
ar
X

iv
:1

81
0.

03
72

3v
1

 [
cs

.D
C

]
 8

 O
ct

 2
01

8

Optimal Memory-Anonymous

Symmetric Deadlock-Free Mutual Exclusion

Zahra Aghazadeh†, Damien Imbs‡, Michel Raynal⋆,◦, Gadi Taubenfeld⋄, Philipp Woelfel†

†Department of Computer Science, University of Calgary, Canada
‡Aix-Marseille University, CNRS, University of Toulon, LIS, Marseille, France

⋆Univ Rennes IRISA, France
◦Department of Computing, Polytechnic University, Hong Kong

⋄The Interdisciplinary Center, Herzliya, Israel

Abstract

The notion of an anonymous shared memory (recently introduced in PODC 2017) considers that

processes use different names for the same memory location. As an example, a location name A used

by a process p and a location name B 6= A used by another process q can correspond to the very

same memory location X , and similarly for the names B used by p and A used by q which may (or

may not) correspond to the same memory location Y 6= X . Hence, there is permanent disagreement

on the location names among processes. In this context, the PODC paper presented –among other

results– a symmetric deadlock-free mutual exclusion (mutex) algorithm for two processes and a

necessary condition on the size m of the anonymous memory for the existence of a symmetric

deadlock-free mutex algorithm in an n-process system. This condition states that m must be greater

than 1 and belong to the set M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1} (symmetric means

that, while each process has its own identity, process identities can only be compared with equality).

The present paper answers several open problems related to symmetric deadlock-free mutual

exclusion in an n-process system (n ≥ 2) where the processes communicate through m registers. It

first presents two algorithms. The first considers that the registers are anonymous read/write atomic

registers and works for any m greater than 1 and belonging to the set M(n). Hence, it shows that this

condition on m is both necessary and sufficient. The second algorithm considers that the registers

are anonymous read/modify/write atomic registers. It assumes that m ∈ M(n). These algorithms

differ in their design principles and their costs (measured as the number of registers which must con-

tain the identity of a process to allow it to enter the critical section). The paper also shows that the

condition m ∈ M(n) is necessary for deadlock-free mutex on top of anonymous read/modify/write

atomic registers. It follows that, when m > 1, m ∈ M(n) is a tight characterization of the size of

the anonymous shared memory needed to solve deadlock-free mutex, be the anonymous registers

read/write or read/modify/write.

Keywords: Anonymous shared memory, Asynchronous system, Atomic register, Complexity,

Computability, Deadlock-freedom, Mutual exclusion, Read/modify/write register, Read/write regis-

ter, Tight characterization.

1

http://arxiv.org/abs/1810.03723v1

1 Introduction

1.1 Memory Anonymity

While the notion of memory-anonymity has been implicitly used in some works in the early eighties

(e.g., [10]), it was explicitly captured as a concept and investigated only very recently in [15]1. More

precisely, this paper considers the explicit case where “there is no a priori agreement between processes

on the names of shared memory locations”, and presents possibility/impossibility results in such sys-

tems.

Considering a shared memory defined as an array R[1..m] of m memory locations (registers),

memory-anonymity means that, while the same location identifier R[x] always denotes the same mem-

ory location for a process p, it does not necessarily denote the same memory location for two different

processes p and q. This means that there is an adversary that may initially give different global names

to different processes for the same memory locations. In other words, the adversary associates a per-

mutation on the set of memory indexes {1, · · · ,m} with each process p, and p uses them to access the

memory locations. This is illustrated in Table 1 which considers two processes p and q and a shared

memory made up of three registers (as an example the register known as R[2] by p and the register

known as R[3] for q are the very same register, which actually is R[1] from an external omniscient

observer point of view).

names for an location names location names

external observer for process p for process q

R[1] R[2] R[3]

R[2] R[3] R[1]

R[3] R[1] R[2]

permutation 2, 3, 1 3, 1, 2

Table 1: An illustration of the anonymous shared memory model

In addition to its possible usefulness in some applications (e.g., [13]) , the memory-anonymous

communication model “enables us to better understand the intrinsic limits for coordinating the actions

of asynchronous processes” [15].

1.2 Related Work

This paper originates from the work described in [15], where the memory-anonymous mutex problem is

introduced, and where first results are presented on mutual exclusion in read/write memory-anonymous

systems, namely

• a symmetric deadlock-free algorithm for two processes (the notion of “symmetric” is related to

the use of process identifiers; it will be defined in Section 2.2),

• a theorem stating there is no deadlock-free algorithm if the number of processes is not known,

• a necessary condition stating that any symmetric deadlock-free mutex algorithm for n processes,

which uses m ≥ 2 read/write registers, requires that m belongs to the set M(n) = {m : ∀ ℓ : 1 <
ℓ ≤ n : gcd(ℓ,m) = 1} (i.e., ℓ and m are relatively prime). Let us observe that M(n) is infinite

(among other values, it contains an infinite number of prime numbers).

1See [12] for an introductory survey to process anonymity and memory anonymity.

2

1.3 Content of the Paper

As announced, this paper is on deadlock-free mutual exclusion in an n-process system (n ≥ 2) where

the processes communicate by accessing a shared memory composed of m anonymous registers (hence

there are no other non-anonymous registers).

Preliminary definitions. Two types of registers are considered, which give rise to two communication

models.

• A read/write (RW) register is an atomic register that provides the processes with a read operation

and a write operation [9].

In the RW communication model, all the registers are RW registers.

• A read/modify/write (RMW) register is an atomic register that provides the processes with a read

operation, a write operation, and an additional read/modify/write operation [7]. Such an operation

allows a process to atomically read a register, and, based on the value read, computes a new

value that is assigned to the register. One of the most famous read/modify/write operations is

compare&swap(). When a process invokes R.compare&swap(x, old, new), where R[x] is an

anonymous register, it reads the value of the register locally known as R[x], say v, and assigns it

the value new if and only if new = v. In this case it returns true; otherwise, it returns false.

In the RMW communication model, all the registers are RMW registers.

Results presented in the paper.

• RW anonymous communication model. A deadlock-free mutex algorithm for this model is pre-

sented, which assumes the necessary condition stated above, namely, m ∈ M(n). As the condi-

tion m ≥ n is necessary to solve mutex in a RW non-anonymous system [3], it remains necessary

in an anonymous system. The very existence of the proposed algorithm shows that the predicate

m ∈ M(n) ∧m ≥ n (which is equivalent to m ∈ M(n) ∧m 6= 1) is a tight characterization of

the values of m which allow deadlock-free mutex algorithm in RW anonymous systems. In this

sense, the proposed algorithm is space optimal.

• RMW anonymous communication model. A deadlock-free mutex algorithm for this model is

presented, which requires m ∈ M(n). As in this communication model, m ≥ n is not a pre-

viously known necessary requirement to solve deadlock-free mutex in a non-anonymous system,

we cannot conclude from the existence of the previous algorithm that m ∈ M(n) is a tight char-

acterization of the values of m which allow deadlock-free mutex algorithm in RMW anonymous

systems.

To address this issue, the paper presents a proof that m ∈ M(n) is actually a necessary and

sufficient condition for deadlock-free mutex in RMW anonymous systems. (But let us observe

that, for the case m = 1, an anonymous memory consisting of a single register, is not really

anonymous!)

Hence, if we eliminate the particular case of an anonymous memory composed of a single register

(m = 1), deadlock-free mutex for both the RW model and the RMW model can be solved if and only

if m ∈ M(n). The corresponding algorithms differ in their algorithmic design, and in the fact that, to

enter the critical section, the algorithm for the RW model requires a process to read its identity from the

m anonymous registers, while the algorithm for the RMW model requires it to read its identity from a

majority of the anonymous registers only. Hence, while requiring the same computability assumption

(namely m ∈ M(n) assuming m 6= 1), these algorithms differ from a complexity point of view (mea-

sured as the number of registers that have to contain the same process identity to allow this process to

enter the critical section).

3

1.4 Roadmap

This paper is composed of 7 sections. Section 2 introduces the computational model and provides some

technical definitions. Section 3 presents an n-process symmetric deadlock-free mutex algorithm for the

anonymous RW communication model. Section 4 proves its correctness. Section 5 presents an n-process

symmetric deadlock-free mutex algorithm for the anonymous RMW communication model. Section 6.1

proves its correctness, while Section 6.2 proves a space lower bound which shows that the algorithm is

space optimal. Finally, Section 7 concludes the paper. It is important to notice that both algorithms have

a first class noteworthy property, namely, their simplicity.

2 System Model, Symmetric Algorithm, and Mutual Exclusion

2.1 Processes and Anonymous Registers

The system is composed of n asynchronous processes p1, ..., pn with identifiers from a set P. “Asyn-

chronous” means that each process proceeds in its own speed, which can vary with time and always

remains unknown to the processes.

When considering a process pi, i is its index, which is used only to distinguish processes from an

external point of view. A process pi knows its own identity, denoted idi, but never knows its index i. No

two processes have the same identity.

Each process knows the number, n, of processes in the system, and all processes know a common

symbol ⊥ /∈ P, which is interpreted as a default identity (hence, when it reads an anonymous register, a

process can distinguish a process identity from ⊥).

RW anonymous communication model.

Processes communicate through a memory anonymous array R[1..m], which can be accessed by two

operations, denoted R.write and R.read. As already indicated, memory-anonymity means that, for each

process pi, there is a permutation fi() over the set {1, . . . ,m} such that, when pi uses address R[x], it

actually accesses R[fi(x)]. Anonymity means that no permutation fi is known by any process; each fi
is defined by an adversary.

• When a process p invokes R.write(x, v) it writes value v in the atomic read/write register R[fi(x)],

• When a process p invokes R.read(x) it obtains the value currently saved in the register locally

denoted R[fi(x)].

To simplify the presentation of the first algorithm, we also assume that process pi can use an opera-

tion R.snapshot() to obtain the value of array
[

R[fi(1)], . . . , [R[fi(m)]
]

as if the read of all its entries

where instantaneous (i.e., produced at a single point of the time line during the operation [7, 9]). We

require that the operation snapshot() satisfies the following progress guarantee:

In any interval of the execution throughout which no process calls write(), any invocation

of R.snapshot() by a process pi terminates within a finite number of pi’s steps [6].
(1)

The memory-anonymous snapshot() operation is a simple extension of the classical snapshot()
introduced in [1, 2]. All its executions are linearizable [7]. The operation R.snapshot() can be imple-

mented with the well-known “double scan” technique (as used in [1]), where each process pi is provided

with an additional local sequence number sni, which it uses to identify all its write invocations (namely,

when it invokes R.write(x, v), pi actually issues the following sequence of statements “sni ← sni + 1;

R[x] ← (v, idi, sni)”. As no two processes have the same identity, each invocation of R.write() is

4

unambiguously identified.2 To not overload the presentation, the sequence numbers associated with the

write operations (and used in the “double scan” inside the snapshot operations) are left implicit in the

rest of the paper3.

RMW anonymous communication model.

This is the RW model where, in addition to R.read(x) R.write(x, v), a process can also invoke the oper-

ation R.compare&swap(x,−,−) defined in Section 1.3. (The deadlock-free mutex algorithm described

in Section 5 does not use the operation R.snapshot().)

2.2 Symmetric Algorithm

The notion of a symmetric algorithm dates back to the eighties [5, 8]. Here, as in [15], a symmetric

algorithm is an “algorithm in which the processes are executing exactly the same code and the only way

for distinguishing processes is by comparing identifiers. Identifiers can be written, read, and compared,

but there is no way of looking inside an identifier. Thus it is not possible to know if whether an identifier

is odd or even”.

Two variants of symmetric algorithms can be considered, symmetric with equality and symmetric

with arbitrary comparisons. As in [15] we only consider the more restricted version, symmetric with

equality, where the only comparison that can be applied to identifiers is equality. In particular, there is

no order structuring on the identifier name space. Throughout this paper, symmetric refers to symmetric

with equality.

Moreover, in order for the initial values not to be used to destroy anonymity (which could favor a

given process), all registers are initialized to the same value, namely the default value ⊥.

2.3 Mutual Exclusion

Mutual exclusion is the oldest (and one of the most important) synchronization problem. Formalized by

Dijkstra in the mid-sixties [4], it consists in building what is called a lock (or mutex) object, defined by

two operations, denoted lock() and unlock(). (Recent textbooks including mutual exclusion and variants

of it are [11, 14].)

The invocation of these operations by a process pi always follows the following pattern: “lock();
critical section; unlock()”, where “critical section” is any sequence of code. A process that is not in

the critical section and has no pending lock() or unlock() invocation, is said to be in the remainder

section. An infinite execution is fair, if every process that has a pending lock() or unlock() invocation,

either finishes its operation or executes infinitely many steps. The mutex object satisfying the deadlock-

freedom progress condition is defined by the following two properties.

• Mutual exclusion: No two processes are simultaneously in their critical section.

• Deadlock-freedom: If a process pi has a pending lock() or unlock() invocation and no process is

in the critical section, then some process pj (possibly pj 6= pi) eventually finishes its lock() or

unlock() operation, provided the execution is fair.

2 The proof of the operations R.write(), R.read(), and R.snapshot() terminate and are linearizable is the same as the one

done in [1]. As far as the proof of R.snapshot() is concerned, this comes from the observation that, in the algorithm described

in [1], the order in which a process scans the array R[1..m] is irrelevant. The important point is that, after it sequentially

scanned twice the array R[1..m], a process compares the corresponding entries of the two copies of R[1..m] it has obtained.

In our case, for any x, the first reading of R[x] and a second reading of R[x] by the same process are on the very same memory

location, from which follows that it correctly compares the corresponding entries of the two copies it has obtained to see if

R[1..m] changed between the two consecutive scans.
3Defining each register as a record which has two fields (a value field and a sequence number field) with global (non-

anonymous) names is done only for convenience. The two values in these fields can be encoded as a single value, removing

the need for using more than one field.

5

3 RW Anonymous Model: Symmetric Deadlock-Free Mutex

This section presents Algorithm 1, which is a symmetric (with respect to equality) deadlock-free mutex

algorithm suited to the RW memory-anonymous communication model. As indicated in the introduction,

as this algorithm works for the necessary condition (m > 1) ∧ (m ∈ M(n)), its existence proves that

this condition is also sufficient.

3.1 Representation of the Lock Object

Shared memory: Let m be such that m > 1 and m ∈ M(n). The shared memory is composed of a

memory-anonymous array R[1..m], as defined in Section 2.1.

For any x ∈ {1, . . . ,m}, the initial value of a register R[x] is⊥. If R[x] 6= ⊥, it contains the identity

of the last process that wrote in this register. From a terminology point of view, we say

• “process pi owns R[x]”, if R[x] = idi;

• “register R[x] is owned” if R[x] 6= ⊥;

• “R is full” if all its entries are owned; and

• “R is empty” if none of its entries are owned.

Local memory: Each process pi manages two local variables: an integer denoted cnti, and a local

array denoted viewi[1..m]. The aim of viewi[1..m] is to contain the value of R obtained by pi from

its last invocation of R.snapshot(). To prevent confusion, the shared array R[1..m] is denoted with an

uppercase letter, while the local variables are denoted with lowercase letters. As already indicated, the

local sequence number associated with each write operation of a process pi is left implicit.

3.2 Algorithm

3.2.1 Underlying Principles

The core of Algorithm 1 consists in managing a competition among the processes until all the entries of

R[1..m] contain the same process identity, the corresponding process being the winner.

When a process invokes unlock(), or when it concludes while competing that it will not be the

winner, it resets the entries of R[1..m] containing its identity to ⊥ (their initial value).

Hence, the core of the algorithm lies in the definition of predicates that direct a process to either

withdraw from the competition or continue competing. To this end, a process pi checks whether its local

view viewi (obtained from the invocation of R.snapshot()) is full (line 5), and if so, whether pi owns

less than the average of all registers present in the competition (line 9).

3.2.2 Detailed Algorithm Description

Operation unlock() is a simple invocation of an internal operation called shrink() (line 12). With a

shrink() invocation, a process pi removes itself from the array by considering its latest view, viewi.

More specifically, for each index x ∈ {1, . . . m} with viewi[x] = idi, process pi first reads R[x], and if

R[x] still equals idi, it writes ⊥ into R[x] (line 2).

The core of the algorithm is the code of the operation lock(). When a process pi invokes this

operation, it enters a “repeat-until” loop from which it can only exit when it obtains a snapshot of the

anonymous shared memory R[1..m], according to which pi owns all entries (lines 3-11).

Hence, process pi first repeatedly invokes R.snapshot() (line 4) until it sees only⊥ in the array viewi

obtained from R.snapshot() (which means that, from its local point of view, there is no competition),

6

m > 1 and m ∈ {m such that ∀ ℓ ∈ {2, ..., n} : gcd(ℓ,m) = 1}
R[1..m]: array of anonymous RW atomic registers, each initialized to ⊥
pi: process executing this code; idi is its identity

viewi: process pi’s local array of size m (with global scope)

——-

operation owned() is

(1) return (|{x ∈ {1, . . . ,m} : viewi[x] = idi}|). % # of registers owned by pi %

——-

operation shrink() is

(2) for each x such that viewi[x] = idi do if (R.read(x) = idi) then R.write(x,⊥) end if end for.

——-

operation lock() is

(3) repeat

(4) repeat viewi ← R.snapshot() until owned() > 0 ∨ ∀ x ∈ {1, . . . ,m} : viewi[x] = ⊥ end repeat;

% This point is reached only if either pi is present (at least one entry of R contains idi) or no one is %

(5) if (∃ x ∈ {1, . . . ,m} : viewi[x] = ⊥)

(6) then R.write(x, idi)
(7) else % viewi is full %

(8) let cnti = |{viewi[1], . . . , viewi[m]}|; % number of current competitors %

(9) if (owned() < m/cnti) then shrink() end if

% pi owns fewer registers than the average⇒ pi withdraws from the competition %

(10) end if

(11) until ∀ x ∈ {1, . . . , m} : viewi[x] = idi end repeat.

——-

operation unlock() is

(12) shrink().

Algorithm 1: Algorithm 1: RW memory-anonymous deadlock-free mutex (n-process system, n ≥ 2,

code for pi)

or it is present in this array (which means it is already competing). Then, when it stops looping, pi
checks whether viewi is full (line 5) to know if it should continue writing (line 6) or if it should consider

withdrawing from the competition (lines 7-9).

If viewi is full, processes are engaged in a competition. If its identity appears in fewer than the

average number of owned registers, process pi withdraws from the competition by invoking the operation

shrink() (lines 7-9), which suppresses its identity from the anonymous RW memory R[1..m]. After

finishing its shrink() invocation, a process re-enters the repeat-until loop at line 4. The fact that m ∈
M(n) guarantees that not all processes that appear in R when it is full, own the same number of registers,

so at least one process will withdraw. If a process owns at least the average number of registers when its

view is full, it re-enters the repeat-until loop and invokes the operation snapshot() again at line 4.

If viewi is not full and pi owns at least one register, it continues competing. To this end, before

re-entering the repeat-until loop, pi chooses an entry of R[1..m] equal to ⊥, and writes its identifier idi
in this register (lines 5-6).

To summarize, during a lock() operation, a process pi decides its future steps based on its latest view

of the anonymous memory as follows:

1. If pi owns all registers, it enters the critical section (line 11).

2. If pi owns no register, and the view is not empty, then it waits (by repeatedly taking snapshots)

until it obtained an empty view (line 4).

3. If the view is full, and cnti different processes own some registers, and pi owns fewer than m/cnti
registers, then it removes itself from all registers it owns by calling shrink() (line 9).

7

4. If the view is not full, there is at least one register that is not owned, and pi writes its identity idi
into any not owned register (line 6).

4 RW Model: Proof of Algorithm 1 and Tight Space Bound

4.1 Proof of Algorithm 1

Let us remember that the anonymous RW array R[1..m] is the only object that the processes can use

to communicate. The notions of “time”, “first” and “last” used in the proofs are well-defined, as all

write() and read() operations are atomic. As stated in Section 2.1, the proof assumes that operation

snapshot() (which can be implemented from atomic read/write operations) is linearizable and satisfies

the progress condition 1. The proof assumes n ≥ 2, as otherwise mutual exclusion is trivial. Moreover,

let us remember that m is assumed to be be greater than 1 and belong to the set M(n) = {m : ∀ ℓ : 1 <
ℓ ≤ n : gcd(ℓ,m) = 1}, from which follows that m > n.

Let E be an arbitrary infinite execution E, L(E) an execution where all snapshot()operations occur

atomically at their linearization points (i.e., L(E) is a linearization of all operations on R in E).

Theorem 1 Algorithm 1 satisfies mutual exclusion.

Proof Consider history L(E). Let us suppose by contradiction that two processes are inside their critical

section at the same time, and assume that pi is the first of them to take its last snapshot before entering

its critical section. More precisely, suppose process pi’s lock() invocation terminates (and thus pi enters

the critical section) following some iteration of the outer repeat-until loop in lock(). Then due to the

predicate of line 11, pi owns all registers of R at the point of pi’s snapshot() (line 4) in its last iteration.

Therefore, in the same iteration the predicate of line 5 and the predicate of lines 9 are false, and the

predicate of lines 11 is true. Hence, the snapshot() in line 4 at the beginning of the iteration is pi’s last

access to the RW anonymous memory before its lock() operation terminates. We therefore say a process

enters the critical section at the point when it is taking a snapshot in line 4 while owning all registers.

Now suppose pi enters the critical section at some point t. Let t′ be the point when pi executes its

first shared memory operation in its subsequent unlock() invocation, if there is such an invocation, and

otherwise t′ =∞. We prove below the following claim:

Claim 1 Throughout [t, t′], all invocations of snapshot() contain the identity of pi.

It follows from this claim that at no point in [t, t′] a process other than pi can observe itself as owning

all registers. Also, as assumed at the beginning of the proof, process pi is the first to take its last snap-

shot before entering its critical section. Thus no other process, except pi, can be in the critical section

throughout [t, t′], which contradicts the assumption that pi is not alone in the critical section.

Proof of the claim. For the purpose of a contradiction, let us assume that Claim 1 is not true. Because

all m registers are owned by pi at time t and m > n, by the pigeonhole principle, at least one process

has issued more than one write that changed the value of a register from the identity of pi to another

value. Let pj be the first process to do so. Hence, process pj took a snapshot at some point Ts ∈ [t, t′]
in line 4 at the beginning of the iteration of the outer repeat-until loop in which it executes its second

R.write() in line 5, that changes the value of a register from the identity of pi to another value.

Process pi is the only process that can write its own identity, it owns all the registers at time t, and

it does not execute any write operation in [t, t′]. Then, in the snapshot taken at Ts ∈ [t, t′] by pj , the

second register overwritten by pj contains pi’s identity, and is not chosen at line 5. A contradiction

which completes the proof of the claim and the theorem. ✷Theorem 1

8

Theorem 2 Algorithm 1 is deadlock-free.

The remainder of this section is devoted to the proof of this theorem. For the purpose of contradiction

let us assume that E is an infinite fair execution, and that after some point t∗ no invocation of lock() or

unlock() terminate, even though at least one process has a pending lock() or unlock() operation and no

process is in the critical section. Since unlock() is wait-free [6] (see also the Claim 2 below) we may

assume w.l.o.g. that no invocation of unlock() is pending at any point after t∗.

Claim 2 In any execution, each invocation of shrink() by a process pi terminates within a finite number

of pi’s steps, and when it does, process pi owns no register.

Proof Process pi executes at most m iterations of the for-loop in shrink(), and in each iteration it

executes the wait-free operations write() and read(), so shrink() terminates after a finite number of pi’s
steps. Before calling shrink(), process pi calls snapshot() to obtain viewi (line 6), and it does not write

to the RW anonymous memory R[1..m] between that snapshot() and its subsequent call of shrink(). In

the for-loop in the operation shrink(), process pi writes ⊥ into all registers R[x], x ∈ {1, . . . ,m}, such

that viewi[x] = idi. Since no other process writes the value idi to any register R[x], no register contains

idi anymore when pi terminates its shrink() operation. ✷Claim 2

Claim 3 If a process owns a register, then it is not in the remainder section (i.e., it has a pending lock()
or unlock() invocation, or it is in the critical section).

Proof A process pi can only begin to own a register R[x], x ∈ {1, . . . ,m}, by writing idi into R[x],
that can only happen in line 12 of the operation lock(). When pi enters the remainder section, it has not

written to any register of R since its latest shrink() invocation in the operation unlock() terminated, so

the statement follows from the Claim 2. ✷Claim 3

In the following, for any given time t ≥ t∗, we say that pi is competing if pi has a pending lock()
operation at t and the last snapshot taken by pi before t satisfies the condition at line 4 (i.e. pi is not

stuck in the inner loop).

Claim 4 At any point t ≥ t∗, there is a competing process pi whose last snapshot() invocation does not

cause it to invoke shrink() at line 9.

Proof If at least one competing process pi obtains a view that is not full, the condition at line 5 is

satisfied, and thus this view does not cause pi to invoke shrink(). We can then consider that all competing

processes have obtained a full view in their last snapshot.

Let pi be the process that owns the most registers in the last snapshot taken before t (if more than

one process satisfy this condition, pi can be chosen arbitrarily among them). If pi took this snapshot, it

wouldn’t cause it to invoke shrink() (pi owns more than the average, condition at line 9). Let us then

consider that pi didn’t take this last snapshot before t, but took one previously at time t′ < t. Process

pi is the only one which can write its own identity, and its last view was full, causing it not to write

(condition at line 4). At time t′, pi then owns at least as many registers as in the last snapshot taken

before t. Furthermore, any competing process in the last snapshot taken before t is also competing at

time t′ (otherwise it would be stuck in the inner loop at line 4). Thus, the view taken by pi at time t′

does not satisfy the condition at line 9, and does not cause pi to invoke shrink(). ✷Claim 4

Claim 5 At any point t ≥ t∗, if there is more than one competing process, at least one of them will

invoke shrink().

9

Proof Suppose not. Note that the only point at which a process can write ⊥ is during the shrink()
operation. If at least one competing process obtains a view that is not full, it will invoke R.write().
This will happen again until no register has the value ⊥ and all competing processes obtain full views

in their last snapshot, preventing them from writing. We can then consider w.l.o.g. that, at time t, all

competing processes have stopped writing and have obtained the same view. Let cnt be the number of

these competing processes.

Because 1 < cnt ≤ n and ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1, at least one competing process owns

less registers than m/cnt, causing it to call shrink(); a contradiction which proves the claim. ✷Claim 5

Proof of Theorem 2.

By Claim 4, at any point t ≥ t∗, there is a competing process whose last snapshot() invocation does

not cause it to invoke shrink(). By Claim 2, any shrink() operation terminates, and causes the invoking

process to be stuck in the inner loop at line 4, causing it to stop competing after its next snapshot()
invocation. This implies that at least one competing process never calls shrink() after point t∗.

By assumption, no process is in the critical section, and no unlock() operation is pending. By

Claim 3, if a process owns a register, then it is not in the remainder section. The only processes that own

registers are then the ones that are competing.

By Claim 5, if there is more than one competing process, at least one of them invokes shrink(),
causing it to stop competing. There is then eventually a single competing process that owns all the

registers, a contradiction with the original assumption that after some point t∗, no invocation of lock()
or unlock() terminates, even though at least one process has a pending lock() or unlock() operation and

no process is in the critical section. ✷Theorem 2

4.2 RW Memory-Anonymous Model: Tight Space Bound

Given M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}, it is shown in [15] that m ∈ M(n)
is a necessary condition for any algorithm solving symmetric deadlock-free mutex in an anonymous

memory composed of m read/write registers. As already indicated, as m ≥ n is a necessary condition

for any algorithm solving deadlock-free mutex in a non-anonymous system, it remains necessary in a

read/write anonymous system. This translates as follows: m ∈M(n) \ {1} is a necessary condition for

deadlock-free mutex in an anonymous memory composed of m read/write registers.

As Algorithm 1 solves deadlock-free mutex under this condition, it follows that m ∈M(n) \ {1} is

a necessary and sufficient condition.

5 RMW Anonymous Model: Symmetric Deadlock-Free Mutex

This section presents an algorithm that implements a deadlock-free mutex lock object in an n-process

RMW memory-anonymous system. As the previous algorithm, the algorithm presented below is partic-

ularly simple.

5.1 Representation of the Lock Object

The shared anonymous memory is made up of m RMW atomic registers, denoted R[1..m] where m ∈
{1} ∪ {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1} (let us notice that this set includes the value 1).

In Algorithm 2, a process uses three local variables, denoted most_presenti, ownedi, and viewi

(which has the same meaning as in Algorithm 1).

10

m ∈ {m such that ∀ ℓ ∈ {2, ..., n} : gcd(ℓ,m) = 1}
R[1..m]: array of anonymous RMW atomic registers, each initialized to ⊥
pi: process executing this code; idi is its identity

viewi: process pi’s local array of size m (with global scope)

———–

operation owned() is return (|{x ∈ {1, . . . ,m} : viewi[x] = idi}|). % # of registers owned by pi %

———–

operation lock() is

(1) repeat

(2) for each x ∈ {1, ..., m} do R.compare&swap(x,⊥, idi) end for;

(3) for each x ∈ {1, ..., m} do viewi[x]← R.read(x) end for;

(4) most_presenti ← maximum number of times the same non-⊥ value appears in viewi;

(5) ownedi ← owned();
(6) if ownedi < most_presenti then

(7) for each x ∈ {1, ..., m} do if (viewi[x] = idi) then R.write(x,⊥) end if end for;

(8) repeat

(9) for each x ∈ {1, ..., m} do viewi[x]← R.read(x) end for

(10) until ∀ x ∈ {1, . . . ,m} : viewi[x] = ⊥ end repeat

(11) end if

(12) until ownedi > m/2 end repeat.

———–

operation unlock() is

(13) for each x ∈ {1, ..., m} do R.compare&swap(x, idi,⊥) end for.

Algorithm 2: Algorithm 2: RMW memory-anonymous deadlock-free mutex (n-process system, n ≥ 2,

code for pi)

5.2 Algorithm

When a process pi invokes lock(), it enters repeat loop that it will exit when it will obtain a view

viewi[1..m] in which its own identity appears in a majority of anonymous registers (line 12).

Process pi first invokes the read/modify/write operation compare&swap() on all registers in order

to write its identity in all the registers whose current value is the default value ⊥ (line 2). Then, it

reads (asynchronously) the whole anonymous memory and saves it in viewi[1..m] (line 3). From this

non-atomic view of the shared memory, pi computes the occurrence number of the most present value

(most_presenti, line 4) and the occurrence number of its own identity (ownedi, line 5).

• If ownedi ≥ most_presenti, pi proceeds to the next iteration of the repeat-until loop if ownedi ≤
m/2, and enters the critical section if ownedi > m/2.

• If ownedi < most_presenti, pi resigns from the competition. To this end, it first writes ⊥ in all

entries that, from its local point of view, contain its identity (line 7), and then waits until it sees

that all the anonymous registers contain the default value ⊥ (lines 8-10).

When a process pi invokes unlock(), it simply resets to ⊥ all the registers that contain its identity

idi (line 13).

6 RMW Model: Proof of Algorithm 2 and Tight Space Lower Bound

6.1 Proof of Algorithm 2

Theorem 3 Algorithm 2 satisfies mutual exclusion.

Proof Assume that a process pi is in its critical section, while some other process, say process pj , is

executing the operation lock(). Before pi entered its critical section the exit predicate of line 12, namely,

11

ownedi > m/2 must be evaluated to true. This means that, before pi entered its critical section, it

succeeded to change more than m/2 RMW anonymous registers from ⊥ to its identifier idi. As long

as process pi does not set these RMW registers back to ⊥, process pj cannot succeed in changing more

than m/2 registers from ⊥ to idj . Thus, process pj will not be able to enter its critical section while pi
is in its critical section. ✷Theorem 3

Theorem 4 Algorithm 2 is deadlock-free.

Proof We show that if a process is trying to enter its critical section, then some process eventually enters

its critical section.

In the first for loop (line 2) each process scans the m RMW anonymous registers trying to set those

that are ⊥ to its identifier. If the process is running alone, it will clearly succeed to set them all to its

identifier and will enter its critical section.

When there is contention (i.e., several processes are in their entry codes) since ∀ x ∈ {1, ..., n} : m
and x are relatively prime, at least one of the processes pk must find that less than most_presentk of

the RMW registers are set to its identifier. It follows from lines 6-7 that pk gives up the competition,

and waits in the inner repeat loop (lines 8-10). This enables at least one other process pj , for which

most_presentj of the RMW registers are set to its identifier, to proceed. Repeating this argument,

eventually one of the processes will find that its identifier appears in more than m/2 of the RMW

registers and will enter its critical section.

Finally, as in its exit code (line 13), a process sets to ⊥ all the registers containing its identifier.

This enables a possibly waiting process to continue. Thus, it is not possible for all the processes to

simultaneously remain forever in the operation lock(). ✷Theorem 4

6.2 RMW Anonymous Model: Tight Space Lower Bound

Theorem 5 There is an n-process symmetric deadlock-free mutual exclusion algorithm using m ≥ 1
anonymous RMW registers only if m ∈M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}.

Proof Let us assume to the contrary, namely, there is a symmetric deadlock-free mutual exclusion

algorithm for n processes using m ≥ 1 anonymous RMW registers such that for some positive integer

1 < ℓ ≤ n, m and ℓ are not relatively prime. This means that there is a number 1 < ℓ ≤ m such that ℓ
divides m.

Let us arrange the m RMW registers on a ring with m nodes where each register is placed on a

different node. Then, let us pick ℓ processes. For simplicity let us call these processes p0, ..., pℓ−1. To

each one of the ℓ processes, we assign an initial RMW register (namely, the first register that the process

accesses) such that for every two processes pi and pi+1 (mod ℓ), the distance between their initial registers

is exactly m/ℓ when walking on the ring in a clockwise direction. Here we use the assumption that ℓ
divides m.

The lack of global names, allows us to assign for each process an initial RMW register and an

ordering of the registers which determines how the process scans the registers.

An execution in which the ℓ processes are running in lock steps, is an execution where we let each

process takes one step (in the order p0, ..., pℓ−1), and then let each process takes another step, and so

on. For process pi and integer k, let order(pi, k) denotes the kth new register that pi accesses during an

execution where the ℓ processes are running in lock steps, and assume that we arrange that order(pi, k)
is the register whose its distance from pi’s initial registers is exactly (k − 1), when walking on the ring

in a clockwise direction.

We notice that order(pi, 1) is pi’s initial register, order(pi, 2) is the next new register that pi ac-

cesses and so on. That is, pi does not access order(pi, k + 1) before accessing order(pi, k) at least

12

once, but for every j ≤ k, pi may access order(pi, j) several times before accessing order(pi, k + 1)
for the first time.

With this arrangement of RMW registers, we run the ℓ processes in lock steps. Since only compar-

isons for equality are allowed, and all registers are initialized to a the same value –which (to preserve

anonymity) is not a process identity– processes that take the same number of steps will be at the same

state, and thus it is not possible to break symmetry. It follows that either all the processes will enter their

critical sections at the same time, violating mutual exclusion, or no process will ever enter its critical

section, violating deadlock-freedom. A contradiction. ✷Theorem 5

7 Conclusion

“Anonymous shared memory” means there is no a priori agreement among the processes on the names of

the shared registers. Moreover, “symmetric algorithm” means that the process identities define a specific

data type with no internal structure (such as a total order) and no relation with other data type (hence an

identity cannot be compared with an integer). Identities can only be read, written, and compared with

equality.

Considering two types of anonymous registers, namely atomic read/write (RW) registers and atomic

read/modify/write (RMW) registers, This paper presented several results on symmetric mutual exclusion

algorithms, summarized in Table 2.

Registers RW anonymous RMW anonymous

Sufficient condition (algorithm) This paper This paper

Necessary condition [15]4 This paper

Table 2: A global picture for n-process anonymous mutex (n ≥ 2)

The symmetric deadlock-free mutex algorithm built on top of an anonymous memory of m atomic

read/write registers works for m ∈M(n)\{1}, where M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1},
while the algorithm for m atomic read/modify/write registers works for m ∈ M(n). The necessity of

the first condition was proved in [15], while the necessity of the second condition was proved in this

paper. The existence of the algorithms presented in the paper proves these conditions are also sufficient.

Let us remark that a system composed of a single anonymous register is no really anonymous. Hence,

if we eliminate the “pathological” case m = 1, m ∈ M(n) is a necessary and sufficient condition for

symmetric deadlock-free mutex in both the read/write and the read/modify/write anonymous register

models. This shows a fundamental computability difference separating the “memory anonymity” ad-

versary (which operates before the execution and is consequently static) and the “process crash” ad-

versary (which operates during the execution and is consequently dynamic), for which read/write and

read/modify/write registers (such as compare&swap) are located at the two extremes of the synchroniza-

tion power hierarchy as defined in [6]. (Let us remind that mutex can be solved neither in the read/write

nor in the read/modify/write non-anonymous register models in the presence of process crashes.) Last

but not least, a noteworthy property of the two algorithms that have been presented lies in their simplic-

ity.

4Notice that the lower bound for the RW model from [15], follows immediately from our stronger lower bound for the

RMW model present in this paper.

13

Acknowledgements

Zahra Aghazadeh and Philipp Woelfel were partially supported by the Canada Research Chairs program

and by the Discovery Grants program of the Natural Sciences and Engineering Research Council of

Canada (NSERC). Michel Raynal was partially supported by the French ANR project 16-CE40-0023-

03 DESCARTES devoted to layered and modular structures in distributed computing.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots of shared

memory. Journal of the ACM, 40(4):873-890 (1993)

[2] Anderson J., Multi-writer composite registers. Distributed Computing, 7(4):175-195 (1994)

[3] Burns J.E. and Lynch N.A., Bounds on shared memory for mutual exclusion. Information and

Computation, 107(2):171-184 (1993)

[4] Dijkstra E.W., Solution of a problem in concurrent programming control. Communications of the

ACM, 8(9):569 (1965)

[5] Garg V.K. and Ghosh J., Symmetry in spite of hierarchy. Proc. 10th Int’l Conference on Distributed

Computing Systems (ICDCS’90), IEEE Computer Press, pp. 4-11 (1990)

[6] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Sys-

tems, 13(1):124-149 (1991)

[7] Herlihy M.P. and Wing J.M., Linearizability: a correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems,12(3):463-492, (1990)

[8] Johnson R.E., and Schneider F.B., Symmetry and similarity in distributed systems. Proc.4th ACM

Symposium on Principles of Distributed Computing (PODC’85), pp. 13-22, ACM Press (1985)

[9] Lamport L., On interprocess communication, Part I: basic formalism. Distributed Computing,

1(2):77-85 (1986)

[10] Rabin M., The choice coordination problem. Acta Informatica, 17(2):121-134 (1982)

[11] Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515

pages, ISBN 978-3-642-32026-2 (2013)

[12] Raynal M. and Cao J., Anonymity in distributed read/write systems: an introductory survey. Proc.

6th Int’l Conference on Networked Systems (NETYS’18), Springer LNCS, 17 pages (2018)

[13] Rashid S., Taubenfeld G., and Bar-Joseph Z., Genome wide epigenetic modifications as a shared

memory consensus. 6th Workshop on Biological Distributed Algorithms (BDA’18), London (2018)

[14] Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-

tion/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

[15] Taubenfeld G., Coordination without prior agreement. Proc. 36th ACM Symposium on Principles

of Distributed Computing (PODC’17), ACM Press, pp. 325-334 (2017)

14

	1 Introduction
	1.1 Memory Anonymity
	1.2 Related Work
	1.3 Content of the Paper
	1.4 Roadmap

	2 System Model, Symmetric Algorithm, and Mutual Exclusion
	2.1 Processes and Anonymous Registers
	2.2 Symmetric Algorithm
	2.3 Mutual Exclusion

	3 RW Anonymous Model: Symmetric Deadlock-Free Mutex
	3.1 Representation of the Lock Object
	3.2 Algorithm
	3.2.1 Underlying Principles
	3.2.2 Detailed Algorithm Description

	4 RW Model: Proof of Algorithm 1 and Tight Space Bound
	4.1 Proof of Algorithm 1
	4.2 RW Memory-Anonymous Model: Tight Space Bound

	5 RMW Anonymous Model: Symmetric Deadlock-Free Mutex
	5.1 Representation of the Lock Object
	5.2 Algorithm

	6 RMW Model: Proof of Algorithm 2 and Tight Space Lower Bound
	6.1 Proof of Algorithm 2
	6.2 RMW Anonymous Model: Tight Space Lower Bound

	7 Conclusion

