
Linearizable State Machine Replication of
State-Based CRDTs without Logs

Jan Skrzypczak
Zuse Institute Berlin

Berlin, Germany
skrzypczak@zib.de

Florian Schintke
Zuse Institute Berlin

Berlin, Germany
schintke@zib.de

Thorsten Schütt
Zuse Institute Berlin

Berlin, Germany
schuett@zib.de

Abstract— General solutions of state machine replication have
to ensure that all replicas apply the same commands in the same
order, even in the presence of failures. Such strict ordering incurs
high synchronization costs caused by distributed consensus or by
the use of a leader.

This paper presents a protocol for linearizable state machine
replication of conflict-free replicated data types (CRDTs) that
neither requires consensus nor a leader. By leveraging the
properties of state-based CRDTs—in particular, the monotonic
growth of a join semilattice—synchronization overhead is greatly
reduced. As a result, updates only need a single round trip
and modify the state ‘in-place’ without the need for a log.
Furthermore, the message size overhead for coordination consists
of a single counter per message. For queries, we guarantee finite
writes termination. We show in an experimental evaluation that
more than 99 % of queries can be handled in one to three round
trips under highly concurrent accesses.

Our protocol achieves high throughput without auxiliary
processes such as command log management or leader election.
Thus, it is well suited for practical scenarios that need linearizable
access to CRDT data on a fine-granular scale.

I. INTRODUCTION

The implementation of a replicated state machine (RSM)
is a well-established approach for designing fault-tolerant
services. In its common form, clients submit update com-
mands that modify the state of the replicated object, or read
commands returning (part of) its state back to the client. To
guarantee linearizable [20] access to an RSM, all replicas
must apply the same commands in the same order. This is
commonly achieved by using a consensus protocol such as
Paxos [24], [25], Raft [32], or variations thereof [22], [27],
[31]. However, the use of consensus often incurs significant
synchronization overhead. In particular, most approaches re-
quire the use of a central coordinator (leader) to achieve
acceptable performance and require to maintain a command
log, which must be regularly truncated to prevent unbounded
memory consumption. This often makes the correct implemen-
tation of RSMs a challenging task [14].

A wealth of previous work exists that aims to reduce the cost
associated with fault-tolerant replication. Some approaches re-
duce synchronization by leveraging the commutativity of some
submitted commands by solving generalized consensus [26].
Other approaches avoid the cost associated with consensus
by using a weaker consistency model such as strong eventual
consistency (SEC). SEC was formalized by Shapiro et al. [40]

with the introduction of conflict-free replicated data types
(CRDTs). CRDTs are data structures whose mathematical
properties ensure the convergence of all replicas as long as
all updates are propagated to them in arbitrary order. They
do not require protocol-level conflict resolution mechanisms,
as conflicting updates can be resolved computationally. This
allows the conflict-free execution of both queries and updates
in relaxed consistency models like SEC. Data structures that
can be implemented as a CRDT include counters, sets, and
certain types of graphs [40]. Due to their low synchronization
costs, numerous practical systems have employed CRDTs to
this date, such as Redis [35], Riak [12], SoundCloud [11], and
Akka [3].

However, their usage is restricted to cases where relaxed
consistency suffices, as there is no guarantee on when replicas
converge and inconsistent states can be observed in the mean-
time. This prevents their usage to implement, for example,
atomic counters, which is a ubiquitous primitive in distributed
computing.

This paper introduces a protocol to implement a special
class of replicated state machines that allows linearizable
access on CRDTs without the need of log management while
keeping the message size overhead at a single counter per
message. These RSMs support update operations that modify
the state and query operations that return a value but do not
modify the state. Operations that both modify the state and
return a value are not supported.

By leveraging the properties of CRDTs, our protocol can
achieve high throughput even in the absence of a leader.
Thereby, the need for implementing leader election mecha-
nisms is eliminated, which allows continuous availability as
long as a majority of replicas is reachable. Our protocol does
not replicate a log of commands, which is commonly the case
for consensus protocols. Instead, we replicate the state directly
and update it ‘in-place’. Our protocol just needs a single
counter per replica and it avoids the complexity associated
with command log state and memory management.

Our approach relies on solving generalized lattice agree-
ment (GLA). Similar to CRDTs, values proposed in GLA
belong to a join semilattice—a partially ordered set that defines
a join (least upper bound) for all element pairs. In contrast, for
generalized consensus it is not required that such a join always
exists. This difference makes generalized lattice agreement an

ar
X

iv
:1

90
5.

08
73

3v
2

 [
cs

.D
C

]
 2

4
Ju

l 2
02

0

easier problem to solve. In fact, previous work has shown that
wait-free [19] solutions to this problem exist [16], which is
proven to be impossible for consensus [17] in an asynchronous
system in the presence of process failures. However, the
protocol described by Faleiro et al. [16] requires sending an
ever-increasing set of commands in its messages to provide
state machine replication. In contrast, our approach features
message sizes that are bounded by the state of the CRDT and
guarantees finite writes termination [1], which is a weaker
termination property than wait-freedom.

The main contributions of this paper are as follows (a brief
announcement of this paper is published in [41]):
• We present a protocol that provides linearizable state

machine replication of state-based CRDTs by solving
generalized lattice agreement. The protocol is light-
weight as it does not rely on auxiliary processes for leader
election or log management (see Sect. III).

• The protocol processes updates in a single round-trip.
Queries support finite writes termination (see Sect. III-F).
We show in our evaluation that more than 99 % of
queries can be processed in one to three round-trips in the
presence of a continuous stream of updates (see Sect. IV).

• We compare the performance of our protocol with open-
source implementations of Paxos and Raft, two well-
known approaches for linearizable RSMs (see Sect. IV).

II. PRELIMINARIES

In this section, we discuss the assumed system model and
give an introduction to CRDTs.

A. System Model

We consider a distributed system of N independent and
asynchronous processes P = {p1, p2, . . . , pN}, which com-
municate by message passing. We consider processes that fail
under the crash-stop model and assume unreliable message
transfer, i.e., messages can arrive out of order, can be delayed
arbitrarily, or can be lost. We refer to a process that does not
fail as a correct process.

We assume over P a fixed quorum system QS [44], i.e., a
set of sets of processes with mutual overlap:

∀Q ∈ QS : Q ⊆ P
∀Q1, Q2 ∈ QS : Q1 ∩Q2 6= ∅

Elements in QS are called quorums. A necessary condition
for progress is that at least a quorum of processes does
not crash and is able to pairwise exchange messages for a
sufficiently long time.

B. State-Based Conflict-Free Replicated Data Types

Eventual consistency promises better performance and avail-
ability in large scale systems in which the coordination re-
quired for linearizable approaches is not feasible [43]. Updates
are applied at some replica and at a later time propagated
across the system. Eventually, all replicas receive all updates,
possibly in different orders. However, concurrent updates may

cause conflicts. Resolving them often requires roll-backs and
consensus decisions.

The use of conflict-free replicated data types (CRDTs) [40],
introduced as part of the strong eventual consistency model,
eliminates the need for roll-backs or consensus by leveraging
mathematical properties preventing the emergence of conflicts.
Operation-based CRDTs require the commutativity of all its
update operations, whereas state-based CRDTs rely on mono-
tonicity in a join semilattice [39]. Both types have advantages
and disadvantages. In general, operation-based CRDTs have
lower bandwidth needs but require reliable, i.e., exactly once,
and causally ordered delivery of updates [39]. As our system
model assumes unreliable communication, we only focus on
state-based CRDTs in this paper. However, both types of
CRDTs can emulate each other [39].

State-based CRDTs are based on the concept of join semi-
lattices:

Definition 1 (Join Semilattice). A join semilattice S is a set
S equipped with a partial order x v y and a least upper
bound (LUB) x t y for all pairs of elements x, y ∈ S.

The LUB of two elements x, y ∈ S is the smallest element
in S that is equal or larger than both x and y.

Definition 2 (Least Upper Bound). m = x t y is a LUB of
{x, y} under partial order v iff:

∀m′ ∈ S, x v m′∧y v m′ : x v m ∧ y v m ∧ m v m′

From this definition it follows that t is idempotent (xtx =
x), commutative (xty = ytx), and associative ((xty)tz =
x t (y t z)).

The join semilattice represents the set of possible states of a
state-based CRDT. Clients can read its current state via query
commands and modify it via update commands1.

Definition 3 (State-Based CRDT). A state-based CRDT con-
sists of a triple (S, Q, U), where S is a join semilattice
defining the possible payload states S, Q is a set of side-effect
free query commands, and U is a set of monotonically non-
decreasing update commands, i.e., ∀u ∈ U, s ∈ S : s v u(s).

Two payload states s1, s2 ∈ S are equivalent (s1 ≡ s2) if
all queries return the same result for both, i.e., s1 v s2∧s2 v
s1 =⇒ s1 ≡ s2. They are comparable if they can be ordered,
i.e., s1 v s2 ∨ s2 v s1.

Example. One of the most simple state-based CRDTs is a
monotonically increasing counter, called G-counter (grow-only
counter). Its state-based definition is shown in Algorithm 1.
The payload state of such a counter, replicated on n processes,
consists of an array of length n. All replicas, which are
assumed to be distinguishable by an ID, manage their own
local copy of the counter’s state. Locally incrementing the
counter increments the array element corresponding to the ID
of the respective replica. The merge and compare functions
implement t and v, respectively.

1To be consistent with RSM terminology, we use the term ’command’
instead of ’function’, which is commonly used in the context of CRDTs.

Algorithm 1 State-based G-counter replicated on n processes
as (non-linearizable) CRDT.

1: S := Nn, v:= compare, t := merge,
2: Q := {query}, U := {update}
3: compare (x ∈ S, y ∈ S) → boolean
4: return

∧n−1
i=0 x[i] ≤ y[i]

5: merge (x ∈ S, y ∈ S) → S
6: z[i]n−1

i=0 ← max(x[i], y[i]); return z

7: payload g ∈ S = [0, . . . , 0] .G-counter view of replica
8: query () → N . get G-counter value of a replica
9: return

∑n−1
i=0 g[i]

10: update () . increment G-counter value of a replica
11: i← my_replica_id()
12: g[i]← g[i] + 1

In a system that provides SEC, a replica that receives an
increment command from a client increments its counter (its
slot) by calling update. It periodically propagates its counter
state g to the other replicas. Any replica that receives such a
counter state updates its own counter state using merge. As
all replicas only increment their own slot, no updates are lost
and eventually all replicas converge to the same state.

III. LINEARIZABLE AND LOGLESS RSM
OF STATE-BASED CRDTS

Next, we discuss how to leverage the properties of state-
based CRDTs for linearizable access.

A. Problem Statement

We consider a state-based CRDT (S, Q, U) replicated on
N processes. Each process starts with an initial state s0 ∈ S.
Clients can perform update and query operations by respec-
tively sending an update command u ∈ U or query command
q ∈ Q to any process. Each process may receive an arbitrary
number of commands. An operation is invoked if a client sends
a corresponding message to a process, which may eventually
respond by sending a message with the operation result back.
An operation op1 precedes op2, if a process sends an op1

response before op2 is invoked. For brevity, we refer to query
and update commands as queries and updates. Furthermore,
a command is invoked if the operation it is included in is
invoked. Command precedence is defined analogously.

Updates modify the state of the CRDT without returning a
result to the client (besides a completion acknowledgment). To
simplify formal reasoning we assume updated to be unique,
e.g., by attaching IDs. The causal history [40] C(s) of state
s is the set of updates applied on s0 to reach state s. More
formally, C(s0) = ∅, u ∈ C(u(s)) and C(s1) ∪ C(s2) =
C(s1 t s2). Shapiro et al. [40] have shown that C(s1) =
C(s2)⇒ s1 ≡ s2 due to the properties of updates and LUBs.
A state s includes update u if u ∈ C(s). Note that causal
histories are an aid for formal reasoning, which do not have
to be explicitly stored by an implementation.

In contrast to updates, queries do not modify the state of
the CRDT but return a value as result. To process a query q

that was sent to a process p, p must first learn a state s ∈ S
by exchanging messages with the other processes. The query
is then applied on s and the result is returned to the client.
We say that s is the state learned by query q at process p.

All learned states must satisfy the following conditions:
Validity The causal history of any learned state is a subset of

all previously invoked updates.
Stability For any two states s1, s2 learned by queries q1, q2,

where q1 precedes q2: s1 v s2.
Consistency Any two learned states are comparable.

These conditions are derived from generalized lattice agree-
ment (GLA) [16]. Informally, they capture the notion that
queries observe the effect of a monotonically increasing set
of invoked updates.

The conditions stated above define the behavior of queries.
We now define the behavior of updates.
Update Stability If update u1 precedes update u2, then every

learned state that includes u2 also includes u1.
Update Visibility If update u precedes query q, then the state

learned by q includes u.
We show in Sect. III-E that these condition suffice to provide

linearizability.

B. The Protocol

The success path of the protocol is depicted in Algorithm 2.
We consider two roles that processes can assume: proposer
and acceptor. Roughly speaking, proposers process incoming
requests from clients and acceptors act as the replicated storage
of the CRDT. We assume that all processes implement both
the acceptor and proposer role.

Conventions. To keep the presented code brief, we follow
several conventions. First, we assume messages to be tuples
with a tag and an arbitrary number of elements. They are
denoted as 〈TAG , e0, . . . , en〉. Processes wait until they have
received enough messages with a specific tag before execut-
ing its corresponding action. If an action requires messages
from a set of processes, we aggregate the received mes-
sages element-wise into multisets. For example, two messages
〈TAG , a0, b0〉, 〈TAG , a1, b1〉 would be aggregated into the
message 〈TAG , Ă = {a0, a1}, B̆ = {b0, b1}〉. At any time,
each process executes at most one action.

The second concept we use are rounds. A common way to
generate unique round numbers is that each process appends
its process ID to a local counter, which is incremented for each
new round. Thus, rounds are pairs of a round number and a
round ID. Round r is denoted as r = (number , ID), with rnr
and rid providing access to its number and ID, respectively.
Round numbers are used to order concurrent requests, and
round IDs guarantee that the round of each request is unique.
The special value ⊥ denotes empty fields, which is smaller
than any other round number or round ID. Rounds are partially
ordered by comparing their round numbers. Round IDs are
only relevant for equality checks.

We furthermore assume that proposers implement a mech-
anism to keep track of ongoing requests and can differentiate

Algorithm 2 Linearizable state machine replication of state-based CRDTs.

Proposer:
Update Commands

1: on receive 〈UPDATE , cmdu〉 from client c:
2: store c
3: s← apply_update(cmdu) . called on local acceptor
4: send 〈MERGE , s〉 to remote acceptors

5: on receive 〈MERGED〉 from a quorum:
6: send 〈UPDATE_DONE〉 to c

Query Commands
7: on receive 〈QUERY , cmdq〉 from client c:
8: store c, cmdq

9: r ← (⊥,new_id()) . incremental prepare
10: send 〈PREPARE , r , s0 〉 to acceptors

11: on receive 〈ACK , R̆, S̆〉 from a quorum:
12: s′ ← tS̆ .merge received states
13: if ∀si ∈ S̆ : si ≡ s′ then
14: . s′ learned by consistent states
15: send 〈QUERY _DONE , cmdq(s′)〉 to c
16: else if ∀ri, rj ∈ R̆ : ri = rj then
17: . consistent rounds
18: send 〈VOTE , any r ∈ R̆, s ′〉 to acceptors
19: else
20: . inconsistent rounds, retry with larger r
21: r′ ← max(R̆)
22: r ← (r′nr + 1, new_id())
23: send 〈PREPARE , r, s′〉

24: on receive 〈VOTED , {s, . . . , s}〉 from a quorum:
25: . s learned by vote
26: send 〈QUERY _DONE , cmdq(s)〉 to c

Acceptor:
27: on initialize:
28: r ← (0,⊥)
29: s← s0

Update Commands

30: function apply_update(cmdu):
31: s← cmdu(s)
32: rid ← ⊥ . invalidate round in progress (see line 47)
33: return s

34: on receive 〈MERGE , s′〉 from proposer p:
35: s← s t s′

36: rid ← ⊥ . invalidate round in progress (see line 47)
37: send 〈MERGED〉 to p

Query Commands

38: on receive 〈PREPARE , r′, s′〉 from proposer p:
39: s← s t s′

40: if r′nr = ⊥ then
41: r′ ← (rnr + 1, r′id) . set r′nr based on local rnr

42: if r′nr > rnr then
43: r ← r′

44: send 〈ACK , r, s〉

45: on receive 〈VOTE , r′, s′〉 from proposer p:
46: s← s t s′

47: if r′ = r then . same round as latest PREPARE?
48: r ← r′

49: send 〈VOTED , s ′〉

to which request an incoming message belongs to. In practice,
this can be done by generating a unique ID per request which
is included in all messages.

Internal State. Each acceptor holds as its internal state the
current payload state s of the CRDT and the highest round r
it has observed so far. In the beginning, each acceptor’s state is
initialized with some initial payload state s0 and some round
with round number 0 and an ID that is smaller than any ID
generated by proposers.

Proposers only have to temporarily store data of ongoing
requests and unprocessed messages (in order to wait for replies
from a quorum). No further state is required.

Update Operations. Update operations are processed in a
single round trip. They do not require any synchronization. If
a proposer receives an update command cmdu ∈ U , it applies
the update locally and sends the resulting new payload state to
all other acceptors in a MERGE message. Upon receiving the
message, each acceptor updates its own payload state by LUB
computation and sends an acknowledgment message back to
the proposer. After receiving replies from a quorum, the update
is complete and the client is notified by the proposer.

Query Operations. Query operations require synchronization
as a quorum must agree upon some payload state in order to
satisfy Validity, Stability, and Consistency (Sect. III-A). This is
achieved with a modified variant of the Paxos algorithm [25].

Proposer p begins the query protocol with the reception of a
query command cmdq ∈ Q. Before executing the command,
it must first learn the current payload state in two phases.
First, p announces its intent to learn a state with PREPARE
messages and then proposes to learn a state, which acceptors
have to agree on.

In the first phase, p first chooses a round (line 9), which
is later used for the proposal in the second phase. The round
number can be chosen by p in two ways. First, p can decide on
a fixed integer as a round number. We refer to this as a fixed
prepare. The chosen number should be larger than all round
numbers previously chosen by any proposer, as otherwise p
cannot succeed in this phase. However, p has only knowledge
of its own proposals, which can make it difficult to decide
on an acceptable number. Therefore, proposers may choose to
opt for an incremental prepare by leaving the round number
undefined (denoted as ⊥).

In addition to a round, p includes its own payload state in
its PREPARE message. This state can be either s0, or some
recently observed state s. Including such a state is not required
for safety, but it can speed-up the convergence of acceptors’
payload states.

Each acceptor updates its rounds and payload state accord-
ing to the PREPARE message it receives (incremental or
fixed). Note that acceptors do not accept a fixed prepare if it
includes a round with a round number smaller than the highest

round number already seen by this acceptor (lines 42–44).
In practice, the acceptors reply with NACK messages (not
shown for brevity) so that the proposer can retry its request.
An incremental prepare is always accepted and the local round
number of the acceptor is increased (line 41).

The prepare is successful if a quorum has replied with ACK
messages (line 11). Depending on the replies, p can either (a)
immediately learn a state, (b) propose a state to learn, or (c)
retry the prepare phase.

(a) If all acceptors of the quorum replied with the same
payload state, then this state can be considered to be learned
by p. Thus, the second phase can be skipped, p can apply cmdq

on the learned state, and send the result to the client. We refer
to such state as learned by consistent quorum (lines 13–15).
The second phase can be skipped here as p is already certain
of a payload state that is established in a quorum.

(b) If a quorum of acceptors replied with the same round, the
first phase was successful. In the second phase, the proposer
can propose a payload state to learn, which is the LUB of all
received acceptor payloads. This state is sent with the round
used in the first phase in VOTE messages to all acceptors
(lines 16–18).

(c) If neither payload states nor rounds are consistent, the
first phase has failed. In this case, the proposer used an
incremental prepare. It can then retry with a fixed prepare
by choosing a round number that is larger than all seen round
numbers (lines 21–23).

Each acceptor that received a 〈VOTE , s′, r′〉 message has
to decide whether the proposal is valid. This is the case when
the acceptor has received p’s PREPARE message and its
state was not modified by a concurrent update or query in the
meantime (line 47). If the proposal is valid, then the acceptor
replies with a VOTED message. Otherwise, it denies the
proposal by optionally sending a NACK so that p can retry
(not shown). If p receives a quorum of VOTED messages,
then its proposed state is learned. We refer to this as a state
learned by vote. Then, p can apply the received query and
send the result to the client.

Retrying Requests. Acceptors may deny concurrently sub-
mitted queries by sending NACK to the respective proposer.
It is helpful to include the current payload state of the denying
acceptor in this message to speed-up the convergence with the
remaining acceptors in the system.

Any proposer that received a NACK before receiving a
quorum of ACK or VOTED messages must retry its request.
It can compute the LUB of all received payloads as the state to
include in its next PREPARE messages. By always retrying
with an incremental prepare, eventual liveness (see Sect. III-F)
can be guaranteed. However, retrying with a fixed prepare also
does not violate any safety condition of Sect. III-A.

C. Relation to Paxos and ABD

The query protocol is closely related to the classical single-
decree Paxos algorithm [24]. Single-decree Paxos can be used
to agree on a single value or command sent to the RSM. This

makes it necessary to use multiple chained Paxos instances to
learn a sequence of commands. Paxos solves consensus for
arbitrary values. Therefore, it can not assume that properties
such as commutativity and idempotence generally exist. In
contrast, CRDT state merges always exhibit these properties,
which allows us to modify Paxos to exploit them. First, a
single instance of our protocol can be re-used to repeatedly
merge states received from proposers in arbitrary order, even
if the attached round number is outdated. This speeds-up
the convergence of acceptors states under concurrent access.
Second, our approach needs only a single round number,
whereas Paxos requires an additional round number in the state
of acceptors to identify the newest proposed value in the case
of concurrent proposals. As we can simply merge all observed
values, this round number is not needed. Third, proposers in
our approach can terminate early if they observe consistent
states from a quorum of acceptors. This optimization makes
our approach viable in leader-less deployments, as shown in
Sect. IV.

Due to the modifications made to Paxos, our approach
somewhat resembles the multi-writer generalization of the
ABD algorithm [5]. ABD provides a wait-free fault-tolerant
atomic register. As such, newer values submitted by clients
overwrite the old register state in ABD. These semantics alone
do not suffice for state machine replication, which requires se-
quential agreement on commands. For our state-based CRDTs,
accepted updates are merged into the previous state, which
ensures that clients observe monotonically increasing CRDT
states.

D. Proof of Safety

In the following, we prove that our protocol satisfies the
conditions outlined in Sect. III-A. The query protocol begins
by either incremental or fixed prepare. The following invari-
ants hold for both of them, as can be directly inferred from
Algorithm 2:
I1 If a proposer learns some state, then it has received

ACK ’s from a quorum (line 14, line 25 via line 18).
I2 Any learned state is the LUB of all payload states received

in ACK messages from a quorum (line 12).
I3 If a proposer sends a VOTE message, then it has re-

ceived the same round in ACK messages from a quorum
(lines 16–18).

I4 If a proposer has received an ACK message from an
acceptor (line 11), then this acceptor has increased its
round number due to the proposer’s PREPARE message
(line 43).

Theorem 1 (Validity). The causal history of any learned state
is a subset of all previously invoked updates.

Proof. All acceptors start with payload s0 (line 29). Payload
modifications only happen by either application of a received
update command or by LUB computation. Every update is
applied at most once and only if it was previously received by
a proposer. Furthermore, computing the LUB of two payload
states computes the union of their respective causal histories.

Thus, the causal history of every learned state must be a subset
of previously invoked updates.

Lemma 1. The payload state of every acceptor increases
monotonically.

Proof. Both LUB computation and the direct application of
update commands are monotonically increasing.

Corollary 1. If messages 〈ACK , r, s〉 and 〈ACK , r′, s′〉 are
send by the same acceptor in this order, then s v s′.

Lemma 2. If state s is learned by any proposer, then there
exists a quorum Q with s v a.s,∀a ∈ Q, where a.s designates
the local state variable s of an acceptor process a.

Proof. State s can be learned (i) by consistent quorum from
messages of a quorum Qcons (line 14) or (ii) by vote from
messages of a quorum Qvote (line 25).
(i) Trivial, as all acceptors in Qcons have included a state

s′ ≡ s in their ACK message (lines 39 and 44).
(ii) p sent s in VOTE messages. At least all acceptors in

Qvote must have received the message and have merged
their payload state with s by LUB computation (line 46)
before replying with VOTED (line 49).

Theorem 2 (Stability). For any two states s1, s2 learned by
queries q1, q2, where q1 precedes q2: s1 v s2.

Proof. From Lemma 2 it follows that once a proposer p has
received the QUERY message of q2, there exists a quorum
Q such that s1 v a.s,∀a ∈ Q. To learn a state, p eventually
receives ACK messages from quorum Q′. As Q ∩ Q′ 6= ∅,
there exists some a′ ∈ Q′ with s1 v a′.s. The state learned
by p is the LUB of all received states included in the ACK
messages. Thus, s1 v a′.s v s2.

Lemma 3. Two learned states s1 and s2 are comparable if at
least one state is learned by consistent quorum.

Proof. (By contradiction) Let s1 and s2 be learned due to
queries handled at proposer p1 and p2, respectively. p1 and p2

have received ACK s from quorums Q1 and Q2, respectively.
Assume s1 is learned by consistent quorum and s1 is not
comparable to s2. In this case, the following conditions must
hold:
C1 ∀a ∈ Q1 ∩ Q2: a must send an ACK to p2 with state

s : (s v s1)∧¬(s ≡ s1), otherwise s1 v s2. This implies
that a receives p2’s PREPARE message before p1’s.

C2 ∀a ∈ Q1: a must receive a PREPARE message from p1

before receiving VOTE from p2 (otherwise s2 v s1).
s2 cannot be learned by consistent quorum, as this would

imply s2 ≡ s v s1 (C1 and Corollary 1). Thus, to learn s2, p2

must receive VOTED messages from a quorum with at least
one acceptor a in Q1. For that, p2 sends a 〈VOTE , r, s2〉
message to a. It follows from C1 and C2 that a has received
p1’s PREPARE message in between p2’s PREPARE and
VOTE message. Due to invariant I4, a has modified its round

and r 6= a.r. Therefore, a does not reply with a VOTED
message and s2 cannot be learned.

Lemma 4. Two learned states s1 and s2 are comparable if
both are learned by vote.

Proof. Let s1 and s2 be learned due to query requests handled
at proposer p1 and p2, respectively. p1 has received ACK s
from quorum Q1 and p2 from quorum Q2. As Q1 ∩Q2 6= ∅,
there is at least one acceptor a that has sent ACK s to both
s1 and s2. Assume a sends an ACK to p1 first. Therefore,
p1 sends 〈VOTE , r1, s1〉 and p2 sends 〈VOTE , r2, s2〉 with
r1 < r2. Let Qv be the quorum of acceptors that replied
to p1 with VOTED messages. All acceptors a ∈ Qv ∩ Q2

must receive p1’s VOTE before p2’s PREPARE message,
as otherwise either p2 receives inconsistent rounds or a does
not reply to p1. Therefore, a includes state s with s1 v s in
its ACK message to p2. As p2 computes the LUB of all states
received in ACK messages, s1 v s v s2.

Theorem 3 (Consistency). Any two learned states are com-
parable.

Proof. Follows from Lemma 3 and Lemma 4.

Theorem 4 (Update Stability). If update u1 precedes update
u2, then every learned state that includes u2 also includes u1.

Proof. (By contradiction) As u1 precedes u2, there is a quo-
rum Qu that has received MERGE messages with a payload
including u1 before any acceptor includes u2. Thus, there
cannot be a quorum at any time that includes u2 but not u1.

Assume a proposer p learns state s that includes u2 but
not u1. So, there must be a quorum Qack that has replied to
p an ACK message before receiving the MERGE message
and at least one acceptor replied with a payload including
u2. It follows that s is not learned by consistent quorum. It
also follows that all acceptors in Qu received the MERGE
before p received all replies from Qack. To propose a state
in VOTE messages, p must have received the same round r
from all acceptors in Qack. However, @Q : a.r = r, ∀a ∈ Q, as
∀a ∈ Qu updated their round. Therefore, p’s proposal cannot
succeed and s is not learned by vote.

Theorem 5 (Update Visibility). If update u precedes query
q, then the state learned by q includes u.

Proof. Since the proposer processing update u has generated a
response event, there exists a quorum of acceptors including u.
Thus, any proposer that processes a subsequent query receives
at least one ACK message that includes u.

E. Proof of Linearizability
In this section, we show that any protocol that satisfied The-

orems 1–5 provides linearizable access to CRDTs. Therefore,
it may be of general interest, independent of our proposed
protocol. In the sequential specification of a CRDT, the state
q.s learned by query q satisfies the following condition. Let
Uq be the set of all updates that precede q.

∃s′ ≡ q.s : C(s′) = Uq (1)

Informally, this captures the notion that the effect of all
preceding updates must be observed by the query. The effect
of future updates must not be visible.

Furthermore, we rely on the following Lemma.

Lemma 5. s1 v s2 ⇒ ∃s ≡ s2 : C(s1) ⊆ C(s)

Proof. Because of s1ts2 = s ≡ s2 and C(s1ts2) = C(s) =
C(s1) ∪ C(s2), it follows that C(s1) ⊆ C(s).

Let ≺H be an irreflexive partial order on operations induced
by history H [20]. Then, op1 ≺H op2 is satisfied if op1

precedes op2. In the following, we denote query and update
operations by r and w, respectively. For example, ∀r ∈r X ,
denotes ’for all query operations in X’. Operations that can be
of either type are denoted by o, where o.f is the command of
operation o. We denote the state learned by query operation r
as r.s.

Proof. Fix an execution E of an algorithm that satisfies
Theorems 1–5 with history H . Let H̄ be an extension of H
by adding response events to pending invocations. Let ≺Inv

be a total order over H̄ , where o1 ≺Inv o2 if the invocation
of o1 precedes the invocation of o2. We construct a sequential
history S from H̄ . For every pair (o1, o2), o1 6= o2 in H̄:
S1 For (w, r) or (r, w):

if r 6≺H̄ w ∧ ∃s′ ≡ r.s : w.f ∈ C(s′)⇒ w ≺S r
else r ≺S w

S2 For (r1, r2):
r1.s @ r2.s ∨ (r1.s ≡ r2.s ∧ r1 ≺Inv r2)⇒ r1 ≺S r2

S3 For (w1, w2):
Let r∗ /∈ S be an auxiliary query operation after w1 and
w2 with ∀r ∈ S : r ≺S r∗; The queries immediately
following w1 and w2 are then:
rwi

= min≺S
({r ∈r S : wi ≺S r} ∪ {r∗}), i ∈ {1, 2};

rw1
≺S rw2

∨ (rw1
= rw2

∧ w1 ≺Inv w2)⇒ w1 ≺S w2

The set of query operations in S is totally ordered by ≺S due
to Theorem 3. Thus, min≺S

in case S3 is well defined and
always exists. It is easy to see that ≺S is antisymmetric, i.e.,
(o1 ≺S o2) ⊕ (o2 ≺S o1), for o1 6= o2, where ⊕ denotes the
exclusive or operator.

Lemma 6. ≺H̄⊆≺S

Theorems 1, 2, 4, and 5 define the behavior of any pair
of non-overlapping operations. Let o1, o2 ∈ H̄ . If o1 and
o2 are query operations, o1 ≺H̄ o2 ⇒ o1 ≺S o2 follows
trivially by case S2 and Theorem 2. If either o1 or o2 is an
update, the same follows directly by case S1 and Theorem 5
or 1, respectively. Let both o1 and o2 be update operations.
Theorem 4 states:

o1 ≺H̄ o2 ⇒ ∀r ∈r H̄, o2.f ∈ C(r) : o1.f ∈ C(r) (2)

Let rw1 and rw2 be the query operations following o1 and o2

respectively, as defined in case S3. It follows from equation 2
that o1.f ∈ C(rw2

). Thus, rw2
6≺S rw1

. Therefore, rw1
≺S

rw2
or rw1

= rw2
. In both cases, o1 ≺S o2.

Lemma 7. S is a sequential history.

The relation ≺S is antisymmetric and relates all pairs of
elements in some way. Thus, ≺S is a total order if ≺S is
also transitive, which implies that S is a sequential history.
Let r1, r2, r3 and w1, w2, w3 be any three query or update
operations, respectively.

(A) r1 ≺S r2 ≺S r3 ⇒ r1 ≺S r3, follows trivially from
case S2. In addition, case S2 implies r1 ≺S r2 ⇒ r1.s v r2.s.
Thus, by applying Lemma 5 and case S1, (B) w1 ≺S r1 ≺S

r2 ⇒ w1 ≺S r2. Let rw1
and rw2

be the query operations
following w1 and w2 respectively, as defined in case S3. From
(A) and case S3 follows w1 ≺S w2 ⇒ rw2 6≺S rw1 , thereby
(C) w1 ≺S w2 ≺S r1 ⇒ w1 ≺S r1 and (D) w1 ≺S w2 ≺S

w3 ⇒ w1 ≺S w3.
We derive from (B) that (E) r1 ≺S r2 ≺S w1 ⇒ r1 ≺S w1

holds using the following argument: Assume r1 6≺S w1. By
antisymmetry of ≺S , w1 ≺S r1. We arrive at an contradiction
because r1 ≺S r2, which implies w1 ≺S r2 due to (B).

As this argument does not rely on the operation type, it can
be applied to derive the remaining cases from (C) and (E).
Thereby, ≺S is transitive.

Lemma 8. S is legal in respect to the sequential specification
of CRDTs.

We show that all query operations in S satisfy equation 1
by construction rule S1. Let r be a fixed query operation in
S and Ur = {w.f : w ∈w S ∧ w ≺S r}, i.e., the set of all
updates preceding r. By case S1:

∀u ∈ Ur,∃s′ ≡ r.s : u ∈ C(s′) (3)

Let Ur = {u1, . . . , un}. We proceed by induction to show that
an s′ exists, so that C(s′) = Ur. Let si be a state equivalent
to r.s that includes all uj with j ≤ i. We show that si can be
constructed using si−1, starting s0 = r.s:

1) If ui ∈ C(si−1), then si = si−1.
2) Otherwise, si = ui(si−1). As updates are non-decreasing,

si−1 v si. Let s′ be any state that satisfies equation 3 in
respect to ui and sm = s′ t si−1. Because of C(si) =
C(si−1) ∪ {ui} ⊆ C(sm) it follows that sm 6@ si. As
sm ≡ r.s ≡ si−1, we have si−1 6@ si. Thus, si ≡ si−1.

By construction of sn, we know that C(sn) = Ur ∪ C(r.s).
By Theorem 1 and case S1 it follows C(r.s) ⊆ Ur. Therefore,
C(sn) = Ur.

As S satisfies Lemma 6, 7 and 8, H̄ is linearizable. Since
H̄ is the extention of H , H is also linearizable.

F. Liveness

Faleiro et al. [16] show that wait-free protocols for solving
GLA exist. However, their approach is bandwidth expensive,
as it requires to exchange an ever growing set of accepted
input commands in messages.

In contrast, the protocol presented in Sect. III-B satisfies
a weaker liveness condition called finite writes termination
(FW-termination) [1] if a quorum of processes is correct.
Informally, FW-termination guarantees that write operations
(updates) always terminate, whereas read operations (queries)

are guaranteed to terminate only if a finite number of concur-
rent writes is present. Every FW-terminating protocol is also
lock-free and by extension obstruction-free [21].

To guarantee the progress of query operations of our proto-
col, the number of update operations that occur in parallel
with queries must be limited by a contention management
mechanism such as a leader oracle [1], which is applicable
but beyond the scope of this paper. However, we show in our
evaluation (Sect. IV) that more than 99 % of queries can be
processed within one to three round-trips without using such
mechanism.

In the remainder of this section, we sketch an argument
for the FW-termination of our protocol if proposers use
incremental prepares to retry failed queries attempts:

Trivially, all update operations terminate within a single
round-trip. As there are a finite number of updates, there is
a point in time in which the apply_update function is called
for the last time, i.e., no new updates are included in any
acceptor. Any proposer that is executing a query after this point
will execute incremental prepares (possibly interleaved with
fixed prepares) until it learns a state. Each time an incremental
prepare is executed, the proposer will either learn a state by
consistent quorum or receive at least one reply with a different
payload. If the request fails, the proposer retries with the LUB
of all received payloads from the previous iteration. In each
unsuccessful iteration, the updates of at least one additional
acceptor are included in the LUB. As there is a finite number
of acceptors, eventually all acceptors include all updates and
the proposer learns a state by consistent quorum.

G. Optimizations

The base protocol described in Sect. III-B can be optimized
in several ways.
Improve convergence. In Algorithm 2, proposers include s0

in their initial PREPARE messages. However, computing the
LUB with s0 will never increase the payload of an acceptor.
Instead, proposers can either include a payload known from a
previous request, or the payload of a co-located acceptor.
Sending less payloads. Acceptors do not need to include
payloads in VOTED messages, as this is the state they
received from the proposer. Instead, proposers can simply
remember the proposed payload and apply the queries on it
once a quorum of responses is received.
Using delta-mutators. In the algorithm described above, full
CRDT payload values are sent repeatedly by proposers and
acceptors in messages. This can cause high bandwidth over-
head for larger CRDTs. To prevent this, delta-mutators can be
used, as described by Almeida et al. [4]. With delta-mutators
it suffices to send state-deltas instead of full values. This can
be combined with techniques introduced by Enes et al. [15]
to further reduce the amount of redundantly transmitted data.
Batching. Batching is a common strategy to reduce syn-
chronization overhead and bandwidth needs in workloads
with high concurrent access by sacrificing some latency [18].
Implementing batching on a per-proposer basis is simple.
Each proposer manages a separate update and query batch

in which it buffers all commands it has received since the
previous batch. To process an update batch, the respective
proposer applies all update commands in the batch on the
local replica and then executes the update protocol normally.
For a query batch, the proposer executes the query protocol
and then applies all batched queries on the learned value.

By the design of our protocol, only a single CRDT payload
value is transferred. It is independent of the size of the batch.
Thus, the required bandwidth only depends on the CRDT’s
size. In contrast, other approaches that provide GLA-based
state machine replication agree on command sets, which means
that the full batch of commands must be transmitted (see
Sect. V).

IV. EVALUATION

We implemented [36] our protocol as part of the distributed
key-value store Scalaris [38], which is written in Erlang.
The implementation’s correctness was tested using a protocol
scheduler that enforces random interleavings of incoming
messages. For comparison, we use open-source Erlang imple-
mentations of Multi-Paxos [9], [25] and Raft [32], [34]. We
configured both approaches to write their respective command
logs on a RAM disk to minimize their performance impact.
The protocol proposed by Faleiro et al. [16] exchanges an
ever growing set of accepted input commands between its
participants. This set needs to be truncated for this approach
to be practical. Unfortunately, such a mechanism is not de-
scribed. As we found that designing one is a non-trivial task,
we consider it out of scope for our evaluation. Thus, the
protocol is not included in the evaluation despite its theoretical
importance.

All benchmarks were performed on a cluster equipped with
two Intel Xeon E5-2670 v3 2.4 GHz per node running Ubuntu
16.04.6 LTS. The nodes are fully connected with 10 Gbit/s. For
all measurements, we implemented a replicated counter that
is replicated on three nodes using the respective approaches.
In our approach, to which we will refer to as CRDT Paxos,
we implemented a G-Counter as described in Sect. II-B. We
applied the optimizations outlined in Sect. III-G, with the
exception of delta-mutators. For Multi-Paxos and Raft, we
used a replicated integer as the counter. All experiments were
executed using Erlang 19.3. Up to three separate nodes were
used to generate load using the benchmarking tool Basho
Bench [8]. All measurements ran over a duration of 10 minutes
with request data aggregation in 1 s intervals. For Figure 1
and Figure 1a, we show the median with 99 % confidence
intervals (CI). The CI is always within three percent of the
reported medians.

A. Failure-free Operation

In this experiment, we measured the throughput of the
approaches under different loads and increasing number of
clients (see Figure 1), which were distributed evenly across
three load generators. Each client independently invokes re-
quests to one of the three replicas and then waits for a response
before invoking the next request. CRDT Paxos performs

1 8 64 512 4096
103

104

105

5% updates, 95% queries

1 8 64 512 4096
103

104

105

10% updates, 90% queries

1 8 64 512 4096
103

104

105

50% updates, 50% queries

1 8 64 512 4096
103

104

105

0% updates, 100% queries

1 8 64 512 4096
103

104

105

100% updates, 0% queries
CRDT Paxos
CRDT Paxos w/ batching
Raft
Multi Paxos

0.0 0.2 0.4 0.6 0.8 1.0
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0
Re

qu
es

ts
 p

er
 se

co
nd

Figure 1: Throughput comparison using three replicas.

better for query heavy workloads as it distinguishes between
query and update requests. A decrease in update increases
the probability of observing a consistent quorum, which also
increases the ability to process requests in a single round trip.
In contrast, both the Raft and Multi-Paxos implementation
append updates and consistent queries to its command log,
which results in their consistent performance for all load types.
Overall, CRDT Paxos achieves a higher throughput for mixed
workloads with a low percentage of updates and less than 1500
clients. This is mainly due to its better load distribution across
all replicas compared to the leader based designs. For more
clients, its performance degrades because of the interference
between updates and queries. Note that the 95th percentile
query latency of our approach is slightly higher compared to
the other approaches as a small percentage of queries must
be retried due to update conflicts (see Figure 1a and 1b).
As updates are always answered in a single round trip, their
latencies are consistently low as long as the nodes and network
are not saturated.

The issue of query-update conflicts can be resolved by
applying a simple batching scheme (see Sect. III-G): Each
proposer processes at most one query and one update com-
mand at a time. During the time a request is processed, all new
incoming commands of the same type (query or update) are
batched. Once the ongoing request is completed the respective
batch is submitted.

As this scheme limits the number of concurrently processed
commands, the conflict probability is greatly reduced. Al-
though no leader is used, more than 99% of queries were pro-
cessed within three round trips for some measured workloads.
Thus, this batching scheme achieves similar throughput in
mixed workloads as CRDT Paxos without batching in query-
and update-only workloads, which are conflict-free and can be
processed within a single round-trip.

B. Node Failure

One drawback to leader-based approaches is their brief
unavailability during leader failure and the added complexity
of implementing a leader election algorithm. As our ap-
proach does not require a leader, continuous availability can
be achieved as long as a quorum of replicas is reachable.
Figure 1c shows the impact of a node failure on the 95th

percentile latency for 64 clients and 10 % updates. Latencies
increase slightly for the base protocol without batching as all
the remaining replicas must be consistent to reach a consistent
quorum. This increases the likelihood of updates interference.
In contrast, a failed replica improves the response latency
when using our batching scheme because the number of
concurrently proposed batches is decreased by one.

V. RELATED WORK

As previously mentioned, a wealth of consensus protocols
were invented with the advent of the state machine ap-
proach [37], most notably Paxos [24], [25], Raft [32] and vari-
ations of them [22], [27], [31]. To partially alleviate the high
synchronization costs incurred by consensus, numerous pro-
tocols were designed to exploit commutative operations [26],
[31], [42]. In contrast to these generalized consensus protocols,
which allow any pair of commands to commute with each
other or not, our approach solves generalized lattice agree-
ment [16] by requiring that all update commands commute
with each other. This restriction simplifies the problem so
that a high number of concurrent clients can be supported
without the need for a leader or central coordinator. In contrast,
solving (generalized) consensus often relies on efficient leader
election [2], [28], [32] or multi-leader approaches [13], [29]
to alleviate the leader performance bottleneck and impact on
the system’s availability during a leader failure.

Starting with the original formalization of CRDTs [40],
numerous works discuss the design and composition of these

1 4 16 64 256 1024 4096
Number of clients

0

25

50

75

100

125

150
Qu

er
y

la
te

nc
y

in
 m

s CRDT Paxos
CRDT Paxos w/ batching
Multi-Paxos
Raft

0 2 4 6 8 10 12 14
Number of round trips

0

20

40

60

80

100

Cu
m

. p
ct

. o
f q

ue
rie

s

16 clients
32 clients
64 clients
128 clients

0 2 4 6 8 10
Elapsed time in minutes

0

10

20

30

40

La
te

nc
y

in
 m

s

update latency
query latency
node failure

1 4 16 64 256 1024 4096
Number of clients

0

25

50

75

100

125

150

Up
da

te
 la

te
nc

y
in

 m
s CRDT Paxos

CRDT Paxos w/ batching
Multi-Paxos
Raft

(a) Query and update latency
comparison (95th percentile).

0 2 4 6 8 10 12 14
Number of round trips

0

20

40

60

80

100

Cu
m

. p
ct

. o
f q

ue
rie

s

16 clients
32 clients
64 clients
128 clients

(b) Round trips to process queries
(without and with batching).

0 2 4 6 8 10
Elapsed time in minutes

0

10

20

30

40

La
te

nc
y

in
 m

s

update latency
query latency
node failure

(c) 95th percentile latency with failure
(without and with batching).

Figure 1: Performance evaluation with a query-heavy load (90% queries) and three replicas.

data structures [7], [10], [30], [33], [39]. Normal usage of
state-based CRDTs require the transmission of the complete
state while dispersing updates to remote replicas. This be-
comes costly when CRDTs grow larger. A solution to this
problem is discussed by Almeida et al. [4] by only transmitting
state-deltas instead of the complete data structure. Enes et
al. [15] show how to further reduce network bandwidth by
refining state-delta based synchronization techniques. Auvolat
et al. [6] encode state-based CRDTs into Merkle Search Trees
for efficient access in large networks with high churn and low
update rates.

Some CRDT designs suffer from state inflation, e.g., due to
accumulation of tombstone values. Garbage collection mech-
anisms are discussed by Shapiro et al. [39]. Further research
is needed to find ways to incorporate this into our protocol.

Several protocols that solve generalized lattice agreement in
an asynchronous setting exist. Faleiro et al. [16] discusses a
wait-free protocol in which a value is always learned in O(N)
messages delays, where N is the number of proposers. Zheng
et al. [46] improve this upper bound to min{O(h(L),O(f))},
where h(L) denotes the height of the input lattice and f
the number of tolerated failures. However, message sizes
can grow unbounded with the number of proposed values
in both approaches. Recent work [45] improves this bound
further to O(log f) round trips and also addresses the problem
of truncating the internally managed command sets. Imbs
et al. [23] solves lattice agreement by introducing a Set-
Constrained Delivery (SCD) broadcast primitive, which is
build on top of FIFO broadcast. SCD broadcasting a message
requires O(N2) messages. All these approaches agree on
growing sets of commands. In contrast, we agree on the
resulting CRDT value directly, which enables some of the
optimizations for reducing bandwidth discussed in Sect. III-G.

VI. CONCLUSION

In this paper, we presented a protocol that provides lin-
earizable state machine replication for state-based CRDTs.
The protocol guarantees that updates always terminate in a
single round trip. Even though wait-freedom is not provided
for query commands in the presence of concurrent updates,
our experimental evaluation showed that high throughput can
be sustained even under highly concurrent access and without
a leader-based deployment commonly used for consensus-
related problems. In addition, our protocol is lightweight and
requires no growing log as it has the memory and message size
overhead of a single counter in addition to the replicated data.
Thereby, no auxiliary processes for leader election or state
management are required for a practical deployment of our
approach. This contrasts our design to the original solution of
the generalized lattice agreement problem [16], which is wait-
free but requires additional effort to truncate the managed state
or message sizes.

VII. ACKNOWLEDGMENT

We thank Alexander Reinefeld for dedicated comments and
valuable discussions that helped to improve this manuscript.
This work was supported by the German Research Foundation
(DFG) under grant RE 1389 as part of the DFG priority
program SPP 2037 (Scalable Data Management for Future
Hardware).

REFERENCES

[1] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi, “Byzantine
Disk Paxos, optimal resilience with byzantine shared memory,” in ACM
Symposium on Principles of Distributed Computing (PODC’04), 2004,
pp. 226–235.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Stable leader election,” in Distributed Computing, 15th International
Conference (DISC’01), 2001, pp. 108–122.

[3] Akka IO, “Akka distributed data,” https://doc.akka.io/docs/akka/current/
typed/distributed-data.html, 2019, accessed: 2019-05-17.

https://doc.akka.io/docs/akka/current/typed/distributed-data.html
https://doc.akka.io/docs/akka/current/typed/distributed-data.html

[4] P. S. Almeida, A. Shoker, and C. Baquero, “Efficient state-based
CRDTs by delta-mutation,” in Networked Systems - Third International
Conference (NETYS’15), 2015, pp. 62–76.

[5] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” J. ACM, vol. 42, no. 1, pp. 124–142, 1995.

[6] A. Auvolat and F. Taïani, “Merkle search trees: Efficient state-based
crdts in open networks,” in SRDS 2019 - 38th IEEE International
Symposium on Reliable Distributed Systems, 2019.

[7] C. Baquero, P. S. Almeida, and C. Lerche, “The problem with embedded
CRDT counters and a solution,” in Proceedings of the 2nd Workshop
on the Principles and Practice of Consistency for Distributed Data,
(PaPoC@EuroSys’16), 2016, pp. 10:1–10:3.

[8] Basho Technologies, “basho-bench: A load-generation and testing tool
for basically whatever you can write a returning Erlang function for,”
https://github.com/basho/basho_bench.

[9] ——, “riak_ensemble: Multi-Paxos framework in Erlang,” https://github.
com/basho/riak_ensemble.

[10] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte, “An optimized conflict-free replicated set,”
CoRR, vol. abs/1210.3368, 2012.

[11] P. Bourgon, “A CRDT system for timestamped events,”
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-
timestamped-events, 2014, accessed: 2019-08-13.

[12] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott, “Riak DT map:
a composable, convergent replicated dictionary,” in Proceedings of the
First Workshop on the Principles and Practice of Eventual Consistency
(PaPEC@EuroSys’14), 2014, p. 1:1.

[13] L. J. Camargos, R. Schmidt, and F. Pedone, “Multicoordinated Paxos,”
in ACM Symposium on Principles of Distributed Computing (PODC’07),
2007, pp. 316–317.

[14] T. D. Chandra and R. G. J. Redstone, “Paxos made live: an engineering
perspective,” in ACM Symposium on Principles of Distributed Comput-
ing (PODC’07), 2007, pp. 398–407.

[15] V. Enes, P. S. Almeida, C. Baquero, and J. Leitão, “Efficient synchro-
nization of state-based CRDTs,” in International Conference on Data
Engineering (ICDE), 2019, pp. 148–159.

[16] J. M. Faleiro, S. K. Rajamani, K. Rajan, G. Ramalingam, and
K. Vaswani, “Generalized lattice agreement,” in ACM Symposion Prin-
ciples of Distributed Computing (PODC’12), 2012, pp. 125–134.

[17] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp.
374–382, 1985.

[18] R. Friedman and R. van Renesse, “Packing messages as a tool for
boosting the performance of total ordering protocols,” in Proceedings
of the 6th International Symposium on High Performance Distributed
Computing (HPDC’97), 1997, pp. 233–242.

[19] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang.
Syst., vol. 13, pp. 124–149, 1991.

[20] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for
concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, 1990.

[21] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchroniza-
tion: Double-ended queues as an example,” in 23rd International Con-
ference on Distributed Computing Systems (ICDCS’03), 2003. IEEE
Computer Society, 2003, pp. 522–529.

[22] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-
free coordination for Internet-scale systems,” in 2010 USENIX Annual
Technical Conference, 2010.

[23] D. Imbs et al., “Set-constrained delivery broadcast: Definition, abstrac-
tion power, and computability limits,” in ICDCN’18, 2018, pp. 7:1–7:10.

[24] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[25] ——, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25,
2001.

[26] ——, “Generalized consensus and Paxos,” Technical Report MSR-TR-
2005-33, 2005.

[27] ——, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103,
2006.

[28] D. Malkhi, F. Oprea, and L. Zhou, “Omega meets Paxos: Leader election
and stability without eventual timely links,” in Distributed Computing
(DISC’05), 2005, pp. 199–213.

[29] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building efficient
replicated state machine for WANs,” in Operating Systems Design and
Implementation (OSDI’08), 2008.

[30] S. Martin, M. Ahmed-Nacer, and P. Urso, “Abstract unordered and
ordered trees CRDT,” CoRR, vol. abs/1201.1784, 2012.

[31] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more con-
sensus in Egalitarian parliaments,” in Symposium on Operating Systems
Principles (SOSP’13), 2013, pp. 358–372.

[32] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 USENIX Annual Technical Conference,
(ATC’14), 2014, pp. 305–319.

[33] N. Preguiça, J. Marquès, M. Shapiro, and M. Letia, “A commutative
replicated data type for cooperative editing,” in Distributed Computing
Systems (ICDCS’09), 2009, pp. 395–403.

[34] RabbitMQ, “ra: A Raft implementation for Erlang and Elixir that strives
to be efficient and make it easier to use multiple Raft clusters in a single
system,” https://github.com/rabbitmq/ra.

[35] Redis Labs, “Active-active geo-distribution (CRDT-based),”
https://redislabs.com/redis-enterprise/technology/active-active-geo-
distribution/, accessed: 2020-07-21.

[36] Scalaris, “Implementation of CRDT Paxos,” https://github.com/scalaris-
team/scalaris/tree/master/src/crdt, used commit short hash in bench-
marks: 8effc6e.

[37] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299–319, 1990.

[38] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable transactional
P2P key/value store,” in Proceedings of the 7th ACM SIGPLAN work-
shop on ERLANG, 2008, pp. 41–48.

[39] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehen-
sive study of convergent and commutative replicated data types,” INRA,
Tech. Rep., 2011.

[40] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Stabilization, Safety, and Security of
Distributed Systems (SSS’11), 2011, pp. 386–400.

[41] J. Skrzypczak, F. Schintke, and T. Schütt, “Linearizable state machine
replication of state-based CRDTs without logs,” in ACM Symposium on
Principles of Distributed Computing (PODC’19), 2019, pp. 455–457.

[42] P. Sutra and M. Shapiro, “Fast genuine generalized consensus,” in 30th
IEEE Symposium on Reliable Distributed Systems (SRDS’11), 2011, pp.
255–264.

[43] P. Viotti and M. Vukolić, “Consistency in non-transactional distributed
storage systems,” ACM Comput. Surv., vol. 49, no. 1, pp. 19:1–19:34,
2016.

[44] M. Vukolić, Quorum Systems: With Applications to Storage and Consen-
sus, ser. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2012.

[45] X. Zheng, V. K. Garg, and J. Kaippallimalil, “Linearizable replicated
state machines with lattice agreement,” CoRR, vol. abs/1810.05871,
2018.

[46] X. Zheng, C. Hu, and V. K. Garg, “Lattice Agreement in Message
Passing Systems,” in Distributed Computing (DISC’18), vol. 121, 2018,
pp. 41:1–41:17.

https://github.com/basho/basho_bench
https://github.com/basho/riak_ensemble
https://github.com/basho/riak_ensemble
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://github.com/rabbitmq/ra
https://redislabs.com/redis-enterprise/technology/active-active-geo-distribution/
https://redislabs.com/redis-enterprise/technology/active-active-geo-distribution/
https://github.com/scalaris-team/scalaris/tree/master/src/crdt
https://github.com/scalaris-team/scalaris/tree/master/src/crdt

	I Introduction
	II Preliminaries
	II-A System Model
	II-B State-Based Conflict-Free Replicated Data Types

	III Linearizable and Logless RSM of State-Based CRDTs
	III-A Problem Statement
	III-B The Protocol
	III-C Relation to Paxos and ABD
	III-D Proof of Safety
	III-E Proof of Linearizability
	III-F Liveness
	III-G Optimizations

	IV Evaluation
	IV-A Failure-free Operation
	IV-B Node Failure

	V Related Work
	VI Conclusion
	VII Acknowledgment
	References

