
Improved Distributed Approximations for Minimum-Weight

Two-Edge-Connected Spanning Subgraph

Michal Dory
Technion, Israel

smichald@cs.technion.ac.il

Mohsen Ghaffari
ETH Zurich, Switzerland

ghaffari@inf.ethz.ch

Abstract

The minimum-weight 2-edge-connected spanning subgraph (2-ECSS) problem is a natural
generalization of the well-studied minimum-weight spanning tree (MST) problem, and it has
received considerable attention in the area of network design. The latter problem asks for a
minimum-weight subgraph with an edge connectivity of 1 between each pair of vertices while
the former strengthens this edge-connectivity requirement to 2. Despite this resemblance, the
2-ECSS problem is considerably more complex than MST. While MST admits a linear-time
centralized exact algorithm, 2-ECSS is NP-hard and the best known centralized approximation
algorithm for it (that runs in polynomial time) gives a 2-approximation.

In this paper, we give a deterministic distributed algorithm with round complexity of Õ(D+√
n) that computes a (5+ε)-approximation of 2-ECSS, for any constant ε > 0. Up to logarithmic

factors, this complexity matches the Ω̃(D +
√
n) lower bound that can be derived from the

technique of Das Sarma et al. [STOC’11], as shown by Censor-Hillel and Dory [OPODIS’17].
Our result is the first distributed constant approximation for 2-ECSS in the nearly optimal
time and it improves on a recent randomized algorithm of Dory [PODC’18], which achieved

an O(log n)-approximation in Õ(D +
√
n) rounds. Our algorithm also gives a deterministic

Õ(D +
√
n)-round (4 + ε)-approximation for the closely related weighted tree augmentation

problem (TAP), a similar result was known before only for the unweighted variant of the problem.
We also present an alternative algorithm for O(log n)-approximation, whose round complex-

ity is linear in the low-congestion shortcut parameter of the network—following a framework in-
troduced by Ghaffari and Haeupler [SODA’16]. This algorithm has round complexity Õ(D+

√
n)

in worst-case networks but it provably runs much faster in many well-behaved graph families of
interest. For instance, it runs in Õ(D) time in planar networks and those with bounded genus,
bounded path-width or bounded tree-width.

ar
X

iv
:1

90
5.

10
83

3v
2

 [
cs

.D
S]

 3
 J

un
 2

01
9

1 Introduction and Related Work

There is a large body of deep and beautiful work on developing centralized (approximation) al-
gorithms for various network design problems. These are typically in the format of finding a
minimum-weight subgraph H of a graph/network G, given certain weights for the network ele-
ments (edges or vertices), such that H satisfies some desired properties, e.g., certain connectivity
requirements. The motivation is simple and practical: suppose that using each communication link
of G has some cost (e.g., in monetary terms, to be paid to the provider). Which links should we use
to minimize our costs while still meeting all of our connectivity requirements? Unlike the extensive
amount of attention and progress on centralized algorithms for network design problems, develop-
ments on the distributed side have been much more scarce. Even for many of the basic problems
of the area, we do not have satisfactory distributed algorithms. There are only few exceptions.

One prominent exception is the case of the minimum-weight spanning tree (MST) problem.
This is the minimum-weight subgraph that ensures that all vertices are connected to each other.
MST has been one of the central problems in the developments of distributed graph algorithms,
starting from the pioneering work of Gallager et al. [11]. By now we have a relatively good under-
standing of the complexity of this problem: It can be solved in O(D +

√
n log∗ n) rounds [25], in

synchronous message-passing rounds with O(log n)-bit messages (i.e., the CONGEST model [28]),
where D denotes the network diameter and n denotes the number of vertices. Moreover, this bound

almost matches an Ω(D +
√

n
logn) lower bound, developed in the line of work of [7, 9, 29].

As soon as we take just one step beyond the basic MST problem, in the realm of network design
questions, we soon reach a problem for which we do not have a satisfactory algorithmic answer,
yet. This is the minimum-weight 2-edge-connected spanning subgraph (2-ECSS) problem, where
instead of asking all vertices to be connected, we ask them to be 2-edge-connected. That is, we
want that the subgraph has some minimal resilience to edge failures and even if one of the links
breaks, still all vertices are connected (without us having to recompute the subgraph). This is again
a natural and practical property to desire in networking, given the prevalence and frequency of link
failures. Although there has been recent progress on the distributed complexity of this problem,
the answers are still not satisfactory, and that is where the contribution of this paper comes in.
But before delving into our contribution, let us take a closer look at what is known about 2-ECSS.

The problem of computing a minimum 2-ECSS is known to be NP-hard, by a reduction from
the Hamiltonian cycle problem [5]. This already shows that 2-ECSS is much harder than the
closely related problem of MST, which admits a linear-time (randomized) centralized exact algo-
rithm [21]. The best known centralized (polynomial-time) approximation algorithms for 2-ECSS
give a 2-approximation [20,23]. These algorithms also give a 2-approximation for the more general
minimum-weight k-edge-connected spanning subgraph (k-ECSS). If all edge-weights are equal (i.e.,
in the unweighted case), then the best known approximation factors become 4/3 and 1+ 1

2k +O(1
k2

),
respectively, for 2-ECSS [31] and k-ECSS [10].

1.1 Our Contributions, in the Context of the Distributed State-of-the-Art

1.1.1 First Contribution — Better Approximation

Distributed state-of-the-art: Censor-Hillel and Dory [4] provided an algorithm that runs in
O(hMST +

√
n log∗ n) rounds and gives a 3-approximation of the min-weight 2-ECSS. Here, hMST

denotes the height of the minimum spanning tree; note that this can be as large as Θ(n), even in

1

networks with small diameter D. Thus, this round complexity can be much higher than the lower
bound of Ω̃(D+

√
n) [4,7]. Dory [8] provided a randomized algorithm that runs in the near-optimal

run time of Õ(D +
√
n) and provides an O(log n)-approximation.

Two comments are in order. First, for general k, one can obtain an O(log k)-approximation but
in round complexity of O(knD) [17, 32], and an O(k log n)-approximation in O(k(D log3 n + n))
rounds [8]. Both of these complexities are at least linear in the network size and well-above our
target round complexity. Second, let us discuss the special case where all the weights are equal,
i.e., when the problem is unweighted. This case is much easier and one can obtain a constant
approximation locally in (k log1+o(1) n) rounds [27]. Additionally, if we are interested in better
approximations for unweighted 2-ECSS, there is an O(D)-round 2-approximation [4] and an O(n)-
round 3/2-approximation [24].

Our First Result: Above we mentioned a 3-approximation with suboptimal time [4] and an
optimal time with suboptimal approximation of O(log n) [8]. Our first main result is to provide an
algorithm that gets the best of these two worlds (using a different technique), namely near-optimal
time and constant approximation. More concretely, we show the following result:

Theorem 1.1. There is a deterministic (5 + ε)-approximation algorithm for weighted 2-ECSS in

the CONGEST model that takes O((D +
√
n) log

2 n
ε) rounds.

We think that achieving a constant approximation in the near-optimal time is the main strength
of this result. Another advantage of our approach is that is gives a deterministic algorithm, while
the O(log n)-approximation algorithm of [8] was randomized. Our algorithm also gives an O((D+√
n) log2 n)-round (4+ε)-approximation for the closely related weighted tree augmentation problem

(TAP), a similar result was known before only for the unweighed variant of the problem [4].

1.1.2 Second Contribution — Faster Algorithm in Well-Behaved Networks

Our second contribution is in a different direction. Instead of setting the Ω̃(D +
√
n) lower-bound

as our target round complexity for all network topologies, we would like to have an algorithm that
runs no slower than this in the worst-case, but also ideally much faster in less pathological network
instances, e.g., in graph families which are more relevant in practical networking settings.

In this regard, we build on a framework set forth by Ghaffari and Haeupler [12], known as
low-congestion shortcuts. This framework was first used to give Õ(D) round distributed algorithms
for problems such as minimum spanning tree and minimum cut, in planar networks. Notice that
this can be much faster than the Õ(D +

√
n) bound. By now, it is known that the same concept

can be applied to a wider range of graph families. We mention just a sampling here: in networks
with bounded genus, bounded path-width, and bounded tree-width, one can also obtain an Õ(D)
round MST algorithm [12, 18]. In the much more general family of excluded minor graphs, one
can obtain an Õ(D2) round MST algorithm [19]. Finally, in Erdos-Renyi random graphs Gn,p with

p = Ω(log n/n), one can obtain an MST algorithm with complexity 2O(
√
logn) [14, 15].

These different round complexities come from the quality of the shortcuts that can be obtained
in the given graph family, and the time needed to construct them. Given a graph G = (V,E),
we say it admits α-congestion β-dilation shortcuts with construction time γ, if the following is
satisfied: for any partitioning of V into vertex-disjoint parts V1, V2, . . . , VN , each of which induced
a connected subgraph G[Vi], in γ rounds, we can construct subgraphs H1, . . .HN such that (A)
∀i ∈ {1, 2, . . . , N}, the subgraph G[Vi] + Hi has diameter at most β and moreover, (B) each edge

2

e ∈ E appears in at most α many of the graphs G[Vi] + Hi. It was shown by Ghaffari and
Haeupler [12] that MST and (1 + ε)-approximation of minimum cut can be solved in Õ(α+ β + γ)
time. It is notable that this shortcut complexity SC(G) = α+β+γ is in the worst-case O(D+

√
n),

as shown by Ghaffari and Haeupler [12], but it can be much better: for instance, as listed above,
we have SC(G) = Õ(D) for any network that is planar, bounded genus, bounded path-width, or
bounded tree-width [12,18]. Moreover, we have SC(G) = Õ(D2) in any excluded minor graph [19],
and SC(G) = 2O(

√
logn) � no(1) in any Erdos-Renyi graphs above the connectivity threshold [14,15].

Hence, to summarize, the framework of shortcuts and the parameter SC(G) = α + β + γ provide
a convenient way to develop algorithms that are in the worst-case as bad as the lower bound
Ω̃(D +

√
n), but can also run much faster, in a provable way, in many graph families of interest.

Our Second Result: Our second contribution is a distributed algorithm with such a graceful
complexity for O(log n)-approximation of the minimum weight 2-ECSS problem.

Theorem 1.2. There is a randomized distributed algorithm that computes an O(log n)-approximation
of weighted 2-ECSS in the CONGEST model and runs in Õ(SC +D) = Õ(α+ β + γ +D) rounds,
in any network G with diameter D where for any partition we can build an α-congestion β-dilation
shortcut, in γ rounds.

Theorem 1.2 gives an algorithm that always runs in at most Õ(D +
√
n) rounds, but it runs

provably much faster in many graph families of interest. In particular, it implies that we can obtain
an O(log n)-approximation in Õ(D) rounds in any network that is planar, bounded genus, bounded
path-width, or bounded tree-width, in Õ(D2) rounds in any network that is excluded minor, and
in 2O(

√
logn) rounds in Erdos-Renyi random graphs Gn,p with p = Ω(log n/n).

1.2 Technical overview

2-ECSS Approximation Boils Down to Tree Augmentation: Let T be the MST of G =
(V,E). To obtain the minimum weight 2-ECSS, we would like to compute a minimum weight set of
non-tree edges A ⊆ E that covers all the tree edges of T , according to the following definition: We
say that a non-tree edge e ∈ E covers a tree edge t ∈ T if (T ∪{e}) \ {t} is connected. We say that
a set of non-tree edges A covers the tree edge t ∈ T if A contains an edge that covers t. Note that
A covers all the tree edges iff T ∪A is 2-edge-connected. The problem of computing the minimum
cost set of edges A such that T ∪A is 2-edge-connected is known as the tree augmentation problem
(TAP) and it can be seen that any α-approximation for it, along with the MST, T , gives an α+ 1
approximation of 2-ECSS (See Section 2 for a formal statement). This follows from the following.
First, the MST is no more costly than the optimal 2-ECSS, as the latter contains a spanning tree
in it. Second, the optimal 2-ECSS also covers all the edges of the MST and thus its size is an
upper bound on the size of the optimal tree augmentation. Therefore, our objective boils down to
providing an approximation for TAP.

Tree Augmentation Can be Seen as a Set Cover Problem: TAP is a special case of the
well-studied minimum-cost set cover problem, where we want to choose a minimum-cost collection
of sets which cover all the elements [33]; in our case, this is choosing a minimum-cost collection
of non-tree edges A ⊆ E which cover all the tree edges. Of course, in the distributed setting,
this special case comes with its own difficulties, because the sets (in our case, non-tree edges) are
not directly connected to their elements (in our case, tree edges), which means we cannot resort

3

to standard distributed set cover algorithms in a naive way. However, distributed and parallel
algorithms for set cover can still form a basis for a distributed algorithm for TAP.

Previous Approaches and the Challenge: The connection between TAP and set cover is used
in [8], where it is shown that using a certain decomposition of the graph it is possible to solve TAP
by simulating a distributed greedy algorithm for set cover. This results in a randomized O((D +√
n) log2 n)-round O(log n)-approximation for weighted TAP and weighted 2-ECSS. However, since

the approximation ratio of the greedy algorithm for set cover is O(log n), we cannot obtain a better
approximation by simulating a general algorithm for set cover. Another option is to design a specific
algorithm that exploits the properties of TAP. This is done in [4], where it is shown how to obtain
a 2-approximation for weighted TAP and a 3-approximation for weighted 2-ECSS in O(h) rounds,
where h is the height of the tree we augment. However, in the worst case, h can be linear, and the
algorithm from [4] relies heavily on the fact that we need to scan the whole tree.

Our Approach: To overcome the above obstacles, we suggest a new algorithm for weighted TAP.
As in [8], our algorithm simulates an algorithm for set cover, however, we simulate an algorithm
that exploits the specific structure of the set cover problem we solve, which allows to get a constant
approximation. A crucial ingredient in the algorithm is a certain layering of the graph, that allows
to implement the algorithm efficiently, and results in a deterministic algorithm that is near-optimal
both in terms of the round complexity and in the approximation ratio obtained. In more detail,
our algorithm is inspired by a parallel algorithm for set cover instances with small neighbourhood
covers [1], and we next give the high-level intuition of this property in our case. As a first step, we
start by replacing the input graph G by a related virtual graph G′, having the additional property
that all the non-tree edges in G′ are between ancestors to descendants. This is useful, because now
the set cover problem we solve has an additional structure. Consider a path P with a root r, from
all the non-tree edges that cover a tree edge t ∈ P we can choose only two non-tree edges that
cover exactly the same tree edges in P . This is done by taking the edges that cover t and go to the
highest ancestor, or to the lowest descendant. If our tree is not a path, we can decompose it in a
certain way to O(log n) layers, each one is composed of disjoint paths, and a similar property now
holds for all the tree edges with respect to these paths. A generalization of this property called the
small neighbourhood cover property is studied in [1], where the authors show an efficient parallel
algorithm that obtains a constant approximation for set cover instances having this property. Our
general approach is to simulate the algorithm from [1] on the virtual graph G′. A major difference
in our setting is that the set cover graph is not given as an input, and in particular tree edges cannot
communicate directly with non-tree edges that cover them. We next explain how we overcome this.

Distributed Implementation: The algorithm from [1] is a primal-dual algorithm that is com-
posed of two main phases, the forward phase and the reverse-delete phase. For implementing the
forward phase, we show that the only communication pattern between tree edges and non-tree
edges in the algorithm is computation of aggregate functions. To implement such computations,
we bring to our construction a decomposition of the tree into segments used in [8, 16]. While sim-
ilar computations are done in [8], the main obstacle in our case is that our algorithm works with
a virtual graph G′ and we explain how to extend the algorithm to this case. The reverse-delete
phase creates new obstacles, as it requires computation of a maximal independent set (MIS) in a
completely virtual graph Gi. In Gi, the vertices are some of the tree edges, and two tree edges are
connected by an edge if there is a non-tree edge that covers them. We present a specific algorithm

4

to solve this task, which relies heavily on the structure of the decomposition and the layering. The
high-level idea is first to compute an MIS of an induced subgraph of Gi that has only a carefully
chosen set of O(

√
n) tree edges. We show that it is enough to let vertices learn about these edges

and a constant number of non-tree edges that cover each of them, to simulate an MIS computation
on the induced subgraph. Then, we let all the vertices simulate a local algorithm inside each seg-
ment, to add additional uncovered tree edges to the MIS. Finally, we prove that although we work
on different segments at the same time, all the edges added to the MIS by different segments really
form an MIS in the virtual graph Gi. Based on these ideas, we show that we can implement the
whole algorithm in Õ(D+

√
n) rounds. This algorithm obtains a (4+ε)-approximation for weighted

TAP in the virtual graph G′. This translates to a (8 + ε)-approximation for weighted TAP in the
original graph G, which results in a (9 + ε)-approximation for weighted 2-ECSS.

Improved Approximation: To obtain an improved approximation of (4 + ε) for weighted TAP
and (5 + ε) for weighted 2-ECSS, we change some elements in the algorithm. At a high-level, the
analysis that gives a (4 + ε)-approximation for weighted TAP in the virtual graph G′ is based on
showing that we cover certain edges in the tree at most 4 times, by changing several elements in
the algorithm and using a careful case analysis we can get an algorithm that covers these edges
only 2 times, which improves the approximation of the whole algorithm.

A bird’s eye view of our second algorithm: Our second algorithm which proves Theorem
1.2 and obtains an O(log n)-approximation in time proportional to the shortcut complexity of the
network, appears in Section 5. Here, we provide a very brief summary and comment on the novel
components.

On the outer layer, this second algorithm also works by first computing an MST, T , and then
finding an approximately minimum-weight augmentation for it. Also, we again view this tree
augmentation as a set cover problem, where we would like to find a minimum-cost collection of
non-tree edges, which cover all the tree edges of T . We follow a standard parallelization of the
sequential greedy algorithm for set cover [3], which gives an O(log n)-approximation. We gradually
add more and more of the most cost-effective non-tree edges to the solution, while ensuring that
they cover mostly different tree edges. Cost-effectiveness refers to how many tree edges we can
cover, per unit of weight. We refer the reader to Section 5 for more detailed outline, and also
to [8]. The main novelty in our algorithm is in how to perform each iteration of the parallel set
cover, in time proportional to the shortcut complexity of the graph. Concretely, we will need
two subroutines: (A) Given a collection of non-tree edges, any tree edge should know whether
it is covered by this collection or not. (B) Each non-tree edge should know the number of tree
edges that it can cover. To solve these two subroutines, we build two algorithmic tools, in the
framework of shortcuts [12]. A tool that allows each node to know the summation of the values of
all of its ancestors, in an arbitrary given tree, and a tool that allows us to compute the heavy-light
decomposition of any tree. These would be trivial to do in time proportional to the height of the
tree, but we want the complexity to be proportional to the shortcut complexity of the network.
We present these tools in Section 5.2. Section 5.3 explains how we use these tools to build the
subroutines (A) and (B) mentioned above. The problems solved by our tools are very basic and
frequently used computations about a tree. Thus, we hope that these tools will find applications
beyond our work.

5

1.3 Additional Related Work

Small Neighborhood Covers: Our algorithm is inspired by a parallel algorithm for set cover
problems with the small neighborhood cover property (SNC) [1]. This class includes central prob-
lems such as vertex cover, interval cover and bag cover. The approximation obtained depends on a
parameter τ that is related to the size of the neighborhood cover, and the time complexity depends
on a certain layering of the problem.

The SNC property. We next give an intuition for the SNC property, for a formal definition
see [1]. In a set cover problem, the goal is to cover a universe of elements by a minimum cost
collection of sets. Two elements in the universe are neighbors if there is a set that covers both of
them, and the neigborhood of an element includes all its neighbors. The τ -SNC property says that
each collection of sets that cover some element u can be replaced by only τ sets that cover u and all
its neighbors from certain layers. In our case, where we want to solve weighted TAP on the virtual
graph G′, the parameter τ = 2, the elements are tree edges, and the sets correpond to non-tree
edges. Two tree edges are neighbors if there is a non-tree edge that covers both of them. The SNC
property is related to the following: if you look at a tree edge t and a set of non-tree edges that
cover it, you can replace them by only τ = 2 edges that cover t and all its neighbours that are at
the layer of t or above it.

The approximation obtained. In [1], they show general sequential and parallel algo-
rithms that obtain τ and (2 + ε)τ2 approximations respectively for set cover problems with the
τ -SNC property, and leave as an open question whether an efficient parallel algorithm can obtain
a τ -approximation as the sequential one. Following the algorithm from [1], allows obtaining a
(2 + ε)τ2 = (2 + ε)4-approximation for weighted TAP in the virtual graph G′. Changing slightly
the forward phase leads to a (1 + ε)4-approximation. Our improved approximation algorithm gives
an approximation of (τ + ε) = (2 + ε) for the same problem, almost matching the approximation
obtained by the sequential algorithm in [1]. Also, as we explain in Section 3.6.1, for unweighted prob-
lems it seems that a simple variant of the algorithm from [1] can actually give a τ -approximation.

There are a number of other problems which have been studied in distributed graph algorithms,
and have some resemblance to 2-ECSS. To the best of our understanding, none of these are too
directly related to the problem that we tackle in this paper or to our method.

Minimum Cut: One problem is that, given a network G, we wish to compute or approximate
the edge-connectivity of G or, in the more general case of edge-weighted graphs, the minimum
cut size of the graph. Ghaffari and Kuhn [13] gave a 2 + ε approximation algorithm that runs in
Õ(D +

√
n) rounds, for any constant ε > 0. Nanongkai and Su [26] gave a 1 + ε approximation

algorithm that runs in Õ(D+
√
n) rounds, and an exact algorithm for edge connectivity with round

complexity of Õ((D +
√
n)k4), in graphs with edge-connectivity k. As mentioned above, a work

of Ghafffari and Haeupler shows how to obtain a (1 + ε) approximation in Õ(SC(G)) time, where
SC(G) denotes the shortcut complexity of the graph. Finally, very recently, Daga et al. [6] have
shown the first sublinear time algorithm for edge-connectivity for general k.

Fault-Tolerant MST: Another related problem is that of computing a fault-tolerant minimum
spanning tree, defined as follows: for each edge e in the minimum spanning tree T of G, we should
know a minimum weight edge e′ such that (T ∪ {e′}) \ {e} is a minimum spanning tree of G \ {e}.
We note that despite the partial resemblance in the motivations, we do not see any real connection

6

between this problem and 2-ECSS and an fault-tolerant MST may be far more heavy in weight than
the minimum-weight 2-edge connected subgraph; in the former the goal is to have an MST in the
graph remaining after the failure, in the latter the goal is to have a minimum-weight graph that can
survive a link failure. Ghaffari and Parter [16] showed an algorithm that computes fault-tolerant
minimum spanning tree sturcutres, in the above sense, in Õ(D +

√
n) rounds.

2 Preliminaries

Model: Throughout, we work with the standard CONGEST model of distributed computing [28]:
The network is abstracted as an undirected graph G = (V,E) and communication happens in
synchronous rounds. Per round, each vertex can send O(log n) bits to each of its neighbors. In the
distributed setting the input and output are local. At the beginning, each vertex knows the ids of
its neighbours and the weights of the edges adjacent to it, and at the end, each vertex should know
only a local part of the output. For example, when we compute a 2-edge-connected subgraph, each
vertex should know which edges adjacent to it are taken to the solution.

Definitions: We say that an undirected graph G is 2-edge-connected if it remains connected
after the removal of any single edge. In the minimum weight 2-edge-connected spanning subgraph
problem (2-ECSS), the goal is to find the minimum weight spanning subgraph that is 2-edge-
connected. Given a tree T , we denote by Pu,v the unique tree path between u and v, and by p(v)
the parent of v in the tree. It is easy to see that e = {u, v} covers a tree edge t iff t ∈ Pu,v.

As explained in Section 1.2, a natural approach for solving 2-ECSS is to start by computing a
minimum spanning tree (MST), and then add to it a minimum weight set of edges that augments
its connectivity to 2. This motivates the tree augmentation problem (TAP). In TAP, the input is a
2-edge-connected graph G and a spanning tree T , and the goal is to find a minimum weight set of
edges A such that T ∪ A is 2-edge-connected. The following claim shows the connection between
TAP and 2-ECSS.

Claim 2.1. An α-approximation algorithm Alg for TAP gives an (α+ 1)-approximation algorithm
for 2-ECSS, with complexity O(Tn +D +

√
n log∗ n) rounds, where Tn is the complexity of Alg.

Proof. Computing an MST, T , and then augmenting its connectivity using the approximation
algorithm for TAP results in a solution of weight w(T) + α · w(A∗), where w(T) is the weight
of the MST, and w(A∗) is the weight of an optimal augmentation for T . An optimal solution
OPT for 2-ECSS is clearly of weight at least w(T) and at least w(A∗), since OPT is a valid
augmentation. Hence, the approximation obtained for 2-ECSS is at most (α + 1). Computing an
MST takes O(D+

√
n log∗ n) rounds using the algorithm of Kutten and Peleg [25], and computing

the augmentation takes O(Tn) rounds, which completes the proof.

Roadmap: Section 3 contains high-level overview of our first algorithm, full details and proofs
appear in Section 4. Our Second algorithm appears in Section 5.

3 Overview of our first algorithm

As explained in Section 1.2, our approach is to simulate a parallel algorithm for set cover to
approximate weighted TAP on a related virtual graph G′, which translates to an approximate
solution for weighted 2-ECSS in the input graph G. We next provide a high-level overview of the
algorithm. Full details and proofs appear in Section 4.

7

3.1 Working with virtual edges

As a first step, we replace our input graph G by a virtual graph G′ described in [4, 22], such
that all the non-tree edges in the graph are between ancestors and descendants. This is done by
replacing any non-tree edge e = {u, v} that is not between an ancestor to its descendant, by the
two edges {u,w}, {v, w} where w is the lowest common ancestor (LCA) of u and v in the tree.
As shown in [4], finding an α-approximation for weighted TAP in the virtual graph G′, gives a
2α-approximation for weighted TAP in G, where the extra 2 factor comes from the duplication of
edges. The main ingredient that allows us to build the virtual graph and work with the virtual
edges is LCA labels. As shown in [4], it is possible to compute LCA labels and build the virtual
graph G′ in O(D +

√
n log∗ n) rounds. To simulate a distributed algorithm in G′, for each virtual

edge we have a vertex, which is the descendant of the virtual edge, that simulates it during the
algorithm. For simplicity of presentation, in the description of the algorithm we say that edges do
some computations. When we say this, we mean that the vertices that simulate the edges do the
computations. For more details about the virtual edges see Section 4.1.

3.2 Decomposing the tree into layers

Our algorithm works in a graph where all the non-tree edges are between ancestors to descendants.
We next explain how we exploit this structure. Intuitively, this allows us to replace all the non-tree
edges that cover a tree edge by only two edges that cover roughly the same tree edges. This prop-
erty is called in [1] the small neighbourhood cover property. A key component in the algorithm is
a certain layering of the tree, we describe next. We say that a vertex is a junction if it has more
than one child in the tree. Each layer is composed of disjoint paths in the tree, as follows. The first
layer consists of all the tree paths between a leaf to its first ancestor that is a junction. To define
the second layer, we first contract all the paths of the first layer, and get a new tree T2. Note that
several paths with the same ancestor can be contracted to the same vertex. The second layer is
composed of all the tree paths between leaves in T2 to their first ancestors that are junctions in T2.
We continue in the same manner, to define all the layers. See Figure 1 for an illustration. Since a
leaf in layer i is a junction in layer i− 1, which has at least two leaves in the subtree rooted at it
in Ti−1, it follows that the number of layers is O(log n).

11

1

1 1

1 1 2

22

3

𝑡𝑡

𝑒1

𝑒2

Figure 1: An illustration of the layering. On the left, there is a tree decomposed into layers. On the right,
there is a tree (the path with bold edges) and non-tree edges that cover it, with an example of a tree edge t
and its two petals e1, e2.

8

The petals of a tree edge. We say that two tree edges t1, t2 are neighbours with respect to a
subset of non-tree edges X, if there is an edge e ∈ X that covers both t1 and t2. The layering is
useful in our algorithm for the following reason. If we look at a tree edge t in layer i and a subset of
non-tree edges X, we can choose only two non-tree edges from X that cover t and all its neighbours
in layers j for j ≥ i. These edges are called the petals of t with respect to X. If t is an edge in the
first layer, its petals are the two non-tree edges from X that cover e and get to the highest ancestor
or the lowest descendant possible. See Figure 1 for an illustration. For a tree edge t in layer i > 1,
the definition is slightly more involved. The first petal is again the non-tree edge that covers t and
gets to the highest ancestor, but the second petal cannot be defined just as the non-tree edge that
covers t and gets to the lowest descendant, because t may be in different leaf to root paths, and
we cannot compare edges that cover different paths directly. To define the second petal, we denote
by P the tree path in layer i that t belongs to, and compare edges with respect to P . The second
petal is defined to be a non-tree edge that covers t and maximum number of edges in P below t.
For a formal definition see Section 4.3.

Computing the layers. In Section 4.3, we show how to construct the layering in O((D +√
n) log n) rounds, such that at the end all the tree edges know their layer number and some

additional information about the layering. The high-level idea is to use a decomposition from [8,16]
we describe in Section 4.2.1, and break the computation into several aggregate functions on trees
we can compute in O(D+

√
n) rounds using the decomposition. Later, we show that in O(D+

√
n)

rounds all the tree edges in layer i can learn their petals with respect to a subset of non-tree edges
X. To compute the higher petal we need to compute the edge that gets to the highest ancestor
from the edges that cover a tree edge. This is an aggregate function of the non-tree edges that cover
a tree edge, and we show how to compute such functions efficiently in Section 4.2. Computing the
lower petal is more involved, and we show how certain information about the layers and the LCA
labels allow to compute it as well. For full details and proofs about the layering see Section 4.3.

3.3 The parallel set cover algorithm

We follow a parallel algorithm for set cover instances with the small neighbourhood cover property
[1]. It is easy to implement the algorithm in a setting where the complete set cover graph is known:
where sets can communicate directly with the elements they cover, and vice verse. In our case,
the main obstacle is to show how to simulate an algorithm in our setting, where tree edges cannot
communicate directly with non-tree edges that cover them and vice verse (these edges may be far
from them in the graph, and they do not even know the identity of these edges). To overcome
this, the main ingredient is a certain decomposition of the tree into segments from [8,16]. We show
in Section 4.2, how all the non-tree edges can compute aggregate functions of the tree edges they
cover, and how tree edges can compute aggregate functions of the non-tree edges that cover them
efficiently using the decomposition. In addition, we show that many of the computations in the
algorithm are based on such aggregate functions. Similar computations are done in [8], and the
main challenge in our case is to show that the algorithm extends also to the case of working with
virtual edges. We mention that in [1], the authors describe also a distributed algorithm, but it is
only for the setting that the set cover graph is known and also requires very large messages, and
hence is not suitable for the CONGEST model.

9

The algorithm. The algorithm is a primal-dual algorithm that processes the graph according
to the layers. The primal LP has a variable x(e) for each non-tree edge, which indicates whether e
is added to the augmentation A, and its goal is to add a minimum weight set of edges to A while
covering all tree edges. For a non-tree edge e, we denote by Se all the tree edges covered by e. The
primal and dual LPs are formulated as follows.

Primal LP Dual LP

min
∑
e∈E\T

x(e) · w(e)

∀t ∈ T,
∑
e:t∈Se

x(e) ≥ 1

x(e) ≥ 0

max
∑
t∈T

y(t)

∀e ∈ E \ T,
∑
t∈Se

y(t) ≤ w(e)

y(t) ≥ 0

The algorithm is composed of two parts, a forward phase and a reverse-delete phase. The goal of
the forward phase is to cover all the tree edges while making sure that all the dual constraints hold up
to (1+ε′) factor, and for all the edges added to the augmentation A it holds that

∑
t∈Se

y(t) ≥ w(e).
Intuitively, y(t) can be seen as a price an edge t can pay for the non-tree edges that cover it, and
we add a non-tree edge e to the augmentation only if the tree edges in Se pay at least w(e) in total.
In some sense, this guarantees that we do not add edges that are too expensive to A, if there is
an alternative option to cover the same tree edges. However, there is no bound on the number of
edges we add to A in this phase. In the reverse-delete phase the goal is to remove some of the edges
from A, such that all the tree edges are covered and any tree edge t where y(t) > 0 is covered at
most c times for a constant c. This guarantees a (c+ ε)-approximation, as follows.

Lemma 3.1. If each tree edge with y(t) > 0 is covered at most c times, the algorithm guarantees
a (c+ ε)-approximation.

Proof. Let B ⊆ A be the final cover obtained by the end of the reverse-delete phase. Since all the
edges added to A satisfy w(e) ≤

∑
t∈Se

y(t) and all the edges with y(t) > 0 are covered at most c
times by B, we get

w(B) =
∑
e∈B

w(e) ≤
∑
e∈B

∑
t∈Se

y(t) ≤ c
∑
t∈T

y(t) = c(1 + ε′)
∑
t∈T

y(t)

(1 + ε′)
≤ c(1 + ε′)OPT,

The last inequality follows from the fact that all the dual constraints hold up to a (1 + ε′) factor,
which shows that dividing the values of y by (1 + ε′) give a feasible dual solution, and from the
weak duality theorem, as follows. By the weak duality theorem any feasible solution to the dual
problem has value smaller or equal to the value of a feasible primal solution. Since the optimal
augmentation is a set of edges that cover all the tree edges it is a feasible primal solution, and the
inequality follows. Choosing ε′ = ε

c gives a (c+ ε)-approximation.

We start by showing an algorithm where c = 4, and then show an improved algorithm with
c = 2. We next explain the two phases of the algorithm.

10

3.4 The forward phase

The goal of the forward phase is to cover all the tree edges while making sure that all the dual
constraints hold up to (1 + ε) factor, and for all the edges added to the augmentation A it holds
that

∑
t∈Se

y(t) ≥ w(e). We process the layers one by one according to their order, where in epoch
k we make sure that all the tree edges of layer k are covered. Epoch k works as follows. Let Rk
be all the tree edges of layer k that are still not covered, they are the only edges which increase
their dual variables in epoch k. For a non-tree edge e, let s(e) =

∑
t∈Se

y(t) be the current value of

the dual constraint, and let Ske be the tree edges in Rk ∩ Se, if each one of these tree edges t sets

y(t) = w(e)−s(e)
|Sk

e |
, then the dual constraint becomes tight. Since we want to maintain feasibility of

the dual, each tree edge t ∈ Rk sets its dual variable to be mint∈Se

w(e)−s(e)
|Sk

e |
. After this, we add to

A edges e if their dual constraint becomes tight. In the next iteration, each tree edge in Rk that
is still not covered by A, increases its dual variable by a multiplicative factor of (1 + ε), and again
we add edges to A if their dual constraint becomes tight, we continue in the same manner until all
the edges in Rk are covered. This concludes the description of the forward phase.

Our algorithm differs slightly from the algorithm in [1], where they maintained the feasibility of
the dual solution. Our approach allows us to get an improved approximation of (1 + ε)c, compared
to the (2 + ε)c-approximation obtained by the approach in [1].

Correctness. From the above description, it follows that at the end all the tree edges are covered
by A, and for each e ∈ A, its dual constraint becomes tight. For all the dual constraints it holds
that

∑
t∈Se

y(t) ≤ (1 + ε)w(e), since we increase the value of
∑

t∈Se
y(t) at most by (1 + ε) factor

at each iteration, and e is added to A once
∑

t∈Se
y(t) ≥ w(e). At this point, all the edges in Se

are covered and do not increase their dual variables anymore.

Implementation details. In Section 4.4, we explain how to implement each iteration of the
forward phase in O(D +

√
n) rounds. As already mentioned, the main building blocks we use are

algorithms for computing aggregate functions of tree edges or non-tree edges described in Section
4.2. We show that all the computations in the forward phase are based on such functions. For
example, non-tree edges should compute the value

∑
t∈Se

y(t) which is an aggregate function of
the tree edges they cover. Tree edges should learn if they are covered by A, which happens iff
there is at least one edge that covers them that is added to A, this is an aggregate function of the
tree edges that cover them, etc. Since there are O(log n) layers, there are O(log n) epochs. We
show that each of them consists of O(lognε) iterations, based on the fact that uncovered tree edges
increase their dual variable by a (1 + ε) factor in each iteration. This results in a time complexity

of O((D +
√
n) log

2 n
ε) rounds for the whole phase. Full details and proofs appear in Section 4.4.

3.5 The reverse-delete phase

In the reverse-delete phase we choose a subset B ⊆ A with the following properties.

1. B covers all the tree edges.

2. Any t ∈ T with y(t) > 0 is covered at most 4 times by B.

The dual variables are not changed during the process. Recall that Rk are all the tree edges in
layer k that are not covered before epoch k. From the description of the forward phase, the only

11

tree edges with y(t) > 0 are in Rk for some k. We need the following additional definitions. We
denote by Ak the non-tree edges added to A in epoch k, and by Fk the tree edges that are first
covered in epoch k. Note that Fk contains Rk and perhaps additional edges from higher layers. By
the definition of Rk, edges in Rk are not covered by Ai for any i < k. This motivates going over
the layers in the reverse direction. In the reverse-delete phase we go over the layers in the reverse
direction, building B. Initially B = ∅ and we add to it edges from A during the algorithm. Our
algorithm proceeds in epochs k = L, ..., 1, where L is the index of the last layer. We next describe
epoch k.

Epoch k. In epoch k we make sure that the following holds.

1. All the tree edges in Fi for i ≥ k are covered by B.

2. All the edges in Ri for i ≥ k are covered at most 4 times.

Hence, at the end of epoch 1, B satisfies all the requirements. We next explain how we guarantee
the above properties. At the beginning of epoch k, B already covers all the edges in Fi for i > k,
and our goal is to add to it edges from Ak to cover Fk. We need to make sure that all the edges
in Ri for i ≥ k are covered at most 4 times. Note that B already satisfies this for i > k, and by
definition edges in Ak do not cover edges in Ri for i > k, so we need to take care only of edges in
Rk. However, edges in Rk may already be covered by B, so we may need to remove edges from B,
while making sure that all the edges in Fi for i ≥ k are covered. For doing so, we go over the layers
i = k, ..., L where L is the last layer. We need the following notation.

Let X = B ∪ Ak, let F = ∪Li=kFi, and let Hi be all the tree edges in F in layer i (note that
Fi may contain also edges from layers higher than i). Notice that B covers Fi for i > k, and Ak
covers Fk, hence X covers F . Let t be a tree edge in Hi, and let p(t) be the set of non-tree edges in
X that cover t. As explained in Section 3.2, we can replace p(t) by two non-tree edges in p(t) that
cover all the tree edges covered by p(t) in layers i, ..., L, which are called the petals of t in X. We
next build a set Y ⊆ X that covers F . We go over the layers in iterations i = k, ..., L, as follows.

Iteration i. In iteration i we make sure that the edges in Hi are covered. Let H̃i be all the tree
edges in Hi that are not covered by Y at the beginning of iteration i. We build a virtual graph
Gi that its vertices are the tree edges in H̃i, and two vertices t1, t2 in Gi are connected if there
is a non-tree edge in X that covers t1, t2. We find a maximal independent set (MIS), Mi, in the
graph Gi. We call the elements in Mi anchors and add all their petals (with respect to X) to Y .
Intuitively, the computation of the MIS, Mi, allows us to cover simultaneously all the edges in H̃i,
while making sure that we do not cover edges too many times.

After going over all the layers i = k, ..., L, we set B = Y . This completes the description of
epoch k.

Correctness proof. The correctness proof follows [1], we include it for completeness.

Lemma 3.2. At the end of epoch k:

1. All the tree edges in F = ∪Li=kFi are covered by B.

2. All the edges in Ri for i ≥ k are covered at most 4 times.

12

Proof. The proof is by induction on k. In the base case, k = L + 1 and B = ∅, hence the claim
clearly holds. We start by proving 1. From the description of iteration i, at the end of iteration i,
Y covers Hi: All the edges in Hi \ H̃i are already covered at the beginning of the iteration. All the
edges in H̃i are either anchors or have a neighbouring anchor t ∈Mi, and then they are covered by
the petals of t. Hence, after all the iterations, B = Y covers ∪Li=kHi = F .

We next prove 2. We start with a simple observation: all the anchors in all the layers, ∪Li=kMi,
are independent in the following sense. If we take any two anchors t1, t2, there is no edge in X
that covers both of them. In the same layer, it follows from computing an MIS. In different layers
i < j, it follows since the graph Gj contains only tree edges that are not yet covered, and we add
the petals of all the anchors in Mi at the end of iteration i.

We next show that any tree edge t ∈ Ri for i ≥ k is covered at most 4 times by Y . As
explained earlier, for i > k this already follows from previous epochs. This holds since Y ⊆ X, and
X = B ∪Ak (with the set B at the end of the previous epoch). Now, at the end of epoch k+ 1, all
the edges in Ri for i > k are covered at most 4 times by B from the induction hypothesis. Also,
from the definition of the sets, Ak does not cover any edge in Ri for i > k. Hence, any set Y ⊆ X
we choose covers all the edges in Ri for i > k at most 4 times.

We now show that any tree edge t ∈ Rk is covered at most 4 times by Y . If t is an anchor, it
is covered only by its petals, since the anchors are independent, and hence it is covered at most
twice. Otherwise, we show that t has at most two neighbouring anchors. Since t is in layer k, and
all the anchors are at layers at least k, the 2 petals of t cover all its anchors. Hence, if there are
more than two anchors, at least two of them are covered by the same petal, which contradicts the
fact that the anchors are independent. Hence, t is covered at most twice by the petals of each of
its neighbouring anchors, and at most 4 times in total. This completes the proof.

From Lemma 3.2 with respect to k = 1, we get that at the end of the reverse-delete phase B
covers all tree edges, and for each 1 ≤ i ≤ L, all the tree edges in Ri are covered at most 4 times,
as needed. The algorithm has L epochs, each of them consists of at most L iterations, which sums
up to O(L2) = O(log2 n) iterations. In Section 4.5.1, we show how to implement each iteration in
O(D+

√
n) rounds, which results in a complexity of O((D+

√
n) log2 n) rounds for the whole phase.

Implementation details. To implement the algorithm, the main task we need to solve is to
build an MIS in the virtual graph Gi in each iteration. This is a completely virtual graph, and we
design a specific algorithm to solve this task. The MIS, Mi, is a set of tree edges in H̃i such that
for any two tree edges t, t′ ∈Mi, there is no edge in X that covers both of them. Our algorithm is
composed of a global part where all the vertices locally compute a global MIS that includes some
of the tree edges. Then, it has a local part, where we work on each segment separately, and add
additional edges to the MIS by scanning the segment. To implement the global part, first, all the
vertices in the graph learn O(log n) information about each segment: two of its tree edges and
their petals. Let T ′ be all the tree edges learned. We show that based on this information, all
the vertices can compute locally an MIS, M ′, of the tree edges T ′. In the local part, we work in
different segments in parallel and the main challenge is to show that all the edges added to the MIS
are indeed independent. Full details and proofs appear in Section 4.5.1.

Conclusion. Based on these ingredients we get a (4 + ε)-approximation for weighted TAP in the
virtual graph G′, which translates to a (8 + ε)-approximation for weighted TAP in the input graph

13

G, and a (9 + ε)-approximation for weighted 2-ECSS in G. The complexity of the whole algorithm

is O((D +
√
n) log

2 n
ε) rounds. We next give the high-level idea for improving the approximation.

3.6 Improved approximation

In the reverse-delete phase we make sure that all the edges in Rk are covered at most 4 times. We
design a variant of the algorithm where all these tree edges are covered at most 2 times, which
results in an improved approximation for the whole algorithm. The first change we do in the
algorithm is that we replace the MIS, Mi, by a set of tree edges M ′i that are no longer guaranteed
to be independent, however for each one of the tree edges in M ′i we add only its higher petal to
Y and not both of them. Then, we are able to analyze the structure of dependencies in M ′i and
show that all the tree edges in Rk are covered at most 3 times by the edges of Y . To improve
the approximation further we show that the only cases where tree edges are covered 3 times have
a certain structure, and in this case we can remove one of the edges that cover them from Y
without affecting the covering of all the other tree edges. We also show that we can detect these
cases efficiently. This results in an algorithm where all the tree edges in Rk are covered at most
2 times. Based on this we get a (2 + ε)-approximation for weighted TAP in the virtual graph G′,
which translates to a (4 + ε)-approximation for weighted TAP in the input graph G, and a (5 + ε)-

approximation for weighted 2-ECSS in G. The complexity remains O((D+
√
n) log

2 n
ε) rounds. Full

details and proofs appear in Section 4.6.

3.6.1 A note on the unweighted case

While obtaining a (2 + ε)-approximation for weighted TAP on the virtual graph G′ requires an
involved analysis, obtaining a 2-approximation for the unweighted variant of the same problem is
easy: we start by computing an MIS of the tree edges (with respect to all the non-tree edges).
Then, for each one of the tree edges we add its 2 petals to the augmentation. Computing an MIS
of the tree edges can be done as explained in Sections 3.5 and 4.5.1 where we proceed according to
the layers. At the end, all the tree edges are covered: consider a tree edge t in layer i, if it is already
covered at the beginning of iteration i it is clear. Otherwise, it has a neighbor t′ in the MIS in layer
i, and the petals of t′ cover t. The algorithm guarantees a 2-approximation for unweighted TAP
since we must add at least one edge to the augmentation to cover each one of the edges in the MIS
(since they are independent, there is no edge that covers two such edges), and the algorithm adds
exactly 2 edges to the augmentation for each edge of the MIS, which guarantees a 2-approximation.

This allows to give a 4-approximation for unweighted TAP in the input graph G in Õ(D+
√
n)

rounds. While the same result already appears in [4], the approximation analysis in [4] is quite
involved, where the analysis here is very simple. Also, it seems that the same approach can be
used to show a τ -approximation for unweighted problems with the τ -SNC property, which is better
than the approximation shown in [1] (this algorithm already computes an MIS of the elements
we need to cover, but the approximation ratio analysis is for the weighted case which gives a
worse approximation). This can be seen as an extension of the simple approximation algorithm
for minimum vertex cover that starts by computing a maximal matching and then adds all the
endpoints of the edges of the matching to the cover. In this setting, the elements we need to
cover are the edges of the graph, an MIS of them is a matching, and the petals of an edge are its
endpoints.

14

4 The first algorithm: full details and proofs

4.1 Working with virtual edges

In our algorithm, we replace the input graph G with a virtual graph G′. The graph G′ includes all
the tree edges in G and each non-tree edge in G is replaced by one or two virtual edges in G′ such
that all the non-tree edges in G′ are between ancestors to descendants. We next explain how we
construct the graph G′ and work with it in the algorithm. We follow the distributed construction
in [4]. The graph G′ was first defined in the sequential algorithm of Khuller and Thurimella [22].

The graph G′ is defined as follows. Let e = {u, v} be a non-tree edge in G. If e is an edge
between an ancestor and a descendant, we keep it on G′. Otherwise, let w = LCA(u, v) be the
lowest common ancestor of u and v in the tree. The edge e is replaced by the two virtual edges
{u,w}, {v, w}. These edges are clearly between an ancestor, w, to its descendants, u and v. In our
algorithm, the descendants u and v would know about the virtual edges {u,w}, {v, w} and would
simulate them in the algorithm. However, the ancestor w does not necessarily know about these
edges.

The edge {u, v} ∈ G covers the tree path Pu,v between u and v, that is composed of the two
paths Pu,w, Pv,w where w = LCA(u, v). Hence, it follows that an edge e ∈ G is replaced by one
or two edges in G′ that cover exactly the same tree edges. Based on this, it is proved in [4] that
an α-approximation augmentation A′ in G′ gives a 2α-approximation augmentation A in G. The
augmentation A is constructed from A′ by replacing any edge in A′ by a corresponding edge in A
as follows. If e′ ∈ A′, the edge e′ was added to G′ to replace an original edge e ∈ G, the edge e is
the corresponding edge. If there are several such edges e, we choose one of them.

Lemma 4.1. Let A′ be an α-approximation augmentation in G′, and let A be the corresponding
augmentation in G where any edge in A′ is replaced by a corresponding edge in A. Then, A is a
2α-approximation augmentation in G.

To construct G′, we need to compute all the virtual edges in G′. For this, we follow the
distributed construction in [4] (see Section 5.2 in the full version of the paper), that uses the LCA
labelling scheme of Alstrup et al. [2]. In [4], it is shown how to assign the vertices of the graph
short labels of O(log n) bits, such that given the labels and some additional information about the
structure of the tree, any two vertices u, v can compute the label of their LCA from their labels. The
time complexity for assigning the labels and learning the structure of the tree is O(D+

√
n log∗ n)

rounds. Given the labels, the computation of the label of the LCA is immediate. Hence, if {u, v}
is an edge in G, both the vertices u and v know their own labels and would learn the label of
w = LCA(u, v), and use it to simulate the virtual edges {u,w}, {v, w}. This is summarized in the
next Lemma.

Lemma 4.2. Building the virtual graph G′ takes O(D +
√
n log∗ n) rounds. At the end, for each

virtual edge e = {u,w} where w is an ancestor of u, the vertex u knows that e is in G′ and knows
the LCA labels of u,w.

During our algorithm we use the LCA labels to replace the original ids of vertices. This is useful
for computing some tasks. For example, given the labels of a tree edge t = {v, p(v)} where p(v)
is the parent of v, and given the labels of a virtual edge e = {anc, dec} where anc is an ancestor
of dec, it is easy to check if e covers t. We simply check if anc is an ancestor of p(v) and v is
an ancestor of dec, which can be deduced from the LCA labels: a vertex v is an ancestor of u iff
LCA(u, v) = v. This is summarized in the following observation.

15

Observation 1. Given the labels of a tree edge t and a non-tree edge e between an ancestor to its
descendant, we can determine whether e covers t.

4.2 Computing aggregate functions

To implement our algorithm, we need the following building blocks. First, all the non-tree edges
simultaneously should learn an aggregate function of the tree edges they cover. Second, all the tree
edges simultaneously should learn an aggregate function of the non-tree edges that cover them. We
next show that these two building blocks can be implemented in O(D+

√
n) rounds. The aggregate

functions we consider are commutative functions with inputs and outputs of O(log n) bits, for
example: minimum, sum, etc. The important property we exploit is that we can apply these
functions on different parts of the inputs separately and then combine the results. For example,
when computing a sum of inputs, we can divide the inputs arbitrarily to several sets, compute the
sum in each set and then sum the results.

We next explain how we compute the aggregate functions. The computation is similar to [8].
The main difference is that we work with virtual edges and not with the original edges of the graph,
and we show that it is possible to extend the algorithm from [8] to deal with virtual edges. The
computation uses a decomposition of the tree into segments described in [8], which is a variant
of a decomposition presented for solving the FT-MST problem [16]. We start by describing the
decomposition, and then explain how we use it to compute aggregate functions.

4.2.1 Overview of the decomposition

Here we give a high-level overview of the decomposition, for full details see [8,16]. The decomposi-
tion breaks the tree into O(

√
n) edge-disjoint segments, each with diameter O(

√
n). Each segment

S, has a root rS which is an ancestor of all the vertices in the segment. In addition, there is a special
vertex dS which is called the unique descendant of the segment. The structure of the segment is as
follows. It has a path between rS and dS , which is called the highway of the segment, and it has
additional subtrees attached to the highway. A crucial ingredient of the decomposition is that rS
and dS are the only vertices in the segment S that may be contained in other segments, and other
vertices in S are not connected by a tree edge to any other segment. The id of a segment is the
pair (rS , dS). The skeleton tree TS is a virtual tree with O(

√
n) vertices that captures the structure

of the decomposition, as follows. For each vertex that is either rS or dS in one of the segments,
there is a vertex in TS , and the edges in TS correspond to the highways of the segments. I.e., there
is an edge {u, v} ∈ TS where u is a parent of v iff u = rS and v = dS for some segment S.

In [8], it is proved that the segments can be constructed deterministically in O(D +
√
n log∗ n)

rounds. In addition, the two following claims are proved in [8], where Pu,v is the unique tree path
between u and v.

Claim 4.3. In O(D +
√
n) rounds, the vertices learn the following information. All the vertices

learn the id of their segment, and the complete structure of the skeleton tree. In addition, each
vertex v in the segment S learns all the edges of the paths Pv,rS and Pv,dS .

Claim 4.4. Assume that each tree edge t and each segment S, have some information of O(log n)
bits, denote them by mt and mS, respectively. In O(D+

√
n) rounds, the vertices learn the following

information. Each vertex v in the segment S learns the values (t,mt) for all the tree edges in the
highway of S, and in the paths Pv,rS , Pv,dS . In addition, all the vertices learn all the values (S,mS).

16

4.2.2 Computing aggregate functions of tree edges

In this section, we explain how all the non-tree edges simultaneously learn an aggregate function
of tree edges they cover: an edge e learns an aggregate function of the edges Se. We prove the
following.

Claim 4.5. Assume that each tree edge t has some information mt of O(log n) bits, and let f be
a commutative function with output of O(log n) bits. In O(D +

√
n) rounds, each non-tree edge e,

learns the output of f on the inputs {mt}t∈Se .

In our algorithm, some of the non-tree edges are virtual. As explained in Section 4.1, the
descendant of the corresponding virtual edge simulates the edge. When we say that a non-tree
edge learns some information, the vertex that simulates the virtual edge learns the information.
We next prove Claim 4.5.

Proof. Let hS be all the edges in the highway of the segment S, and let mS be the O(log n)-bit
output of f on the inputs {mt}t∈hS . The value mS can be computed locally in the segment S in
O(
√
n) rounds by scanning hS . Using Claims 4.3 and 4.4, in O(D +

√
n) rounds, all the vertices

learn the id of their segment, the complete structure of the skeleton tree and all the values (S,mS).
In addition, each vertex v in the segment S learns the values (t,mt) for all the tree edges in the
highway of S, and in the paths Pv,rS , Pv,dS .

Let e = {u, v} be a non-tree edge in the original graph G. In the virtual graph G′, either e is
in the graph, which means that it is an edge between a descendant to an ancestor, or the edge e is
replaced with the two edges {u,w}, {v, w} where w = LCA(u, v). We next show that u learns all
the information needed to evaluate f on the edges in the tree path Pu,w, which is exactly the path
of tree edges covered by the virtual edge {u,w}, and v has all the information to evaluate f on
the edges in the tree path Pv,w. Exactly in the same way, if e ∈ G′, and assume w.l.o.g that u is a
descendant of v, then u learns all the information needed to evaluate f on the edges in the tree path
Pu,v (now v = LCA(u, v)). In all the cases, the vertex that simulates the non-tree edge learns the
output of f , as needed. The proof is divided to 3 cases. The vertices u and v can distinguish be-
tween the cases from knowing the id of their segment, their ancestors in the segment and their LCA.

Case 1: u and v are in the same segment S. In this case, w = LCA(u, v) is also in the segment
S, and both u and v know the label of w based on their LCA labels. Additionally, the tree path
Pu,w is contained in the path Pu,rS where rS is the ancestor of the segment S. Vertex u knows all
the values (t,mt) for the edges t ∈ Pu,rS , which allows u computing the output of f on the inputs
{mt}t∈Pu,w . Note that Pu,w is exactly the path of tree edges covered by the edge {u,w}. The same
holds for v with respect to Pv,w, which completes the proof.

Case 2: u and v are in different segments, and LCA(u, v) is in another segment. Let ru and
rv be the ancestors in the segments of u and v, respectively. Then, w = LCA(u, v) = LCA(ru, rv).
We next show that w is necessarily a vertex in the skeleton tree TF . Let S be the segment of
w. Since w = LCA(ru, rv), the first edges entering the segment S in the paths Pru,w, Prv ,w must
be different. However, rS and dS are the only vertices in S connected to other segments, which
implies that w must be rS or dS . Now, u and v know the complete structure of the skeleton tree,
and in particular can deduce the paths between ru to w and between rv to w in TF . The paths
Pru,w and Prv ,w in the original tree T correspond to the paths in TF , where each edge in TF is
replaced by the corresponding highway in T . Also, for each highway hS , all the vertices know mS ,

17

the output of f on tree edges of hS . Hence, u computes the output of f on tree edges in Pu,w, as
follows. The path Pu,w consists of Pu,ru and Pru,w. The vertex u knows all the values (t,mt) for tree
edges in Pu,ru , and all the values mS for highways in the path Pru,w, which allows u to compute the
output of f on the tree edges in Pu,w. Similarly, v computes the output of f on the tree edges in Pv,w.

Case 3: u and v are in different segments, and w = LCA(u, v) is in the same segment of one
of them. Assume w.l.o.g that w is in the segment of u. Now, since Pu,w ⊆ Pu,ru and u knows
all the values (t,mt) for tree edges in Pu,ru , and it knows the label of w from the LCA labels of
u and v, then u can compute the output of f on the tree path Pu,w. In addition, let du be the
unique descendant in the segment S of u. Since ru and du are the only vertices in S connected
to other segments, then either w = LCA(u, v) = ru, or w is an ancestor of du, and hence must
be on the highway hS . In the first case, the path Pv,w=ru consists of Pv,rv and Prv ,ru . Vertex v
knows full information about the path Pv,rv and the path Prv ,ru is composed of entire highways,
which allows v to compute the value of f on the tree path Pv,w as in Case 2. In the second
case, the path Pv,w consists of the 3 paths Pv,rv , Prv ,du , Pdu,w. Again, v has full information about
the path Pv,rv , and the path Prv ,du consists of highways that are known to v from the structure
of the skeleton tree. The path Pdu,w is part of the highway hS in the segment of u, and u has
all the values (t,mt) for edges in hS . Since u also knows w, it can compute the value of f on the
subpath Pdu,w and send it to v. Now v has all the information to compute f on the whole path Pv,w.

The time complexity is O(D +
√
n) rounds for using Claims 4.3 and 4.4. From now on all the

computations are completely local or require sending one message from u to v.

4.2.3 Computing aggregate functions of non-tree edges

We next explain how all the tree edges simultaneously compute an aggregate function of all the
non-tree edges that cover them, proving the following.

Claim 4.6. Assume that each non-tree edge e has some information me of O(log n) bits, and let
f be a commutative function with output of O(log n) bits. In O(D +

√
n) rounds, each tree edge t,

learns the output of f on the inputs {me}t∈Se .

Again, the vertex that simulates a non-tree edge e, has the information me.

Proof. For the proof, we follow the terminology in [8,16], and classify the non-tree edges that cover
a tree edge t to 3 types: short-range, mid-range and long-range, indicating if the non-tree edge e
has 2,1 or 0 endpoints in the segment of t, respectively. To learn the output of f , we compute
f separately on the short-range, mid-range and long-range edges that cover t, and then apply f
again on the results to obtain the final output. We next explain how we compute f on each one
of the parts. Note that all the non-tree edges in the graph G′ are between an ancestor and a de-
scendant, and the descendant is the vertex that simulates the non-tree edge (even for a virtual edge).

Computing f on short-range edges. First, we let each vertex u in a segment S to learn
all the tree edges in the tree path Pu,rS in O(D +

√
n) rounds, using Claim 4.3. Note that our

algorithm works with LCA labels instead of ids, so in particular u knows all the LCA labels in the
path Pu,rS . If e is a short-range edge for the tree edge t, then the two endpoints of e are in the
segment of t. In particular, one of these endpoints, say u, is a descendant of t and it is the vertex
that simulates the edge e. Hence, u has the information me and it can send it to t. If u simulates
several different short-range edges that cover t, first it applies f on all the relevant values me, and

18

then sends only one O(log n)-bit message to t. Note that u knows the LCA labels of all the non-tree
edges it simulates and it knows all the LCA labels of edges in the tree path Pu,rS , which allow to
check which of the edges it simulates are short-range edges and which of them cover t. To compute
the output of f on all the short-range edges in the segment we use convergecast. Each time a vertex
receives from its children an O(log n)-bit message for t, first it applies f on the messages received
and its message for t if exists, and then sends the result to its parent. In general, each vertex u
may send a message to each one of the tree edges in the path Pu,ru where ru is the ancestor in the
segment of u. In order that all the vertices in the segment would send such messages to all the tree
edges above them in the segment we pipeline the computations. The complexity is O(

√
n) rounds,

since this is the diameter of the segments.

Computing f on long-range edges. First, all the vertices learn the complete structure of
the skeleton tree in O(D +

√
n) rounds, using Claim 4.3. In particular, for each segment S all the

vertices learn the LCA labels of rS and dS . If a tree edge t has a long-range edge that covers it,
then t must be on a highway of a segment, since otherwise all its descendants are in the segment.
Also, if e is a long-range edge for the tree edge t in the highway hS , then e must be a long-range
edge for all the tree edges in hS , since one of the endpoints of e is an ancestor of rS and the second
a descendant of dS (all the non-tree edges in our graph are between an ancestor and a descendant).
Since each vertex u that simulates a non-tree edge e has the LCA labels of e and knows the complete
structure of the skeleton tree, it knows exactly which highways are covered by e, as follows. If u is
a descendant of the virtual edge e = {u,w} and it wants to learn if this edge covers the highway
hS , it should check if w is an ancestor of rS and dS is an ancestor of u, which is immediate using
the LCA labels, as explained in Section 4.1. Hence, each vertex u can compute for each one of
the O(

√
n) highways hS the value of f computed on all the inputs me where e is an edge that u

simulates and is a long-range edge that covers the highway hS . To learn the value of f computed
on all the inputs me where e is a long-range edge that covers the highway hS we use convergecast
over the BFS tree. To learn these values for all the O(

√
n) highways we use pipelining. The overall

complexity is O(D +
√
n) rounds, and at the end all the vertices know the output of f computed

on long-range edges that cover hS for each one of the highways.

Computing f on mid-range edges. Let t be a tree edge in a segment S covered by a mid-
range edge e. One of the endpoints of e = {u, v}, say u, is a descendant of t. One case it that u
is in the segment of t, and can send the value me to t. In general, all the tree edges can learn the
output of f on mid-range edges that cover them with a descendant in their segment exactly as they
learn the output of f on short-range edges.

We next focus on the case that u is in a different segment, in this case u must be a descendant
of dS . Since e is a mid-range edge, it follows that v is in the segment of t. However, e could be a
virtual edge, simulated by the descendant u, and v does not necessarily know about the edge e. If
v = rS , then the edge e covers the whole highway of S, and we can treat it as a long-range edge
(u would include the input me when it computes f on long-range edges that cover hS). Otherwise,
let e′ = {u,w} be the original edge that was replaced by the virtual edge e. From the structure
of virtual edges and the decomposition, it holds that LCA(u,w) = v, and w is in the segment S.
This follows since v is a vertex in S which is not rS or dS , and hence does not have any descendant
outside S that is not a descendant of dS . Also, v is on the highway hS since it is an ancestor of dS .
Now, u can send to w ∈ S the value me (this requires exchanging one message over the original
edge {u,w}), and we would like w to let t learn the value me.

19

This is done as follows. For a vertex x 6= {dS , rS} on the highway hS , x has exactly one child
y on the highway, we denote by Tx the subtree of x in S excluding the edge {x, y} and the subtree
rooted at y. All the vertices w′ ∈ Tx, have LCA(w′, dS) = x, and hence any original edge of the
form {w′, u′} where w′ ∈ Tx and u′ is a descendant of dS in another segment, translates to the
virtual edge {x, u′}, and in particular is a mid-range edge for all the edges in the path Px,dS . We
would like first to let x learn the output of f computed on the inputs me where e = {u′, w′} is of the
form described above. This is done by scanning the tree Tx, where each vertex w′ ∈ Tx computes f
on the mid-range edges it knows and on the outputs it receives from its children in the tree. Note
that the trees Tx are disjoint for different vertices x, hence the computations are done in parallel for
different trees. Now, we scan the highway hS , from rS to dS . Edges that cover the whole highway
were already treated as global edges, so we start with the child of rS , call it x. Vertex x knows
the value of f on all mid-range edges that cover Px,dS and passes this information to its child x′.
The value that x computed is exactly the value of f relevant for the tree edge t = {x′, x}. For the
tree path Px′,dS , any mid-range edge that covers it either covers also the path Px,dS (all the edges
that cover Px,dS cover also the subpath Px′,dS) or covers only the subpath Px′,dS , in this case it
has an original endpoint w′ ∈ Tx′ . Since x′ knows the value of f computed on all mid-range edges
that cover the tree path Px′,dS that have one original endpoint in Tx′ , and x′ received from x the
value of f computed on all mid-range edges that cover the tree path Px,dS , computing f on these
two outputs results in the output of f on all mid-range edges that cover the tree path Px′,dS . We
continue in the same way, and eventually all the tree edges in hS learn the relevant output of f .
This is done in all the segments in parallel which takes O(

√
n) rounds, since the diameter of each

segment is O(
√
n).

At the end, each tree edge knows the value of f computed on short-range, mid-range and long-
range edges that cover it. Computing f on the outputs, results in the final output of f . The whole
computation takes O(D +

√
n) rounds.

4.3 Decomposing the tree into layers

Our algorithm uses a decomposition of the tree into layers, that is described also in [1]. We
show how to compute the decomposition and work with it in the CONGEST model. Following the
terminology in [1], we say that a vertex is a junction if it has more than one child in the tree. The
first layer is composed of all the tree edges in the tree paths between a leaf to its lowest ancestor
that is a junction, or to the root if there is no junction in the tree. After computing the first layer,
we can contract all the paths in the first layer, and repeat the process on the contracted graph, now
with respect to the leaves and junctions in the contracted graph. This gives us the second layer.
We repeat in the same manner until the whole graph is contracted to one vertex. See Figure 2 for
an illustration. We next discuss simple observations about the layering.

Claim 4.7. There are O(log n) layers in the decomposition.

Proof. Each time we contract the graph, the number of leaves decreases by a factor of 2. This
happens since any leaf in the contracted graph is an ancestor of at least two leaves in the previous
graph. Hence, after at most O(log n) iterations we are left with a single path, in one additional
iteration the process terminates.

From the above description, each layer is composed of disjoint paths in the tree, where the first
layer includes all the paths between leaves to their first ancestor that is a junction, and so on. We

20

11

1

1 1

1 1 2

22

3

𝑡𝑡

𝑒1

𝑒2

Figure 2: An illustration of the layering. On the left, there is a tree decomposed into layers. On the
right, there is a tree (the path with bold edges) and non-tree edges that cover it, with an example
of a tree edge t and its two petals e1, e2.

next show that any non-tree edge between an ancestor to its descendant can cover edges in at most
one of these paths in each layer.

Claim 4.8. Let e be an edge between an ancestor to its descendant in the tree. Then, the edges
that e covers intersect at most one path in each layer.

Proof. Let layer(t) be the layer number of the tree edge t. If t1 and t2 are in the same leaf to root
path in the tree where t2 is closer to the root, it follows that layer(t2) ≥ layer(t1). Hence, each
leaf to root path in the tree is grouped into consecutive tree edges in the same layer, all of them are
part of the same path in this layer. Since a non-tree edge between an ancestor to its descendant
covers a part of a leaf to root path in the tree, the claim follows.

Let X be a subset of non-tree edges, we say that the two tree edges t and t′ are neighbours with
respect to X if there is a non-tree edge in X that covers both t and t′. In our algorithm, all the
non-tree edges are between ancestors and descendants, which is crucial for the following section.

The petals of a tree edge. The layering is useful in our algorithm for the following reason. For
each tree edge t, if we look at a subset of non-tree edges that cover it, we can replace all of them
by only two non-tree edges that cover all the neighbours t′ of t with layer(t′) ≥ layer(t). These
non-tree edges are the petals of t. We next formalize this notion and explain how the petals are
defined.

Let X be a set of non-tree edges, and let t be a tree edge in layer i covered by X, where
p(t) ⊆ X is the set of non-tree edges that cover t. We next show that we can replace p(t) by two
non-tree edges in p(t) that cover all the tree edges covered by p(t) in layers i, ..., L. We call these
two non-tree edges the petals of t in p(t). The petals of t are defined as follows. For simplicity, we
start by describing the petals of tree edges t in the first layer. Each layer is composed of disjoint
paths. Let t = {v, p(v)} be an edge in the first layer in the path P . Any non-tree edge that covers
t is of the form {anc, dec} where anc is an ancestor of p(v), and dec is a descendant of v. The
edge that gets to the highest ancestor is the first petal of t, and the edge that gets to the lowest
descendant is the second petal. Note that since t is in the first layer, the subtree rooted at v is just

21

a path, and all the edges that cover t have a vertex which is a descendant of v in this path, hence
we can compare them. See Figure 2 for an illustration.

For a tree edge t in layer i, we define the first petal accordingly, this is just the non-tree edge
that gets to the highest ancestor. For the second petal, we cannot just define it as the non-tree
edge that gets to the lowest descendant, since not all the non-tree edges that cover t cover the same
leaf to root path, as happens in the first layer. To overcome this, we define the second petal as
follows. Let P be the tree path in layer i where t ∈ P . We call the lowest vertex in this path,
the leaf of the path, and denote it by leaf(P). Also, each tree edge is part of a path P is some
layer i, we denote by leaf(t) the leaf of P where t ∈ P . Let e = {anc, dec} be an edge between an
ancestor anc to its descendant dec that covers t = {v, p(v)}. Then, dec is a descendant of v ∈ P ,
let ue = LCA(leaf(t), dec). Note that since dec has an ancestor in P , and leaf(t) is the lowest
vertex in P , the vertex ue is in P . For all the non-tree edges e that cover t we can compute the
value ue. The second petal is defined to be the non-tree edge e where ue is the lowest vertex in
P among the vertices ue computed (since all the vertices ue are in P we can compare them). We
next prove that the petals defined really satisfy the required properties.

Claim 4.9. Let X be a set of non-tree edges, and let t be a tree edge in layer i covered by X, where
p(t) ⊆ X is the set of non-tree edges that cover t. Then, the petals of t cover all the tree edges
covered by p(t) in layers i, ..., L.

Proof. Let t′ be a neighbour of t with respect to X with layer(t′) ≥ i, and let e = {anc, dec} ∈ X
be a non-tree edge that covers t and t′. Since e is between an ancestor to its descendant, t and t′

are in the same leaf to root path in the tree. If t′ is closer to the root in this path, the higher petal
of t covers t′, because e is a tree edge that covers t and t′, and the higher petal is the edge that
covers t and gets to the highest ancestor possible, which is at least anc. We are left with the case
that t is closer to the root. Hence, layer(t′) ≤ layer(t) = i. Since layer(t′) ≥ i, t and t′ are in the
same layer and are in the same root to leaf path, which means that t′ = {v′, p(v′)} ∈ P , where P
is the path in layer i where t ∈ P . Since e covers t′ and t, there is an edge that covers the subpath
between v′ to t. From the definition of the lower petal, it must cover this subpath, and maybe
additional edges in P below it, which completes the proof.

Computing the layers

We next describe how we compute the layers in Õ(D +
√
n) time. All the tree edges t would learn

layer(t) and leaf(t), and all the vertices would learn if they are the highest or lowest vertices in a
path P in some layer, we call these vertices the root or leaf vertices of P . Additionally, we show
how all the tree edges can compute their petals with respect to a subset of non-tree edges X.

Claim 4.10. In O((D +
√
n) log n) rounds, all the tree edges t know layer(t) and leaf(t), and for

each 1 ≤ i ≤ L, all the vertices know if they are the leaf or root vertices of a path P in the layer i.

Proof. Our algorithm proceeds in O(log n) iterations, according to the layers. We start by describ-
ing the first iteration. First, all the vertices learn if there is a junction in the subtree rooted at
them. For this, we use the decomposition described in Section 4.2.1. First, in each segment locally
we use a simple convergecast to solve the task: basically we scan the segment from its leaves to the
root, where each vertex informs its parent if in the subtree rooted at it there is a junction. This
takes O(

√
n) rounds since this is the diameter of segments. Now, all the vertices in the virtual tree,

22

which are ancestors or descendants in a segment, let all the vertices in the graph know if there is
a junction in the subtree rooted at them in the segment, or if they are junctions (this is relevant
for the case that there is a vertex which is the root of several segments). This takes O(D +

√
n)

rounds using Claim 4.4. Also, all the vertices know the complete structure of the skeleton tree in
O(D +

√
n) rounds using Claim 4.3. A vertex v learns if in the subtree Tv rooted at it there is

a junction based on the local and global information. If in the local part it learns that there is a
junction in the subtree rooted at v in its segment, it already has an answer. Otherwise, from the
structure of the skeleton tree v knows which segments are descendants of it (it has such descendants
only if it is a vertex on the highway of the segment), and if one of them has a junction in the subtree
rooted at it in the segment or is a junction in the skeleton tree. This allows v to learn if there is
a junction in Tv. In a similar way, all the vertices learn what is the label of the minimum leaf in
the subtree rooted at them (recall that in our algorithm we use LCA labels of vertices instead of
ids). This again requires computing an aggregate function from the leaves to the root, that can be
computed similarly.

Given this information, we compute the first layer, as follows. A tree edge t = {v, p(v)} is in the
first layer iff in the subtree rooted at v there is no junction. In such case there is only one leaf in
the subtree rooted at v which is the leaf v learns about, and this is leaf(t). The leaves of the first
layer are exactly the leaves of the tree, and the roots of a path are all the junctions p(v), where the
tree edge {v, p(v)} is in the first layer. The leaves of the second layer are all the junctions where
all the tree edges from them to their children are in the first layer. Since all the edges know if they
are in the first layer, we can contract all the edges of the first layer to obtain a new tree, and then
run the same algorithm on this tree to compute the second layer. The new leaves in this tree are
the leaves of the second layer and junctions are vertices that at least two of the edges from them
to their children are not in the first layer. The vertices and edges that were contracted do not
participate in the algorithm. As for the skeleton tree, it may be the case that complete segments
are contracted, in this case the root of the segment knows about it and can pass the information to
the rest of the graph. However, if a segment is not completely contracted, from the definition of the
layers, all the segments above it are not fully contacted as well. Hence, the algorithm works with
a contracted version of the original skeleton tree that is known to all the vertices. We run on the
contracted graph exactly the same algorithm we run for computing the first layer, which allows us
computing the second layer. We continue in the same manner to compute all the O(log n) layers,
since each iteration takes O(D +

√
n) rounds, the complexity is O((D +

√
n) log n) rounds.

Claim 4.11. For each 1 ≤ i ≤ L, in O(D +
√
n) rounds all the tree edges in layer i learn their

petals with respect to a subset of non-tree edges X.

Proof. The first petal that covers a tree edge t is the non-tree edge e ∈ X that covers t that gets
to the highest ancestor. This is simply an aggregate function of the non-tree edges that cover t,
which can be computed in O(D +

√
n) rounds using Claim 4.6. Note that since we work with the

LCA labels of edges, it is easy to compare two non-tree edges that cover t, with ancestors u1, u2.
To check which is the highest ancestor we just compute LCA(u1, u2).

To compute the second petal, we work as follows. Using Claim 4.10, all the tree edges t know
layer(t) and leaf(t). Let t be a tree edge in layer i. For a non-tree edge e that covers t, we would
like e to learn leaf(t). Notice that by Claim 4.8, e covers a part of at most one path in layer
i. Hence, it needs to learn only one value leaf(t) for layer i. This is an aggregate function of
the tree edges that e covers: it needs to learn about the minimum value leaf(t) for all the tree

23

edges it covers in layer i. This takes O(D+
√
n) rounds using Claim 4.5. Now, if e = {anc, dec}, it

computes ue = LCA(dec, leaf(t)), which can be computed easily from the labels of dec and leaf(t).
The lower petal is the edge e with the lowest descendant ue. This is an aggregate function of the
values (e, ue) where e are the non-tree edges in X that cover t. Again, using the LCA labels we can
compute which is the lower descendant between ue1 , ue2 where e1, e2 are two non-tree edges that
cover t. All the values ue that are relevant for t are comparable from the definition of the lower
petal. Computing an aggregate function takes O(D +

√
n) rounds, which completes the proof.

4.4 The forward phase

As explained in Section 4.2, in O(D+
√
n) rounds, all the non-tree edges simultaneously can learn

an aggregate function of the tree edges they cover. In addition, in O(D +
√
n) rounds, all the tree

edges simultaneously can learn an aggregate function of the non-tree edges that cover them. We

now show that using these building blocks we can implement the forward phase in O((D+
√
n) log

2 n
ε)

rounds.

Lemma 4.12. The forward phase takes O((D +
√
n) log

2 n
ε) rounds.

Proof. In each iteration of the forward phase we work with tree edges from a certain layer k. All
the vertices would know which layer we process in the current iteration, at the beginning k = 1.
In addition, all the tree edges know their layer and during the algorithm they would know if they
are already covered or not. At the beginning, all the tree edges are not covered. We next explain
how to implement one iteration, assuming that at the beginning all the tree edges know if they are
covered or not (they would learn this information at the end of the previous iteration).

At the beginning of the first iteration in epoch k, all the non-tree edges e compute the current
value of the dual variable s(e) =

∑
t∈Se

y(t). This is clearly an aggregate function of the tree edges
they cover, and hence takes O(D +

√
n) rounds by Claim 4.5. Next, the non-tree edges learn the

value |Ske | = |Rk ∩Se|, which is the number of tree edges they cover that are in layer k and are still
not covered. Since all the tree edges know if they are covered and if they are in layer k, this is the
sum of indicator variables

∑
t∈Se

zt, where zt = 1 if t ∈ Rk and zt = 0 otherwise, which is clearly

an aggregate function of Se. Next, each tree edge in Rk, sets y(t) = mint∈Se

w(e)−s(e)
|Sk

e |
. Note that

all the non-tree edges e, know w(e) and computed s(e), |Ske |. Hence, the tree edges need to learn

an aggregate function of the non-tree edges that cover them, the minimum value mint∈Se

w(e)−s(e)
|Sk

e |
.

Then, we add to the augmentation A edges e if their dual constraint becomes tight, which is done
by computing again s(e) =

∑
t∈Se

y(t), and checking whether s(e) ≥ w(e). Now, all the tree edges
should learn if they are covered or not. This is again an aggregate function of the non-tree edges
that cover them: they need to learn if at least one of these edges is in the set A, which can be done
for example by summing the number of edges in A from the edges that cover each tree edge. After
each edge knows if it is covered or not, all the vertices can learn in O(D) rounds if there is at least
one edge in layer k that is still not covered by communicating over a BFS tree. If all the edges in
layer k are covered, we move to the next layer, and otherwise we continue epoch k. In this case, in
the next iteration, all the tree edges in layer k that are still not covered increase their dual variable
by a multiplicative factor of (1 + ε), which is a completely local task. Again, we check which dual
constraints become tight to know which non-tree edges are added to A, then each tree edge learns
if it is covered, and all vertices learn if there is still an edge in layer k that is not covered. We
continue in the same manner until all the edges in layer k are covered.

24

Since each iteration is based on computing a constant number of aggregate functions, each
iteration takes O(D+

√
n) rounds using Claims 4.5 and 4.6. The number of layers is O(log n), and

in each layer there are at most O(lognε) iterations, as follows. Let t ∈ Rk, we show that after at most

O(lognε) iterations t is covered. At the first iteration in epoch k, we set y(t) = mint∈Se

w(e)−s(e)
|Sk

e |
,

and in each iteration we increase y(t) by a multiplicative factor of (1 + ε). Let y0 be the initial
value of y(t). Note that if we reach a stage where y(t) = y0 · |Ske |, the dual constraint of the edge e
becomes tight, since y(t) contributes w(e) − s(e), where s(e) was the value of the dual constraint
before epoch k. Now, since |Ske | ≤ n, and in the i’th iteration of epoch k, y(t) = (1 + ε)iy0 (unless
t is already covered), after O(lognε) iterations the dual constraint of e becomes tight, and it is
added to A, unless t is already covered before. To conclude, the complexity of the forward phase

is O((D +
√
n) log

2 n
ε) rounds.

4.5 The reverse-delete phase

4.5.1 Implementation details

In Section 3.5, we showed that the number of iterations in the reverse-delete phase is O(log2 n).
We next show how to implement each iteration in O(D +

√
n) rounds. First, note that from the

forward phase tree edges know in which epoch they are covered, and non-tree edges in A know
when they were added to A. Also, all the tree edges know their layer number. From the above all
the edges can compute if they are in Rk, Ak, and Fk. Rk are edges in layer k that are first covered
in epoch k, Ak are non-tree edges that are added to A in epoch k, and Fk are the tree edges that
are first covered in epoch k. Also, in each iteration edges know if they are in the sets X,Y,B,Hi

and H̃i. At the beginning B = ∅ and X = B ∪AL. Later on, we add edges to B, and all the edges
added to B or Y learn about it in the algorithm, which allows computing X = B ∪Ak in the next
iterations. In epoch k, the set Hi are all the edges in layer i in F = ∪Li=kFi, which can be computed
since edges know their layer number and whether they are in F . During the algorithm, tree edges
learn if they are already covered by edges added to Y , which allows computing H̃i, the tree edges
that are still not covered in Hi. Also, from Claim 4.11, in O(D +

√
n) rounds all the tree edges in

layer i can compute their petals with respect to a subset of non-tree edges X.
Hence, to compute one iteration we need to explain how to build an MIS in the virtual graph

Gi, how all the non-tree edges learn if they are added to Y , and how non-tree edges learn if they
are already covered by Y . At the first iteration in epoch k, Y = ∅, hence all the tree edges are not
covered by Y .

Computing an MIS in the graph Gi

We next explain how to implement one iteration. At this point, all the tree edges know if they are
in H̃i, and we would like to find an MIS in Gi. I.e., we would like to find a maximal set of tree edges
Mi in H̃i such that for any two edges t, t′ ∈Mi, there is no edge in X that covers both of them. We
design a specific algorithm to solve this task. For this, we use the decomposition of the tree into
segments presented in Section 4.2.1, and exploit the structure of the layers. As explained in Section
4.2.1, we can decompose the tree into O(

√
n) segments of diameter O(

√
n), that each of them has

a main path called the highway of the path, and additional subtrees attached to it that are not
connected to the rest of the tree. Also, all the vertices know the structure of the decomposition,
captured by the skeleton tree.

25

As explained in Section 4.3, each layer is composed of disjoint paths, that are not in the same
root to leaf path in the tree. In particular, each highway intersects at most one path in each layer.
A path P in layer i is between a descendant to its ancestor in the tree, where the descendant is
denoted by leaf(P). The path P starts with a subpath in the segment of leaf(P), and possibly
parts of highways above this segment, since the only ancestors of leaf(P) in other segments are
highway vertices. For each highway that participates in such path in the layer i, let th, t` be the
highest and lowest edges of P in the highway that are still not covered at the beginning of the
iteration (if such exist). For each segment, we let all the vertices in the graph learn these edges
and their petals with respect to X, as follows. First, by Claim 4.11, all the tree edges in layer i can
learn their petals in O(D +

√
n) rounds. Then, by scanning the highway, each segment can learn

the edges th, t` and their petals in O(
√
n) rounds. Now all the vertices can learn all the information

in O(D +
√
n) rounds using Claim 4.4, since they need to learn O(log n) information per segment.

Let T ′ be all the edges th, t` of all the segments. Our MIS algorithm consists of a global part
where we compute an MIS of the edges T ′, and a local part where we scan all the local subpaths in
layer i in each segment, and compute an MIS for them. We next describe the algorithm in detail
and prove its correctness.

Computing a global MIS. Since all the vertices know the edges in T ′ and their petals, each
vertex can compute locally the virtual graph G′ that its vertices are T ′ and two tree edge t, t′ are
connected iff there is an edge in X that covers both t, t′. Knowing the petals of each tree edge is
enough for this task, and vertices do not need to know the whole set X. This holds since the petals
cover all the neighbours of t in the same layer or above, and in iteration i we consider only the
tree edges in layer i. Also, from the labels of the petals, vertices know which of the tree edges are
covered by them, as explained in Observation 1 (our whole algorithm works with the LCA labels,
instead of ids, as mentioned earlier). Given the graph G′, all the vertices can compute an MIS, M ′,
in this graph by applying the same algorithm. For example, the sequential greedy algorithm for
MIS. Then, all the petals of edges in M ′ are added to the cover Y . All the vertices compute this
information locally, without communication. At the end, all the non-tree edges know if they were
added to Y , which happens only if they are among the petals added. Also, all the tree edges know
if they are covered or not, since they know which edges were added to Y , and given the LCA labels
of a non-tree edge, we can compute easily if it covers a tree edge by Observation 1.

Computing local MISs. Then, in each segment locally, we compute an MIS for all the tree
edges in H̃i that are still not covered, this is done as follows. Let P be a path in layer i, in each
segment we look only at the part of P in the segment if exist (there may be several such paths
in the segment). In each one of them, we simulate a greedy MIS algorithm, as follows. We start
with the lower vertex in the path v, that may be either leaf(P), or the unique descendant of a
segment. Note that all the vertices know if they are the leaf or root of a path in layer i by Claim
4.10. The vertex v checks if the edge to its parent e = {v, p(v)} is already covered by Y , if not it
is added to the MIS. Also, the vertex v knows the higher petal of e, denote it by {anc, dec} where
anc is an ancestor of dec, and it sends anc to its parent, for the following reason. Since e is added
to the MIS, its petals would be added later to Y . In particular, all the path between v to anc is
going to be covered by the edge {anc, dec}, and hence we do not add other tree edges in this path
to the MIS. The reason it is enough to focus on the higher petal is since we scan the paths from
a descendant to its ancestor, and the lower petal only covers additional tree edges below e, which
are not relevant. We continue in the same manner, now the vertex v′ = p(v) checks if the edge

26

t′ = {v′, p(v′)} is already covered either by the original set Y or by edges added to Y by vertices
below it in the segment. For the latter task, it just checks if the vertex anc it receives from v is
an ancestor of p(v′) or not, which can be deduced from the LCA labels. If t′ is already covered,
v′ sends to its parent the label of the highest ancestor in an edge that covers t′, from edges added
to Y by vertices below it. Otherwise, the edge t′ = {v′, p(v′)} is added to the MIS and v′ adds its
higher petal to cover t′, and sends to its parent the ancestor of its higher petal (which is again the
highest ancestor in an edge that covers t′ from the edges added to Y). We continue until we reach
either the highest vertex in the path P or the ancestor of the segment. At the end, we add all the
petals of tree edges in all the MISs computed in all the segments to the cover Y .

At the end of the process, all the tree edges in Hi are covered. If they were covered already by
Y from previous iterations or after computing the global MIS, it is clear. Otherwise, we reach each
tree edge t ∈ Hi during the local computations, and if it is not covered when we reach it, we add
it to the MIS and add its petals to Y , which cover it.

Let Mi be all the edges added to the MIS, either when computing a global MIS, or in one of the
local computations in the segments. We next show that although we work in different segments in
parallel, the set Mi really forms an MIS in the graph Gi.

Claim 4.13. The set Mi is an MIS in the graph Gi.

Proof. Let t1, t2 ∈Mi be two tree edges added to the MIS. Both of them must be added in the local
parts, since the edges added in the global part form an MIS, M ′, by their definition. Also, after
the global part we add all the petals of edges in M ′ to the set Y , which cover all the neighbours
of edges in M ′. Hence, all the tree edges in Hi that are still not covered, do not have a neighbour
in M ′. In addition, t1 and t2 cannot be in the same segment, as follows. First, note that t1 and
t2 can only be neighbours in Gi if they are in the same leaf to root path in the tree, since all the
non-tree edges are between ancestors to descendants. Assume that t1, t2 are neighbours in the same
segment, and assume w.l.o.g that t1 is below t2 in the tree. Then, when we reach t1, since it is
added to the MIS, we add its higher petal to the MIS which must cover t2 if they are neighbours
where t2 is above t1. Then, when we reach t2 it is already covered and is not added to the MIS.

We are left with the case that t1, t2 are added in the local computations of different segments.
Let P ′ be the tree path between t1 to t2, assume that t2 is closer to the root in this path, and let
t be the lowest edge in the highway of t2 that is not covered at the beginning of iteration i. Note
that from the structure of the segments, t2 must be part of the highway of its segment. Hence,
there must exist such an edge t, because t2 is an highway edge that is not covered at the beginning
of the iteration. Also, since t1 and t2 are neighbours there is a non-tree edge e ∈ X that covers
both of them. Since t is in the path P ′, is follows that e covers t as well, which shows that t is
a neighbour of t1 and t2. Hence, the petals of t cover t1 and t2. If t is added to the global MIS,
t1, t2 are already covered by these petals, which gives a contradiction. Otherwise, t has a neighbour
added to the global MIS. If this neighbour is above t, its petals (that cover t) must cover also t2,
otherwise its petals must cover t1, either way gives a contradiction.

The computation of the global MIS required learning the petals of the tree edges in layer i and
learning O(log n) information per segment, which takes O(D +

√
n) rounds, and the computation

of the local MISs requires scanning each segment which takes O(
√
n) rounds.

Completing the iteration. At the end of each iteration, all the non-tree edges should learn
if they were added to Y , and all the tree edges should learn if they are currently covered by the set

27

Y . In the global MIS part this is easy since all the vertices simulate the algorithm locally and know
which edges are added to Y , as explained above. We next explain how this is done for the local
part. First, after each non-tree edge knows if it is in Y , each tree edge can learn if it is covered
by Y , since this is an aggregate function of edges that cover it, this takes O(D +

√
n) rounds as

explained also in the forward phase.
In order that non-tree edges would learn if they were added to Y , we work as follows. The

edges added to Y are all the petals (with respect to X) of the edges in Mi, all these petals are in
X. Hence, if a non-tree edge e ∈ X is added to Y , it is one of the petals of a tree edge t ∈ Mi.
All the tree edges know their petals and know if they are in Mi from the algorithm. From the
independence of Mi, there are no two tree edges t1, t2 ∈ Mi that are covered by the same edge
from X. Hence, for each non-tree edge e ∈ X, there is at most one edge t ∈ Mi ∩ Se. Therefore,
it is enough that all the non-tree edges would learn which is the first edge t ∈ Mi ∩ Se (according
to some order), and what are its petals (information of O(log n) bits), since this is an aggregate
function, by Claim 4.5, all the non-tree edges can learn it in O(D +

√
n) rounds, and learn if they

are in Y .
To conclude, we can implement an iteration in O(D+

√
n) rounds. Since the reverse-delete phase

has O(log2 n) iterations, the time complexity of the whole phase is O((D +
√
n) log2 n) rounds.

Lemma 4.14. The reverse-delete phase takes O((D +
√
n) log2 n) rounds.

4.6 An improved approximation

We next present a variant of our 2-ECSS algorithm that obtains an improved approximation of
(5 + ε) instead of (9 + ε). The approximation for weighted TAP is (4 + ε), which almost matches
an Õ(D +

√
n)-round 4-approximation for the unweighed case [4]. The difference is in the reverse-

delete phase. In the algorithm presented in Section 3.5, we make sure that each tree edge t with
y(t) > 0 is covered at most 4 times by B. We now construct the set B slightly differently in a way
that guarantees that each tree edge t with y(t) > 0 is covered at most 2 times by B, which results
in an improved approximation for the whole algorithm.

All the definitions and the general structure of the algorithm follows the algorithm described in
Section 3.5. The only difference is that in epoch k we make sure that the edges in Rk are covered
at most 2 times instead of 4 times, which affects the computation in iteration i. We next describe
the difference in the reverse-delete phase. We start by describing a variant of the algorithm that
guarantees that tree edges in Rk are covered at most 3 times, and then show how to improve this
to 2.

Covering Rk at most 3 times

We again build a set B ⊆ A, where initially B = ∅, and we proceed in epochs k = L, ..., 1, where
in epoch k we make sure that all the edges in Fi for i ≥ k are covered by B, and now all the edges
in Ri for i ≥ k are covered at most 3 times. In epoch k, we again define X = B ∪ Ak (with B at
the end of epoch k + 1) and F = ∪Li=kFi, and build a set Y ⊆ X that covers F , where at the end
of epoch k we set B = Y . We go over the layers in iterations i = k, ..., L, where in iteration i, we
again want to cover all the edges in Hi, which are all the edges in layer i in F . H̃i are all the tree
edges in Hi that are not covered by Y at the beginning of iteration i.

28

Iteration i. In Section 3.5, we build an MIS, Mi, of the edges H̃i, and then add their petals to Y .
Here, we take a different approach, we choose a subset M ′i of edges in H̃i that are not necessarily
independent, but have a certain structure that guarantees that there are only small number of
dependencies between them. For each edge in M ′i we add only its higher petal to Y , and the edges

are chosen in such a way that all edges in H̃i are covered by Y , and each tree edge in Rk is covered
at most 3 times (where k is the epoch number).

The algorithm starts with a global part, in which we compute a global MIS, M ′, exactly as
described in Section 4.5.1, but now for each one of the edges in M ′ we just add its higher petal to
Y . Then, we have a local part where we compute local MISs in each segment separately, with the
goal of covering all the tree edges of Hi in the segment that are still not covered. The computation
is identical to the computation of local MISs in Section 4.5.1, with the difference that for each edge
added to the local MIS we only add its higher petal to Y . We denote by M ′i all the edges added
either to the global MIS or to one of the local MISs, and call them anchors as before. We say
that an anchor is a global anchor if it is added in the global part, and a local anchor if it is added
in the local part. The difference from before is that the whole set M ′i is no longer independent,
because in the global part we do not add the two petals of each anchor, but only the higher one.
However, we can show that the dependencies have a certain structure, as follows. See Figure 3 for
an illustration.

𝑡1- local

𝑡2- global
𝑒

Figure 3: An illustration of the dependencies between anchors. Here, the two anchors t1 and t2 have a
non-tree edge e that covers them.

Claim 4.15. Assume that the two anchors t1, t2 have a non-tree edge from X that covers them,
and that t2 is closer to the root, then t2 is a global anchor and t1 is a local anchor. In addition, t1
and t2 are added to Y in the same iteration i.

Proof. If t1, t2 are covered by an edge e ∈ X, they must be in the same root to leaf path. Since
t2 is closer to the root in this path, layer(t2) ≥ layer(t1). Note that since e covers t1 and t2, it
follows that the higher petal of t1 covers t2. If t1, t2 are not in the same layer, then t2 is already
covered at the end of iteration i = layer(t1), a contradiction to its definition. Also, all the anchors
added to M ′ in the global part of iteration i are independent. Hence, at least one of t1, t2 is added
in the local part. If t1 is added in the global part, and t2 is added in the local part, then since
the higher petal of t1 covers t2, t2 cannot be an anchor, a contradiction. Hence, t1 is added in the
local part. To complete the proof, we need to show that t2 is not added in the local part. Assume
to the contrary that it is added in the local part. First, t1 and t2 cannot be in the same segment,
since all the tree edges added to M ′i in the local part of the same segment are independent by the
algorithm, as explained also in the proof of Claim 4.13 (we follow exactly the same algorithm for
computing a local MIS in each segment).

29

We are left with the case that t1 and t2 are added in the local part in different segments. Let
t` be the lowest highway edge in the segment of t2 that is in H̃i for i = layer(t1) = layer(t2). Note
that such an edge must exist and is in the path between t1 and t2, since t2 ∈ H̃i is an highway edge
from the structure of the segments. If t` is an anchor, its higher petal covers t2 (since the edge e is
an edge that covers t1 and t2, and t` is in the path between t1 to t2), a contradiction. Otherwise,
there is a global anchor tanc ∈ H̃i that its higher petal e′ covers t`. If tanc is below t1, then e′ must
cover t1 as well. If tanc is above t2, then e′ must cover t2 as well. Otherwise, tanc is in the path
between t1 and t2. Since the higher petal of t1 covers t2, and tanc is above t1, it follows that e′

covers t2. Since e′ is added in the global part, all the cases lead to a contradiction.

Claim 4.16. After the end of epoch k, each tree edge t ∈ Rk is covered at most 3 times, and all
the edges in F = ∪Li=kHi are covered by Y .

Proof. We say that an anchor covers t if its higher petal covers t. Let t ∈ Rk. First note that from
Claim 4.15, each anchor has at most one neighbouring anchor, as follows. If t is a local anchor in
layer i, it can only have a neighbouring anchor which is a global anchor in layer i and is above t.
Since the higher petal of t covers all its neighbours above it, and global anchors are independent,
there can be at most one such anchor. A similar argument works if t is a global anchor. This in
particular shows that each anchor t is covered at most twice, by the higher petal of t and of its
neighbour if exists.

We now analyze the case that t is not an anchor. First, the lower petal of t ∈ Rk covers all its
neighbours in layer k. Note that all the anchors we add in epoch k are in layer i ≥ k. Hence there
are at most two anchors below t that cover it, they must be in layer k and by Claim 4.15 they
must be of the form a1, a2 where a1 is a local anchor and a2 is a global anchor, and a1 is below
a2. Second, the higher petal of t covers all the edges above it, again there are at most two anchors
above t that cover it b1, b2, where b1 is below b2, b1 is a local anchor and b2 is a global anchor, and
b1, b2 are in the same layer. However, if there is a global anchor b2 above t that covers t, then it
covers the whole path from t to b2. Hence, there are no local anchors in layer(b2) added in this
path. This shows that there is at most one anchor above t that covers t, either a local anchor or a
global anchor. In all the cases, there are at most 3 anchors that cover t, each of them adds only its
higher petal to Y , which shows that t is covered at most 3 times.

We now show that all the edges in F = ∪Li=kHi are covered by Y by the end of epoch k. This

holds since after iteration i all the edges in Hi are covered by Y . If they are not in H̃i they are
covered before iteration i. Otherwise they either are covered by a global anchor, or by a local
anchor from the description of the algorithm: in the local part we scan the paths of layer i in each
segment and make sure that all the tree edges in H̃i that are still not covered by global anchors
get covered.

Covering Rk at most 2 times

We now would like to add a cleaning phase after the end of epoch k, that guarantees that each
t ∈ Rk is covered only at most twice, and also all the edges in F are still covered. For doing so,
we show that in the cases a tree edge is covered 3 times, we can actually remove one of these edges
without affecting the covering of the rest of tree edges. From the proof of Claim 4.16, it follows
that the only cases that a tree edge t ∈ Rk is covered 3 times have a certain structure, illustrated
in Figure 4. First, there are exactly 3 anchors t1, t2, t3 that cover t, all of them are in the same

30

path between a descendant to an ancestor that starts with the path in layer k that t belongs to,
where t1 is the lowest edge and t3 is the highest edge. Now t1, t2 are in layer k below t, where t1 is
a local anchor and t2 is a global anchor. t3 is either a local or a global anchor above t.

𝑡

𝑡1- local

𝑡2- global

𝑡3- local

𝑒1

𝑒2

𝑒3

𝑡

𝑡1- local

𝑡2- global

𝑡3- global

𝑒1

𝑒2

𝑒3

Figure 4: An illustration of the cases that a tree edge t is covered 3 times.

In the cleaning phase, we remove the higher petal of the global anchor t2 from Y . We do so for
all the tree edges t ∈ Rk that are covered 3 times. After this, all the tree edges t ∈ Rk are clearly
covered at most twice. We next show the following.

Claim 4.17. After the cleaning phase of epoch k, each tree edge t ∈ Rk is covered at most twice,
and all the edges in F are covered by Y .

Proof. The fact each tree edge t ∈ Rk is covered at most twice is immediate from the description of
the cleaning phase, we now show that all the tree edges in F are still covered. Assume that t ∈ Rk is
a tree edge covered by the 3 anchors t1, t2, t3, sorted from the lowest to the highest in the tree. Let
e1, e2, e3 be the higher petals of these anchors. In the cleaning phase, we removed e2 from Y . First,
we show that all the tree edges from F covered by e2 are covered either by e1 or e3, this clearly
holds for t. First, note that all the tree edges from F covered by e2 are in the tree path P that
starts in the path of layer k that t belongs to and goes to the root. Let t′ ∈ F be a tree edge covered
by e2. If t′ is above t in P , then e3 covers t′. This follows since e3 covers t and the higher petal of
t covers all the edges above t covered by e2. Since t3 is above t, its higher petal e3, that covers t,
also covers all the tree edges above t that are covered by e2. If t′ is below t in P , then it is covered
by e1 as follows. Note that the tree edge t1 is in P and it is not covered by e2, since otherwise it
would be covered after the global part of iteration k, and hence cannot be a local anchor. Since
e1 covers t, it covers the whole subpath in P between t1 and t, which in particular contains all the
tree edges in P below t covered by e2 (which can only be above t1). To complete the proof, we
show that e1 and e3 remain in Y after the cleaning phase. The edge e1 clearly stays in Y since t1 is
a local anchor, and we only remove petals of global anchors in the cleaning phase. However, t3 can
be either a local or a global anchor. In the first case, e3 clearly stays in Y . We next analyze the
case that t3 is a global anchor. First, since e3 covers t, in the whole path between t to t3 there are
no local anchors: there are no local anchors of layer i = layer(t3) since they are already covered
by e3 after the global part of iteration i, and there are no local anchors from previous iterations
since otherwise t3 is already covered and is not part of H̃i. Also, all the tree path between t2 to t is

31

covered by e2 after the global part of iteration k (which is the first iteration of epoch k), so there
are no local anchors in the whole path between t2 and t3. Now, if t3 is removed from Y , it means
that there is a tree edge t̃ ∈ Rk with 3 anchors that cover it, and in particular two anchors below it
t̃1, t̃2 where t̃2 = t3 is a global anchor and t̃1 is a local anchor below t3. However, as we explained,
there are no local anchors between t2 and t3. Also, since all the anchors in epoch k are in layer at
least k, it means that the only local anchor below t̃ that covers it must be below t2. However, in
this case, the lower petal of t̃ covers the global anchors t2 and t3, in contradiction to the fact that
global anchors are independent. Hence, the edges e1 and e3 stay in Y , which shows that all tree
edges in F are covered by the end of the cleaning phase of epoch k.

Using Claim 4.17, we get the following.

Lemma 4.18. At the end of the cleaning phase of epoch k:

1. All the tree edges in F = ∪Li=kFi are covered by B.

2. All the edges in Ri for i ≥ k are covered at most 2 times.

Proof. First, 1 follows directly from Claim 4.17 (B = Y at the end of the epoch). We prove 2 by
induction on k, the proof follows ideas from Lemma 3.2. In the base case, k = L + 1 and B = ∅,
hence the claim clearly holds. We assume that the claim holds for k + 1, and show that it works
for k. We next show that any tree edge t ∈ Ri for i ≥ k is covered at most 2 times by Y . For i > k
this already follows from previous epochs. This holds since Y ⊆ X, and X = B ∪Ak (with the set
B at the end of the previous epoch). Now, at the end of epoch k + 1, all the edges in Ri for i > k
are covered at most 2 times by B from the induction hypothesis. Also, from the definition of the
sets, Ak does not cover any edge in Ri for i > k. Hence, any set Y ⊆ X we choose covers all the
edges in Ri for i > k at most 2 times. Now all the edges t ∈ Rk are covered at most twice by the
end of the cleaning phase of the epoch by Claim 4.17. This completes the proof.

From Lemma 4.18 with respect to k = 1, we get that at the end of the reverse-delete phase B
covers all tree edges, and for each 1 ≤ i ≤ L, all the tree edges in Ri are covered at most 2 times,
as needed. The algorithm has L epochs, each of them consists of at most L iterations, which sums
up to O(L2) = O(log2 n) iterations. We next show how to implement each iteration in O(D+

√
n)

rounds, which results in a complexity of O((D +
√
n) log2 n) rounds for the whole phase.

4.6.1 Implementation details

The implementation of the algorithm follows the implementation in Section 4.5.1 with slight
changes, we just highlight the differences. The computation of the global MIS and local MISs
is identical to the computation in Section 4.5.1. The only difference is that for each anchor we just
add its higher petal and not both its petals (each tree edge knows which is its higher petal). At the
end of each iteration all the non-tree edges should know if they are added to Y . In Section 4.5.1, we
explained that all the edges know which are the global anchors added in the global part and their
petals. For the local part we used the independence of anchors. Now although not all the anchors
are necessarily independent, it follows from Claim 4.15 that all the local anchors are independent
(two anchors can only be neighbours if one is a global anchor and the second is a local anchor).
This shows that for each non-tree edge e ∈ X there is at most one local anchor t ∈M ′i ∩ Se, hence
we can follow the implementation in Section 4.5.1.

32

In the new algorithm, we also have a cleaning phase after each epoch. In the cleaning phase, all
the edges t ∈ Rk that are covered 3 times remove one of these edges from Y . The edge removed is
the higher petal of a global anchor t2 which is below t. Also, from the analysis there is exactly one
global anchor below t in this case. This part can also be implemented in O(D +

√
n) rounds, as

follows. First, each tree edge learns how many times it is covered, which is an aggregate function
of the non-tree edges that cover it and hence can be implemented in O(D +

√
n) rounds. If an

edge t ∈ Rk learns that it is covered 3 times, it would like to remove the higher petal of the global
anchor t2 below it. Note that all the edges learn all the global anchors and their petals in the
algorithm, and using the LCA labels each edge can learn which of the higher petals cover it, and
which of the anchors are below it which allows identifying the anchor t2. Since there are O(

√
n)

global anchors, all the vertices in the graph can now learn in O(D+
√
n) rounds the identity of all

the global anchors that should be removed from Y , which completes the cleaning phase.
The above gives a (4 + ε)-approximation for weighted TAP and a (5 + ε)-approximation for

weighted 2-ECSS for any constant ε > 0 in O((D +
√
n) log2 n) rounds, as follows.

Theorem 4.19. There is a deterministic (4 + ε)-approximation algorithm for weighted TAP in the

CONGEST model that takes O((D +
√
n) log

2 n
ε) rounds.

Proof. The proof of Lemma 3.1 shows that if in the reverse-delete phase we cover all the edges with
y(t) > 0 at most 2 times, then we get a (2+ε)-approximation for weighted TAP in the virtual graph
G′. This gives a (4 + ε)-approximation for weighted TAP in the original graph by Lemma 4.1. The

time complexity of the forward phase is O((D+
√
n) log

2 n
ε) rounds, and the reverse-delete phase has

O(log2 n) iterations that take O(D +
√
n) rounds. Other computations in the algorithm such as

building a virtual graph, computing the layers and the decomposition also take O((D+
√
n) log n)

rounds as discussed in the relevant sections.

As explained in Claim 2.1, a (4+ε)-approximation for weighted TAP gives a (5+ε)-approximation
for weighted 2-ECSS, by building an MST and then augmenting it to be 2-edge-connected, proving
the following.

Theorem 1.1. There is a deterministic (5 + ε)-approximation algorithm for weighted 2-ECSS in

the CONGEST model that takes O((D +
√
n) log

2 n
ε) rounds.

33

5 A Faster O(log n) Approximation via Low-Congestion Shortcuts

In this section, we explain how to obtain an O(log n)-approximation algorithm for 2-ECSS that
runs in SC(G) rounds in any network G. Here, SC(G) denotes the shortcut complexity of G [12],
which is set equal to the minimum value α + β + γ such that for any partition of G into vertex-
disjoint connected parts, we have an algorithm that builds an α-congestion β-dilation shortcut, in
γ rounds. We start with the high-level outline of the approach, presented in Section 5.1. Then, we
fill out the details on how to perform each of the steps, by first providing some basic algorithmic
tools in Section 5.2, and then we use these tools to build the desired subroutines for the outline, in
Section 5.3.

5.1 High-Level Outline

2-ECSS Approximation Boils Down to Tree Augmentation: Let T = (V,ET) be the
minimum-weight spanning tree of G = (V,E). As discussed in Claim 2.1, to obtain an O(log n)-
approximate minimum weight 2-edge-connected spanning subgraph (2-ECSS), we would like to
compute an O(log n)-approximate minimum-weight set S ⊆ E \ET that covers all edges of ET . We
refer to this set S as the augmentation. As mentioned in Section 3, this tree augmentation problem
is a special case of the well-studied minimum-cost set cover problem: in our case, we are choosing
a minimum-weight collection of non-tree edges S ⊆ E \ ET which cover all the tree edges ET .

Of course, in the distributed setting, this special case comes with its own difficulties, because
the sets (in our case, non-tree edges) are not directly connected to their elements (in our case, tree
edges). This means we cannot resort to standard distributed O(log n)-approximations of the set
cover problem, in a naive way. However, the high-level outline of our algorithm will still make use
of a simple and well-known technique for parallelizing the greedy algorithm for minimum-cost set
cover [3], similiar ideas were also used in [8]. We explain an outline of the algorithm next. We
refer the reader to [3] for the details. Our focus will be on how to perform this outline for the tree
augmentation problem, in SC(G) rounds.

Outline of Our Algorithm for Tree Augmentation: We build the O(log n)-approximate
augmentation/cover set S incrementally, in O(log3 n) iterations. We next sketch how these itera-
tions work. Our focus will be on how to perform each iteration in SC(G) rounds, using subroutines
that we build on top of the known tools developed in the low-congestion shortcuts framework [12].

The general idea is to mimic the standard sequential greedy approach, but in only poly(log n)
independent iterations. Consider an intermediate step of the algorithm. Suppose that some non-tree
edges are already chosen to be in the output augmentation/cover. First, we mark each edge e ∈ ET
if it is still not covered. We will explain how to perform this in SC(G) rounds, in Lemma 5.4. For

each non-tree edge e′ ∈ E\ET , we define its cost-effectiveness to be ρ(e′) = cover(e′)
weight(e′) where cover(e′)

indicated the number of marked tree edges that e′ covers. We will explain how to compute this
simultaneously for all non-tree edges, in SC(G) rounds, in Lemma 5.5. Let ∆ denote the maximum
cost-effectiveness ∆ := maxe′∈E\ET

ρ(e′). The sequential greedy algorithm for min-cost set cover
would add one non-tree edge with cost-effectiveness ∆, and repeat doing this, each time according
to the new maximum cost-effectiveness. Of course, this sequential process is too slow for us.

To make the above more parallel, we would like to add many non-tree edges simultaneously,
each with a cost-effectiveness at least (1 − ε)∆, for a small constant ε > 0. But there might be
double counting in our cost-effectiveness calculations. That is, that many non-tree edges might be

34

covering the same few tree-edges; in that case their union is not as cost-effective as their individual
cost-effectiveness would suggest. To counter this effect, we use a the following definition. We call
a subset S′ ⊆ (E \ ET) good if the number of the unmarked edges that they cover is at least a
∆/100 factor of their total cost

∑
e′∈S′ weight(e′). Our algorithm will iteratively find good subsets

of non-tree edges, with respect to the remaining uncovered tree edges, and add them to the cover S
that we are building. This will be continued until there is no tree edge that remains uncovered. By
mimicking the analysis of the sequential greedy algorithm, as done in [3], it can be shown that any
such algorithm which only adds good subset achieves an O(log n)-approximation. Next, we discuss
how we do this process in only O(log3 n) iterations of finding good subsets.

Iterations of Tree Augmentation: Our O(log3 n) iterations are structured as O(log n) phases,
each made of O(log n) sub-phases, where each sub-phase is simply O(log n) repetitions of the same
procedure. Our O(log n) phases target values of cost-effectiveness that are decreasing powers (1 +
ε)U , (1+ε)U−1, . . . , (1+ε)L of 1+ε. Here, M = log1+ε n and L = log1+ε 1/Wmax, and Wmax denotes
the maximum weight of any edge. Since we assume Wmax ≤ poly(n), we have M − L = O(log n).

Let us zoom into one phase. Let ∆ = (1 + ε)i be the current maximum cost-effectiveness,
and let A be the set of non-tree edges whose cost-effectiveness is at least a ∆(1 − ε). Notice that
during this phase, as we add more and more non-tree edges to our cover, some edges of A might
have their cost-effectiveness drop below ∆(1− ε), in which case they get removed from A. Now, we
describe the sub-phases of this phase. These sub-phases are parametrized by the maximum number
of non-tree edges in A that cover a given tree edge e, and we will have O(log1+ε n) sub-phases,
corresponding to decreasing powers (1 + ε)j . Let us focus on one subphase. Let d = (1 + ε)j be the
maximum number of non-tree edges in A that cover a given uncovered tree edge e. Let B be the
set of all uncovered tree edges which are covered by at least d(1− ε) edges of A. The sub-phase is
made of O(log n) repetitions of the same random procedure, which attempts to find a good subset,
to add to the tree augmenting set, as we describe next.

In each repetition, we sample each nontree edge of A with probability p = 1/(2d). Then, we
add the sampled set to our augmentation if it is a good set, i.e., it its cost-effectiveness is at least
∆/100. Notice that we can easily check whether the set is good or not, in O(D) + SC(G) rounds,
by gathering how many new tree edges are covered by the sampled non-tree edges, as well as the
total weight of the sampled non-tree edges. It can be seen that the probability that each remaining
tree edge e ∈ B is covered by our sampled set is at least 0.01. Hence, after O(log n) repetitions,
each tree edge in B that has at least d(1 − ε) neighbors in A gets covered with high probability.
Then, we proceed to the next subphase, where d is lowered to (1 + ε)j−1.

Remaining Components in the Above Outline What remains from the above outline is
the subroutines needed for performing each iteration. This is actually the only contribution of
this paper, in this section. We will explain how we determine the covered tree edges and how we
compute the number of marked tree edges that are covered by each non-tree edge (so that it can
knows its cost-effectiveness). We can perform each of these two operations in Õ(SC(G)) rounds.
Next, we first review some basic tools from the low-congestion shortcuts framework of [12] and then
explain how to use these tools to perform our desired computations, in Õ(SC(G)) rounds.

35

5.2 Basic Tools

In this section, we explain three basic tools that will be used in our algorithm. These tools allow
us to compute descendants’ sum, ancestors’ sum, and heavy-light decompositions, for any tree T ,
in Õ(SC(G)) rounds. In terms of contributions, we borrow the Descendants’ Sum tool — stated in
Theorem 5.1—from the work of Ghaffari and Haeupler [12], and we also provide new algorithms
for the Ancestor’s Sum problem (which needs to be solved somewhat differently), and also for
heavy-light decompositions, respectively in Theorems 5.2 and 5.3. Given the versatility of these
basic primitives and their wide use when doing computations related to a tree structure, we are
hopeful that they will find applications beyond our usage of them for the 2-ECSS problem.

Definition 5.1 (Descendants’ Sum Problem). We are given an arbitrary spanning tree T =
(V,ET) and one input value x(v) for each vertex v ∈ V . The objective is that each vertex u ∈ V
learns the summations

∑
v∈Tu x(v) where Tu denotes the set consisting of all the descendants of u,

including u itself. The summation operand can be replaced with any other aggregate function, e.g.,
maximum, minimum, etc.

Theorem 5.1 (Ghaffari and Haeupler [12]). There is a randomized distributed algorithm that solves
the Descendants’ Sum Problem in SC(G) rounds.

Definition 5.2 (Ancestors’ Sum Problem). We are given an arbitrary spanning tree T =
(V,ET) and one input value x(v) for each vertex v ∈ V . The objective is that each vertex u ∈
V learns the summations

∑
v∈Pu

x(v) where Pu denotes the set consisting of all ancestors of u,
including u itself. The summation operand can be replaced with any other aggregate function, e.g.,
maximum, minimum, etc.

Theorem 5.2. There is a randomized distributed algorithm that solves the Ancestors’ Sum Problem
in SC(G) rounds.

Proof. We first invoke an algorithm of Ghaffari and Haeupler [12] which achieves two properties, in
Õ(SC(G)) rounds: (1) it orients the tree such that each vertex knows its parent. (2) it decomposes
the tree into an L = O(log n)-level hierarchical partitioning, with the following structure: (A) for
each i, fragments of level-i form a partitioning of the vertices of the tree and each level-i fragment
is a connected subgraph of the tree, (B) each level-i fragment is made of merging one level-(i− 1)
fragment with its level-(i−1) children fragments, (C) at the very top, the level-L fragment is simply
the whole tree, and at the very bottom, each level-0 fragment is simply one vertex.

Given the above structure, we solve the ancestor’ sum problem in a recursive manner. Let
us consider the top of the hierarchy. The level-L fragment is obtained by merging a level L − 1
fragment F0 with its children level (L− 1)-fragments F1, . . . , Fd. The ancestors’ sum problem can
be solved in F0 with no dependency on F1 to Fd, as the latter are only descendants of vertices of
F0. However, for a vertex v ∈ Fi for i ∈ [1, d] to have its ancestor’s sum, the solution depends
on F0. In particular, let w be the lowest ancestor of v in fragment F0, and let w′ be the highest
ancestor of v in fragment Fi. Then, the ancestor’s sum of v in the whole tree can be obtained by
recursively solving the ancestor’s sum of v in fragment Fi — as it we remove the edge {w,w′} —
and then adding to it the value z which is equal to the ancestor’s sum of w in F0. This gives us the
recursive structure. Let T (i) be the time to solve the ancestor’s sum problem in a level-i fragment.
Also, let U(i) denote the time to add a given fixed value z to all the ancestor’s sums in a level-i
fragment. Then, we can write T (L) = T (L − 1) + U(L − 1). This is because to solve ancestor’s

36

sum on a level-L fragment, it suffices to solve the problem on each of its level-(L − 1) fragments
independently — which takes T (L− 1) time — and then increase each of the values in each of the
children level-(L−1) fragments by the value of the ancestor’s sum of their lowest descendant in F0.

The only thing that remains to solve this recursion is what is the complexity U(i). This is
simply the problem of delivering one fixed value the root of each level-(i) fragment to all the
vertices of this fragment. This problem can be solved directly using low-congestion shortcuts in
Õ(SC(G)) rounds [12]. Recall that low-congestion shortcuts are exactly designed so that one can
deliver one message (or an aggregate function such as minimum of many messages) to all vertices
of the part/fragment. Since U(i) = Õ(SC(G)) and T (L) = T (L − 1) + U(L − 1), we get that
T (L) = Õ(SC(G)) · L = Õ(SC(G)).

Definition 5.3 (Heavy-Light Decomposition for Trees). Given a tree T = (V,ET) and a
root vertex r ∈ V , a heavy-light decomposition of T is defined as follows. Let Tv denote the subtree
rooted in vertex v ∈ V and let |Tv| be the number of vertices in Tv, including v itself. For each edge
e = {v, u} which connects a vertex u to its parent v, we call e a heavy edge if |Tu| > Tv/2 and light
otherwise. Notice that any leaf-to-root path has at most log n light edges. Moreover, each vertex
has at most one heavy edge to its children. The subgraph formed by heavy edges is a collection of
disjoint paths, called heavy paths, each being from one vertex to one of its descendants.

On the distributed side, we would like that each vertex v learns the following information: (A)
the number of vertices on the path |Pv| connecting v to r, (B) the identifier of each of the light
edges Lv in its path to the root r, where the identifier of a light edge {v, u} is the identifiers of v
and u as well as |Pv| and |Pu|.

Theorem 5.3. There is a randomized distributed algorithm that computes a heavy-light decompo-
sition in Õ(SC(G)) rounds. Moreover, each two vertices v, u which are adjacent in graph G can
know their Lowest Common Ancestor (LCA).

Proof. We first perform the descendants’ sum operation starting with x(v) = 1 for all vertices
v ∈ V , so that each vertex u knows |Tu|. This can be done in Õ(α+β+γ) rounds by Theorem 5.1.
Then, heavy and light edges can be determined easily in one round, by each vertex u sending its
Tu value to its parent v and then the parent determining whether |Tu| > Tv/2 or not.

Then, we can make each vertex learn the identifier of each of the light edges in its path to the
root. For that, first, we perform an ancestors sum operation starting with initial values x(v) =
1∀v ∈ V so that each vertex u knows |Pu|. Then, we using another ancestor’s sum operation as
follows: Define initial values x(v) = {(v, u, |Pv|, |Pu|)} if the edge connecting v to its parent u is
a light edge and x(v) = {} otherwise. Define the summation operand on x(v) to be the union
operation. Notice that since each vertex-to-root path has at most log n light edges, the size of this
union will never exceed log n tuples, when we perform union operations as we go down the tree.
Then, by applying Theorem 5.2, we can make each vertex w know all of the light edges Lw in its
path to the root.

Now, consider two vertices v, u who are adjacent in G and suppose that they exchange sets
Lv and Lu. Let w be the lowest common ancestor of v and u. Notice that Lv ∩ Lu = Lw. Let
e = (y, y′, |Py|, |P ′y|) be the lowest light edge in Lv∩Lu, i.e., the edge for which maximized |Py|. Let
ev = (yv, y

′
v) and eu = (zv, z

′
v)) be the topmost light edges in Lv and Lu that are below e. Then,

LCA w is the vertex in x ∈ {y′v, z′v} who has a smaller path length |Px| to the root r.

37

5.3 Key Subroutines

Having discussed the above tools, we are now ready to go back to the outline of the tree augmen-
tation, and discuss the subroutines that we would like to build. As mentioned before, these two
subroutines allow us to determine the covered tree edges and to compute the number of marked
tree edges that are covered by each non-tree edge. We build these subroutines via applications of
the tools discussed in the previous subsection. We provide these subroutines, in the following two
lemmas.

Lemma 5.4. Suppose we are given a spanning tree T = (V,ET) of our graph G = (V,E) and a
set S ⊆ E \ET . There is a randomized distributed algorithm that for each edge e ∈ ET , determine
whether e is covered by S or not, simultaneously for all edges of ET , in Õ(SC(G)) rounds.

Proof. For each edge e ∈ E, define its random identifier RID(e) to be a random 10 log n-bit string.
This can be chosen by the higher identifier vertex of the edge and communicated to the lower
identifier endpoint, in a single round. Notice that, with high probability, any two different edges
have different random identifiers.

For each vertex v, define x(v) to be the XOR of the random identifiers of all of the edges in S
which are incident on v. If there is no such edge incident on S, define x(v) to be a binary vector
of length 10 log n, where all the bits are zero. Then, perform a descendant’s sum using Theorem
5.2 so that each vertex u ∈ V knows the summation ⊕v∈Tux(v), where ⊕ means the bit-wise XOR.
Notice that edges of S whose both endpoint is in Tu get canceled out in this XOR, because they
are added to the XOR sum ⊕v∈Tux(v) twice, once from each endpoint. Now, for each edge e ∈ ET
which connects a vertex u to its parent w, it suffices to check ⊕v∈Tux(v). We say e is covered iff this
XOR is not a vector of all zeros. Notice that if e is not covered, then deterministically the XOR
is a vector of zeros. However, if e is covered by some set of edges, then the XOR of those edges
is with high probability not a string of all zeros, simply because each bit of that XOR is nonzero
with probability 1/2 and different bits are independent.

Lemma 5.5. Suppose we are given a spanning tree T = (V,ET) of our graph G = (V,E) and some
of edges in ET are marked. There is a randomized distributed algorithm that for edge e′ ∈ E \ ET
determines how many unmarked edges e ∈ ET it covers, in Õ(SC(G)) rounds.

Proof. First, we make each vertex v know the number Mv of marked edges on its path Pv to the
root v. This can be done using Theorem 5.2 in Õ(SC(G)) time. Then, we make each vertex v learn
the modified identifier of each of the light edges Lv in its path to the root r, where we define the
modified identifier of a light edge {v, u} to be the following six entries: the identifiers of v and u,
numbers |Pv| and |Pu|, and numbers Mv and Mu. Notice that we can each each vertex learn the
modified identifiers of all the light edges on its path to the root, using Theorem 5.1 Õ(SC(G)),
similar to what we did in Theorem 5.3 for learning light edge identifiers on this path.

Then, for each non-tree edge e′ = (v, u) ∈ E \ ET , we first identify the LCA w of v and u, as
explained in Theorem 5.3. Then, the number of marked edges covered by e′ is simply Mv +Mu −
2Mw. Notice that vertices v and u know w and Mw, as w is one of the endpoints of one of the light
edges in Lv ∪Lu, which means the information Mw is tagged on the modifier identifier of that edge
and is thus available. Once we have identified the LCA vertex w, as explained in Theorem 5.3, we
can also determine Mw by checking the information on one of the light edges connecting w to one
of its children.

38

6 Discussion

In this paper, we show an algorithm for weighted 2-ECSS which is near-optimal both in terms of
time complexity and in the approximation ratio obtained. The techniques we use here do not seem
to allow improving the approximation below (5 + ε). However, it would be interesting to study
whether different approaches can get an approximation closer to 2 in near-optimal time.

A key ingredient that allowed us obtaining a constant approximation in near-optimal time is a
parallel algorithm for set cover problems with small neighborhood covers [1]. In [1], the authors
show many examples for additional problems having this property such as interval cover and bag
cover. Therefore, we hope that the ideas we use here may be useful also for obtaining additional
efficient distributed algorithms that give constant approximations for covering problems that have
this structure.

This paper focuses on the weighted 2-ECSS problem. For k > 2 the weighted k-ECSS problem
seems to be much more involved, and currently the best complexity for approximating it is at least
linear [8]. An interesting question is whether sublinear algorithms exist for weighted k-ECSS also
for larger values of k.

Acknowledgements: We thank Merav Parter for bringing [27] to our attention. This project
has received funding from the European Union’s Horizon 2020 Research And Innovation Program
under grant agreement no. 755839. Supported in part by the Israel Science Foundation (grant
1696/14) and by the Swiss National Foundation (SNF) under project number 200021 184735.

References

[1] Archita Agarwal, Venkatesan T Chakaravarthy, Anamitra R Choudhury, Sambudha Roy, and
Yogish Sabharwal. Set cover problems with small neighborhood covers. Theory of Computing
Systems, pages 1–35, 2018.

[2] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ancestors:
A survey and a new algorithm for a distributed environment. Theory of Computing Systems,
37(3):441–456, 2004.

[3] Bonnie Berger, John Rompel, and Peter W Shor. Efficient nc algorithms for set cover with
applications to learning and geometry. In Foundations of Computer Science, 1989., 30th
Annual Symposium on, pages 54–59. IEEE, 1989.

[4] Keren Censor-Hillel and Michal Dory. Fast distributed approximation for TAP and 2-edge-
connectivity. In 21st International Conference on Principles of Distributed Systems, OPODIS
2017, Lisbon, Portugal, December 18-20, 2017, pages 21:1–21:20, 2017.

[5] Joseph Cheriyan, András Sebő, and Zoltán Szigeti. An improved approximation algorithm for
minimum size 2-edge connected spanning subgraphs. In International Conference on Integer
Programming and Combinatorial Optimization, pages 126–136. Springer, 1998.

[6] Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. Dis-
tributed edge connectivity in sublinear time. In Proceedings of the 51st annual ACM sym-
posium on Theory of computing, page to appear. ACM, 2019.

39

[7] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 363–372. ACM, 2011.

[8] Michal Dory. Distributed approximation of minimum k-edge-connected spanning subgraphs.
In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
2018, Egham, United Kingdom, July 23-27, 2018, pages 149–158, 2018.

[9] Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM Journal on Computing, 36(2):433–456,
2006.

[10] Harold N Gabow and Suzanne R Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.

[11] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages and systems
(TOPLAS), 5(1):66–77, 1983.

[12] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii: Low-
congestion shortcuts, mst, and min-cut. In Proceedings of the twenty-seventh annual ACM-
SIAM symposium on Discrete algorithms, pages 202–219. SIAM, 2016.

[13] Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In International
Symposium on Distributed Computing, pages 1–15. Springer, 2013.

[14] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed mst and routing in almost
mixing time. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
pages 131–140. ACM, 2017.

[15] Mohsen Ghaffari and Jason Li. New distributed algorithms in almost mixing time via trans-
formations from parallel algorithms. arXiv preprint arXiv:1805.04764, 2018.

[16] Mohsen Ghaffari and Merav Parter. Near-optimal distributed algorithms for fault-tolerant
tree structures. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 387–396. ACM, 2016.

[17] Michel X Goemans, Andrew V Goldberg, Serge A Plotkin, David B Shmoys, Eva Tardos, and
David P Williamson. Improved approximation algorithms for network design problems. In
SODA, volume 94, pages 223–232, 1994.

[18] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without em-
bedding. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
pages 451–460. ACM, 2016.

[19] Bernhard Haeupler, Jason Li, and Goran Zuzic. Minor excluded network families admit fast
distributed algorithms. arXiv preprint arXiv:1801.06237, 2018.

[20] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

40

[21] David R Karger, Philip N Klein, and Robert E Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. Journal of the ACM (JACM), 42(2):321–328, 1995.

[22] Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for graph augmenta-
tion. Journal of Algorithms, 14(2):214–225, 1993.

[23] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. Journal
of the ACM (JACM), 41(2):214–235, 1994.

[24] Sven O Krumke, Peter Merz, Tim Nonner, and Katharina Rupp. Distributed approximation
algorithms for finding 2-edge-connected subgraphs. In International Conference On Principles
Of Distributed Systems (OPODIS), pages 159–173. Springer, 2007.

[25] Shay Kutten and David Peleg. Fast distributed construction of smallk-dominating sets and
applications. Journal of Algorithms, 28(1):40–66, 1998.

[26] Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms. In
International Symposium on Distributed Computing, pages 439–453. Springer, 2014.

[27] Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. Manuscript,
2019.

[28] David Peleg. Distributed computing. SIAM Monographs on discrete mathematics and appli-
cations, 5, 2000.

[29] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity
of distributed minimum-weight spanning tree construction. SIAM Journal on Computing,
30(5):1427–1442, 2000.

[30] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. In
Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing,
pages 253–262. ACM, 2008.

[31] András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597–629, 2014.

[32] Amir Shadeh. Distributed primal-dual approximation algorithms for network design problems.
Open University of Israel, 2009.

[33] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

41

	1 Introduction and Related Work
	1.1 Our Contributions, in the Context of the Distributed State-of-the-Art
	1.1.1 First Contribution — Better Approximation
	1.1.2 Second Contribution — Faster Algorithm in Well-Behaved Networks

	1.2 Technical overview
	1.3 Additional Related Work

	2 Preliminaries
	3 Overview of our first algorithm
	3.1 Working with virtual edges
	3.2 Decomposing the tree into layers
	3.3 The parallel set cover algorithm
	3.4 The forward phase
	3.5 The reverse-delete phase
	3.6 Improved approximation
	3.6.1 A note on the unweighted case

	4 The first algorithm: full details and proofs
	4.1 Working with virtual edges
	4.2 Computing aggregate functions
	4.2.1 Overview of the decomposition
	4.2.2 Computing aggregate functions of tree edges
	4.2.3 Computing aggregate functions of non-tree edges

	4.3 Decomposing the tree into layers
	4.4 The forward phase
	4.5 The reverse-delete phase
	4.5.1 Implementation details

	4.6 An improved approximation
	4.6.1 Implementation details

	5 A Faster O(logn) Approximation via Low-Congestion Shortcuts
	5.1 High-Level Outline
	5.2 Basic Tools
	5.3 Key Subroutines

	6 Discussion

