalent to (min,+)-Convolution∗

Marek Cygan1, Marcin Mucha2, Karol Węgrzycki3, and
Michał Włodarczyk4

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
cygan@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
mucha@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
k.wegrzycki@mimuw.edu.pl

4 Institute of Informatics, University of Warsaw, Warsaw, Poland
m.wlodarczyk@mimuw.edu.pl

Abstract
In the recent years, significant progress has been made in explaining apparent hardness of im-
proving over naive solutions for many fundamental polynomially solvable problems. This came
in the form of conditional lower bounds – reductions from a problem assumed to be hard. These
include 3SUM, All-Pairs Shortest Paths, SAT and Orthogonal Vectors, and others.

In the (min,+)-convolution problem, the goal is to compute a sequence (c[i])n−1
i=0 , where

c[k] = mini=0,...,k{a[i] + b[k − i]}, given sequences (a[i])n−1
i=0 and (b[i])n−1

i=0 . This can easily be
done in O(n2) time, but no O(n2−ε) algorithm is known for ε > 0. In this paper we undertake
a systematic study of the (min,+)-convolution problem as a hardness assumption.

As the first step, we establish equivalence of this problem to a group of other problems,
including variants of the classic knapsack problem and problems related to subadditive sequences.
The (min,+)-convolution has been used as a building block in algorithms for many problems,
notably problems in stringology. It has also already appeared as an ad hoc hardness assumption.
We investigate some of these connections and provide new reductions and other results.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases fine-grained complexity, knapsack, conditional lower bounds, (min,+)-
convolution, subquadratic equivalence

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.22

1 Introduction

1.1 Hardness in P
For many problems there exist ingenious algorithms that significantly improve upon the naive
approach in terms of time complexity. On the other hand, for some fundamental problems,
the naive algorithms are still the best known, or have been improved upon only slightly. To
some extent this has been explained by the P 6=NP conjecture. However, for many problems
even the naive approaches lead to polynomial algorithms, and the P 6=NP conjecture does
not seem to be particularly useful for proving polynomial lower bounds.

∗ This work is part of a project TOTAL that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 677651).

EA
T

C
S

© Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 On Problems Equivalent to (min,+)-Convolution

In the recent years, significant progress has been made in establishing such bounds,
conditioned on conjectures other than P 6=NP, each of them claiming time complexity lower
bounds for a different problem. And so, conjecture that there is no O(n2−ε) algorithm
for 3SUM problem1 implies hardness for problems in computational geometry [22] and
dynamic algorithms [33]. The conjecture that All-Pairs Shortest Paths (APSP) is hard
implies hardness of finding graph radius, graph median and some dynamic problems (see [38]
for survey). Finally, the Strong Exponential Time Hypothesis (SETH) introduced in [25, 26]
that has been used extensively to prove hardness of parametrized problems, recently lead to
polynomial lower bounds via the intermediate Orthogonal Vectors problem (see [36]). These
include bounds for Edit Distance [3], Longest Common Subsequence [9, 2], and other [38].

It is worth noting that in many cases the results mentioned are not only showing the
hardness of the problem in question, but also that it is computationally equivalent to the
underlying hard problem. This leads to clusters of equivalent problems being formed, each
cluster corresponding to a single hardness assumption (see [38, Figure 1]).

As Christos H. Papadimitriou is quoted to say „There is nothing wrong with trying to
prove that P=NP by developing a polynomial-time algorithm for an NP-complete problem.
The point is that without an NP-completeness proof we would be trying the same thing without
knowing it!” [32]. In the same spirit, these new conditional hardness results have cleared the
polynomial landscape by showing that there really are not that many hard problems.

1.2 Hardness of MinConv
In this paper we propose yet another hardness assumption in the MinConv problem.

MinConv
Input: Sequences (a[i])n−1

i=0 , (b[i])n−1
i=0

Task: Output sequence (c[i])n−1
i=0 , such that c[k] = mini+j=k(a[i] + b[j])

This problem has been used as a hardness assumption before for at least two specific prob-
lems [29, 4], but to the best of our knowledge no attempts have been made to systematically
study the neighborhood of this problem in the polynomial complexity landscape. To be more
precise, we consider the following.

I Conjecture 1. There is no O(n2−ε) algorithm for MinConv, for ε > 0.

Let us first look at the place occupied by MinConv in the landscape of established
hardness conjectures. Figure 1 shows known reductions between these conjectures and
includes MinConv. Bremner et al. [7] showed reduction from MinConv to APSP. It is
also known [4, 1] that MinConv can be reduced to 3SUM (to the best of our knowledge no
such reduction has been published before, and we provide the details in the full version of
this paper [18]). Note that a reduction from 3SUM or APSP to MinConv would imply a
reduction between 3SUM and APSP, which is a major open problem in the area [38]. No
relation is known between MinConv and SETH or OV.

In this paper we study three broad categories of problems. The first category consists of
the classic 0/1 Knapsack and its variants, which we show to be essentially equivalent to
MinConv. This is perhaps somewhat surprising, given recent progress of Bringmann [8] for
SubsetSum, which is a special case of 0/1 Knapsack. However, note that Bringmann’s

1 We included all problem definitions together with known results concerning these problems in Section 2.
This is to keep the introduction relatively free of technicalities.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:3

APSP OV

SETH

3SUM

MinConv

[36]

×
[13]

×
[13]

[7] [4]

Figure 1 The relationship between popular conjectures. A reduction from OV to 3SUM or APSP
contradicts the nondeterministic version of SETH [13, 38] (these arrows are striked-out).

algorithm [8] (as well as in other efficient solutions for SubsetSum) is built upon the idea of
composing solutions using the (∨,∧)-convolution, which can implemented efficiently using
Fast Fourier Transform (FFT). The corresponding composition operation for 0/1 Knapsack
is MinConv (see the full version of this paper for details [18]).

The second category consists of problems directly related to MinConv. This includes
decision versions of MinConv, and problems related to the notion of subadditivity. Any
subadditive sequence a with a[0] = 0 is an idempotent of MinConv, so it is perhaps natural
that these problems turn out to be equivalent to MinConv.

Finally, we investigate problems that have previously been shown to be related to
MinConv, and contribute some new reductions, or simplify existing ones.

2 Problem definitions and known results

2.1 3SUM

3sum
Input: Sets of integers A,B,C, each of size n
Task: Decide whether there exist a ∈ A, b ∈ B, c ∈ C such that a+ b = c

The 3sum problem is the first problem that was considered as a hardness assumption in P. It
admits a simple O(n2 logn) algorithm but the existence of an O(n2−ε) algorithm remains a
big open problem. The first lower bounds based on hardness of 3sum appeared in 1995 [22]
and some other examples can be found in [5, 33, 39]. The current best algorithm for 3sum runs
in slightly subquadratic expected time O

(
(n2/ log2 n)(log logn)2) [5]. An O (n1.5polylog(n)

)
algorithm is possible on the nondeterministic2 Turing machine [13]. The 3sum problem
is known to be subquadratically equivalent to its convolution version in the randomized
setting [33].

3sumConv
Input: Sequences a, b, c, each of length n
Task: Decide whether there exist i, j such that a[i] + b[j] = c[i+ j]

Both problems are sometimes considered with real weights but in this work we restrict only
to the integer setting.

2 We say that decision problem L admits a nondeterministic algorithm in time T (n) if L ∈ NTIME(T (n))∩
co-NTIME(T (n)).

ICALP 2017

22:4 On Problems Equivalent to (min,+)-Convolution

2.2 MinConv

We have already defined the MinConv problem in Subsection 1.2. Note that it is equivalent
(just by negating elements) to the analogous MaxConv problem.

MaxConv
Input: Sequences (a[i])n−1

i=0 , (b[i])n−1
i=0

Task: Output sequence (c[i])n−1
i=0 , such that c[k] = maxi+j=k(a[i] + b[j])

We describe our contribution in terms of MinConv as this version has been already been
heavily studied. However, in the theorems and proofs we use MaxConv, as it is easier to
work with. We will also work with a decision version of the problem.

MaxConv UpperBound
Input: Sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , (c[i])n−1

i=0
Task: Decide whether c[k] ≥ maxi+j=k(a[i] + b[j]) for all k

If we replace the latter condition with c[k] ≤ maxi+j=k(a[i]+b[j]) we obtain a similar problem
MaxConv LowerBound. Yet another statement of a decision version asks whether a given
sequence is a self upper bound with respect to MaxConv, i.e., if it is superadditive. From
the perspective of MinConv we may ask an analogous question about being subadditive
(again equivalent by negating elements). As far as we know, the computational complexity
of these problems has not been studied yet.

SuperAdditivity Testing
Input: A sequence (a[i])n−1

i=0
Task: Decide whether a[k] ≥ maxi+j=k(a[i] + a[j]) for all k

In the standard (+, ·) ring, convolution can be computed in O(n logn) time by the FFT.
A natural line of attacking MinConv would be to design an analogue of FFT in the
(min,+)-semiring, also called a tropical semiring3. However, due to the lack of inverse for the
min-operation it is unclear if such a transform exists for general sequences. When restricted
to convex sequences, one can use a tropical analogue of FFT, namely the Legendre-Fenchel
transform [19], which can be performed in linear time [30]. Also, [24] considered sparse
variants of convolutions and connection with 3sum.

There has been a long line of research dedicated to improve O(n2) algorithm for MinConv.
Bremner et al. [7] gave an O(n2/ logn) algorithm for MinConv, and gave a reduction from
MinConv to APSP [7, Theorem 13]. Williams [37] gave an O(n3/2Ω(logn)1/2) algorithm for
APSP, which implies the best known O(n2/2Ω(logn)1/2) algorithm for MinConv [15].

Truly subquadratic algorithms for MinConv exist for monotone increasing sequences
with integer values bounded by O(n). Chan and Lewenstein [15] presented an O(n1.859)
randomized algorithm and an O(n1.864) deterministic algorithm for that case. They exploited
ideas from additive combinatorics. Bussieck et al. [12] showed that for random input,
MinConv can be computed in O(n logn) expected and Θ(n2) worst case time.

If we are satisfied with computing c with a relative error (1 + ε) then general MinConv
admits a nearly-linear algorithm [4, 40]. It could be called an FPTAS (fully polynomial-time

3 In this setting MinConv is often called (min, +)-convolution, inf-convolution or epigraphic sum.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:5

approximation schema) with a remark that usually this name is reserved for single-output
problems for which decision versions are NP-hard.

Using techniques of Carmosino et al. [13] and reduction from MaxConv UpperBound
to 3sum one can construct an O

(
n1.5polylog(n)

)
algorithm working on nondeterministic

Turing machines for MaxConv UpperBound (see the full version of this paper [18]). This
running time matches the O(n1.5) algorithm for MinConv in the nonuniform decision tree
model [7]. This result is based on the techniques of Fredman [21, 20]. It remains unclear
how to transfer these results to the word-RAM model [7].

2.3 Knapsack

0/1 Knapsack
Input: A set of items I with given weights and values ((wi, vi))i∈I , capacity t
Task: Find the maximal total value of the items subset I ′ ⊆ I such that

∑
i∈I′ wi ≤ t

If we are allowed to take multiple copies of a single item then we obtain the Unbounded
Knapsack problem. The decision versions of both problems are known to be NP-hard [23]
but there are classical algorithms based on dynamic programming with a pseudo-polynomial
running time O(nt) [6]. In fact they solve more general problems, i.e., 0/1 Knapsack+

and Unbounded Knapsack+, where we are asked to output answers for each 0 < t′ ≤ t.
There is also a long line of research on FPTAS for Knapsack with the current best running
times respectively O(n log 1

ε + 1
ε3 log2 1

ε) for 0/1 Knapsack [28] and O(n + 1
ε2 log3 1

ε) for
Unbounded Knapsack [27].

2.4 Other problems related to MinConv

Tree Sparsity
Input: A rooted tree T with a weight function x : V (T)→ N≥0, parameter k
Task: Find the maximal total weight of rooted subtree of size k

The Tree Sparsity problem admits an O(nk) algorithm, which was at first invented for
restricted case of balanced trees [14] and generalised later [4]. There is also a nearly-linear
FPTAS based on the FPTAS for MinConv [4]. It is known that an O(n2−ε) algorithm for
Tree Sparsity entails a subquadratic algorithm for MinConv [4].

MCSP
Input: A sequence (a[i])n−1

i=0
Task: Output the maximal sum of k consecutive elements for each k

There is a trivial O(n2) algorithm for MCSP and a nearly-linear FPTAS based on the
FPTAS for MinConv [16]. To the best of our knowledge, this is the first problem to have
been explicitly proven to be subquadratically equivalent with MinConv [29]. Our reduction
to SuperAdditivity Testing allows us to significantly simplify the proof (see Section 6.1).

lp-Necklace Alignment
Input: Sequences (x[i])n−1

i=0 , (y[i])n−1
i=0 describing locations of beads on a circle

Task: Output the cost of the best alignment in p-norm, i.e.,
∑n−1
i=0 d (x[i] + c, y[π(i)])p

where c is a circular shift, π is a permutation, and d is a distance function on a circle

ICALP 2017

22:6 On Problems Equivalent to (min,+)-Convolution

MaxConv

MaxConv UpperBound

SuperAdditivity Testing

Unbounded Knapsack

0/1 Knapsack

MCSP

MaxConv LowerBound

Tree Sparsity

l∞-Necklace Alignment

6
5

4

3
7

11

12

[4]

[7]
[29]

[29]

Figure 2 Summary of reductions in the MinConv complexity class. An arrow from problem A

to B denotes a reduction from A to B. Black dashed arrows were previously known, red arrows are
new results. Numbers next to red arrows point to the corresponding theorems. The only randomized
reduction is in the proof of Theorem 7.

For p =∞ we are interested in bounding the maximal distance between any two matched
beads. The problem initially emerged for p = 1 during the research on geometry of musical
rhythm [35]. The family of Necklace Alignment problems has been systematically studied
by Bremner et al. [7] for various values of p, in particular 1, 2,∞. For p = 2 they presented an
O(n logn) algorithm based on Fast Fourier Transform. For p =∞ the problem was reduced
to MinConv which led to a slightly subquadratic algorithm.

Although it is more natural to state the problem with inputs from [0, 1), we find it more
convenient to work with integer sequences that describe a necklace after scaling.

Fast o(n2) algorithms for MinConv have also found applications in text algorithms.
Moosa and Rahman [31] reduced the Indexed Permutation Matching to MinConv and
obtained o(n2) algorithm. Burcsi et al. [10] used MinConv to get faster algorithms for
Jumbled Pattern Matching and described how finding dominating pairs can be used to solve
MinConv. Later Burcsi et al. [11] showed that fast MinConv can also be used to get faster
algorithms for a decision version of the Approximate Jumbled Pattern Matching over binary
alphabets.

3 New results summary

Figure 2 illustrates the technical contributions of this paper. The long ring of reductions on
the left side of the Figure 2 is summarized below.

I Theorem 2. The following statements are equivalent:
1. There exists an O(n2−ε) algorithm for MaxConv for some ε > 0.
2. There exists an O(n2−ε) algorithm for MaxConv UpperBound for some ε > 0.
3. There exists an O(n2−ε) algorithm for SuperAdditivity Testing for some ε > 0.
4. There exists an O((n+ t)2−ε) algorithm for Unbounded Knapsack for some ε > 0.
5. There exists an O((n+ t)2−ε) algorithm for 0/1 Knapsack for some ε > 0.
We allow randomized algorithms.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:7

Theorem 2 is split into five implications, presented separately as Theorems 3,4,5,6 and 7 in
Section 5. While Theorem 2 has a relatively short and simple statement, it is not the strongest
possible version of the equivalence. In particular, one can show analogous implications for
subpolynomial improvements, such as the O(n2/2Ω(logn)1/2) algorithm for MinConv of
Williams [37]. The theorems listed above contain stronger versions of the implications.

Section 6 is devoted to the remaining arrows in Figure 2. In Subsection 6.1, we show
that by using Theorem 2 we can obtain an alternative proof of the equivalence of MCSP
and MaxConv (and so also MinConv), much simpler than the one presented in [29]. In
Subsection 6.2, we show that Tree Sparsity reduces to MaxConv, complementing the
opposite reduction showed in [4]. Finally in Subsection 6.3 we provide some observations on
the possible equivalence between l∞-Necklace Alignment and MaxConv.

4 Preliminaries

We present a series of results of the following form: if a problem A admits an algorithm with
running time T (n), then a problem B admits an algorithm with running time T ′(n), where
function T ′ depends on T and n is the length of the input. Our main interest is in showing
that T (n) = O(n2−ε)⇒ T ′(n) = O(n2−ε′). Some problems, in particular Knapsack, have
no simple parameterization and we allow function T to take multiple arguments.

We assume that for all studied problems the input consists of a list of integers within
[−W,W]. For the sake of readability we omit W as a running time parameter and we allow
function T to hide polylog(W) factors. As sometimes the size of the input grows in the
reduction, we restrict ourselves to a class of functions satisfying T (cn) = O(T (n)) for a
constant c. This is justified as we mainly focus on functions of the form T (n) = nα. In some
reductions the integers in the new instance may increase to O(nW). In that case we multiply
the running time by polylog(n) to take into account the overhead of performing arithmetic
operations. All logarithms are base 2.

5 Main reductions

I Theorem 3 (Unbounded Knapsack → 0/1 Knapsack). A T (n, t) algorithm for 0/1
Knapsack implies an O (T (n, t) log t) algorithm for Unbounded Knapsack.

Proof. Consider an instance of Unbounded Knapsack with the capacity t and the set
of items given as weight-value pairs ((wi, vi))i∈I . Construct an equivalent 0/1 Knapsack
instance with the same t and the set of items

(
(2jwi, 2jvi)

)
∈I,0≤j≤log t. Let X = (xi)∈I

be the list of multiplicities of items chosen in a solution to the Unbounded Knapsack
problem. Of course xi ≤ t. Define (xji)0≤j≤log t, x

j
i ∈ {0, 1} to be the binary representation

of xi. Then the vector (xji)∈I,0≤j≤log t induces a solution to 0/1 Knapsack with the same
total weight and value. The described mapping can be reverted what implies the equivalence
between the instances and proves the claim. J

I Theorem 4 (SuperAdditivity Testing → Unbounded Knapsack). If Unboun-
ded Knapsack can be solved in time T (n, t) then SuperAdditivity Testing admits an
algorithm with running time O (T (n, n) logn).

Proof. Let (a[i])n−1
i=0 be a non-negative monotonic sequence.4 Set D =

∑n−1
i=0 a[i] + 1

and construct an Unbounded Knapsack instance with the set of items ((i, a[i]))n−1
i=0 ∪

4 For a technical reduction of SuperAdditivity Testing to this case see the full version of this paper [18].

ICALP 2017

22:8 On Problems Equivalent to (min,+)-Convolution

x

y

0 n 2n 3n 4n

K + a[i]

4K + b[i]
5K + c[i]

K

Figure 3 Graphical interpretation of the sequence e in Theorem 5. The height of rectangles
equals K.

((2n− 1− i,D − a[i]))n−1
i=0 and t = 2n − 1. It is always possible to gain D by taking two

items (i, a[i]), (2n−1− i,D−a[i]) for any i. We will claim that the answer to the constructed
instance equals D if and only if a is superadditive.

If a is not superadditive, then there are i, j such that a[i] + a[j] > a[i + j]. Choosing
((i, a[i]), (j, a[j]), (2n− 1− i− j,D − a[i+ j])) gives a solution of value exceeding D.

Now assume that a is superadditive. Observe that any feasible knapsack solution may
contain at most one item with weight exceeding n − 1. On the other hand, the optimal
solution has to include one such item because the total value of the lighter ones is less than
D. Therefore the optimal solution contains an item (2n− 1− k,D − a[k]) for some k < n.
The total weight of the rest of the solution is at most k. As a is superadditive, we can replace
any pair (i, a[i]), (j, a[j]) with the item (i+ j, a[i+ j]) without decreasing the value of the
solution. By repeating this argument, we end up with a single item lighter than n. The
sequence a is monotonic so it is always profitable to replace this item with a heavier one, as
long as the load does not exceed t. We conclude that the optimal solution must be of form
((k, a[k]), (2n− 1− k,D − a[k])), which completes the proof. J

I Theorem 5 (MaxConv UpperBound → SuperAdditivity Testing). If SuperAd-
ditivity Testing can be solved in time T (n) then MaxConv UpperBound admits an
algorithm with running time O (T (n) logn).

Proof. We start with reducing the instance of MaxConv UpperBound to the case of
non-negative monotonic sequences. Observe that condition a[i] + b[j] ≤ c[i + j] can be
rewritten as (C+a[i]+Di)+(C+b[j]+Dj) ≤ 2C+c[i+ j]+D(i+ j) for any constants C,D.
Hence, replacing sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , (c[i])n−1

i=0 with a′[i] = C + a[i] +Di, b′[i] =
C + b[i] +Di, c′[i] = 2C + c[i] +Di leads to an equivalent instance. We can thus pick C,D
of magnitude O(W) to ensure that all elements are non-negative and do not exceed the
successor. The values in the new sequences may rise up to O(nW).

From now we can assume the given sequences to be non-negative and monotonic. Define
K to be the maximal value occurring in any sequence. Construct a sequence e of length 4n
as follows. For i ∈ [0, n− 1] set e[i] = 0, e[n+ i] = K + a[i], e[2n+ i] = 4K + b[i], e[3n+ i] =
5K + c[i]. If there is a[i] + b[j] > c[i+ j] for some i, j, then e[n+ i] + e[2n+ j] > e[3n+ i+ j]
and therefore e is not superadditive. We now show that otherwise e must be superadditive.

Assume w.l.o.g. i ≤ j. The case i < n can be ruled out because it implies e[i] = 0
and e[i] + e[j] ≤ e[i + j] for any j as e is monotonic. If i ≥ 2n, then i + j ≥ 4n, so we
can restrict to i ∈ [n, 2n − 1]. We can also clearly assume j < 3n. If j ∈ [n, 2n − 1], then
e[i] + e[j] ≤ 4K ≤ e[i+ j]. Finally, j ∈ [2n, 3n− 1] corresponds to the original condition. J

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:9

I Theorem 6 (MaxConv→MaxConv UpperBound). A T (n) algorithm for MaxConv
UpperBound implies an O (T (

√
n)n logn) algorithm for MaxConv.

The proof of the reduction from MaxConv to MaxConv UpperBound has been
independently given recently in [4]. For completeness we give our proof in the full version of
this paper [18].

I Theorem 7 (0/1 Knapsack → MaxConv). A T (n) algorithm for MaxConv implies
an O(T (t log t) log3(n/δ) logn) for 0/1 Knapsack that outputs the correct answer with
probability at least 1− δ.

I Corollary 8. The O((n+ t)2−ε) time algorithm for 0/1 Knapsack implies the randomized
O(t2−ε′ + n) time algorithm for 0/1 Knapsack+.

The proof follows the approach of Bringmann [8], and we present it in the full version of
this paper [18].

6 Other problems related to MinConv

6.1 Maximum consecutive subsums problem
The Maximum Consecutive Subsums Problem (MCSP) is to the best of our knowledge
the first problem that has been explicitly proven to be subquadratically equivalent with
MinConv [29]. The reduction from MCSP to MaxConv is only shown for completeness,
but the reduction in the opposite direction is much simpler than the original one.

I Theorem 9 (MCSP → MaxConv). If MaxConv can be solved in time T (n) then
MCSP admits an algorithm with running time O (T (n)).

Proof. Let (a[i])n−1
i=0 be the input sequence. Construct sequences of length 2n as follows:

b[k] =
∑k
i=0 a[i] for k < n, c[k] = −

∑n−k−1
i=0 a[i] for k ≤ n (empty sum equals 0) and

otherwise b[k] = c[k] = −D, where D is two times larger than any partial sum. Observe that

(b⊕max c)[n+ k − 1] = max
0≤j<n

0≤n+k−j−1≤n

j∑
i=0

a[i]−
j−k∑
i=0

a[i] = max
k−1≤j<n

j∑
i=j−k+1

a[i], (1)

so we can read the maximum consecutive sum for each length k after performing MaxConv.
J

I Theorem 10 (SuperAdditivity Testing → MCSP). If MCSP can be solved in time
T (n) then SuperAdditivity Testing admits an algorithm with running time O (T (n)).

Proof. Let (a[i])n−1
i=0 be the input sequence and b[i] = a[i + 1] − a[i]. The superad-

ditivity condition a[k] ≤ a[k + j] − a[j] (for all possible k, j) can be translated into
a[k] ≤ min0≤j<n−k

∑k+j−1
i=j b[i] (for all k), so computing MCSP vector on (−b[i])n−2

i=0 suffices
to check if the above condition holds. J

6.2 Tree Sparsity
I Theorem 11 (Tree Sparsity → MaxConv). If MaxConv can be solved in time T (n)
and the function T is superadditive then Tree Sparsity admits an algorithm with running
time O

(
T (n) log2 n

)
.

ICALP 2017

22:10 On Problems Equivalent to (min,+)-Convolution

Proof. We take advantage of the heavy-light decomposition introduced by Sleator and
Tarjan [34]. This technique has been utilized by Backurs et al. [4] in order to transform
a nearly-linear PTAS for MaxConv to a nearly-linear PTAS for Tree Sparsity. The
reduction for exact subquadratic algorithms is different in the second phase though.

We construct a spine with a head s1 at the root of the tree. We define si+1 to be the
child of si with the larger subtree (in case of draw we choose any child) and the last node in
the spine is a leaf. The remaining children of nodes si become heads for analogous spines so
the whole tree gets covered. Note that every path from a leaf to the root intersects at most
logn spines because each spine transition doubles the subtree size.

For a node v with a subtree of size m we define the sparsity vector (xv[0], xv[1], . . . , xv[m])
with the weights of the heaviest subtrees rooted at v with fixed sizes. We are going to
compute sparsity vectors for all heads of spines in the tree recursively. Let (si)`i=1 be a spine
with a head v and let ui indicate the sparsity vector for the child of si being a head (i.e., the
child with the smaller subtree). If si has less than two children we treat ui as a vector (0).

For an interval [a, b] ⊆ [1, `] let ua,b = ua ⊕max ua+1 ⊕max · · · ⊕max ub and ya,b[k] be the
maximum weight of a subtree of size k rooted at sa and not containing sb+1. Let c =

⌊
a+b

2
⌋
.

The ⊕max operator is associative so ua,b = ua,c ⊕max uc+1,b. To compute the second vector
we consider two cases: whether the optimal subtree contains sc+1 or not.

ya,b[k] = max
[
ya,c[k],

c∑
i=a

x(si) + max
k1+k2=k−(c−a+1)

(
ua,c[k1] + yc+1,b[k2]

)]

= max
[
ya,c[k],

c∑
i=a

x(si) +
(
ua,c ⊕max yc+1,b

)[
k − (c− a+ 1)

]]

Using the presented formulas we reduce the problem of computing xv = y1,` to subprob-
lems for intervals [1, `2] and [`2 + 1, `] and results are merged with two (max,+)-convolutions.
Proceeding further we obtain log ` levels of recursion, where the sum of convolution sizes on
each level is O(m), what results in the total running time O (T (m) logm) (recall that T is
superadditive).

The second type of recursion comes from the spine decomposition. There are at most
logn levels of recursion with the cumulative sum of subtrees bounded by n on each level,
what proves the claim. J

6.3 l∞-Necklace Alignment
In this section we study the l∞-Necklace Alignment alignment problem that was proved
to reduce to MinConv [7]. We are unable to reduce any of the problems equivalent to
MinConv to this problem, but we do reduce a related problem - MaxConv LowerBound.
We also elaborate on why obtaining a full reduction is difficult.

I Theorem 12 (MaxConv LowerBound→ l∞-Necklace Alignment). If l∞-Necklace
Alignment can be solved in time T (n) then MaxConv LowerBound admits an algorithm
with running time O (T (n) logn).

Proof. Let a, b, c be the input sequences to MaxConv LowerBound. We call a sum of
form e1[k1] + e2[k2] + · · · + em[km], where ei ∈ {a, b, c}, a combination, and we define its
order as

∑m
i=1 ki. If an element ei[ki] occurs with minus, we subtract ki.

We can assume the following properties of the input sequences w.l.o.g.
1. We may assume the sequences are non-negative and a[i] ≤ c[i] for all i. Just add C1 to a,

C1 + C2 to b, and 2C1 + C2 to c for appropriate positive constants C1, C2.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:11

2. We can artificially append an element b[n] larger than value of any combination of order
n and length bounded by a constant L. Alternatively, we can say that combinations of
order 0 with a positive coefficient at b[n] have positive value. Initially, we enforce this
property by setting b[n] as the maximum absolute value of an element times L.

3. Any combination of positive order and length bounded by L has a non-negative value. Add
a linear function Di to all sequences. As the order of combination is positive, the factors
at D sum up to a positive value. It suffices to choose D equal to the maximum absolute
value of an element times L. Note that previous inequalities compare combinations of
the same order so they stay unaffected.

The values of the elements might increase to O(nWL2). For the rest of this proof we will
use L = 10. Let B = b[n], B1 = b[n− 1], B2 = b[n]− b[1]. We define necklaces x, y of length
2B with 2n beads each. The property (3) implies monotonicity of the sequences so the beads
are given in the right order. We allow two beads to lie in the same place (in particular the
first one and the last one in y).

x =
(

a[0], a[1], . . . , a[n− 1], B + c[0], B + c[1], . . . , B + c[n− 2], B + c[n− 1]
)
,

y =
(

B1 − b[n− 1], B1 − b[n− 2], . . . , B1 − b[0], B +B2 − b[n− 1], B +B2 − b[n− 2], . . . , B +B2 − b[1], 2B
)
.

Bremner et al. [7] pointed out that the optimal solution for l∞-Necklace Alignment
must be non-crossing, so we can consider only matchings of form (x[i], y[j]) where j =
i+kmod 2n and k is fixed. Let d(x[i], y[j]) be the forward distance between x[i] and y[j], i.e.,
y[j]− x[i] plus the length of the necklaces if j < i. Define Mk to be maxi∈[0,N) d

(
x[i], y[k +

imod 2n]
)
−mini∈[0,N) d

(
x[i], y[k+ imod 2n]

)
. In this setting [7, Fact 5] says that for a fixed

k the optimal shift provides solution of value Mk

2 .
We want to show that for k ∈ [0, n) it holds

min
i∈[0,2n)

d
(
x[i], y[k + imod2n]

)
= B1 − max

i+j=n−k−1
(a[i] + b[j]),

max
i∈[0,2n)

d
(
x[i], y[k + imod2n]

)
= B − c[n− k − 1].

There are five types of connections between beads.

d
(
x[i], y[k + imod2n]

)
=


B1 − a[i]− b[n− k − 1− i] i ∈ [0, n− k − 1], (I)
B + B2 − a[i]− b[2n− k − 1− i] i ∈ [n− k, n− 1], (II)
B2 − b[2n− k − 1− i]− c[i− n] i ∈ [n, 2n− k − 2], (III)
B − c[n− k − 1] i = 2n− k − 1, (IV)
B + B1 − b[3n− k − 1− i]− c[i− n] i ∈ [2n− k, 2n− 1]. (V)

All formulas form combinations of length bounded by 5 so we can apply the properties
(2,3). Observe that the order of each combination equals k, except for i = 2n− k − 1 where
the order is k + 1. Using the property (3) we reason that B − c[n − k − 1] is indeed the
maximal forward distance. It remains to show that the minimum lies within the group (I).
Note that these are the only combinations that lack b[n]. By the property (2) each distance
from the group (I) compares less with any other distance because the combinations have the
same order (except for the maximal one) and only the latter contains b[n].

For k < n the conditionMk < B−B1 is equivalent to c[n−k−1] > maxi+j=n−k−1(a[i]+
b[j]). If there is such a k, i.e., the answer to MaxConv LowerBound for sequences a, b, c
is NO, then minkMk < B −B1 and the return value is less than 1

2 (B −B1).
Finally, we need to prove that otherwise Mk ≥ B − B1 for all k. We have already

acknowledged that for k < n. Each matching for k ≥ n can be represented as swapping
sequences a and c inside the necklace x, composed with the index shift by k − n. The two
halves of the necklace x are analogous so all the prior observations on the matching structure
remain valid.

ICALP 2017

22:12 On Problems Equivalent to (min,+)-Convolution

If the answer to MaxConv LowerBound for sequences a, b, c is YES, then
∀k∈[0,n)∃i+j=ka[i] + b[j] ≥ c[k]. The property (1) guarantees that a ≤ c so we conclude that
∀k∈[0,n)∃i+j=kc[i] + b[j] ≥ a[i] + b[j] ≥ c[k] ≥ a[k], and by the same argument as before the
cost of the solution is at least 1

2 (B −B1). J

Observe that both l∞-Necklace Alignment and MaxConv LowerBound admit
simple linear nondeterministic algorithms. For MaxConv LowerBound it is enough to
either assign each k a single condition a[i] + b[k − i] ≥ c[k] that is satisfied, or guess a k for
which none inequality holds. For l∞-Necklace Alignment we define a decision version of
the problem by asking if there is an alignment of value bounded by K (the problem is self-
reducible via binary search). For positive instances the algorithm just guesses k inducing an
optimal solution. For negative instances it must holdMk > 2K for all k. Therefore, it suffices
to guess for each k a pair i, j such that d

(
x[i], y[k+ imodn]

)
− d
(
x[j], y[k+ jmodn]

)
> 2K.

We remind that MaxConv UpperBound reduces to 3sum which admits an
O
(
n1.5polylog(n)

)
nondeterministic algorithm [13] so in fact there is no obstacle for a

subquadratic reduction from MaxConv LowerBound to MaxConv UpperBound to
exist (see the full version of this paper [18]). However, the nondeterministic algorithm for
3sum exploits techniques significantly different from ours, including modular arithmetic, and
a potential reduction would probably need to rely on some different structural properties of
MaxConv.

7 Conclusions and future work

In this paper we undertake a systematic study of MinConv as a hardness assumption, and
prove subquadratic equivalence of MinConv with SuperAdditivity Testing, Unboun-
ded Knapsack, 0/1 Knapsack, and Tree Sparsity. An intriguing open problem is to
establish the relation between the MinConv conjecture and SETH.

One consequence of our results is a new lower bound on 0/1 Knapsack. It is known that
an O(t1−εnO(1)) algorithm for 0/1 Knapsack contradicts the SetCover conjecture [17].
Here, we show that an O((n+ t)2−ε) algorithm contradicts the MinConv conjecture. This
does not rule out an O(t+nO(1)) algorithm, which leads to another interesting open problem.

Finally, it is open whether MaxConv LowerBound is equivalent to MinConv, which
would imply an equivalence between l∞-Necklace Alignment and MinConv.

Acknowledgements. We would like to thank Amir Abboud, Karl Bringmann and Virginia
Vassilevska Williams for helpful discussions.

References
1 Amir Abboud. Personal communication.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 59–78. IEEE Computer Society, 2015. doi:10.1109/
FOCS.2015.14.

3 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, ed-
itors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58. ACM, 2015.
doi:10.1145/2746539.2746612.

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1145/2746539.2746612

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:13

4 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity
in nearly-linear time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2215–2229. SIAM, 2017.

5 Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic Algorithms for 3SUM.
In Proceedings of the 9th International Conference on Algorithms and Data Structures,
WADS’05, pages 409–421, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/
11534273_36.

6 Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, and Perouz Taslakian. Necklaces, Convolutions, and X + Y. In
Yossi Azar and Thomas Erlebach, editors, Algorithms – ESA 2006: 14th Annual European
Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings, pages 160–171, Ber-
lin, Heidelberg, 2006. Springer Berlin Heidelberg.

8 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1073–1084. SIAM, 2017.

9 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 79–97. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.15.

10 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On table arrange-
ments, scrabble freaks, and jumbled pattern matching. In Paolo Boldi and Luisa Gargano,
editors, Fun with Algorithms, 5th International Conference, FUN 2010, Ischia, Italy, June
2-4, 2010. Proceedings, volume 6099 of Lecture Notes in Computer Science, pages 89–101.
Springer, 2010. doi:10.1007/978-3-642-13122-6_11.

11 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On approximate
jumbled pattern matching in strings. Theory Comput. Syst., 50(1):35–51, 2012. doi:10.
1007/s00224-011-9344-5.

12 Michael R. Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe T. Zimmermann.
Fast algorithms for the maximum convolution problem. Oper. Res. Lett., 15(3):133–141,
1994. doi:10.1016/0167-6377(94)90048-5.

13 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypo-
thesis and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA,
USA, January 14-16, 2016, pages 261–270. ACM, 2016. doi:10.1145/2840728.2840746.

14 Coralia Cartis and Andrew Thompson. An exact tree projection algorithm for wavelets.
IEEE Signal Processing Letters, 20(11):1026–1029, 2013.

15 Timothy M. Chan and Moshe Lewenstein. Clustered Integer 3SUM via Additive Combin-
atorics. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Com-
puting, STOC’15, pages 31–40, New York, NY, USA, 2015. ACM. doi:10.1145/2746539.
2746568.

16 Ferdinando Cicalese, Eduardo Sany Laber, Oren Weimann, and Raphael Yuster. Approxim-
ating the maximum consecutive subsums of a sequence. Theor. Comput. Sci., 525:130–137,
2014. doi:10.1016/j.tcs.2013.05.032.

17 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dańiel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrom. On problems as
hard as cnf-sat. In Proceedings of the 2012 IEEE Conference on Computational Complex-

ICALP 2017

http://dx.doi.org/10.1007/11534273_36
http://dx.doi.org/10.1007/11534273_36
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1007/978-3-642-13122-6_11
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1016/0167-6377(94)90048-5
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1016/j.tcs.2013.05.032

22:14 On Problems Equivalent to (min,+)-Convolution

ity (CCC), CCC’12, pages 74–84, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/CCC.2012.36.

18 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. CoRR, abs/1702.07669, 2017. URL: http://arxiv.
org/abs/1702.07669.

19 Werner Fenchel. On conjugate convex functions. Canad. J. Math, 1(73-77), 1949.
20 Michael L. Fredman. How good is the information theory bound in sorting? Theor. Comput.

Sci., 1(4):355–361, 1976. doi:10.1016/0304-3975(76)90078-5.
21 Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM

J. Comput., 5(1):83–89, 1976. doi:10.1137/0205006.
22 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational

geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.
23 M.R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of

NP-completeness. San Francisco: Freeman, 1979.
24 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How hard is it to find

(honest) witnesses? In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual
European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark,
volume 57 of LIPIcs, pages 45:1–45:16. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.ESA.2016.45.

25 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

27 Klaus Jansen and Stefan E. J. Kraft. A Faster FPTAS for the Unbounded Knap-
sack Problem. In Zsuzsanna Lipták and William F. Smyth, editors, Combinatorial Al-
gorithms: 26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015,
Revised Selected Papers, pages 274–286, Cham, 2016. Springer International Publishing.
doi:10.1007/978-3-319-29516-9_23.

28 Hans Kellerer and Ulrich Pferschy. Improved Dynamic Programming in Connection with
an FPTAS for the Knapsack Problem. Journal of Combinatorial Optimization, 8(1):5–11,
2004. doi:10.1023/B:JOCO.0000021934.29833.6b.

29 Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando Cicalese. On lower
bounds for the maximum consecutive subsums problem and the (min, +)-convolution. In
2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, June 29
– July 4, 2014, pages 1807–1811. IEEE, 2014. doi:10.1109/ISIT.2014.6875145.

30 Yves Lucet. Faster than the Fast Legendre Transform, the Linear-time Legendre Transform.
Numerical Algorithms, 16(2):171–185, 1997. doi:10.1023/A:1019191114493.

31 Tanaeem M. Moosa and M. Sohel Rahman. Indexing permutations for binary strings. Inf.
Process. Lett., 110(18-19):795–798, 2010. doi:10.1016/j.ipl.2010.06.012.

32 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
33 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Leonard J.

Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 603–610. ACM, 2010.
doi:10.1145/1806689.1806772.

34 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, June 1983. doi:10.1016/0022-0000(83)90006-5.

35 Godfried Toussaint. The geometry of musical rhythm. In Jin Akiyama, Mikio Kano,
and Xuehou Tan, editors, Discrete and Computational Geometry: Japanese Conference,

http://dx.doi.org/10.1109/CCC.2012.36
http://arxiv.org/abs/1702.07669
http://arxiv.org/abs/1702.07669
http://dx.doi.org/10.1016/0304-3975(76)90078-5
http://dx.doi.org/10.1137/0205006
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.45
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-319-29516-9_23
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.1109/ISIT.2014.6875145
http://dx.doi.org/10.1023/A:1019191114493
http://dx.doi.org/10.1016/j.ipl.2010.06.012
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1016/0022-0000(83)90006-5

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:15

JCDCG 2004, Tokyo, Japan, October 8-11, 2004, Revised Selected Papers, pages 198–212,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11589440_20.

36 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

37 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the
Forty-sixth Annual ACM Symposium on Theory of Computing, STOC’14, pages 664–673,
New York, NY, USA, 2014. ACM. doi:10.1145/2591796.2591811.

38 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt
and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact
Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs,
pages 17–29. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/
LIPIcs.IPEC.2015.17.

39 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013.

40 Uri Zwick. All pairs shortest paths in weighted directed graphs-exact and almost exact al-
gorithms. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium
on, pages 310–319. IEEE, 1998.

ICALP 2017

http://dx.doi.org/10.1007/11589440_20
http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17

	Introduction
	Hardness in P
	Hardness of MinConv

	Problem definitions and known results
	3SUM
	MinConv
	Knapsack
	Other problems related to MinConv

	New results summary
	Preliminaries
	Main reductions
	Other problems related to MinConv
	Maximum consecutive subsums problem
	Tree Sparsity
	l -infinity-Necklace Alignment

	Conclusions and future work

