arXiv:1905.10284v1 [cs.DS] 24 May 2019

Hardness of Distributed Optimization

Nir Bachrach!, Keren Censor-Hillel!, Michal Dory!, Yuval Efron!, Dean Leitersdorf', and

Ami Paz?

I Technion-Israel Institute of Technology
2IRIF, CNRS, Paris Diderot University

Abstract

This paper studies lower bounds for fundamental optimization problems in the CONGEST
model. We show that solving problems ezactly in this model can be a hard task, by providing
Q(n?) lower bounds for cornerstone problems, such as minimum dominating set (MDS), Hamil-
tonian path, Steiner tree and max-cut. These are almost tight, since all of these problems can be
solved optimally in O(n?) rounds. Moreover, we show that even in bounded-degree graphs and
even in simple graphs with maximum degree 5 and logarithmic diameter, it holds that various
tasks, such as finding a maximum independent set (MaxIS) or a minimum vertex cover, are still
difficult, requiring a near-tight number of Q(n) rounds.

Furthermore, we show that in some cases even approximations are difficult, by providing an
Q(n?) lower bound for a (7/8 + €)-approximation for MaxIS, and a nearly-linear lower bound
for an O(logn)-approximation for the k-MDS problem for any constant k > 2, as well as for
several variants of the Steiner tree problem.

Our lower bounds are based on a rich variety of constructions that leverage novel observa-
tions, and reductions among problems that are specialized for the CONGEST model. However,
for several additional approximation problems, as well as for exact computation of some central
problems in P, such as maximum matching and max flow, we show that such constructions
cannot be designed, by which we exemplify some limitations of this framework.

Contents

1

Introduction

1.1 Our contributions, the challenges, and our techniques.
1.2 Preliminaries oL L e
1.3 Communication Complexity
1.4 Family of Lower Bound Graphs

Near Quadratic Exact Lower Bounds

2.1 Minimum Dominating Set

2.2 Hamiltonian Path and Cycle Lower Bounds and applications
2.2.1 Directed Hamiltonian Path
2.2.2 Hamiltonian Cycle and Undirected variants
2.2.3 Minimum 2-edge-connected spanning subgraph

2.3 Minimum Steiner Tree
2.3.1 Reductions Between Families of Lower Bound Graphs
2.3.2 Steiner Tree Lower Bound

2.4.1 Lower bound for max cut
2.4.2 A (1-¢) approximation for max-cut L.

Lower bounds for bounded degree graphs
3.1 Converting a graph to a bounded-degree graph
3.2 Alower bound for MaxIS e

3.3 Implications for MVC, MDS and 2-spanner
Hardness of approximation

4.1 MaxIS e
4.2 2-MDS . . . e
4.3 E-MDS . . . e e e

4.4 Steiner tree problems
4.5 Restricted hardness of approximation for MDS

Limitations of Theorem 1.1l

5.1 Limitations by determining the predicate,
5.1.1 Bounded-degree graphso
5.1.2 General graphs

5.2 Limitations using non-determinism
5.2.1 Impossibility using direct non-deterministic protocols
5.2.2 Impossibility using proof labeling schemes
5.2.3 Limitations of proving lower bounds for verification problems

Discussion

119

29]
20
29

4]
4.9
40
40|
0]

20|

1 Introduction

Optimization problems are cornerstone problems in computer science, for which finding exact and
approximate solutions is extensively studied in various computational settings. Since optimization
problems are fundamental for a variety of computational tasks, mapping their trade-offs between
time complexity and approximation ratio is a holy-grail, especially for those that are NP-hard.

Distributed settings share this necessity of resolving the complexity of exact and approximate
solutions for optimization problems, and a rich landscape of complexities is constantly being ex-
plored. However, distributed settings exhibit very different behavior, compared with their sequen-
tial counterpart, in terms of what is efficient and what is hard. Here, we focus on the CONGEST
model in which n vertices communicate synchronously over the underlying network graph, using an
O(logn)-bit bandwidth [43]. Since the local computation of vertices is not polynomially bounded,
hardness results in the sequential setting do not translate to hardness results in the distributed one.
In particular, any natural graph problem can be solved in the CONGEST model in O(m) rounds, m
being the number of edges, by letting the vertices learn the whole graph. For some problems, such
as MaxIS and finding the chromatic number [10], this naive solution is known to be nearly-optimal,
whereas for other problems more efficient solutions exist. On the other hand, there do exist prob-
lems with a polynomial sequential complexity, which require Q(m) rounds in the CONGEST model,
such as deciding whether the graph contains a cycle of a certain length and weight [10].

In the sequential setting, finding an exact solution for some problems, such as minimum domi-
nating set (MDS) or a maximum independent set (MaxIS), is known to be NP-hard [27]. In such
cases, it is sometimes possible to obtain efficient approximations, such as an O(log A)-approximation
for MDS, where A is the maximum degree in the graph [49]. However, in some cases, even ob-
taining an approximation is hard. For MDS, any approximation better than logarithmic is hard to
obtain [38]. MaxIS does not admit even an O(n'~¢) approximation [23]. In the CONGEST model,
there are polylogarithmic O(log A)-approximations for MDS [26,33}/34], and it is also known that
obtaining such an approximation requires at least a polylogarithmic time. More specifically, there
are lower bounds of 2(y/logn/loglogn) and Q(log A/loglog A) |33]. However, currently nothing
else is known with respect to better approximations or exact solutions. For the MaxIS problem,
there are efficent (A + 1)/2 and 0.529A approximations for the unweighted and weighted cases,
respectively [7]. However, the complexity of achieving any better approximations is not known.
Solving it exactly requires Q(nQ) rounds [10]. In the closely related LOCAL model, where the size
of messages is not bounded, (1 + €)-approximations for both problems can be obtained in polylog-
arithmic time [20].

The curious aspect of the huge gaps that are present in our current understanding of various
optimization and approximation complexities in the CONGEST model is that we do not have any
hardness conjectures to blame these gaps on. This raises the natural question: can we obtain better
approximations efficiently in the CONGEST model?

For problems in P, in many cornerstone cases, such as min cut, max flow and maximum match-
ing, we have efficient (1 + €)-approximations [19}37.[39], but the complexity of exact computation
is still open. Many additional questions are open with respect to various optimization problems.

The contributions of this paper are three-fold, providing (i) novel techniques for nearly-tight
lower bounds for exact optimizations, (ii) advanced approaches for nearly-tight lower bounds for
approximations, and (iii) new methods for showing limitations of the main lower-bound framework.

1.1 Owur contributions, the challenges, and our techniques

Lower bounds for exact computation. We show that in many cases, solving problems ez-
actly in the CONGEST model is hard, by providing many new Q(nz) lower bounds for fundamental
optimization problems, such as MDS, max-cut, Hamiltonian path, Steiner tree and minimum 2-
edge-connected spanning subgraph (2-ECSS). Such results were previously known only for the
minimum vertex cover (MVC), MaxIS and minimum chromatic number problems [10]. Our results
are inspired by [10], but combine many new technical ingredients. In particular, one of the key
components in our lower bounds are reductions between problems. After having a lower bound for
MDS, a cleverly designed reduction allows us to build a new lower bound construction for Hamil-
tonian path. These constructions serve as a basis for our constructions for the Steiner tree and
minimum 2-ECSS. We emphasize that we cannot use directly known reductions from the sequen-
tial setting, but rather we must create reductions that can be applied efficiently on lower bound
constructions.

To demonstrate the challenge, we now give more details about the general framework. We
use the well-known framework of reductions from 2-party communication complexity, as originated
in [44] and used in many additional works, e.g., [1,9,/14,|17,/18.,|47]. In communication complexity,
two players, Alice and Bob, receive private input strings and their goal is to solve some problem
related to their inputs, for example, decide whether their inputs are disjoint, by communicating
the minimum number of bits possible. To show a lower bound for the CONGEST model, the high-
level idea is to create a graph that satisfies some required property, for example have an MDS
of a certain size, iff the input strings satisfy some property. If a fast algorithm in the CONGEST
exists, Alice and Bob can simulate it and solve the communication problem. Then, lower bounds
from communication complexity translate to lower bounds in the CONGEST model. The exact lower
bound we can show depends on certain parameters such as the size of the graph, the size of the
inputs and the size of the cut between the parts of the graph that the players simulate. An attempt
to use the known reduction from MVC to MDS together with the Q(n?) lower bound for MVC
from [10] faces a complication: This reduction requires adding a new vertex for each edge in the
original graph, which blows up the size of the graph with respect to the inputs, and allows showing
only a nearly-linear lower bound. For similar reasons, known reductions from MVC to Hamiltonian
cycle and Steiner tree cannot show any super-linear lower bound. Nevertheless, we show that in
some cases reductions can be a powerful tool in providing new Q(nz) bounds, but they need to
be designed carefully in order to preserve certain parameters of the graph, such as the number of
vertices and the size of the cut between the two players.

A succinct summary of our results in this section is the following.

e We show an Q(nQ) lower bound for solving MDS, weighted max-cut, Hamiltonian path and
cycle, minimum Steiner tree, and unweighted 2-ECSS on general graphs. For unweighted
max-cut, we show an O(n) algorithm for computing a (1 — €)-approximation for max-cut in
general graphs, for all € > 0.

Lower bounds in bounded-degree graphs. In many cases, the graph over which one needs
to solve a certain problem is not a worst-case instance, but rather is drawn from a specific graph
family that does allow efficient solutions. For example, while we show that finding a Hamiltonian
path requires Q(nQ) rounds in the worst case, in random graphs G, ;, there exist fast algorithms,
with the exact complexity depending on the probability p [13,[21,/48]. When we focus on bounded-
degree graphs, there exist efficient constant approximations for many optimization problems, such
as MaxIS and MDS, whereas in general graphs such results are currently not known in the CONGEST
model. We show that when it comes to exact computation, even in bounded-degree graphs many

problems are still difficult. Specifically, to solve MaxIS or MVC in bounded-degree graphs one
would need Q(n) rounds, and this holds even in graphs with logarithmic diameter and maximum
degree 5. A similar result is shown for MDS. This is nearly-optimal, since all these problems can be
solved in O(m) = O(n) rounds in these graphs. Our lower bound here is again based on reductions,
but this time not necessarily between graph problems. To show a lower bound for MaxIS we use
a sequence of reductions between MaxIS and max 2SAT instances. Replacing a graph by a CNF
formula ¢ is useful since it allows us to use the power of expander graphs and replace ¢ by a new
equivalent CNF formula ¢’ where each variable appears only a constant number of times. This
reduction is inspired by [15,/41] and is the main ingredient that allows us eventually to convert our
graph to a bounded-degree graph. Once we have a lower bound for MaxIS, a lower bound for MVC
and MDS is obtained using standard reductions between the problems.
A succinct summary of our results in this section is the following.

e We show an Q(n) lower bound for solving MVC, MDS, MaxIS, and weighted 2-spanner on
bounded degree graphs.

Hardness of approximation. While solving problems ezactly seems to be a difficult task, one
can hope to find fast and efficient approximation algorithms. In the CONGEST model, currently the
best efficient approximation algorithms known for many problems achieve the same approximation
factors as the best approximations known for polynomial sequential algorithms. An intriguing
question is whether better approximations can be obtained efficiently. As a first step towards
answering this question, we show that in some cases even just approrimating the optimal solution
is hard.

The challenge in showing such a lower bound is that we need to create a gap. It is no longer
enough that the graph satisfies some predicate iff the inputs are, for example, disjoint, but rather
we want that the size of the optimal solution would change dramatically according to the inputs.
Creating gaps is also crucial in showing inapproxiambility results in the sequential setting, a prime
example for this is the PCP theorem which is a key tool for creating such gaps. In the distributed
setting, we may need a more direct approach. Several approaches to create such gaps are shown in
previous work. In weighted problems, sometimes we can use the weights to create a gap, as done in
the constructions of Das Sarma et al. [47]. In some cases, the construction itself allows showing a
gap. For example, if the chromatic number of a graph is either at most 3¢ or at least 4c¢ depending
on the inputs, it shows a lower bound for a (4/3 — ¢)-approximation [10]. Similar ideas are used
in lower bounds for approximating the diameter [1},/18.24,125]. Another option is to reduce from a
problem in communication complexity that already embeds a gap in it, such as the gap disjointness
problem [9], or to design a specific construction that produces a gap, as in the lower bound for
directed k-spanners [9].

We contribute two new techniques for this toolbox. Namely, we show that error-correcting
codes and probabilistic methods are useful for creating gaps also in the CONGEST model. Based
on these, we show that obtaining a (7/8 + €)-approximation for MaxIS requires Q(n?) rounds. As
we explain in Section [5| although MaxIS may be very difficult to approximate, we cannot use
the Alice-Bob framework to show any lower bound for approximation better than 1/2. For other
problems, however, we are able to show a lower bound for a stronger approximation. Specifically,
we show a near-linear lower bound for obtaining an O(logn)-approximation for the k-MDS problem
for £ > 2, and for several variants of the Steiner tree problem. Here, k-MDS is the problem of
finding in a given vertex weighted graph G = (V, F,w), a minimum weight set S C V such that
for all v € V, either v € S, or d(v,S) < k. We also show such a result for MDS, but with some
restrictions on the algorithm. For general algorithms, we show in Section [5| that we cannot use the

Alice-Bob framework to show any hardness result for approximation above 2. This simply follows
from the fact that if each one of Alice and Bob solves the problem optimally on its part, the union
of the solutions gives a 2-approximation.

Our results demonstrate a clear separation between the CONGEST and LOCAL models, since in
the latter there are efficient (1 + ¢)-approximations for MaxIS and k-MDS [20][[] Such a separation
for a local approzimation problem, a problem whose approximate solution does not require diameter
many rounds when the message size is unbounded, was previously known only for approximating
spanners [9).

A succinct summary of our results in this section is the following.

e We show an Q(n?) and an Q(n) lower bounds for computing a (% + €)-approximation for
MaxIS and a (% + €)-approximation for MaxIS, respectively, for any constant ¢ > 0. We
also show a nearly-linear lower bound for computing an O(logn)-approximation for weighted
k-MDS for all k > 2. We show similar results also for several variants of the Steiner tree
problem. In addition, we show such results for weighted MDS, assuming some restrictions on
the algorithm.

Limitations. Finally, we study the limitations of this general lower bound framework. While it
is capable of providing many near-quadratic lower bounds for exact and approximate computations,
we show that sometimes it is limited in showing hardness of approximation. In addition, we prove
impossibility of using this framework for providing lower bounds for exact computation for several
central problems in P, such as maximum matching, max flow, min s-t cut and weighted s-t distance.
Interestingly, we also show it cannot provide strong lower bounds for several verification problems,
which stands in sharp contrast to known lower bounds for these problems [47]. This implies that
using a fixed cut as in our paper, is provably weaker than allowing a changing cut as in [47].

One tool for showing such results is providing a protocol that allows Alice and Bob solve the
problem by communicating only a small number of bits. Such ideas are used in showing the
limitation of this framework for obtaining any lower bound for triangle detection [16], any super-
linear lower bound for weighted APSP [10] (recently proven to have a linear solution [6]), and any
lower bound larger than Q(y/n) for detecting 4-cliques [14].

We push this idea further, showing that a non-deterministic protocol for Alice and Bob, which
may be much easier to establish, can imply the limitations of the technique. We also show how to
obtain such protocols using a connection to proof labeling schemes (PLS).

1.2 Preliminaries

We denote by [n] the set {0,...,n —1}. To prove lower bounds on the number of rounds necessary
in order to solve a distributed problem in the CONGEST model, we use reductions from two-party
communication complexity problems. In what follows, we give the required definitions and the
main reduction mechanism.

1.3 Communication Complexity

In the two-party communication complexity setting [35], there is a function f : {0,1}% x {0, 1}/ —
{TRUE, FALSE}, and two players, Alice and Bob, who are given two input strings, z,y € {0, 1}¥,
respectively, and need to compute f(x,y) by exchanging bits according to some protocol w. The

!The algorithm for k-MDS follows from algorithm for MDS, since in the LOCAL model we can simulate an MDS
algorithm in the graph G*.

communication complezity CC(m) of 7 is the maximal number of bits Alice and Bob exchange in
7, taken over all possible pairs of K-bit strings (x,y).

For our lower bounds, we consider deterministic and randomized protocols. To show limitations
of obtaining lower bounds we also consider nondeterministic protocols, whose discussion we defer
to Section [pl In a randomized protocol, Alice and Bob can generate truly random bits of their own,
and the final output of Alice and Bob needs to be correct (according to f) with probability at least
2/3 over the random bits generated by both players.

The deterministic communication complexity CC(f) of f is the minimum CC(w), taken over
all deterministic protocols 7 for computing f. The randomized communication complexity CCR(f)
is defined analogously.

The main communication complexity problem that we use for our lower bounds is set dis-
jointness, DISJk, which is defined as DISJg(z,y) = FALSE if and only if there is an index
i €{0,..., K—1}such that z; = y; = 1. It is known that CC(DISJ) = Q(K) and CCF(DISJ) =
O(K) [35, Example 3.22]. The latter holds even if Alice and Bob are allowed to generate shared
truly random bits.

1.4 Family of Lower Bound Graphs

To formalize the reductions, we use the following definition which is taken from [10].

Definition 1.1. Family of Lower Bound Graphs

Given integers K and n, a Boolean function f : {0,1} x {0,1}% — {TRUE, FALSE} and some
Boolean graph property or predicate denoted P, a set of graphs {Gm,y = (V,Eyy) | z,y € {0, 1}K}
1s called a family of lower bound graphs with respect to f and P if the following hold:

1. The set of vertices V' is the same for all the graphs in the family, and we denote by Va, Vg a
fixed partition of the vertices.

2. Given z,y € {0,1}%, the only part of the graph which is allowed to be dependent on = (by
adding edges or weights, no adding vertices) is G[V4].

3. Given x,y € {0,1}, the only part of the graph which is allowed to be dependent on y (by
adding edges or weights, no adding vertices) is G[Vg].

4. Guy satisfies P if and only if f(x,y) = TRUE.
The set of edges E(V4,Vp) is denoted by Eey, and is the same for all graphs in the family.
We use the following theorem whose proof can be found in [10].

Theorem 1.1. Fiz a function f : {0,1}¥ x {0,1}¥ — {TRUE, FALSE} and a predicate P. If there
exists a family of lower bound graphs {G.,} w.r.t f and P then any deterministic algorithm for
deciding P in the CONGEST model takes QCC(f)/(|Ecut|logn)) rounds, and every randomized
algorithm for deciding P in the CONGEST model takes Q(CCE(f)/(|Ecut|logn)) rounds.

2 Near Quadratic Exact Lower Bounds

Here we show near-quadratic lower bounds for Minimum Dominating Set, max-cut, Minimum
Steiner Tree, Directed and Undirected Hamiltonian Path or Cycle, and Minimum 2-edge-connected
spanning subgraph.

2.1 Minimum Dominating Set

In the minimum dominating set (MDS) problem we are given a graph G, and our goal is to find a
minimum cardinality set of vertices D such that each vertex is dominated by a vertex in D: it is
either in D (thus dominates itself), or has a neighbor in D. The MDS problem is a central problem,
with many efficient O(log A)-approximation algorithms in the CONGEST model [26,33,34], where
A is the maximum degree in the graph. In this section, we show that solving the problem ezactly
requires nearly quadratic number of rounds, proving the following.

Theorem 2.1. Any distributed algorithm in the CONGEST model for computing a minimum dom-

2
inating set or for deciding whether there is a dominating set of a given size M requires Q(log—%)
rounds.

Note that our bound immediately applies to the vertex-weighted version of the problem. Also,
note that a super-linear lower bound for deciding whether there is a dominating set of a given size
M also implies the same lower bound for computing a minimum dominating set, since computing
the size of a given set of vertices takes O(D) rounds in the CONGEST model. Thus, it suffices to
prove the second part of the theorem, which we do by presenting a family of lower bound graphs.

Our construction is inspired by the lower bound graph construction for vertex cover from [10]. A
first attempt to obtain this lower bound could be by using the standard NP-hardness reduction from
vertex cover to MDS [41] (see also Section [3.3| for more details). However, this would require adding
a vertex on each edge in the original graph, blowing up the size of the graph, and consequently
showing only a near-linear lower bound. Instead, we show how to extend the construction from [10]
to obtain a family of lower bound graphs for the MDS problem. Since MDS is a very basic problem,
showing a lower bound for it allows us to later show lower bounds for additional problems such as
Steiner Tree and Hamiltonian cycle. While there are standard reductions to both problems also
from MVC, using them together with the Q(n?) lower bound from [10] can only show a near-linear
lower bound. Roughly speaking, this follows since for each edge in the lower bound graph for MVC
we must add at least one vertex, which blows up the number of vertices with respect to the inputs.
In MDS, we cover vertices and not edges which allows showing an Q(n?) lower bound. We next
describe our graph construction for MDS.

The family of lower bound graphs: Let £ be a power of 2, and build a family of graphs G,
with respect to f = DISJ;2 and the following predicate P: the graph G, , contains a dominating
set of size 4logk + 2.

The fixed graph construction: Start with a fixed graph G (see Figure [I|) consisting of
four sets of k vertices each, denoted A1 = {a} |0 < i < k—1}, Ay = {a} | 0 < i < k — 1},
By ={bi |0<i<k—1}, Bo = {b5 | 0 < i < k — 1}; we refer to each set as a row, and to
their vertices as row vertices. For each set S € {A;, Ay, By, Ba}, ¢ € {1,2} add three additional
sets of vertices Ts = {t |0 < h <logk — 1}, Fs = {ff |0 < h <logk — 1} and Us = {uk | 0 <
h < logk — 1}; we refer to these vertices as bit-gadget vertices. For each 0 < h < logk — 1 and
each ¢ € {1,2}, connect the 6-cycle (fﬁé,tgl,u%, fgé,t%e,u%l). The cycles are connec“ced to the
sets Ay, Ag, By, B2 by binary representation in the following way. Given a row vertex sj; € 9, i.e.,
s € {a,b}, 0 € {1,2},i € [n], let i), denote the h-th bit in the binary representation of i. Connect s}
to the set bin(s}) C (Fs UTs), defined as bin(s%) = {f% | i), = 0} U {t% | i), = 1}. Similarly, define
bin(sy) = {f§ | in =1} U {t§ | in = 0}.

Constructing G, , from G given z,y € {0, 1}’“2: We index the strings z,y € {0, 1}”“2 by pairs
of the form (7, j) such that 0 <i,j < k— 1. Now we augment G in the following way: For all pairs

S S
log k—1 Llogk—1 logk—1 logk—1 Llogk—1 logk—1
Fa, ta, Ua, 5, i, I
F Ay TA2 U A, F B, T32 U B,

Figure 1: The family of lower bound graphs for MDS

(i,7), we add the edge (al, ag) if and only if z; ; = 1, and we add the edge (b¢, bJQ) if and only if
yi,j =1.

Lemma 2.1. Given z,y € {0, 1}k2, the graph G, has a dominating set of size 4logk + 2 if and
only if DISJ.2(x,y) = FALSE.

Proof. Assume first that DISJy2(2,y) = FALSE, and let (i, j) be the index s.t. x(; j) = yq ;) = 1, i.e.,
the edges {at, ag}, {bt, b%} are both in the graph G, ,. Construct a dominating set D containing
at, bt and all the vertices in bin(a?), bin(a?), bin(b?), bin(b3). This set is of size 4log k+2. By taking
all of bin(a}) and bin(b}), we made sure all the bit-gadget vertices of Fa,,Ta,,Ua,, FB,,T5,,Us,
are dominated, and similarly, all the other bit-gadget vertices are dominated as well. ‘

For the row vertices, first observe that a%,b%, al, b} are dominated by D using the edges {a!, a}}
and {b’i,bg}. For the other row vertices, consider w.l.o.g. some vertex alf where 7' # i, so there
exists 0 < h < logk — 1 s.t. @) # ip. If fﬁl € bin(at), then tffh € bin(a}) ¢ D, and a! is
dominated; similarly, if t}}h € bin(a}) then a?l/ is dominated as well. Thus, D is a dominating set of
size 4log k + 2.

For the other direction, assume G, , has a dominating set D of size 4logk + 2. For each

0 < h<logk—1and? € {1,2}, the only way to dominate two vertices u’}u and u’él is by two

different bit-gadget vertices, so D must contain at least 4logk bit-gadget vertices. We show that
this is the exact number of bit-gadget vertices in D by eliminating all other options.

If D has 4 log k+2 bit-gadget vertices and no row vertices, then there is aset S € {41, As, By, Ba}
such that Fig UTg U Ug contains at most log k vertices of D. In this set, D contains at most one
vertex out of any consecutive triple { fs,th,us} If it contains more than one vertex in such a
triplet, it contains no vertices of some other triple { fh ,th ,us} and as t cannot be dominated
by row vertices, it is not dominated at all. So, for some s}, € S, there is a set of the form bin(s})
in Fg UTg U Ug, which does not intersect D. As D does not contain any row vertices, it does not
contain sé or any of its neighbors, so this vertices is not dominated.

If D has 4logk + 1 bit-gadget vertices, and exactly one row-vertex, assume w.l.o.g. that this
row vertex is in A;. For each other set S € {Ay, By, Ba}, D must contain at least one vertex from
each triplet { fg,th,ug} in order to dominate t%, and thus Fg U Ts U Ug contains at least log k
vertices of D. Hence, for at least one of the set S € {B1, B2}, Fs UTs U Ug contains exactly log k
vertices of D. The argument now follows the same lines as the previous: There is a set of the form
bin(b}) that does not intersect D, and as D does not contain vertices from By and Ba, b is not
dominated.

We are left with the case where D has exactly 4logk bit-gadget vertices and 2 row vertices.
This requires a sequence of claims, as follows.

The two row vertices are in different sets. If the two row vertices are in the same set, w.l.o.g. Ay,
then D must contain at least one vertex from each triplet fﬁz,t}}‘z,uﬁlz, in order to dominate tf}b.
Since D contains exactly 2 vetrices of every 6-cycle, it can contain most one vertex of each triplet
fg2, BQ,u%2. Hence, there is a vertex by, € By such that bin(b}) does not intersect D. Since no
vertex of By or By is in D, the vertex bé is not dominated, a contradiction.

D contains exactly one of every pair of neighbors fg,tg. Assume w.l.o.g. that fﬁl,tf}h are both
in D, so in the same 6-cycle, fg1’t%1 must both be dominated by vertices of By. But no single
vertex in b} € B; has both fhyt%l in bin(b?), and D cannot contain two vertices of Bj.

For each pair {fﬁé, fgé}, and for each pair {the,t%e}, either both vertices are in D or both are
not in D. If fﬁe is in D then by the previous claim tfge is not, so fge must be in D in order to
dominate ufge; similarly, if fgl isin D then fﬁe must be in D as well. If t};&e isin D then fﬁé is not,
then t%l must be in D in order to dominate u%@; similarly, if t%{} is in D then tfge must be in D.

As exactly 2 of every 6-cycle vertices are in D, from each pair { fg,tg} at most one vertex is
in D. Choose a vertex not in D from each pair {le,tﬁl}, and let a} be the vertex such that
bin(a?) is the set of these vertices. Hence, bin(a}) does not intersect D, and a! is not dominated by
bit-gadget vertices. For each vertex f ﬁ that is not in D, the corresponding vertex f]g is also not
in D, and similarly for vertices of the form th Thus, bin(b%) also does not intersect D, and b} is not
dominated by bit-gadget vertices. Similarly, let a} be a vertex such that b1n(a2) does not intersect
D, and conclude bin(b%) also does not intersect D. Thus, we have four vertices, al, L ad, b] that
are not dominated by bit-gadget vertices, and instead, must be dominated by row vertices. It is
impossible that both A; and A have vertices from D, as then there are no vertices from D in
B; and By and b} and b} are not dominated; similarly, it is impossible that both B; and B have
vertices from D. So, one of a} and a% must be in D, and dominate the other, and either way the
edge {ai, a%} must exist in G, ,; similarly, the edge {b%, b%} must exist in G ,. We thus conclude
that z(; jy =y ;) = 1, as claimed. O

Now all that is left in order to prove Theorem is to use Theorem

Proof. We use Theorem For that purpose we divide the graph G, into V4 and Vp in the

following way. Define V4 = A; U Aa U Fy, UTy, UUa, UFy, UT4, UU,,, and define Vg =V \ Vy4.

Since |E¢yt| = O(log k) we get by using Theorem |1.1|a lower bound of {2 (%) rounds for the

problem of deciding whether there is a dominating set of size 4logk + 2. As n = O(k), the proof
is completed. O

2.2 Hamiltonian Path and Cycle Lower Bounds and applications

In this Section, we show near-quadratic lower bounds for Hamiltonian path and cycle in directed and
undirected graphs, and for the minimum 2-edge-connected spanning subgraph problem (2-ECSS).

While the Hamiltonian path problem is not an optimization problem, it is known to be NP-hard,
e.g., through a reduction from minimum vertex cover [27]. A lower bound of Q(y/n + D) is known
for the wverification version of the problem [47], and Hamiltonian paths can be found efficiently in
random graphs [13,21,148]. However, in general graphs we show an Q(n?) lower bound.

We also show that this directly shows hardness of unweighted 2-ECSS. While approxima-
tion algorithms to the problem include an O(n)-round 3/2-approximation [32], an O(D)-round
2-approximation [§8] and an O(logHO(l) n)-round O(1)-approximation [42], we show that solving
the 2-ECSS problem exactly requires near-quadratic number of rounds.

2.2.1 Directed Hamiltonian Path

Intuition for the construction: Imagine traversing our lower bound graph for MDS in search
for a Hamiltonian path, to which we add start and end vertices, where the path begins and ends,
respectively. We need the existence of such a path to determine if the input strings x, y are disjoint,
so our approach is to traverse the bit-gadget vertices and the row vertices such that after a certain
prefix, it remains to use a single edge from A; to As followed by a single edge from By to Bs in
order to each end. The crux is to guarantee that these two edges have corresponding indexes. Since
row vertices in different sides are not connected, we add a special vertex that is reachable from all
Ao vertices, leading to another special vertex that is connected to all By vertices, which adds a
single edge to Fiy.

The key challenge is guaranteeing that we can use such two edges iff they have the same indexes,
implying that we need the prefix of the path to exclude exactly such 4 vertices. The second challenge
is that there are more row vertices than bit-gadget vertices, so we cannot simply walk back and
forth between these two types of vertices without reaching the bit-gadget vertices multiple times.

Our high-level approach for addressing these two issues is as follows (see Figure . For each
row vertex in S € {A1, Ag, By, Ba} and each of its corresponding 2 log k bit-gadget vertices, we plug
in a gadget of constant size that replaces the bit-gadget vertices altogether. Further, we traverse
the gadgets in an order that corresponds to some choice of TRUE and FALSE for each index of row
vertices. The latter is what promises that we reach end iff we use a single edge from A; to Az and
a single edge from B; to By with corresponding indexes. However, since the number of gadget-
vertices is proportional to 2logk times the number of row vertices k, we now face an opposite
problem: there are more gadget vertices than row vertices, and the latter play a role in multiple
gadgets. Moreover, if we chose to traverse the gadgets that correspond to, say, a TRUE choice for
some index, we still need to visit the gadget vertices of the FALSE choice and we need to do so
without visiting its respective row vertex. The power of the gadget is that it is designed to allow
us to choose whether the path wisits the row vertex of that gadget, or skips it and continues to the
next gadget. This has two main strengths: First, it nullifies the issue that is caused by having row
vertices appear in multiple gadgets. Second, it allows us to traverse all the gadget vertices that do
not correspond to the TRUE / FALSE choices that we make. This eventually allows us to obtain our

10

Figure 2: Hamiltonian path graph construction for k = 4.

desired claim, that a directed Hamiltonian path exists if and only if DISJx(x,y) = FALSE for an
appropriate K that allows a near-quadratic lower bound.

The family of lower bound graphs: Given k (we assume for simplicity that k is a power of
2) we build our family of graphs G, , with respect to f = DISJ;2 and P being the predicate that
says that there exists in G, a directed Hamiltonian Path.

The fixed graph construction: See Figure[2|for an illustration. We define 2 vertices, start and
end, and 4 vertices si,s%, s}, s3. Further, there are 4k vertices a},ab, b%, b} for every 0 <i <k —1
(row vertices).

The vertex si has outgoing edges to all vertices a¢ for 0 < i < k—1. The vertex s? has incoming
edges from all vertices ab for 0 < i < k — 1, and has an outgoing edge to si. The vertex s% has
outgoing edges to all vertices b% for 0 < i < k — 1. The vertex s3 has incoming edges from all
vertices b, for 0 < i < k — 1, and has an outgoing edge to end.

For every 0 < ¢ < 2log(k) — 1 we define a box C.. The box contains vertices g. and r., and
for every ¢ € {t, f} and every 0 < d < k — 1 it contains 4 vertices: E;’d (launch vertices), wheelg’d

(wheel vertices), o5 (skip vertices), and S5 (burn vertices).

11

A crucial detail here is that the wheel vertices are not additional vertices, but they are simply
reoccurrences of the row vertices, as follows. For every 0 < i < k — 1, it holds that

e ai = wheelf’d, for all ¢, d such that i is the d-th index whose c-th bit is 1, and a} = wheel;’d,
for all ¢, d such that 7 is the d-th index whose c-th bit is 0.

o b = wheeltc’d, for all ¢,d such that i is the (d — (k/2))-th index whose c-th bit is 1, and
bi = wheel;’d, for all ¢, d such that i is the (d — (k/2))-th index whose c-th bit is 0.

o ab = wheel?™, for all ¢,d such that i is the d-th index whose (¢ — log(k))-th bit is 1, and
al = wheel;’d, for all ¢, d such that i is the d-th index whose (¢ — log(k))-th bit is 0.

o b = wheelf’d, for all ¢,d such that i is the (d — (k/2))-th index whose (¢ — log(k))-th bit is
1, and b} = wheel;’d, for all ¢, d such that 7 is the (d — (k/2))-th index whose (¢ — log(k))-th
bit is 0.

Within each box C, the vertices g. has outgoing edges to Eg’o for both possible values of gq. For

each 0 < d < k — 1, the vertex ﬁg’d has outgoing edges to U;’d and to wheelg’d. The vertex wheelf;’d

4 and Bg’d have outgoing edges between each other in

_ pcd+1
= Eq

has an outgoing edge to ﬁg’d. The vertices og’

both directions. In addition, o5 and 85 have outgoing edges to a vertex v, such that v
ifd#k—1,v=ge1ifd=Fk—1and ¢ # 2log(k) — 1, and v = ryjpe)—1 if d = k — 1 and
¢ = 2log(k) — 1. Finally, the vertex Bg’d has an outgoing edge to a vertex u, such that u = Eg’d_l
ifd#0,and u=7r.—1ifd=0,c #0.
Finally, the vertex start a single outgoing edge into gg, and the vertex si has two incoming
0,0
edges, from B, for q € {t, f}.

Constructing G, , from G given z,y € {0, 1}’“2: We index the strings z,y € {0, 1}”“2 by pairs
of the form (i, j) such that 0 <i,j <k —1. Now we augment G in the following way: For all pairs
(i,7), we add the edge (ai,al) if and only if z;; = 1, and we add the edge (b,b}) if and only if
yi,j =1.

Proving that G,, is a family of lower bound graphs: For every ¢ € {t,f}, 0 < ¢ <
2log(k) — 1, and 0 < d < k — 1, we define the following. We first define three types of (q,c,d)-
forward-steps: A (q, ¢, d)-wheel-forward-step is a subpath (Eg’d,wheelg’d,Bg’d,ag’d,v), such that if
d # k —1 then v = Eg’dﬂ, if d =k—1and ¢ # 2log(k) — 1 then v = g.41, and otherwise,
V= Tol0g(k)—1- A (g, ¢, d)-sigma-forward-step is a subpath (Eg’d, ag’d, v), such that if d # k — 1 then
v = Eg’dH, if d =k —1 and ¢ # 2log(k) — 1 then v = g.41, and otherwise, v = ry155(1)—1 (We will
show that a Hamiltonian path cannot contain sigma-forward-steps). A (q, ¢, d)-beta-forward-step is
a subpath (¢5%, 65, 5% v), such that if d # k — 1 then v = £ if d = k — 1 and ¢ # 2log(k) — 1
then v = gc41, and otherwise, v = ra16g(k)—1-

Finally, we define: A (q,c,d)-backward-step is a subpath (ﬁg’d,v), such that if d # 0 then

v = Ké’d_l, if d =0,c# 0 then v =r._1, and otherwise, v = s1.

Claim 2.1. If DISJ(z,y) = FALSE then G4, has a Hamiltonian path.

Proof. 1fDISJ(z,y) = FALSE then there are row vertices a}, a}, b}, bj2 such that the edges (a¢, aé), (b, b%)
are in Gz . Denote by bin(i) the set of indexes ¢ in which the ¢—th bit in the binary representation
of i is 1.

12

The Hamiltonian path is as follows. From start it goes into gg which is in the first box Cy. From
9o, if 0 € bin(i) then we go into the launch vertex %0 and otherwise we go into the launch vertex E? o
In general when the path enters g5, 0 < s < log(k)—1,if s € bin(i) then it goes to the launch vertex
Ef and otherwise to the launch vertex ¢’ %), When the path enters g,, log(k) < s < log(k) — 1, if
s € bin(j) then it goes to the launch vertex 6?0 and otherwise to the launch vertex £°). We refer
to these choices of edges as chooses.

For every 0 < s < 2log(k)—1, from the launch vertex 62’0 that was reached by chooseg, the path
proceeds by (g, s, d)-forward-steps until it reaches gsi1 if s # 2log(k) — 1, or rige()—1 otherwise.
These forward steps are either (g, s, d)-wheel-forward-steps or (g, s, d)-beta-forward-steps, such that
for every 0 < d < k — 1, the step is a (g, s, d)-wheel-forward-step if and only if wheelf,’d is not yet
visited.

At the end of the above, the path reaches 7,y (x)—1. For every 0 < s < 2log(k) — 1, from rs the
path goes into ZZ}k_l such that ES’O is the edge chooses and ¢’ # q. For every 0 < d < k — 1, the
path then takes (¢, s, d)-backward-steps until it reaches rg_q if s # 0, or 3% otherwise.

The above traversal has the property that it visits all row vertices through one of their wheel
copies, except for exactly 4 row vertices: al, al, bl, and b2 This is because of our choice of chooseg
according to the binary representations of ¢ and j. ‘

Now, from si the path continues to a}, from which it continues to a} through the edge that
exists given the input x. From there the path continues to s? and to s}, from which it goes into
bi. From there it continues to b} through the edge that exists given the input y. Finally, the path
goes into s3 and ends in end. O

We now claim that the opposite also holds.
Claim 2.2. If DISJ(z,y) = TRUE then G, does not have a Hamiltonian path.
To prove Clai we show that the following hold for any Hamiltonian path P in G .

Claim 2.3. For any Hamiltonian path P in G4, for every g € {t, f}, 0 < ¢ < 2log(k) — 1, and

0<d<k-—1, if P goes from a launch vertex Kg’d to wheelg’d, then it contains the (q, c,d)-wheel-
forward-step.

Proof. Fix g € {t, f}, 0 < ¢ <2log(k) —1,and 0 < d < k — 1. Assume that P goes into E;’d and
continues to wheelCd. Assume towards a contradiction that the next Vertex that P goes into is
not ﬂq Then P is not Hamiltonian because it never reaches either of oq | q . This is because
the only incoming edges to these two vertices are from each other, or from Eg and wheelg d, which
have already been visited by P. This means that from wheelg’d, the path goes to Bg’d. The same
argument gives that P must then continue to ag’d, as otherwise it never reaches it, because it
already visited all the vertices at its incoming edges. From ag’d the path must then continue to
Eg’dH ifd # k—1, or to g.+1 otherwise, unless ¢ = 2log(k) — 1 in which case the path must continue
t0 T2 10g(k)—1-]

Claim 2.4. For any Hamiltonian path P in G, for every g € {t, f}, 0 < ¢ < 2log(k) — 1, the
following hold:

1. If P goes from g. to EZ’O, then it must continue by a sequence of (q, c,d)-forward-steps until
it reaches get1 if ¢ # 2log(k) — 1, or ra10g(k)—1, Otherwise.

2. If P goes from r. to Zg’k_l, then it must continue by a sequence of (q,c,d)-backward-steps
until it reaches .1 if ¢ # 0, or si, otherwise.

13

Proof. The proof is by induction on c. Let ¢ = 0, and assume that P goes from gg to 62’0. If P does
not continue with a (g, 0,0)-forward-step, it means that it goes to 62’0, either through wheelg’o or
through 03’0, and from there to s%. Since other vertices, e.g., 68’1 must be visited, at some point
after visiting si, the path must move into some wheelgi’d/ from its row copy. But combining the fact

that s is already visited with Claim gives that P can never go back into a row copy, and hence
can never reach the end node. This means that P continues from 52’0 with a (g, 0, 0)-forward-step.
Now, we proceed with an induction over d, and let 0 < d < k — 1 be the minimal such that P
does not take a (g, 0, d)-forward-step. This means that from Kg’d, the path P goes to ﬂ(q)’d, either
through wheelg’d or through ag’d, and then continues to Eg’d_l Kg’d_l
is already visited, which is a contradiction. This gives Part

Next, assume that P goes from rg to Eg’k_l. By Part |1| for ¢ = 0, it must be the case that
from go the path continued by a sequence of (¢, 0, d)-forward-steps until it reached g;, for ¢’ # ¢,
as otherwise, ég’k_l would have already been visited. But then from Eg’k_l, the path P cannot
continue with a (g,0,k — 1)-forward-step because g¢; is already visited, and hence it continues
with a (gq,0,k — 1)-backward-step. Now, we proceed with a backward induction over d, and let
0 < d < k —1 be the maximal such that P does not take a (g, 0, d)-backward-step. This means
that from 58’d, the path P goes to ﬁg’dﬂ, either directly or through o0 But by the maximality
of d, Eg’dH is already visited, which is a contradiction. This gives Part

This proves the claim for ¢ = 0, and we now continue by assuming towards a contradiction that
0 < ¢ < 2log(k) — 1 is the minimal for which the claim does not hold. First, assume that P goes
from g. to 68’0. If P does not continue with a (g, ¢, 0)-forward-step, it means that it goes to ﬂfj’o,
either through wheels” or through 05°, and from there to r._;. By the minimality of ¢, the path P
then continues by backward-steps all the way to s%. Since other vertices, e.g., Efl’l must be visited,

. But by the minimality of d,

at some point after visiting s%, the path must move into some wheelgi’d/ from its row copy. But
combining the fact that s} is already visited with Claim gives that P can never go back into
a row copy, and hence can never reach the end node. This means that P continues from 65’0 with
a (q,c,0)-forward-step. Now, we proceed with an induction over d, and let 0 < d < k — 1 be the
minimal such that P does not take a (g, ¢, d)-forward-step. This means that from Eg’d, the path
P goes to Bg’d, either through wheelg’d or through af;’d, and then continues to Eg’d_l. But by the
minimality of d, Eé’dil is already visited, which is a contradiction. This gives Part

Next, assume that P goes from r. to Kg’k_l. By Part [1] for ¢, it must be the case that from
ge the path continued by a sequence of (¢, ¢, d)-forward-steps until it reached g.i1, for ¢’ # ¢,
as otherwise, /5" would have already been visited. But then from (5% the path P cannot
continue with a (g, c,k — 1)-forward-step because g.11 is already visited, and hence it continues
with a (g, ¢, k — 1)-backward-step. Now, we proceed with a backward induction over d, and let
0 < d < k—1 be the maximal such that P does not take a (g, ¢, d)-backward-step. This means that
from 85, the path P goes to £5%™ cither directly or through a. But by the maximality of d,

c,d+1
gq

is already visited, which is a contradiction. This gives Part [2| and completes the proof. [

Finally, we show that sigma-forward-steps cannot occur.

Claim 2.5. For any Hamiltonian path P in Gy, for every q € {t, f}, 0 < c < 2log(k) — 1, and
0 <d<k—1, the path P does not contain a (q, c,d)-sigma-forward-step.

Proof. The proof is by induction on ¢. For the base case ¢ = 0, assume that P contains a (g, 0, 0)-
sigma-forward-step. Then in order to visit Bg’o, the path must enter it though wheelg’o. By

Claim this must happen after s} is visited, and therefore from 68 0 the path must continue to 08 0

14

or to 52’1. But they are both visited from 52’0 by the (g, 0, 0)-sigma-forward-step, a contradiction.
We now proceed by induction on 0 < d < k—1. Assume that d is the minimal such that P contains
a (g, 0, d)-sigma-forward-step. Then in order to visit /3«(1) ’d, the path must enter it though wheelg’d.
By Claim this must happen after s} is visited, and therefore from Bg’d the path must continue
to Jg’d or to the v that is reached by the (g, 0, d)-sigma-forward-step, which are both impossible.
We now proceed with the induction step, and let 0 < ¢ < 2log(k) — 1 be the smallest such that
P contains a (q, ¢, d)-sigma-forward-step. If d = 0, then in order to visit Bg’o, the path must enter it
though wheelg’o. By Claim this must happen after s} is visited, and therefore by Claim H we
have that r._; is visited by ﬁ;}o such that ¢/ # ¢. Therefore from 85", the path must continue to

O'g’o or to the v that is reached by the (g, ¢, 0)-sigma-forward-step, which are both impossible. We
now proceed by induction on 0 < d < k — 1. Assume that d is the minimal such that P contains a
(¢, ¢, d)-sigma-forward-step. Then in order to visit 45%, the path must enter it though wheelS®. By
Claim this must happen after si is visited, and therefore from ﬂg’d the path must continue to
ag’d or to the v that is reached by the (g, ¢, d)-sigma-forward-step, which are both impossible. [

Proof of Claim [2.2t We assume that P is a Hamiltonian path in G, and show that DISJ(z,y) =
FALSE.

By Claims and it must be that P goes from start to gg, from there it goes to 52’0
for some choice of g € {t, f}, and continues to g1 by (g, 0, d)-forward-steps. In general, it must go
from every g. to some EZ’O for some choice of ¢ € {t, f}. Denote by choose. these choices, according
to the path. This reaches ryog(x)—1, from which P must continue by backward-steps all the way to
o,

No matter what choices P took for the choose. values, there are at least 4 row vertices that are
not yet visited by it. These are the vertices al, a%, b, and b;, such that the 7 is the index whose
binary representation appears as a concatenation of the bits that represent the choose. decisions
for 0 < ¢ <log(k) — 1, and j is the index whose binary representation appears as a concatenation
of the bits that represent the choose. decisions for log(k) < ¢ < 2log(k) — 1. If from sj the path
does not continue to a¥, then it can never reach this vertex because all vertices with edges that are
incoming to it are already visited by P. So from s1 the path goes to a"i. A similar argument gives
that then P must go into a). If this happens, then z; ; = 1. From aJ the path must continue to
52 and from there to s}, because all of the outgoing edges from the wheel copies of aé are already
visited. A similar argument gives that now P must go to b} and to bj2 in order to continue to s3 and
to end. But if this edge exists, then y; ; = 1, which implies that DISJ(x, y) = FALSE, as needed. [

Based on the above, we now show the near-quadratic lower bound for directed Hamiltonian
path.

Theorem 2.2. Any distributed algorithm in the CONGEST model for finding a directed Hamil-
tonian path or deciding whether there is a directed Hamiltonian path in the input graph requires
Q(n?/log*n) rounds.

Proof. Claims and give that G, as constructed is indeed a family of lower bound graphs
for the problem of finding a directed Hamiltonian path. The number of vertices in the graphs is
n = O(klogk), which implies that k¥ = O(n/logn), and the size of E.y is O(logk) = O(logn).
The proof of Theorem [2.2] is concluded by applying Theorem O

2.2.2 Hamiltonian Cycle and Undirected variants

We next extend Theorem to the case of a cycle and to the undirected variants, as follows.

15

Theorem 2.3. Any distributed algorithm in the CONGEST model for finding a directed Hamiltonian
cycle or for deciding whether these such in the input graph requires Q(n2/log4 n) rounds.

Theorem 2.4. Any distributed algorithm in the CONGEST model for finding an undirected Hamil-
tonian path or cycle or deciding whether there is such in the input graph requires Q(n2/log4 n)
rounds.

In order to prove the undirected cases in Theorem [2.4] we employ folklore reductions from the
sequential model, and show how can we implement them efficiently in the CONGEST model. But
first, we prove the lower bound for the case of a directed Hamiltonian cycle, by making a slight
modification to the fixed graph construction of the family of lower bound graphs of the directed
Hamiltonian path.

Claim 2.6. Let G,,, z,y € {0, 1}k2 be in the family of lower bound graphs we constructed for
the directed Hamiltonian path lower bound, and denote by ch’y the graph obtained from Gy, by
adding a single vertex middle and connecting the edges (middle, start) and (end,middle). Then
G;’y contains a directed Hamiltonian cycle iff Gy, contains a directed Hamiltonian path.

Proof. Assume G, contains a directed Hamiltonian path, which implies that DISJ(x,y) = FALSE
by Claim By the proof of Claim there is a Hamiltonian directed path P in G, in which
the first vertex is start and the last vertex is end. Now in G , we concatenate P to the path
(end, middle, start), and denote this cycle by C. Every vertex in Ggw is visited exactly once in C,
which begins and ends in start. Thus C' is a directed Hamiltonian cycle in ch’y.

For the other direction, assume there is a directed Hamiltonian cycle in ch’y, denoted by C.
Since middle has to be visited in C', we can deduce that C contains the sub-path (end, middle, start),
which implies that it also contains a sub-path P from start to end. Since C' is Hamiltonian, then
so must be P, and all that is left to notice is that P does not visit the vertex middle, and thus P
is a directed Hamiltonian path in G ,. 0

Proof of Theorem 2.3t From Claims[2.2]2.1)and we immediately deduce that DISJ(z,y) =
FALSE iff G, , contains a directed Hamiltonian cycle.

We assign middle to V4, and so the size of the cut between Alice and Bob increases by exactly
1. The proof of Theorem is concluded by applying Theorem O

In order to prove Theorem [2.4] we show how to implement sequential reductions efficiently in the
CONGEST model. Given a directed graph G = (V, E), construct the undirected graph G’ = (V', E’),
in which

V' = {Um| v e V} U {Uout| v E V} U {Umiddle| vE V}7
and

E = {(Uina Umiddle)| (S V} U {(Umiddlea Uout)| v E V} U {(Uouta 'Um)| (ua'U) € E} .

This is exactly as in the classic reduction from directed Hamiltonian cycle to Hamiltonian
cycle [27]. Now we prove the following lemma.

Lemma 2.2. Given an algorithm A with round complexity T'(n) that decides whether a given
undirected graph has a Hamiltonian cycle, there is an algorithm B that decides whether a given
directed graph has a Hamiltonian cycle, with round complexity O(T'(n)).

Proof. Given the directed graph G, algorithm B simulates G’ and runs A on it and answers ac-
cordingly. Each vertex v simulates vin, Umiddie, Vout, and each round of A is simulated as follows

16

for a given vertex v. For all messages sent on edges of the form (uoyt, vin), v sends the appropri-
ate message to u in G in a single round. This is possible since by the reduction we know that
(u,v) € E, and in a single round v sends at most one message on each edge. Messages on the
edges (Vin, Vmiddie)s (Vmiddies Vout) Te€quire no communication and can be simulated locally by v. In
the second round, for all messages sent on edges (Vout, Uin), v sends the message to u in a single
round. Thus, a single round in G’ is simulated in only 2 rounds in G, and hence simulating A on
G’ takes 2 - T'(3n) rounds in G, and we return that G has a directed Hamiltonian cycle iff A finds
a Hamiltonian cycle in G’.

Since T'(n) = O(n?), we deduce that 2-T(3n) = O(T(n)). Correctness is due to the correctness
of the described reduction, and B has round complexity O(T'(n)), which concludes the proof. [

Now consider the following known reduction from Hamiltonian cycle to Hamiltonian path [27].
Given an undirected graph G = (V, E), let v € V be some arbitrary vertex, and construct an
undirected graph G’ = (V’, E’), where

V' = V\ {’U} U {111,112, S,t} ,

and
E = {(u,w)| u,w € V\ {v}}U{(v;,u)| i € {1,2}, (v,u) € E}U{(s,v1), (v2,¢)}.

Lemma 2.3. Given an algorithm A with round complexity T'(n) that decides whether a given
undirected graph has a Hamiltonian path, there is an algorithm B that decides whether a given
undirected graph has a Hamiltonian cycle, with round complexity O(T(n) + D).

Proof. Given G, our algorithm B simulates G’, and runs A on it and answers accordingly. First,
we find the vertex with the lowest ID in the graph in O(D) rounds. This can be done for example
by letting each vertex broadcast the lowest ID value it knows so far in each round. Denote this
vertex by v. The vertex v simulates vy, vo, s,t. The rest of the vertices simulate themselves. Now,
given a round of A, each message on edges of the form (u,w) where u, w # v is simulated in a single
round. The mess