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Abstract As Byzantine Agreement (BA) protocols find application in large-
scale decentralized cryptocurrencies, an increasingly important problem is to
design BA protocols with improved communication complexity. A few existing
works have shown how to achieve subquadratic BA under an adaptive adversary.
Intriguingly, they all make a common relaxation about the adaptivity of the
attacker, that is, if an honest node sends a message and then gets corrupted
in some round, the adversary cannot erase the message that was already sent

— henceforth we say that such an adversary cannot perform “after-the-fact
removal”. By contrast, many (super-)quadratic BA protocols in the literature
can tolerate after-the-fact removal. In this paper, we first prove that disallowing
after-the-fact removal is necessary for achieving subquadratic-communication
BA.
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Next, we show new subquadratic binary BA constructions (of course, as-
suming no after-the-fact removal) that achieves near-optimal resilience and
expected constant rounds under standard cryptographic assumptions and a
public-key infrastructure (PKI) in both synchronous and partially synchronous
settings. In comparison, all known subquadratic protocols make additional
strong assumptions such as random oracles or the ability of honest nodes
to erase secrets from memory, and even with these strong assumptions, no
prior work can achieve the above properties. Lastly, we show that some setup
assumption is necessary for achieving subquadratic multicast-based BA.

Keywords Byzantine agreement · communication complexity · subquadratic ·
lower bounds

1 Introduction

Byzantine agreement (BA) [27] is a central abstraction in distributed systems.
Typical BA protocols [7,13,14] require all players to send messages to all other
players, and thus, n-player BA requires at least n2 communication complexity.
Such protocols are thus not well suited for large-scale distributed systems such
as decentralized cryptocurrencies [29]. A fundamental problem is to design BA
protocols with improved communication complexity.

In fact, in a model with static corruption, this is relatively easy. For example,
suppose there are at most f < ( 1

2 − ε)n corrupt nodes where ε is a positive
constant; further, assume there is a trusted common random string (CRS) that
is chosen independently of the adversary’s (static) corruption choices. Then, we
can use the CRS to select a λ-sized committee of players. Various elegant works
have investigated how to weaken or remove the trusted set-up assumptions
required for committee election and retain subquadratic communication [8, 25].
Once a committee is selected, we can run any BA protocol among the committee,
and let the committee members may send their outputs to all “non-committee”
players who could then output the majority bit. This protocol works as long
as there is an honest majority on the committee. Thus, the error probability is
bounded by exp(−Ω(λ)) due to a standard Chernoff bound.

Such a committee-based approach, however, fails if we consider an adaptive
attacker. Such an attacker can simply observe what nodes are on the committee,
then corrupt them, and thereby control the entire committee! A natural and
long-standing open question is thus whether subquadratic communication is
possible w.r.t. an adaptive attacker:

Does there exist a BA protocol with subquadratic communication complexity
that resists adaptive corruption of players?

This question has been partially answered in a few prior works. First, a
breakthrough work by King and Saia [24] presented a BA protocol with commu-
nication complexity O(n1.5). More recent works studied practical constructions
motivated by cryptocurrency applications: notably the celebrated Nakamoto
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consensus [19, 29] can reach agreement in subquadratic communication as-
suming idealized proof-of-work. Subsequently, several so-called “proof-of-stake”
constructions [9, 11] also showed how to realize BA with subquadratic commu-
nication. All of the above works tolerate adaptive corruptions.

What is both intriguing and unsatisfying is that all these works happen to
make a common relaxing assumption about the adaptivity of the adversary,
namely, if adversary adaptively corrupts an honest node i who has just sent
a message m in round r, the adversary is unable to erase the honest message
m sent in round r. Henceforth we say that such an adversary is incapable of
after-the-fact removal. In comparison, many natural Ω(n2)-communication BA
protocols [1, 13, 23] can be proven secure even if the adversary is capable of
after-the-fact removal – henceforth referred to as a strongly adaptive adversary.
That is, if an honest node i sends a message m in round r, a strongly adaptive
adversary (e.g., who controls the egress routers of many nodes) can observe m
and then decide to corrupt i and erase the message m that node i has just sent
in round r. This mismatch in model naturally raises the following question:

Is disallowing after-the-fact removal necessary for achieving subquadratic-
communication BA?

Main result 1: disallowing “after-the-fact” removal is necessary. Our
first contribution is a new lower bound showing that any (possibly randomized)
BA protocol must incur at least Ω(f2) communication in expectation in the
presence of a strongly adaptive adversary where f denotes the number of
corrupt nodes. The proof of our lower bound is inspired by the work of Dolev
and Reischuk [12], who showed that any deterministic BA protocol must incur
Ω(f2) communication even against a static adversary. We remark our lower
bound (as well as Dolev-Reischuk) holds in a very strong sense: even when
making common (possibly very strong) assumptions such as proof-of-work and
random oracles, and even under a more constrained omission adversary who is
only allowed to omit messages sent from and to corrupt nodes, but does not
deviate from the protocol otherwise.

Theorem 1 (Impossibility of BA with subquadratic communication
w.r.t. a strongly adaptive adversary) Any (possibly randomized) BA pro-
tocol must in expectation incur at least Ω(f2) communication in the presence
of a strongly adaptive adversary capable of performing after-the-fact removal,
where f denotes the number of corrupt nodes.

Main result 2: near-optimal subquadratic BA with minimal assump-
tions. On the upper bound front, we present a subquadratic BA protocols that,
besides the necessary “no after-the-fact removal” assumption, rely only on stan-
dard cryptographic and setup assumptions. Our protocols achieve near-optimal
resilience and expected constant rounds.

Our results improve upon existing works in two major aspects. Firstly,
besides “no after-the-fact removal”, all existing subquadratic protocols make
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very strong additional assumptions, such as random oracles [9, 11] or proof-of-
work [29]. In particular, some works [9, 24] assume the ability of honest nodes
to securely erase secrets from memory and that adaptive corruption cannot
take place between when an honest node sends a message and when it erases
secrets from memory. Such a model is referred to as the “erasure model” in the
cryptography literature and as “ephemeral keys” in Chen and Micali [9]. To
avoid confusing the term with “after-the-fact message removal”, we rename it
the memory-erasure model in this paper. Secondly, and more importantly, even
with those strong assumptions, existing protocols do not achieve the above
properties (cf. Section 1.1).

The multicast model. In a large-scale peer-to-peer network, it is usually
much cheaper for a node to multicast the same message to everyone, than to
unicast n different messages (of the same length) to n different nodes — even
though the two have identical communication complexity in the standard pair-
wise model. Indeed, all known consensus protocols deployed in a decentralized
environment (e.g. Bitcoin, Ethereum) work in the multicast fashion. Since our
protocols are motivated by these large-scale peer-to-peer networks, we design
our protocols to be multicast-based.

A multicast-based protocol is said to have multicast complexity C if the
total number of bits multicast by all honest players is upper bounded by C.
Clearly, a protocol with multicast complexity C has communication complexity
nC. Thus, to achieve subquadratic communication complexity, we need to
design a protocol in which only a sublinear (in n) number of players multicast.

Theorem 2 Assuming standard cryptographic assumptions and a public-key
infrastructure (PKI),

1. For any constant 0 < ε < 1/2, there exists a synchronous BA protocol
with expected O(χ · poly log(κ)) multicast complexity, expected O(1) round
complexity, and negl(κ) error probability that tolerates f < (1 − ε)n/2
adaptively corrupted players out of n players in total.

2. For any constant 0 < ε < 1/3, there exists a partially synchronous BA
protocol with expected O(χ ·poly log(κ)) multicast complexity, expected O(∆ ·
poly log(κ)) time, and negl(κ) error probability that tolerates f < (1− ε)n/3
adaptively corrupted players out of n players in total.

In both statements, κ is a security parameter and χ is a computational security
parameter; χ = poly(κ) under standard cryptographic assumptions and χ =
poly log(κ) if we assume sub-exponential security of the cryptographic primitives
employed.

Our construction requires a random verifiable function (VRF) that is secure
against an adaptive adversary. Here, adaptive security means security under
selective opening of corrupt nodes’ secret keys, which is a different notion
of adaptivity from in some prior works [4, 20]. Most previously known VRF
constructions [4,20,28] do not provide security under an adaptive adversary.
Chen and Micali [9] use random oracles (RO) and unique signatures to construct
an adaptively secure VRF.
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In the main body of the paper, we present protocols assuming an ideal
functionality of VRF; in particular, we will measure communication complexity
in terms of the number of messages and state results using a statistical security
parameter λ. In the appendix, we show how to instantiate an adaptively secure
VRF under standard cryptographic assumptions such as bilinear groups, and
restate our results using κ, χ, and communication complexity in bits.

Main result 3: on the necessity of setup assumptions. In light of the
above Theorem 2, we additionally investigate whether the remaining setup PKI
assumption is necessary. We show that if one insists on a multicast-based proto-
col, indeed some form of setup assumption is necessary for achieving sublinear
multicast complexity. Specifically, we show that without any setup assumption,
i.e., under the plain authenticated channels model, a (possibly randomized)
protocol that solves BA with C multicast complexity with probability p > 5/6
can tolerate no more than C adaptive corruptions.

Theorem 3 (Impossibility of sublinear multicast BA without setup
assumptions) In a plain authenticated channel model without setup assump-
tions, no protocol can solve BA using C multicast complexity with probability
p > 5/6 under C adaptive corruptions.

We remark that this lower bound also applies more generally to protocols
in which few nodes (i.e., less than C nodes) speak (multicast-style protocols
are a special case). Also note that there exist protocols with subquadratic
communication and no setup assumptions that rely on many nodes to speak [24].

Organization. The rest of the paper is organized as follows. Section 1.1 reviews
related work. Section 8 presents the model and definitions of BA. Section 3
proves Theorem 1. Sections 4, 5, and 6 construct adaptively secure BA protocols
to prove Theorem 2. Section 7 proves Theorem 3.

1.1 Related Work

Dolev and Reischuk [12] proved that quadratic communication is necessary
for any deterministic BA protocol. Inspired by their work, we show a similar
communication complexity lower bound for randomized protocols, but now
additionally assuming that the adversary is strongly adaptive.

A number of works explored randomized BA protocols [3, 30] to achieve
expected constant round complexity [1, 15, 23] even under a strongly adaptive
adversary. A line of works [10,18,22] focused on a simulation-based stronger
notion of adaptive security for Byzantine Broadcast. These works have at least
quadratic communication complexity.

King and Saia first observed that BA can be solved with subquadratic
communication complexity if a small probability of error is allowed [24]. More
recently Nakamoto-style protocols, based on either proof-of-work [29] or proof-
of-stake [9, 11] also showed how to realize BA with subquadratic communi-
cation. Compared to our protocol in Section 5, these existing works make
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other strong assumptions, and even with those strong assumptions, cannot
simultaneously achieve near-optimal resilience and expected constant rounds.
Nakamoto consensus [29] assumes idealized proofs-of-work. Proof-of-stake pro-
tocols assume random oracles [9,11]. King-Saia [24] and Chen-Micali [9] assume
memory-erasure. Nakamoto-style protocols [11,29] and King-Saia [24] cannot
achieve expected constant rounds. Chen-Micali [9] have sub-optimal tolerance
of f < ( 1

3 − ε)n.

2 Model and Definition

Communication model. We assume two different communication models
for two different protocols. In Sections 4 and 5, we assume that the network
is synchronous and the protocol proceeds in rounds. Every message sent by
an honest node is guaranteed to be received by an honest recipient at the
beginning of the next round.

In Section 6, we assume that the network is partially synchronous. There
are multiple ways to define partial synchrony [14]. In this paper, we consider
the unknown ∆ variant, i.e., there exists a fixed message delay bound of ∆
rounds but ∆ is not known to any honest party.

We measure communication complexity by the number of messages sent
by honest nodes. Our protocols in Sections 4, 5, and 6 use multicasts only,
that is, whenever an honest node sends a message, it sends that message to
all nodes including itself. We say a protocol has multicast complexity C if the
total number of multicasts by honest nodes is bounded by C.

Adversary model. We assume a trusted PKI; every honest node knows the
public key of every other honest node. The adversary is polynomially bounded
and denoted A. A can adaptively corrupt nodes any time during the protocol
execution after the trusted setup. The total number of corrupt nodes at the end
of the execution is at most f . At any time in the protocol, nodes that remain
honest so far are referred to as so-far-honest nodes and nodes that remain
honest till the end of the protocol are referred to as forever-honest nodes. All
nodes that have been corrupt are under the control of A, i.e., the messages
they receive are forwarded to A, and A controls what messages they will send
in each round once they become corrupt. We assume that when a so-far-honest
node i multicasts a message m, it can immediately become corrupt in the same
round and be made to send one or more messages in the same round. We
prove our lower bound in Section 3 under a strongly adaptive adversary that
can perform an after-the-fact removal, i.e, it can retract messages that have
already been multicast before the node becomes corrupt. For our upper bounds
in subsequent sections, we assume an adaptive adversary can cannot perform
such a retraction.

Agreement vs. broadcast. (Binary) Byzantine Agreement is typically stud-
ied in two forms. In the broadcast version, also called Byzantine broadcast,
there is a designated sender (or simply sender) known to all nodes. Prior
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to protocol start, the sender receives an input b ∈ {0, 1}. A protocol solves
Byzantine broadcast with probability p if it achieves the following properties
with probability at least p.

- Termination. Every forever-honest node i outputs a bit b′i.
- Consistency. If two forever-honest nodes output b′i and b′j respectively, then
b′i = b′j .

- Validity. If the sender is forever-honest and the sender’s input is b, then all
forever-honest nodes output b.

In the agreement version, sometimes referred to as Byzantine “consensus”
in the literature, there is no designated sender. Instead, each node i receives
an input bit bi ∈ {0, 1}. A protocol solves Byzantine agreement (BA) with
probability p if it achieves the following properties with probability at least p.

- Termination and Consistency same as Byzantine broadcast.
- Validity. If all forever-honest nodes receive the same input bit b, then all

forever-honest nodes output b.

With synchrony and PKI, the agreement version (where everyone receives
input) can tolerate up to minority corruption [17] while the broadcast version
can tolerate up to n−1 corruptions [13,27]. Under minority-corruption, the two
versions are equivalent from a feasibility perspective, i.e., we can construct one
from the other. Moreover, one direction of the reduction preserves communica-
tion complexity. Specifically, given an adaptively secure BA protocol (agreement
version), one can construct an adaptively secure Byzantine Broadcast protocol
by first having the designated sender multicasting its input to everyone, and
then having everyone invoke the BA protocol. This way, if the BA protocol has
subquadratic communication complexity (resp. sublinear multicast complexity),
so does the resulting Byzantine Broadcast protocol. For this reason, we state
all our upper bounds for BA and state all our lower bounds for Byzantine
Broadcast — this makes both our upper- and lower-bounds stronger.

3 Communication Lower Bound Under a Strongly Adaptive
Adversary

In this section, we prove that any (possibly randomized) BA protocol must in
expectation incur at least Ω(f2) communication in the presence of a strongly
adaptive adversary capable of performing after-the-fact removal. For the reasons
mentioned in Section 8, we prove our lower bound for Byzantine Broadcast
(which immediately applies to BA). Our proof strategy builds on the classic
Dolev-Reischuk lower bound [12, Theorem 2], which shows that in every
deterministic Byzantine Broadcast protocol honest nodes need to send at least
Ω(f2) messages.

Warmup: the Dolev-Reischuk lower bound. We first explain the Dolev-
Reischuk proof at a high level. Observe that for a deterministic protocol, an
execution is completely determined by the input (of the designated sender)
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and the adversary’s strategy. Consider the following adversary A: A corrupts a
set V of f/2 nodes that does not include the designated sender. Let U denote
the set of remaining nodes. All nodes in V behave like honest nodes, except
that (i) they ignore the first f/2 messages sent to them, and (ii) they do not
send messages to each other. Suppose the honest designated sender has input
0. For validity to hold, all honest nodes must output 0.

If at most (f/2)2 messages are sent to V in the above execution, then there
exists a node p ∈ V that receives at most f/2 messages. Now, define another
adversary A′ almost identically as A except that: (i) A′ does not corrupt p,
(ii) A′ corrupts all nodes in U that send p messages (possibly including the
designated sender), prevents them from sending any messages to p, but behaves
honestly to other nodes. Since p receives at most f/2 messages under A, A′
corrupts at most f nodes.

Observe that honest nodes in U receive identical messages from all other
nodes in the two executions. So these nodes still output 0 under A′. However,
p does not receive any message but has to output some value. If this value
is 1, consistency is violated. If p outputs 0 when receiving no messages, we
can let the sender send 1 under A and derive a consistency violation under A′
following a symmetric argument.

Our lower bound. We now extend the above proof to randomized protocols.
In a randomized protocol, there are two sources of randomness that need to
be considered carefully. On one hand, honest nodes can use randomization to
their advantage. On the other hand, an adaptive adversary can also leverage
randomness. Indeed our lower bound uses a randomized adversarial strategy.
In addition, our lower bound crucially relies on the adversary being strongly
adaptive – the adversary can observe that a message is sent by an honest node
h to any other party in a given round r, decide to adaptively corrupt h, and
then remove messages sent by h in round r. We prove the following theorem

— here we say that a protocol solves Byzantine Broadcast with probability q
iff for any non-uniform p.p.t. strongly adaptive adversary, with probability q,
every honest node outputs a bit at the end of the protocol, and consistency
and validity are satisfied.

Theorem 4 If a protocol solves Byzantine Broadcast with 3
4 + ε probability

against a strongly adaptive adversary, then in expectation, honest nodes collec-
tively need to send at least (εf)2 messages.

Proof For the sake of contradiction, suppose that a protocol solves Byzantine
Broadcast against a strongly adaptive adversary with 3

4 + ε probability using
less than (εf)2 expected messages. This means, regardless of what the adversary
does, the protocol errs (i.e., violate either consistency, validity or termination)
with no more than 1

4 − ε probability. We will construct an adversary that makes
the protocol err with a probability larger than the above.

Without loss of generality, assume that there exist dn/2e nodes that output
0 with at most 1/2 probability if they receive no messages. (Otherwise, then
there must exist dn/2e nodes that output 1 with at most 1/2 probability if they
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receive no messages, and the entire proof follows from a symmetric argument.)
Let V be a set of f/2 such nodes not containing the designated sender. Note
that these nodes may output 1 or they may simply not terminate if they receive
no messages. (We can always find such a V because f/2 < dn/2e). Let U
denote the remaining nodes. Let the designated sender send 0.

Next, consider the following adversary A that corrupts V and makes nodes
in V behave honestly except that:

1. Nodes in V do not send messages to each other.
2. Each node in V ignores (i.e., pretends that it does not receive) the first f/2

messages sent to it by nodes in U .

For a protocol to have an expected communication complexity of (εf)2,
honest nodes collectively need to send fewer than that many messages in
expectation regardless of the adversary’s strategy. Let z be a random variable
denoting the number of messages sent by honest nodes to V . We have E[z] <
(εf)2. Let X1 be the event that z ≤ ε

2f
2. By Markov’s inequality, Pr[z >

1
2εE[z]] < 2ε. Thus, Pr[z ≤ ε

2f
2] ≥ Pr[z ≤ 1

2εE[z]] > 1− 2ε.
Let X2 be the event that among the first ε

2f
2 messages, a node p picked

uniformly at random from V by the adversary receives at most f/2 messages.
Observe that among the first ε

2f
2 = 2ε|V |(f/2) messages, there exist at most

2ε|V | nodes that receive more than f/2 of those. Since p has been picked
uniformly at random from V , Pr[X2] ≥ 1− 2ε. Thus, we have that

Pr[X1 ∩X2] = Pr[X1] + Pr[X2]− Pr[X1 ∪X2]

> (1− 2ε) + (1− 2ε)− 1 = 1− 4ε.

Now, define another adversary A′ almost identically as A except that:

1. A′ picks a node p ∈ V uniformly at random and corrupts everyone else in
V except p.

2. A′ blocks the first f/2 attempts that nodes in U send p messages. In other
words, whenever some node s ∈ U attempts to send a message to p in
a round, if this is within the first f/2 attempts that nodes in U send p
messages, A′ immediately corrupts s (unless s is already corrupted) and
removes the message s sends p in that round. Corrupted nodes in U behave
honestly otherwise. (In particular, after the first f/2 messages from U to p
have been blocked, corrupted nodes behave honestly to p as well.)

Observe that X1 ∩X2 denotes the event that under adversary A, the total
number of messages sent by honest nodes to V is less than ε

2f
2 and among

those, the randomly picked node p has received at most f/2 messages. In this
case, p receives no message at all under adversary A′. By the definition of V ,
p outputs 0 with at most 1/2 probability if it receives no messages. Let Y1
be the event that p does not output 0 under A′. Recall that Y1 includes the
event that p outputs 1 as well as the event that p does not terminate. We have
Pr[Y1] ≥ Pr[Y1|X1 ∩X2] · Pr[X1 ∩X2] > 1

2 (1− 4ε).
Meanwhile, we argue that honest nodes in U cannot distinguish A and A′.

This is because the only difference between the two scenarios is that, under A,
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the first f/2 messages from U to p are intentionally ignored by a corrupt node
p, and under A′, the first f/2 messages from U to an honest p are blocked
by A′ using after-the-fact removal. Thus, honest nodes in U receive identical
messages under A and A′ and cannot distinguish the two adversaries. Under
A, they need to output 0 to preserve validity. Recall that the protocol solves
Byzantine broadcast with at least 3

4 + ε probability. Thus, with at least the
above probability, all honest nodes in U output 0 under A. Let Y2 be the event
that all honest nodes in U output 0 under A′. Since they cannot distinguish A
and A′, Pr[Y2] ≥ 3

4 + ε.

If Y1 and Y2 both occur, then the protocol errs under A′: either consistency
or termination is violated. We have

Pr[Y1 ∩ Y2] = Pr[Y1] + Pr[Y2]− Pr[Y1 ∪ Y2]

>
1

2
(1− 4ε) + (

3

4
+ ε)− 1 =

1

4
− ε.

This contradicts the hypothesis that the protocol solves Byzantine broadcast
with 3

4 + ε probability.

4 Subquadratic BA under Synchrony: f < (1/3− ε)n

This section presents the main ingredients for achieving subquadratic BA. In
this section, we opt for conceptual simplicity over other desired properties. In
particular, the protocol in this section tolerates only 1

3 − ε fraction of adaptive
corruptions, and completes in O(λ) rounds. In the next section, we will show
how to improve the resilience to 1

2 − ε and round complexity to expected O(1).

4.1 Warmup: A Simple Quadratic BA Tolerating 1/3 Corruptions

We first describe an extremely simple quadratic BA protocol, inspired by
the Phase-King paradigm [2], that tolerates less than 1/3 corruptions. The
protocol proceeds in λ iterations r = 1, 2, . . . λ, and every iteration consists of
two rounds. For the time being, assume a random leader election oracle that
elects and announces a random leader at the beginning of every iteration. At
initialization, every node i sets bi to its input bit, and sets its “sticky flag”
F = 1 (think of the sticky flag as indicating whether to “stick” to the bit in
the previous iteration). Each iteration r now proceeds as follows where all
messages are signed, and only messages with valid signatures are processed:

1. The leader of iteration r flips a random coin b and multicasts (Propose, r, b).
Every node i sets b∗i := bi if F = 1 or if it has not heard a valid proposal
from the current iteration’s leader. Else, it sets b∗i := b where b is the
proposal heard from the current iteration’s leader (if proposals for both
b = 0 and b = 1 have been observed, choose an arbitrary bit).
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2. Every node i multicasts (Vote, r, b∗i ). If at least 2n
3 votes from distinct nodes

have been received and vouch for the same b∗, set bi := b∗ and F := 1; else,
set F := 0.

At the end of the last iteration, each node outputs the bit that it last voted for.
In short, in every iteration, every node either switches to the leader’s

proposal (if any has been observed) or it sticks to its previous “belief” bi. This
simple protocol works because of the following observations. Henceforth, we
refer to a collection of 2n

3 votes from distinct nodes for the same iteration and
the same b as a certificate for b.

- Consistency within an iteration. Suppose that in iteration r, honest node i
observes a certificate for b from a set of nodes denoted S, and honest node j
observes a certificate for b′ from a set S′. By a standard quorum intersection
argument, S ∩S′ must contain at least one forever-honest node. Since honest
nodes vote uniquely, it must be that b = b′.

- A good iteration exists. Next, suppose that in some iteration r the leader is
honest. We say that this leader chooses a lucky bit b∗ iff in iteration r − 1,
no honest node has seen a certificate for 1− b∗. This means, in iteration r,
every honest node either sticks with b∗ or switches to the leader’s proposal
of b∗. Clearly, an honest leader chooses a lucky b∗ with probability at least
1/2. Except with exp(−Ω(λ)) probability, an honest-leader iteration with a
lucky choice exists.

- Persistence of honest choice after a good iteration. Now, as soon as we reach
an iteration (denoted r) with an honest leader and its choice of bit b∗ is
lucky, then all honest nodes will vote for b∗ in iteration r. Thus all honest
nodes will hear certificates for b∗ in iteration r; therefore, they will all stick
to b∗ in iteration r + 1. By induction, in all future iterations they will stick
to b∗.

- Validity. If all honest nodes receive the same bit b∗ as input then due to the
same argument as above the bit b∗ will always stick around in all iterations.

4.2 Subquadratic Communication through Vote-Specific Eligibility

The above simple protocol requires in expectation linear number of multicast
messages (in each round every node multicasts a message). We now consider
how to improve the multicast complexity of the warmup protocol. We will also
remove the idealized leader election oracle in the process.

Background on VRFs. We rely on a verifiable random function (VRF) [28].
A trusted setup phase is used to generate a public-key infrastructure (PKI):
each node i ∈ [n] obtains a VRF secret key ski, and its corresponding public
key pki. A VRF evaluation on the message µ denoted (ρ, π) ← VRFski(µ)
generates a deterministic pseudorandom value ρ and a proof π such that ρ is
computationally indistinguishable from random without the secret key ski, and
with pki everyone can verify from the proof π that ρ is evaluated correctly. We
use VRF1 to denote the first output (i.e., ρ above) of the VRF.
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Strawman: the Chen-Micali approach. We first describe the paradigm of
Chen and Micali [9] but we explain it in the context of our warmup protocol.
Imagine that now not everyone is required to vote in a round r. Instead, we
use the function VRF1

ski(Vote, r) < D to determine whether i is eligible to vote
in round r where D is a difficulty parameter appropriately chosen such that,
in expectation, λ many nodes would be chosen to vote in each round. When
node i sends a Vote message, it attaches the VRF’s evaluation outcome as well
as the proof such that every node can verify its eligibility using its public key
pki. Correspondingly, when we tally votes, the original threshold 2n

3 should be

changed to 2λ
3 , i.e, two-thirds of the expected committee size.

Evaluating the VRF requires knowing the node’s secret key. Thus, only
the node itself knows at what rounds it is eligible to vote. This may seem to
solve the problem because the adversary cannot predict in advance who will
be sending messages in every round. The problem with this is that once an
adaptive adversary A notices that some player i was eligible to vote for b in
round r (because i just sent a valid vote for b), A can corrupt i immediately
and make i vote for 1− b in the same round!

To tackle this precise issue, Chen and Micali [9] relies on the memory-erasure
model (referred to as ephemeral keys in their paper) and a forward-secure
signing scheme. Informally, in a forward secure signing scheme, in the beginning,
a node has a key that can sign any messages from any round; after signing
a message for round t, the node updates its key to one that can henceforth
sign only messages for round t+ 1 or higher, and the round-t secret key should
be immediately erased at this point. This way, even if the attacker instantly
corrupts a node, it cannot cast another vote in the same round.

Our key insight: bit-specific eligibility. Our key insight is to make the
eligibility bit-specific. To elaborate, the committee eligible to vote for b in
round r is chosen independently from the committee eligible to vote on 1− b in
the same round. Concretely, node i is eligible to send a Vote message for the bit
b ∈ {0, 1} in round r iff VRF1

ski(Vote, r, b) < D, where D is the aforementioned
difficulty parameter.

What does this achieve? Suppose that the attacker sees some node i votes
for the bit b in round r. Although the attacker can now immediately corrupt i,
the fact that i was allowed to vote for b in round r does not make i any more
likely to be eligible to vote for 1− b in the same round. Thus, corrupting i is
no more useful to the adversary than corrupting any other node.

Finally, since we already make use of the VRF, as a by-product we can
remove the idealized leader election oracle in the warmup protocol: a node i
is eligible for making a proposal in iteration r iff VRF1

ski(Propose, r, b) < D0

where D0 is a separate difficulty parameter explained below. Naturally, the
node attaches the VRF evaluation outcome and proof with its proposal so that
others can verify its eligibility.

Difficulty parameters. The two difficulty parameters D and D0 need to be
specified differently. Recall that D is used to elect a committee in each round
for sending Vote messages; and D0 is used for leader election.
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1. D should be set such that each committee is λ-sized in expectation; whereas
2. D0 should be set such that every node has a 1

2n probability to be eligible
to propose.

Since we are interested in making communication scale better with n, we
assume n > λ; otherwise, one should simply use the quadratic protocol.

Putting it together. More formally, we use the phrase “node i conditionally
multicasts a message (T, r, b)” to mean that node i checks if it is eligible
to vote for b in iteration r and if so, it multicasts (T, r, b, i, π), where T ∈
{Propose, Vote} stands for the type of the message and π is a proof proving
that i indeed is eligible (note that π includes both the pseudorandom evaluation
result and the proof output by the VRF). Now, our new committee-sampling
based subquadratic protocol is almost identical to the warmup protocol except
for the following changes:

– every occurrence of multicast is now replaced with “conditionally multicast”;
– the threshold of certificates (i.e., number of votes for a bit to stick) is now

2λ
3 ; and

– upon receiving every message, a node checks the proof to verify the sender’s
eligibility to send that message.

4.3 Proof Sketch

To help our analysis, we shall abstract away the cryptography needed for
eligibility election, and instead think of eligibility election as making queries
to a trusted party called Fmine. We call an attempt for node i to check its
eligibility to send either a Propose or Vote message a mining attempt for a
Propose or Vote message (inspired by Bitcoin’s terminology where miners
“mine” blocks). Specifically, if a node i wants to check its eligibility for sending
(T, r, b) where T ∈ {Propose, Vote}, it calls Fmine.mine(T, r, b), and Fmine shall
flip a random coin with appropriate probability to determine whether this
“mining” attempt is successful. If successful, Fmine.verify((T, r, b), i) can vouch
to any node of the successful attempt – this is used in place of verifying the
VRF proof. If a so-far-honest node makes a mining attempt for some (T, r, b),
it is called an honest mining attempt (even if the node immediately becomes
corrupt afterwards in the same round). Else, if an already corrupt node makes
a mining attempt, it is called a corrupt mining attempt.

We now explain why our new protocol works by following similar arguments
as the underlying BA — but now we must additionally analyze the stochastic
process induced by eligibility election.

Consistency within an iteration. We first argue why “consistency within
an iteration” still holds with the new protocol. There are at most ( 1

3 − ε)n
corrupt nodes, each of which might try to mine for two votes (one for each
bit) in every iteration r. On the other hand, each so-far-honest node will try
to mine for only one vote in each iteration. Therefore, in iteration r, the total



14 Ittai Abraham et al.

number of mining attempts (honest and corrupt) for Vote messages is at most
2( 1

3 − ε)n+ ( 2
3 + ε)n = ( 4

3 − ε)n, each of which is independently successful

with probability λ
n . Hence, if there are 2λ

3 votes for each of the bits 0 and 1, this

means there are at least in total 4λ
3 successful mining attempts, which happens

with exp(−Ω(λ)) probability, by the Chernoff bound. Therefore, except with
exp(−Ω(λ)) probability, if any node sees 2λ

3 votes for some bit b, then no other

node sees 2λ
3 votes for a different bit b′.

A good iteration exists. We now argue why “a good iteration exists” in
our new protocol. Here, for an iteration r to be good, the following must hold:
1) a single so-far-honest node successfully mines a Propose message, and no
already corrupt node successfully mines a Propose message; and 2) if some
honest nodes want to stick to a bit b∗ in iteration r, the leader’s random coin
must agree with b∗. (Note that if multiple so-far-honest nodes successfully mine
Propose messages, this iteration is not a good iteration). Every so-far-honest
node makes only one Propose mining attempt per iteration. Every already
corrupt node can make two Propose mining attempts in an iteration, one for
each bit. Since our Propose mining difficulty parameter D0 is set such that each
attempt succeeds with 1

2n probability, in every iteration, with Θ(1) probability,
a single honest Propose mining attempt is successful and no corrupt Propose
mining attempt is successful. Since our protocol consists of λ iterations, a good
iteration exists except with exp(−Ω(λ)) probability,

Remainder of the proof. Finally, “persistence of honest choice after a good
iteration” and “validity” hold in a relatively straightforward fashion by applying
the standard Chernoff bound.

Remark. We stress that for the above argument to hold, it is important that
the eligibility be tied to the bit being proposed/voted. Had it not been the
case, the adversary could observe whenever an honest node sends (T, r, b), and
immediately corrupt the node in the same round and make it send (T, r, 1− b)
too. If T is Vote, whenever there are 2λ

3 votes for b in iteration r, by corrupting

all these nodes that are eligible to vote, the adversary can construct 2λ
3 votes

for 1 − b, and thus “consistency within an iteration” does not hold. If T is
Propose, whenever there is a so-far-honest leader in iteration r, by corrupting
this leader, the adversary gets a corrupt leader, and thus no good iteration
would exist.

5 Subquadratic BA under Synchrony: f < (1/2− ε)n

In this section, we present our synchronous BA protocol that achieves expected
subquadratic communication complexity (expected sublinear multicast com-
plexity) and expected constant round complexity, and tolerates f < ( 1

2 − ε)n
adaptive corruptions. Our starting point is Abraham et al. [1], a synchronous
quadratic BA protocol tolerating f < n/2 corruptions. We explain Abraham
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et al. at a high level and then apply the techniques introduced in the previous
section to achieve subquadratic communication complexity.

5.1 Warmup: Quadratic BA Tolerating 1/2 Corruptions

Our description below assumes n = 2f + 1 nodes in total. The protocol runs in
iterations r = 1, 2, . . . Each iteration has four synchronous rounds called Status,
Propose, Vote, and Commit, respectively. Messages sent at the beginning of a
round will be received before next round. All messages are signed. Henceforth, a
collection of f +1 (signed) iteration-r Vote messages for the same bit b ∈ {0, 1}
from distinct nodes is said to be an iteration-r certificate for b. A certificate
from a higher iteration is said to be a higher certificate. For the time being,
assume a random leader election oracle that elects a random leader Lr at the
beginning of every iteration r.

Below is the protocol for an iteration r ≥ 2. The protocol for the very first
iteration r = 1 skips the Status and Propose rounds.

1. Status. Every node multicasts a Status message of the form (Status, r, b, C)
containing the highest certified bit b it has seen so far as well as the
corresponding certificate C.

2. Propose. The leader Lr chooses a bit b with a highest certificate denoted C
breaking ties arbitrarily. The leader multicasts (Propose, r, b, C). To unify
the presentation, we say that a bit b without any certificate has an iteration-0
certificate and it is treated as the lowest ranked certificate.

3. Vote. For the very first iteration r = 1, a node votes for its input bit b by
multicasting (Vote, r = 1, b).
For all iterations r ≥ 2, if a validly signed (Propose, r, b, C) message has
been received from Lr with a certificate C for b, and if the node has not
observed a strictly higher certificate for 1 − b, it multicasts an iteration-
r Vote message for b of the form (Vote, r, b) with the leader’s proposal
attached. Importantly, if the node has observed a certificate for the opposite
bit 1− b from the same iteration as C, it will vote for b.

4. Commit. If a node has received f + 1 iteration-r signed votes for the same
bit b from distinct nodes (which form an iteration-r certificate C for b) and
no iteration-r vote for 1 − b, it multicasts an iteration-r Commit message
for b of the form (Commit, r, b) with the certificate C attached.

? (This step is not part of the iteration and can be executed at any time.) If
a node has received f + 1 Commit messages for the same b from the same
iteration from distinct nodes, it multicasts a termination message of the
form (Terminate, b) with the f + 1 Commit messages attached. The node
then outputs b and terminates. This last message will make all other honest
nodes multicast the same Terminate message, output b and terminate in
the next round.

Consistency. The protocol achieves consistency due to the following key
property. If an honest node outputs a bit b in iteration r, then no certificate
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for 1− b can be formed in iteration r and all subsequent iterations. We explain
why this property holds below.

An honest node outputs b in iteration r, only if it has observed f + 1
iteration-r Commit messages (from distinct nodes) for b. One of these must
have been sent by an honest node henceforth indexed by i∗. For an iteration-r
certificate for 1 − b to exist, an honest node must have multicast a vote for
1− b. But in that case, i∗ would have received this conflicting vote i and thus
would not have sent the commit message for b. We have reached a contradiction.
Thus, we can rule out any iteration-r certificate for 1− b.

Furthermore, by the end of iteration r, all nodes will receive from node i∗

an iteration-r certificate for b. Since no iteration-r certificate for 1− b exists,
no honest node votes for 1 − b in iteration r + 1; hence, no iteration-(r + 1)
certificate for 1− b can come into existence; hence no honest node votes for
1− b in iteration r+2, and so on. The preference for a higher certificate ensures
consistency for all subsequent iterations following a simple induction.

Validity. Recall that the first iteration skips Status and Propose and directly
starts with Vote. If all honest nodes have the same input bit b, then they all
vote for b in the first iteration. By the end of the first iteration, every honest
node has an iteration-1 certificate for b and no iteration-1 certificate for 1− b
exists. Validity then follows from consistency.

Expected constant round complexity. Once an iteration has an honest
leader, it will sign a unique proposal for the bit b with the highest certificate
reported by honest nodes. Then, all honest nodes send Vote and Commit

messages for b, output and terminate in that iteration. Since leaders are
selected at random, in expectation, an honest leader emerges in two iterations.

5.2 Subquadratic Communication through Vote-Specific Eligibility

The above simple protocol requires quadratic communication (in each round
every node multicasts a message). We now improve the communication com-
plexity to subquadratic and we will also remove the idealized leader election
oracle in the process.

We now use the vote-specific eligibility to determine for each iteration,
who is eligible for sending Status, Propose, Vote and Commit messages for
0 and 1, respectively. To keep the presentation simple, we abstract away
the cryptographic primitives for eligibility election and model it as an ideal
functionality Fmine. As before, we call an attempt for node i to check eligibility
to send a message a mining attempt. Concretely, node i is eligible to send
(T, r, b) where T is Status, Vote, or Commit, iff

Fmine.mine(i, T, r, b) < D,

node i is eligible to send (Terminate, b) iff

Fmine.mine(i, Terminate, b) < D,
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and node i is eligible to send (Propose, r, b) iff

Fmine.mine(i, Propose, r, b) < D0.

D and D0 are appropriate difficulty parameters such each mining attempt for
Status/Vote/Commit/Terminate has a λ/n probability to be successful and
each mining attempt for leader proposal has a 1/n probability to be successful.
As before, we assume n > λ; otherwise, one should simply use the quadratic
protocol.

We use the phrase “node i conditionally multicasts a message” to mean that
node i checks with Fmine if it is eligible to send that message and only multicasts
the message if it is. Now, the committee-sampling based subquadratic protocol
is almost identical to the warmup protocol except for the following changes:

– every occurrence of multicast is now replaced with “conditionally multicast”;
– every occurrence of f + 1 Vote or Commit messages is now replaced with
λ/2 messages of that type; and

– upon receiving a message of the form (i,m) (including messages attached
with other messages), a node invokes Fmine.verify(i,m) to verify node i’s
eligibility to send that message. Note that m can be of the form (T, r, b)
where T ∈ {Status, Propose, Vote, Commit} or of the form (Terminate, b).

5.3 Proof

We prove our new protocol works in this subsection. The proofs mostly follow
the sketch in Section 5.1 — except that we now need to analyze the stochastic
process induced by eligibility.

To prove consistency and validity, we first establish the following lemma.

Lemma 1 Except for exp(−Ω(λ)) probability, for any Status/Vote/Commit
message for bit b in iteration r, less than λ/2 eventually-corrupt nodes are
eligible to send it.

Proof Recall that the adversary can make at most (1/2− ε)n adaptive corrup-
tions where 0 < ε < 1/2 is a constant. By our choice of D, each so-far-honest
node independently has a λ/n probability to send the said message. The lemma
follows from a simple Chernoff bound.

Theorem 5 (Consistency) Except for exp(−Ω(λ)) probability, if an honest
node outputs a bit b in iteration r, then no certificate for 1− b can be formed
in iteration r and all subsequent iterations.

Proof An honest node outputs b in iteration r, only if it has observed λ/2
Commit messages for b. By Lemma 1, except for exp(−Ω(λ)) probability, not
all of them are sent by eventually-corrupt nodes; in other words, one of the
Commit messages was sent by a forever-honest node henceforth indexed by i∗.
Similarly, for an iteration-r certificate for 1− b to exist, except for exp(−Ω(λ))
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probability, one forever-honest node has multicast a vote for 1− b. But in that
case, i∗ would have received this conflicting vote and would not have sent the
Commit message for b. We have reached a contradiction. Thus, no iteration-r
certificate for 1− b exists except for exp(−Ω(λ)) probability.

Furthermore, by the beginning of iteration r + 1, all forever-honest nodes
will receive from node i∗ an iteration-r certificate for b. The lack of iteration-r
certificate for 1− b together with the preference to higher certificate ensures
that no forever-honest node will vote for 1 − b in iteration r + 1. To form
a certificate for 1 − b in a subsequent iteration, all λ/2 votes have to come
from eventually-corrupt nodes, which happens with exp(−Ω(λ)) probability
by Lemma 1. An induction then completes the proof.

Theorem 6 (Validity) Except for exp(−Ω(λ)) probability, if all honest nodes
have the same input bit b, then all nodes will output b.

Proof Straightforward from Lemma 1: in the first iteration, except for the said
probability, there will be sufficient forever-honest nodes to send (Vote, r = 1, b),
and there will not be sufficient eventually-corrupt nodes to vote for 1 − b.
Validity then follows from consistency.

We then turn to analyze round complexity and communication/multicast
complexity. We say an iteration r is a good iteration if a single so-far-honest node
successfully mines a Propose message, and no already-corrupt node successfully
mines a Propose message. (Note that if multiple so-far-honest nodes successfully
mine Propose messages, this iteration is not a good iteration).

Lemma 2 If fewer than εn/2 forever-honest nodes have terminated, then,
every iteration independently has a Θ(1) probability to be a good iteration.

Proof In any fixed iteration r, suppose there are nh so-far-honest nodes that
have not terminated and nc already-corrupt nodes. Each so-far-honest node
makes one attempt to propose (either 0 or 1), whereas each already-corrupt
node can make two attempts to propose (both 0 and 1). Recall that we set D0

such that each mining attempt for Propose succeeds with probability 1/n.
The probability that exactly one honest Propose attempt succeeds and

no corrupt Propose attempt succeeds is
(
nh

1

)
1
n (1− 1

n )nh−1+2nc . Observe that
nh + nc < n, nc < n/2 and nh > n/2, the above expression is greater than
1
2 · (1−

1
n )1.5n = Θ(1).

Lemma 3 Except for exp(−Ω(λ)) probability, if at least εn/2 forever-honest
nodes have terminated, all so-far-honest nodes terminate by the end of the next
round.

Proof Each of the εn/2 forever-honest nodes attempts to send Terminate,and
each has a λ/n probability to be eligible. The probability that none of them is
eligible is (1− λ/n)εn/2 < exp(−ελ/2) = exp(−Ω(λ)). Note that the adversary
can fully control in what order honest nodes terminate, but it cannot predict
which honest nodes are eligible to send Terminate. Thus, it cannot bias the
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above probability. Except for this exponentially small probability, a Terminate

message sent by an honest eligible node makes all so-far-honest nodes terminate
by the end of the next round.

Theorem 7 (Efficiency) In expectation, all honest nodes terminate in O(1)
rounds and collectively send O(nλ) messages (i.e., O(λ) multicasts).

Proof For any iteration, if at least εn/2 forever-honest nodes have terminated,
then by Lemma 3, all so-far-honest nodes terminate by the end of the next
round except for exp(Ω(−λ)) probability.

Else, by Lemma 2, with at least Θ(1)− exp(−Ω(λ)) = Θ(1) probability, a
single so-far-honest node (and no already-corrupt node) sends Propose; further,
at least ( 1

2 + ε
2 )n so-far-honest nodes have not terminated, and by Chernoff,

λ/2 so-far-honest nodes send Status/Vote/Commit messages; in this case, all
so-far-honest nodes terminate. The expected constant round complexity thus
follows in a straightforward fashion. In each round, in expectation, at most
λ so-far-honest nodes multicast messages. Thus, honest nodes send expected
O(nλ) messages.

Corollary 1 (Efficiency) Except for exp(−Ω(λ)) probability, all honest nodes
terminate in O(λ) rounds and collectively send O(nλ2) messages (i.e., O(λ2)
multicasts).

Proof The probability that none of the λ iterations is good is (1−Θ(1))λ =
exp(−Ω(λ)). By Chernoff, except for exp(−Ω(λ)) probability, in each round
of each iteration, O(λ) so-far-honest nodes send messages.

Theorem 8 For any constant 0 < ε < 1/2, the protocol in this section solves
Byzantine agreement with 1− exp(−Ω(λ)) probability; the protocol terminates
in expected O(1) rounds, and honest nodes collectively send O(λ) messages in
expectation.

Proof Follows from Theorem 5, 6, and 7.

6 Subquadratic BA under Partial Synchrony

In this section, we describe a partially synchronous BA protocol that tolerates
1
3 − ε adaptive corruptions.

6.1 Warmup: Communication-Inefficient Underlying BA

Our starting point is a simple quadratic partially synchronous BA protocol in
the unknown ∆ model [14]. The protocol is, in fact, similar to the 4-round-
per-iteration synchronous protocol in Section 5.1. The protocol also runs in
iterations and each iteration consists of four steps. The key change is that
every λ iterations, all nodes double the step length. At some point the step
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length will reach or exceed ∆ rounds. Until then, messages may or may not
arrive within the step. But after that point, messages sent at the beginning of
a step will be received before the next step, and the protocol will terminate in
expected constant iterations afterwards.

Our description below assumes n = 3f + 1 nodes in total. The protocol
runs in iterations r = 1, 2, . . .. Each iteration runs in four steps, called Status,
Propose, Vote, and Commit, respectively. At the beginning, each step will be
of length 1 round. Every λ iterations, all nodes double the length of a step.
All messages are signed. We denote a collection 2f + 1 (signed) iteration-r
Vote messages for the same bit b ∈ {0, 1} from distinct nodes as an iteration-r
certificate for b (in comparison, the synchronous protocol in Section 5.1 required
only f + 1 votes). A certificate from a higher iteration is said to be a higher
certificate. For the time being, assume a random leader election oracle that
elects a random leader Lr at the beginning of every iteration r.

1. Status. Every node multicasts a Status message of the form (Status, r, b, C)
containing the highest certified bit b it has seen so far as well as the
corresponding certificate C. In the first iteration r = 1, it will send its signed
input bit to the leader.

2. Propose. The leader Lr chooses a bit b with a highest certificate denoted
C. The leader multicasts (Propose, r, b, C). If the leader does not have a
higher ranked certificate of size 2f + 1, it can send a certificate C of size
≥ f + 1 each of which is a signed input bit. We call the latter certificate of
size ≥ f + 1 an input certificate and it is the lowest ranked certificate.

3. Vote. If a validly signed (Propose, r, b, C) message has been received from
Lr with a certificate C for b, and if the node has not observed a higher
certificate for 1− b, it multicasts an iteration-r Vote message for b of the
form (Vote, r, b) with the leader’s proposal attached.

4. Commit. If a node has received 2f + 1 iteration-r signed votes for the same
bit b from distinct nodes (which form an iteration-r certificate C for b), it
multicasts an iteration-r Commit message for b of the form (Commit, r, b)
with the certificate C attached.

? (This step is not part of the iteration and can be executed at any time.) If
a node has received f + 1 Commit messages for the same b from the same
iteration from distinct nodes, it multicasts a termination message of the
form (Terminate, b) with the f + 1 Commit messages attached. The node
then outputs b and terminates. This last message will make all other honest
nodes multicast the same Terminate message, output b and terminate.

Consistency. The analysis for consistency follows similar arguments to Sec-
tion 5.1. We show that if any honest node outputs a bit b in iteration r, then no
certificate for 1− b can be formed in iteration r and all subsequent iterations,
assuming ideal signatures.

An honest node outputs b in iteration r ≥ 1, there must be an iteration-r
certificate for b. Recall that a certificate in this protocol consists of 2f + 1 Vote

messages from that iteration. For an iteration-r certificate for 1−b to also exist,
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f + 1 nodes need to vote for both b and 1− b. But there are only f corrupted
nodes, a contradiction. Thus, we can rule out any iteration-r certificate for
1− b.

Furthermore, 2f + 1 nodes have sent Commit messages for b in iteration r.
This means at least f + 1 honest nodes have seen the iteration-r certificate
for b. The preference for a higher certificate then ensures consistency for all
subsequent iterations. Since no iteration-r certificate for 1−b exists, those f +1
honest nodes will not vote for 1− b in iteration r+ 1; hence, no iteration-(r+ 1)
certificate for 1− b can come into existence; hence, those f + 1 honest nodes
will not vote for 1− b in iteration r+2 and so on. A simple induction completes
the proof.

Validity. Observe that the protocol starts with signed inputs sent to the leader.
Before any higher ranked certificate can be formed, the leader needs to send a
weak certificate of f + 1 signed inputs for the same value in its proposal. If all
honest nodes start with the same value b, no leader can create ≥ f + 1 sized
input certificate for value 1− b, proving validity.

Termination. Once there is an honest leader after length of a step ≥ ∆
rounds, all honest nodes send to and receive from each other Vote and Commit

messages, output and terminate in that iteration. Since leaders are selected
at random, in expectation, an honest leader emerges in O(1) iterations once
the step size exceeds ∆. Since the step lengths double every λ iterations, the
protocol will terminate in expected O(λ∆) rounds.

6.2 Partially Synchronous Subquadratic BA

Bit-specific eligibility can be added in a fashion similar to Section 5.2. Node i is
eligible to send Status, Vote, Commit, or a Terminate message with difficulty
D, and is eligible to send Propose with difficulty D0. All eligibility depends
on the bit b ∈ {0, 1} and (with the exception of Terminate) the iteration
number r. D and D0 are appropriate difficulty parameters such that each of
the multicast messages except a proposal has a λ/n probability to be eligible
and each leader proposal has a 1/n probability to be eligible. As before, we
assume n > λ; otherwise, one should simply use the quadratic protocol.

Now, the subquadratic protocol is almost identical to the warmup protocol
except for the following changes:

– every occurrence of multicast is now replaced with “conditionally multicast”;
– every occurrence of 2f + 1 Vote or Commit messages is now replaced with

2λ/3 messages of that type;
– every occurrence of a weak certificate is now replaced with ≥ λ/3 messages

of that type;
– upon receiving a message of the form (i,m) (including messages attached

with other messages), a node invokes Fmine.verify(i,m) to verify node i’s
eligibility to send that message. Note that m can be of the form (T, r, b)
where T ∈ {Status, Propose, Vote, Commit} or of the form (Terminate, b).
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6.3 Proof

The proofs mostly follow the sketch in Section 6.1 and the stochastic process
in Section 5.3. As before, we first assume perfect cryptographic primitives.

Theorem 9 (Consistency) If an honest node outputs a bit b in iteration r,
then no certificate for 1 − b can be formed in iteration r and all subsequent
iterations, except for exp(−Ω(λ)) probability.

Proof An honest node outputs b in iteration r, only if it has observed 2λ/3
Vote messages and 2λ/3 Commit messages for b.

If an iteration-r certificate for 1− b also exists, then there are at least 4λ/3
successful mining attemps on Vote in iteration r. There are at most ( 1

3 − ε)n
eventually-corrupt nodes; each of them may attempt to vote for both bits. All
remaining nodes are forever-honest and will only attempt to vote for one bit.
Thus, there are at most ( 43 − ε)n total mining attempts, each with a probability
of λ/n to be successful but at least 4λ/3 attempts succeeded. By Chernoff, this
happens with exp(−Ω(λ)) probability.

Furthermore, if some forever-honest node receives 2λ/3 Commit messages, it
implies that ( 23 − ε

′)n nodes have sent Commit messages except for exp(−Ω(λ))
probability. At least ( 13 − ε

′+ ε)n of these nodes are forever-honest. In iteration
r+ 1, the remaining ( 23 + ε)− ( 13 − ε

′+ ε) = ( 13 + ε′) may mine for 1− b (since if
a forever-honest node has sent a Commit message for b in iteration r, it will not
attempt to vote 1−b in iteration r+1). In addition, ( 13 −ε)n fraction of corrupt
nodes mine for 1−b. To form a certificate for 1−b in iteration r+1, 2λ/3 out of
the ( 23 +ε′−ε)n mining attempts for (Vote, r+1, 1−b) from eventually-corrupt
nodes need to succeed. Picking ε′ = ε/2, by a Chernoff bound, this happens
with exp(−Ω(λ)) probability. An induction then completes the proof.

Theorem 10 (Validity) If all honest nodes have the same input bit b, then
all nodes will eventually output b, except for exp(−Ω(λ)) probability.

Proof By a Chernoff bound, except for the said probability, there will be fewer
than λ/3 signed input bits for 1 − b (from eventually-corrupt nodes) in any
iteration. So there is no certificate (input certificate or normal certificate) for
1− b and hence, 1− b will never be proposed. Validity then follows from safety.

We now prove efficiency. Lemmas 2 from Section 5.3 still applies. Lemmas 3
needs a minor modification as follows but its proof remains almost identical.

Lemma 4 Except for exp(−Ω(λ)) probability, if at least εn/2 forever-honest
nodes have terminated, all so-far-honest nodes terminate within ∆ rounds.

Proof Similar to that of Lemma 3.

Theorem 11 (Efficiency) All honest nodes terminate in expected O(λ∆)
rounds and collectively send O(nλ2 log∆) messages in expectation (i.e., O(λ2 log∆)
multicasts).
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Proof Similar to the proof of Theorem 7, once the length of a step is at least ∆
rounds, the protocol terminates in expected O(1) iterations by Lemma 2 and 4.
By then, the step length has been doubled at most log∆ times. Hence, there
have been at most λ log∆ iterations, and at most λ(∆+∆/2 + · · ·+ 2 + 1) =
O(λ∆) rounds have passed. In each step of each iteration, in expectation,
so-far-honest nodes send O(λ) messages.

Corollary 2 (Efficiency) Except for exp(−Ω(λ)) probability, all honest nodes
terminate in O(λ∆) rounds and collectively send O(nλ2 log∆) messages (i.e.,
O(λ2 log∆) multicasts).

Proof Similar to that of Corollary 1.

Theorem 12 For any constant 0 < ε < 1/3, the protocol in this section solves
Byzantine agreement with 1− exp(−Ω(λ)) probability; the protocol terminates
in expected O(λ∆) rounds, and honest nodes collectively send O(λ2 · log∆)
messages in expectation.

Proof Follows from Theorems 9, 10, and 11.

Remark. Since we employ cryptography and assume computationally-bounded
adversaries, our network model for partial synchrony is adopted from CKPS [5].
Specifically, we assume that (i) honest nodes send polynomially many messages
(or ∆ is polynomially bounded), and (ii) the delivery of messages is controlled
by an adversary.

7 Necessity of Setup Assumptions for Sublinear Multicast
Complexity

In this section, we show that some form of setup assumption is needed for
multicast-based subquadratic BA. Specifically, with plain authenticated chan-
nels, we show the impossibility of sublinear multicast-complexity BA. In this
model, a message carries the true identity of the sender, i.e., the communication
channel authenticates the sender, but no other setup is available.

As mentioned in Section 8, proving the lower bound for Byzantine broadcast
makes it stronger (and applicable to BA). Thus, we restate the lower bound
(i.e., Theorem 3) for Byzantine broadcast below.

Theorem 13 In a plain authenticated channel model without setup assump-
tions, no protocol can solve Byzantine broadcast with C multicast complexity
with probability p > 5/6 under C adaptive corruptions.

Although the lower bound is stated for multicast-based protocols, the same
bound applies to a more general class of protocols in which at most C nodes
send messages with p > 5/6 probability. In addition, the lower bound holds
even when assuming the existence of a random oracle or a memory-erasure
model.
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Fig. 1 Relationships between different worlds in the sublinear multicast complexity without
setup assumptions.

Our proof is inspired by the classical techniques for proving consensus lower
bounds in the authenticated channel model [16, 26, 27]; however, we extend
known techniques in novel manners, particularly in the way we rely on the
ability to make adaptive corruptions to complete the proof.

Proof Suppose for the sake of contradiction that there exists a protocol that
solves Byzantine broadcast using C multicast complexity with probability
p > 5/6, in the authenticated channel model without any trusted setup, and
tolerating C adaptive corruptions.

We focus on a special node S that is not the designated sender. We consider
four worlds: Wc,0, Wc,1, Wh,0, and Wh,1. In world Wc,∗, node S is corrupt
whereas in world Wh,∗, node S is forever-honest. The designated sender sends
bit b in world W∗,b.

The high-level structure of the proof is depicted in Figure 1. First, since
the designated sender is honest in Wc,b, with probability p > 5/6, honest
nodes output b in Wc,b to preserve validity. Next, we will show that world Wc,b

and world Wh,b are indistinguishable to nodes that are forever-honest in both.
Hence, with probability p > 5/6, these forever-honest nodes output 0 in Wh,0

and 1 in Wh,1. Lastly, we will show that with a constant probability, an honest
node S cannot distinguish between Wh,0 and Wh,1, leading to a consistency
violation with probability > 1 − p in one of the two worlds. Note that the
designated sender may be corrupted in Wh,b, so we need to show a violation of
consistency, not validity.

World Wc,b: In Wc,b, node S is (statically) corrupt. All other nodes (including
the designated sender) are honest and execute the protocol as specified. The
corrupt node S simulates an execution in the Wc,1−b world in its head for up to
C multicasts. To elaborate, for every round, in addition to receiving messages
from honest nodes in Wc,b, the corrupt node S simulates the receipt of messages
multicast by all other nodes in world Wc,1−b, until C multicasts have occurred
in the simulated execution. The corrupt node S treats the received messages
(from both the real world Wc,b and the simulated world Wc,1−b) as if they are
from the same execution. It then sends multicast messages as instructed by an
honest execution of the protocol. When node S multicasts a message in the
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real execution, its messages arrive in both the real as well as the simulated
execution. We note that a simulation of Wh,1−b by node S is possible only due
to the non-existence of a trusted setup.

Observe that in world Wc,b, only node S is corrupted and the designated
sender is honest. Hence, by the validity guarantee of the Byzantine broadcast
protocol, we have: With probability p > 5/6, honest nodes in Wc,b output b.

World Wh,b: In Wh,b, all nodes are honest at the start of the protocol and the
adversary makes adaptive corruptions along the way. The adversary simulates a
protocol execution in world Wh,1−b in its head. Specifically, at the start of each
round, the adversary simulates this round for all nodes except node S in Wh,1−b
in its head, and checks to see which nodes will send a message in this round of
the simulated execution. Whenever a node j in the simulated execution wants
to speak, if there have not been C multicast messages from nodes other than
node S in this execution, the adversary adaptively corrupts node j (unless
it is already corrupt) in world Wh,b. If node S multicasts messages in the
real execution, its messages arrive in both the real as well as the simulated
execution.

In a round, a corrupt node j does the following. It sends all messages as
instructed for node j by the protocol. In addition, it sends the messages node
j in Wh,1−b would have sent to node S in this round; note that these messages
are sent to node S only and not to anyone else.

Indistinguishability between worlds Wh,b and Wc,b for forever-honest
nodes. The corrupt node S in Wc,b behaves exactly like the honest node S
in Wh,b. Corrupt nodes in Wh,b behave honestly towards forever-honest nodes
other than node S. Therefore, the views of the nodes that are forever-honest
in both Wh,b and Wc,b are identically distributed. Let Y denote the event that
these forever-honest nodes output b in Wh,b. Based on the indistinguishability
and the aforementioned validity guarantee in Wc,b, we have Pr[Y ] ≥ p > 5/6.

Indistinguishability between worlds Wh,b and Wh,1−b for node S. Ob-
serve that in both worlds, the honest node S receives all the messages in
that world (through the honest protocol execution) and messages from the
first up to C nodes in the other world (through messages sent by adaptively
corrupted nodes that would be sending honest messages in the simulated world).
Thus, given that the honest and the simulated execution both have C multi-
cast complexity, the view of node S in worlds Wh,b and Wh,1−b is identically
distributed.

More formally, let Ar and As denote the events that the real and simulated
executions respectively have C multicast complexity. Recall that the protocol
satisfies consistency, validity and termination, and has C multicast complexity
with probability p. Thus, Pr[Ar] ≥ p, Pr[As] ≥ p, and Pr[Ar ∩As] ≥ Pr[Ar] +
Pr[As]− 1 ≥ 2p− 1.

Let X denote the event that node S does not output 1. Given that the
view of node S is identically distributed when the honest and the simulated
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executions both have C multicast complexity, without loss of generality, we
have Pr[X|Ar ∩As] ≥ 1/2, and

Pr[X] ≥ Pr[X ∩Ar ∩As] = Pr[X|Ar ∩As] · Pr[Ar ∩As]

≥ 1

2
(2p− 1) > 1/3.

Consistency violation in Wh,1. The probability that consistency of Byzan-
tine broadcast is violated is given by

Pr[consistency violation] ≥ Pr[X ∩ Y ] > 1/3 + 5/6− 1 = 1/6.

This contradicts the supposition that the protocol solves Byzantine broadcast
with > 5/6 probability.
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8 Additional Details on Modeling

8.1 Protocol Execution

In the main body, we omitted some details of the execution model for ease of
understanding. We now explain these details that will be relevant to the formal
proofs.

An external party called the environment and denoted Z provides inputs
to honest nodes and receives outputs from the honest nodes. As mentioned,
the adversary, denoted A, can adaptively corrupt nodes any time during the
execution. All nodes that have been corrupt are under the control of A, i.e., the
messages they receive are forwarded to A, and A controls what messages they
will send once they become corrupt. The adversary A and the environment
Z are allowed to freely exchange messages any time during the execution.
Henceforth, we assume that all parties as well as A and Z are Interactive
Turing Machines, and the execution is parametrized by a security parameter κ
that is common knowledge to all parties as well as A and Z.

Notational conventions. Since all parties, including the adversary A and the
environment Z are assumed to be non-uniform probabilitic polynomial-time
(p.p.t.) Interactive Turing Machines (ITMs), protocol execution is assumed
to be probabilistic in nature. We would like to ensure that certain security
properties such as consistency and liveness hold for almost all execution traces,
assuming that both A and Z are polynomially bounded.

http://doi.acm.org/10.1145/2220357.2220358
http://doi.acm.org/10.1145/2220357.2220358


28 Ittai Abraham et al.

Fmine(1κ, p)

The function p : {0, 1}∗ → [0, 1] maps each message to some success probability.

– On receive mine(m) from node i for the first time: let Coin[m, i] := Bernoulli(p(m)) and
return Coin[m, i].

– On receive verify(m, i): if mine(m) has been called by node i, return Coin[m, i]; else
return 0.

Fig. 2 The mining ideal functionality Fmine.

In our subsequent proofs we sometimes use the notation view to denote a
randomly sampled execution. The randomness in the execution comes from
honest nodes’ randomness, A, and Z, and view is sometimes also referred to as
an execution trace or a sample path. We would like that the fraction of sample
paths that fail to satisfy relevant security properties be negligibly small in the
security parameter κ.

8.2 Ideal Mining Functionality Fmine

Earlier we used Fmine to describe our ideal-world protocols. For preciseness we
now spell out the details of Fmine.

Fmine ideal functionality. As shown in Figure 2, the Fmine ideal functionality
has two activation points:

– Whenever a node i calls mine(m) for the first time, Fmine flips a random
coin with appropriate probability to decide if node i has successfully mined
a ticket for m.

– If node i has called mine(m) and the attempt is successful, anyone can then
call verify(m, i) to ascertain that indeed i has mined a ticket for m.

Recall in our scheme, different types of messages are associated with different
probabilities, and we assume that this is hard-wired in Fmine with the mapping
p that maps each message type to an appropriate probability (see Figure 2).
This Fmine functionality is secret since if an so-far-honest node i has not
attempted to mine a ticket for m, then no corrupt node can learn whether i is
in the committee corresponding to m.

9 Instantiating Fmine in the Real World

So far, all our protocols have assumed the existence of an Fmine ideal func-
tionality. In this section, we describe how to instantiate the protocols in the
real world (where Fmine does not exist) using cryptography. Technically we
do not directly realize the ideal functionality Fmine in the sense of Canetti [6]

— instead, we describe a real-world protocol that preserves all the security
properties of the Fmine-hybrid protocols.
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9.1 Preliminary: Adaptively Secure Non-Interactive Zero-Knowledge Proofs

We use f(κ) ≈ g(κ) to mean that there exists a negligible function ν(κ) such
that |f(κ)− g(κ)| < ν(κ).

A non-interactive proof system henceforth denoted nizk for an NP language
L consists of the following algorithms.

– crs ← Gen(1κ,L): Takes in a security parameter κ, a description of the
language L, and generates a common reference string crs.

– π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that
(stmt, w) ∈ L, and produces a proof π.

– b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 (reject) or 1 (accept).

Perfect completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an
honest verifier. More formally, for any (stmt, w) ∈ L, we have that

Pr [crs← Gen(1κ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1] = 1

Non-erasure computational zero-knowledge. Non-erasure zero-knowledge
requires that under a simulated CRS, there is a simulated prover that can
produce proofs without needing the witness. Further, upon obtaining a valid
witness to a statement a-posteriori, the simulated prover can explain the
simulated NIZK with the correct witness.

We say that a proof system (Gen,P,V) satisfies non-erasure computational
zero-knowledge iff there exists a probabilistic polynomial time algorithms
(Gen0,P0,Explain) such that

Pr
[
crs← Gen(1κ),AReal(crs,·,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0)← Gen0(1κ),AIdeal(crs0,τ0,·,·)(crs0) = 1

]
,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness
r and obtains the proof π, it then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs
the simulated prover π ← P0(crs0, τ0, stmt, ρ) with randomness ρ and without
a witness, and then runs r ← Explain(crs0, τ0, stmt, w, ρ) and outputs (π, r).

Perfect knowledge extration. We say that a proof system (Gen,P,V) satis-
fies perfect knowledge extraction, if there exists probabilistic polynomial-time
algorithms (Gen1,Extr), such that for all (even unbounded) adversary A,

Pr [crs← Gen(1κ) : A(crs) = 1] = Pr [(crs1, τ1)← Gen1(1κ) : A(crs1) = 1] ,

and moreover,

Pr

[
(crs1, τ1)← Gen1(1κ); (stmt, π)← A(crs1);w ← Extr(crs1, τ1, stmt, π) :

V(crs1, stmt, π) = 1
but (stmt, w) /∈ L

]
= 0
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9.2 Adaptively Secure Non-Interactive Commitment Scheme

An adaptively secure non-interactive commitment scheme consists of the fol-
lowing algorithms:

– crs← Gen(1κ): Takes in a security parameter κ, and generates a common
reference string crs.

– C ← com(crs, v, ρ): Takes in crs, a value v, and a random string ρ, and
outputs a committed value C.

– b← ver(crs, C, v, ρ): Takes in a crs, a commitment C, a purported opening
(v, ρ), and outputs 0 (reject) or 1 (accept).

Computationally hiding under selective opening. We say that a commit-
ment scheme (Gen, com, ver) is computationally hiding under selective opening,
iff there exists a probabilistic polynomial time algorithms (Gen0, com0,Explain)
such that

Pr
[
crs← Gen(1κ),AReal(crs,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0)← Gen0(1κ),AIdeal(crs0,τ0,·)(crs0) = 1

]
where Real(crs, v) runs the honest algorithm com(crs, v, r) with randomness r
and obtains the commitment C, it then outputs (C, r); Ideal(crs0, τ0, v) runs the
simulated algorithm C ← comm0(crs0, τ0, ρ) with randomness ρ and without v,
and then runs r ← Explain(crs0, τ0, v, ρ) and outputs (C, r).

Perfectly binding. A commitment scheme is said to be perfectly binding iff
for every crs in the support of the honest CRS generation algorithm, there does
not exist (v, ρ) 6= (v′, ρ′) such that com(crs, v, ρ) = com(crs, v′, ρ′).

Theorem 14 (Instantiation of our NIZK and commitment schemes [21])
Assume standard bilinear group assumptions. Then, there exists a proof system
that satisfies perfect completeness, non-erasure computational zero-knowledge,
and perfect knowledge extraction. Further, there exist a commitment scheme
that is perfectly binding and computationally hiding under selective opening.

Proof The existence of such a NIZK scheme was shown by Groth et al. [21]
via a building block that they called homomorphic proof commitment scheme.
This building block can also be used to achieve a commitment scheme with
the desired properties.

9.3 NP Language Used in Our Construction

In our construction, we will use the following NP language L. A pair (stmt, w) ∈
L iff

– parse stmt := (ρ, c, crscomm,m), parse w := (sk, s);
– it must hold that c = comm(crscomm, sk, s), and PRFsk(m) = ρ.
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9.4 Compiler from Fmine-Hybrid Protocols to Real-World Protocols

Our real-world protocol will remove the Fmine oracle by leveraging crypto-
graphic building blocks including a pseudorandom function family, a non-
interactive zero-knowledge proof system that satisfies computational zero-
knowledge and computational soundness, and a perfectly binding and compu-
tationally hiding commitment scheme.

Earlier in Section 1, we have described the intuition behind our approach.
Hence in this section we directly provide a formal description of how to compile
our Fmine-hybrid protocols into real-world protocols using cryptography. This
compilation works for our previous Fmine-hybrid protocol described in Section 5.
The high-level idea is to realize an adaptively secure VRF from adaptively
secure PRFs and NIZKs:

– Trusted PKI setup. Upfront, a trusted party runs the CRS generation
algorithms of the commitment and the NIZK scheme to obtain crscomm and
crsnizk. It then chooses a secret PRF key for every node, where the i-th
node has key ski. It publishes (crscomm, crsnizk) as the public parameters,
and each node i’s public key denoted pki is computed as a commitment
of ski using a random string si. The collection of all users’ public keys is
published to form the PKI, i.e., the mapping from each node i to its public
key pki is public information. Further, each node i is given the secret key
(ski, si).

– Instantiating Fmine.mine. Recall that in the ideal-world protocol a node
i calls Fmine.mine(m) to mine a vote for a message m. Now, instead, the
node i calls ρ := PRFski(m), and computes the NIZK proof

π := nizk.P((ρ, pki, crscomm,m), (ski, si))

where si the randomness used in committing ski during the trusted setup.
Intuitively, this zero-knowledge proof proves that the evaluation outcome ρ
is correct w.r.t. the node’s public key (which is a commitment of its secret
key).
The mining attempt for m is considered successful if ρ < Dp where Dp is an
appropriate difficulty parameter such that any random string of appropriate
length is less than Dp with probability p — recall that the parameter p is
selected in a way that depends on the message m being “mined”.

– New message format. Recall that earlier in our Fmine-hybrid protocols,
every message multicast by a so-far-honest node i must of one of the
following forms:
– Mined messages of the form (m, i) where node i has successfully called
Fmine.mine(m); For example, in the synchronous honest majority proto-
col (Section 5), m can be of the form (T, r, b) where T ∈ {Propose, Vote, Commit, Status},
r denotes an epoch number, and b ∈ {0, 1,⊥}; or of the form (Terminate, b).

– Compound messages, i.e., a concatenation of the above types of messages.
For every mined message (m, i) that is either stand-alone or contained
in a compound message, in the real-world protocol, we rewrite (m, i) as
(m, i, ρ, π) where the terms ρ and π are defined in the most natural manner:
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– If (m, i) is part of a message that a so-far-honest node i wants to
multicast, then the terms ρ and π are those generated by i in place of
calling Fmine.mine(m) in the real world (as explained above);

– Else, if (m, i) is part of a message that a so-far-honest node j 6= i wants
to multicast, it must be that j has received a valid real-world tuple
(m, i, ρ, π) where validity will be defined shortly, and thus ρ and π are
simply the terms contained in this tuple.

– Instantiating Fmine.verify. In the ideal world, a node would call Fmine.verify
to check the validity of mined messages upon receiving them (possibly con-
tained in compound messages). In the real-world protocol, we perform
the following instead: upon receiving the mined message (m, i, ρ, π) that is
possibly contained in compound messages, a node can verify the message’s
validity by checking:
1. ρ < Dp where p is an appropriate difficulty parameter that depends on

the type of the mined message; and

2. π is indeed a valid NIZK for the statement formed by the tuple (ρ, pki, crscomm,m).
The tuple is discarded unless both checks pass.

9.5 Main Theorems for Real-World Protocols

After applying the above compiler to our Fmine-hybrid protocols described in
Section 5. we obtain our real-world protocol In this section, we present our
main theorem statements for these three settings. The proofs for these theorems
can be derived by combining the proofs in Section 5 and 6 as well as those
in the following section, i.e., Appendix 10 where will show that the relevant
security properties are preserved in the real world as long as the cryptographic
building blocks are secure.

In theorem statement below, when we say that “assume that the cryp-
tographic building blocks employed are secure”, we formally mean that 1)
the pseudorandom function family employed is secure; 2) the non-interactive
zero-knowledge proof system that satisfies non-erasure computational zero-
knowledge and perfect knowledge extraction; 3) the commitment scheme is
computationally hiding under selective opening and perfectly binding; and 4)
the signature scheme is secure (if relevant).

Theorem 15 (Sub-quadratic BA under Synchrony) Let πsync be the
protocol obtained by applying the above compiler to the protocol in Section 5,
and assume that the cryptographic building blocks employed are secure. Then, for
any arbitrarily small positive constant ε, any n ∈ N, πsync satisfies consistency
and validity, and tolerates f < ( 12 − ε)n adaptive corruptions, except for negl(κ)
probability. Further, πsync achieves expected constant round and χ · poly log(κ)
multicast complexity. In the above, χ is a security parameter related to the
hardness of the cryptographic building blocks; χ = poly(κ) under standard
cryptographic assumptions and χ = poly log(κ) if we assume sub-exponential
security of the cryptographic primitives employed.
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Theorem 16 (Sub-quadratic BA under Partial Synchrony) Let πpartialsync
be the protocol obtained by applying the above compiler to the protocol in Sec-
tion 6, and assume that the cryptographic building blocks employed are secure.
Then, for any arbitrarily small positive constant ε, any n ∈ N, πpartialsync
satisfies consistency and validity, and tolerates f < ( 1

3 − ε)n adaptive cor-
ruptions, except for negl(κ) probability. Further, πpartialsync achieves expected
∆ · poly log(κ) rounds and χ · poly log(κ) · log∆ multicast complexity. In the
above, χ is a security parameter related to the hardness of the cryptographic
building blocks; χ = poly(κ) under standard cryptographic assumptions and
χ = poly log(κ) if we assume sub-exponential security of the cryptographic
primitives employed.

Proof Proofs for the above two theorems can be obtained by combining the
Fmine-hybrid analysis in Section 5 or 6 with Appendix 10 where we show that
the relevant security properties are preserved in by the real world protocol.

10 Real World is as Secure as the Fmine-Hybrid World

10.1 Preliminary: PRF’s Security Under Selective Opening

Our proof will directly rely on the security of a PRF under selective opening
attacks. We will prove that any secure PRF family is secure under selective
opening with a polynomial loss in the security.

Pseudorandomness under selective opening. We consider a selective
opening adversary that interacts with a challenger. The adversary can request
to create new PRF instances, query existing instances with specified messages,
selectively corrupt instances and obtain the secret keys of these instances, and
finally, we would like to claim that for instances that have not been corrupt, the
adversary is unable to distinguish the PRFs’ evaluation outcomes on any future
message from random values from an appropriate domain. More formally, we
consider the following game between a challenger C and an adversary A.

ExptAb (1κ):

– A(1κ) can adaptively interact with C through the following queries:
– Create instance. The challenger C creates a new PRF instance by calling

the honest Gen(1κ). Henceforth, the instance will be assigned an index
that corresponds to the number of “create instance” queries made so
far. The i-th instance’s secret key will be denoted ski.

– Evaluate. The adversary A specifies an index i that corresponds to an
instance already created and a message m, and the challenger computes
r ← PRFski(m) and returns r to A.

– Corrupt. The adversary A specifies an index i, and the challenger C
returns ski to A (if the i-th instance has been created).

– Challenge. The adversary A specifies an index i∗ that must have been
created and a message m. If b = 0, the challenger returns a completely
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random string of appropriate length. If b = 1, the challenger computes
r ← PRFski∗ (m) and returns r to the adversary.

We say that A is compliant iff with probability 1, every challenge tuple
(i∗,m) it submits satisfies the following: 1) A does not make a corruption query
on i∗ throughout the game; and 2) A does not make any evaluation query on
the tuple (i∗,m).

Definition 1 (Selective opening security of a PRF family) We say
that a PRF scheme satisfies pseudorandomness under selective opening iff for
any compliant p.p.t. adversary A, its views in ExptA0 (1κ) and ExptA1 (1κ) are
computationally indistinguishable.

Theorem 17 Any secure PRF family satisfies pseudorandomness under selec-
tive opening by Definition 1 (with polynomial loss in the security reduction).

Proof Single-selective-challenge selective opening security. In the single-
selective challenge version of the game, the adversary commits to a challenge
identifier i∗ upfront during the security game, such that later, challenge queries
can only be made for the committed index i∗.

First, we can show that any secure PRF family would satisfy single-selective-
challenge selective opening security. Suppose that there is an efficient adversary
A that can break the single-selective-challenge selective opening security game
for some PRF family. We construct a reduction R that leverages A to break
the PRF’s security. The reduction R interacts with a PRF challenger as well
as A. R generates PRF keys for all instances other than i∗ and answers non-i∗

evaluation and corruption queries honestly. For i∗, A’s evaluation requests are
forwarded to the PRF challenger.

We consider the following three hybrids:

1. The PRF challenger has a real, randomly sampled PRF function from
the corresponding family, and R answers A’s challenge queries on i∗ with
random answers;

2. The PRF challenger has a random function, and R answers A’s challenge
queries on i∗ by forwarding the PRF challenger’s answers (or equivalently
by relying with random answers); and

3. The PRF challenger has a real, randomly sampled PRF function from
the corresponding family, and R answers A’s challenge queries on i∗ by
forwarding the PRF challenger’s answers.

It is not difficult to see that A’s view in hybrid 1 is identical to its view in the
single-selective challenge selective opening security game when b = 0; its view
in hybrid 3 is identical to its view in the single-selective challenge selective
opening security game when b = 1. Due to the security of the PRF, it is not
difficult to see that any adjacent pair of hybrids are indistinguishable.

Single-challenge selective opening security. In the single-challenge selec-
tive opening version of the game, the adversary can only make challenge queries
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for a single i∗ but it need not commit to i∗ upfront at the beginning of the
security game.

We now argue that any PRF that satisfies single-selective-challenge selective
opening security must satisfy single-challenge selective opening security with a
polynomial security loss. The proof of this is straightforward. Suppose that there
is an efficient adversary A that can break the single-challenge selective opening
security of some PRF family, we can then construct an efficient reduction R
that breaks the single-selective-challenge selective opening security of the PRF
family. Basically the reduction R guesses at random upfront which index i∗ the
adversary A will choose for challenge queries. R then forwards all of A’s queries
to the challenger of the single-selective-challenge selective opening security
security game. If the guess later turns out to be wrong, the reduction simply
aborts and outputs a random guess b′. Otherwise, it outputs the same output
as A. Suppose that A creates q instances of PRFs then we can conclude that R
guesses correctly with probability at least 1/q. Thus whatever advantage A has
in breaking the single-challenge selective opening security, R has an advantage
that is 1/q fraction of A’s advantage in breaking the single-selective-challenge
selective opening security of the PRF family.

Selective opening security. Finally, we show that any PRF family that
satisfies single-challenge selective opening security must also satisfy selective
opening security (i.e., Definition 1) with a polynomial security loss. This proof
can be completed through a standard hybrid argument in which we replace the
challenge queries from real to random one index at a time (where replacement is
performed for all queries of the i-th new index that appeared in some challenge
query).

10.2 Definition of Polynomial-Time Checkable Stochastic Bad Events

In all of our Fmine-hybrid protocols earlier, some stochastic bad events related
to Fmine’s random coins can lead to the breach of protocol security (i.e.,
consistency, validity, or termination) These stochastic bad events are of the
form imprecisely speaking: either there are too few honest mining successes or
there are too many corrupt mining successes. More formally, for the honest
majority protocol, the stochastic bad events are stated in Lemmas 1, 2, 3, and 4.

For these stochastic bad events, there is a polynomial-time predicate hence-
forth denoted F , that takes in 1) all honest and corrupt mining attempts and
the rounds in which the attempts are made (for a fixed view) and 2) Fmine’s
coins as a result of these mining attempts, and outputs 0 or 1, indicating
whether the bad events are true for this specific view. Recall that view denotes
an execution trace.

In our earlier Fmine-world analyses (in Section 5), although we have not
pointed out this explicitly, but our proofs actually suggest that the stochastic
bad events defined by F happen with small probability even when A and Z
are computationally unbounded.
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The majority of this section will focus on bounding the second category of
failures, i.e., stochastic bad events defined by the polynomial-time predicate F
(where F may be a different predicate for each protocol).

For simplicity, we shall call our Fmine-hybrid protocol Πideal — for the
three different protocols, Πideal is a different protocol; nonetheless, the same
proofs hold for all three protocols.

10.3 Hybrid 1

Hybrid 1 is defined just like our earlier Fmine-hybrid protocol but with the
following modifications:

– Fmine chooses random PRF keys for all nodes at the very beginning, and
let ski denote the PRF key chosen for the i-th node.

– Whenever a node i makes a mine(m) query, Fmine determines the outcome
of the coin flip as follows: compute ρ← PRFski(m) and use ρ < Dp as the
coin.

– Whenever A adaptively corrupts a node i, Fmine discloses ski to A.

Lemma 5 For any p.p.t. (A,Z), there exists a negligible function negl(·) such
that for any κ, the bad events defined by F do not happen in Hybrid 1 with
probability 1− negl(κ).

Proof Let f be the number of adaptive corruptions made by A. To prove this
lemma we must go through a sequence of inner hybrids over the number of
adaptive corruptions made by the adversary A.

Hybrid 1.f . Hybrid 1.f is defined almost identically as Hybrid 1 except the
following modifications: Suppose that A makes the last corruption query in
round t and for node i. Whenever the ideal functionality Fmine in Hybrid 1
would have called PRFskj (m) for any j that is honest-forever and in some round
t′ ≥ t, in Hybrid 1.f , we replace this call with a random string.

Claim Suppose that the PRF scheme satisfies pseudorandomness under selec-
tive opening. Then, if for any p.p.t. (A,Z) and any κ, the bad events defined
by F do not happen in Hybrid 1.f with probability at least µ(κ), then for any
p.p.t. (A,Z) and κ, the bad events defined by F do not happen in Hybrid 1
with probability at least µ(κ)− negl(κ).

Proof Suppose for the sake of contradiction that the claim does not hold.
We can then construct a PRF adversary A′ that breaks pseudorandomness
under selective opening with non-negligible probability. A′ plays Fmine when
interacting with A. A′ is also interacting with a PRF challenger. In the
beginning, for every node, A′ asks the PRF challenger to create a PRF instance
for that node. Whenever Fmine needs to evaluate a PRF, A′ forwards the query
to the PRF challenger. This continues until A makes the last corruption query,
i.e., the f -th corruption query — suppose this last corruption query is made
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in round t and the node to corrupt is i. At this moment, A′ discloses ski to
the adversary. However, whenever Hybrid 1 would have needed to compute
PRFskj (m) for any j that is honest-forever and in some round t′ ≥ t, A′ makes
a challenge query to the PRF challenger for the j-th PRF instance and on the
message queried. Notice that if the PRF challenger returned random answers to
challenges, A’s view in this interation would be identically distributed as Hybrid
1.f . Otherwise, if the PRF challenger returned true answers to challenges, A’s
view in this interation would be identically distributed as Hybrid 1.

Hybrid 1.f ′. Hybrid 1.f ′ is defined almost identically as Hybrid 1.f except
the following modification: whenever A makes the last corruption query —
suppose that this query is to corrupt node i and happens in round t — the
ideal functionality Fmine does not disclose ski to A.

Claim If for any p.p.t. (A,Z) and any κ, the bad events defined by F do
not happen in Hybrid 1.f ′ with probability at least µ(κ), then for any p.p.t.
(A,Z) and κ, the bad events defined by F do not happen in Hybrid 1.f with
probability at least µ(κ).

Proof We observe the following: once the last corruption query is made in
round t for node i, given that for any t′ ≥ t, any honest-forever node’s coins
are completely random. Thus whether or not the adversary receives the last
corruption key does not help it to cause the relevant bad events to occur.
Specifically in this case, at the moment the last corruption query is made —
without loss of generality assume that the adversary makes all possible corrupt
mining attempts — then whether the polynomial-checkable bad events defined
by F take place is fully determined by Fmine’s random coins and independent
of any further actions of the adversary at this point.

Hybrid 1.f ′′. Hybrid 1.f ′′ is defined almost identically as Hybrid 1.f ′ except
the following modification: suppose that the last corruption query is to corrupt
node i and happens in round t; whenever the ideal functionality Fmine in
Hybrid 1.f ′ would have called PRF(ski,m) in some round t′ ≥ t (for the node
i that is last corrupt), in Hybrid 1.f ′′, we replace this call’s outcome with a
random string.

Claim Suppose that the PRF scheme satisfies pseudorandomness under selec-
tive opening. Then, if for any p.p.t. (A,Z) and any κ, the bad events defined
by F do not happen in Hybrid 1.f ′′ with probability at least µ(κ), then for
any p.p.t. (A,Z) and κ, the bad events defined by F do not happen in Hybrid
1.f ′ with probability at least µ(κ)− negl(κ).

Proof Suppose for the sake of contradiction that the claim does not hold.
We can then construct a PRF adversary A′ that breaks pseudorandomness
under selective opening with non-negligible probability. A′ plays the Fmine

when interacting with A. A′ is also interacting with a PRF challenger. In the
beginning, for every node, A′ asks the PRF challenger to create a PRF instance
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for that node. Whenever Fmine needs to evaluate a PRF, A′ forwards the
query to the PRF challenger. This continues until A makes the last corruption
query, i.e., the f -th corruption query — suppose this last corruption query
is made in round t and the node to corrupt is i. At this moment, A′ does
not disclose ski to the adversary and does not query the PRF challenger to
corrupt i’s secret key either. Furthermore, whenever Hybrid 1.f ′ would have
called PRFski(m) in some round t′ ≥ t, A now calls the PRF challenger for
the i-th PRF instance and on the specified challenge message, it uses the
answer from the PRF challenger to replace the PRFski(m) call. Notice that if
the PRF challenger returned random answers to challenges, A’s view in this
interation would be identically distributed as Hybrid 1.f ′′. Otherwise, if the
PRF challenger returned true answers to challenges, A’s view in this interation
would be identically distributed as Hybrid 1.f ′.

We can extend the same argument continuing with the following sequence
of hybrids such that we can replace more and more PRF evaluations at the
end with random coins, and withhold more and more PRF secret keys from A
upon adaptive corruption queries — and nonetheless the probability that the
security properties get broken will not be affected too much.

Hybrid 1.(f − 1). Suppose that A makes the last but second corruption query
for node i and in round t. Now, for any node j that is still honest in round t
(not including node i), if PRFskj (m) is needed by the ideal functionality in some
round t′ ≥ t, the PRF call’s outcome will be replaced with random. Otherwise
Hybrid 1.(f − 1) is the same as Hybrid 1.f ′′.

Claim Suppose that the PRF scheme satisfies pseudorandomness under selec-
tive opening. Then, if for any p.p.t. (A,Z) and any κ, the bad events defined
by F do not happen in Hybrid 1.(f − 1) with probability at least µ(κ), then for
any p.p.t. (A,Z) and κ, the bad events defined by F do not happen in Hybrid
1.f ′′ with probability at least µ(κ)− negl(κ).

Proof Similar to the reduction between the Fmine-hybrid protocol and Hybrid
1.f .

Hybrid 1.(f−1)′. Almost the same as Hybrid 1.(f−1), but without disclosing
the secret key to A upon the last but second corruption query.

Claim If for any p.p.t. (A,Z) and any κ, the bad events defined by F do not
happen in Hybrid 1.(f − 1)′ with probability at least 1− µ(κ), then for any
p.p.t. (A,Z) and κ, the bad events defined by F do not happen in Hybrid
1.(f − 1) with probability at least 1− µ(κ).

Proof The proof is similar to the reduction between Hybrid 1.f and Hybrid
1.f ′, but with one more subtlety: in Hybrid 1.(f − 1), upon making the last but
second adaptive corruption query for node i in round t, for any t′ ≥ t and any
node honest in round t (not including i but including the last node to corrupt),
all coins are random. Due to this, we observe that if there is a p.p.t. adversary
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A that can cause the bad events defined by F to occur with probability µ for
Hybrid 1.(f − 1), then there is another p.p.t. adversary A′ such that upon
making the last but second corruption query, it would immediately make the
last corruption query in the same round as t corrupting an arbitrary node
(say, the one with the smallest index and is not corrupt yet), and A′ can cause
the bad events defined by F to occur with probability at least µ in Hybrid
1.(f − 1).

Now, we argue that if such an A′ can cause the bad events defined by F
to occur in Hybrid 1.(f − 1) with probability µ, there must be an adversary
A′′ that can cause the bad events defined by F to occur in Hybrid 1.(f − 1)′

with probability µ too. In particular, A′′ will simply run A′ until A′ makes
the last but second corruption query. At this point A′′ makes an additional
corruption query for an arbitrary node that is not yet corrupt. At this point,
clearly whether bad events defined by F would occur is independent of any
further action of the adversary — and although in Hybrid 1.(f − 1)′, A′′ does
not get to see the secret key corresponding to the last but second query, it still
has the same probability of causing the relevant bad events to occur as the
adversary A′ in Hybrid 1.(f − 1).

Hybrid 1.(f−1)′′. Suppose that A makes the last but second corruption query
for node i and in round t. Now, for any node j that is still honest in round
t as well as node j = i, if the ideal functionality needs to call PRFskj (m) in
some round t′ ≥ t the PRF’s outcome will be replaced with random. Otherwise
Hybrid 1.(f − 1)′′ is identical to 1.(f − 1)′.

Due to the same argument as that of Claim 10.3, we may conclude that if
for any p.p.t. (A,Z) and any κ, the bad events defined by F do not happen
in Hybrid 1.(f − 1)′′ with probability at least µ(κ), then for any p.p.t. (A,Z)
and κ, the bad events defined by F do not happen in Hybrid 1.(f − 1)′ with
probability at least µ(κ)− negl(κ).

In this manner, we define a sequence of hybrids till in the end, we reach
the following hybrid:

Hybrid 1.0. All PRFs evaluations in Hybrid 1 are replaced with random, and
no secret keys are disclosed to A upon any adaptive corruption query.

It is not difficult to see that Hybrid 1.0 is identically distributed as the
Fmine-hybrid protocol. We thus conclude the proof of Lemma 5.

10.4 Hybrid 2

Hybrid 2 is defined almost identically as Hybrid 1, except that now the following
occurs:

– Upfront, Fmine generates an honest CRS for the commitment scheme and
the NIZK scheme and discloses the CRS to A.

– Upfront, Fmine not only chooses secret keys for all nodes, but commits to
the secret keys of these nodes, and reveals the commitments to A.
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– Every time Fmine receives a mine query from a so-far-honest node i and
for the message m, it evaluates ρ← PRFski(m) and compute a NIZK proof
denoted π to vouch for ρ. Now, Fmine returns ρ and π to A.

– Whenever a node i becomes corrupt, Fmine reveals all secret randomness
node i has used in commitments and NIZKs so far to A in addition to
revealing its PRF secret key ski.

Lemma 6 Suppose that the commitment scheme is computationally adaptive
hiding under selective opening, and the NIZK scheme is non-erasure compu-
tational zero-knowledge, Then, for any p.p.t. (A,Z), there exists a negligible
function negl(·) such that for any κ, the bad events defined by F do not happen
in Hybrid 2 with probability 1− negl(κ).

Proof The proof is standard and proceeds in the following internal hybrid
steps.

– Hybrid 2.A. Hybrid 2.A is the same as Hybrid 2 but with the following
modifications. Fmine calls simulated NIZK key generation instead of the real
one, and for nodes that remain honest so-far, Fmine simulate their NIZK
proofs without needing the nodes’ PRF secret keys. Whenever an honest
node i becomes corrupt, Fmine explains node i’s simulated NIZKs using
node i’s real ski and randomness used in its commitment, and supplies the
explanations to A.

Claim Hybrid 2.A and Hybrid 2 are computationally indistinguishable from
the view of Z.

Proof Straightforward due to the non-erasure computational zero-knowledge
property of the NIZK.

– Hybrid 2.B. Hybrid 2.B is almost identical to Hybrid 2.A but with the
following modifications. Fmine calls the simulated CRS generation for the
commitment scheme. When generating public keys for nodes, it computes
simulated commitments without using the nodes’ real ski’s. When a node
i becomes corrupt, it will use the real ski to compute an explanation for
the earlier simulated commitment. Now this explanation is supplied to the
NIZK’s explain algorithm to explain the NIZK too.

Claim Hybrid 2.A and Hybrid 2.B are computationally indistinguishable
from the view of the environment Z.

Proof Straightforward by the “computational hiding under selective opening”
property of the commitment scheme.

Claim If for any p.p.t. (A,Z) and any κ, the bad events defined by F do not
happen in Hybrid 1 with probability at least µ(κ), then for any p.p.t. (A,Z)
and κ, then the bad events defined by F do not happen in Hybrid 2.B with
probability at least µ(κ).
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Proof Given an adversary A that attacks Hybrid 2.B, we can construct an
adversary A′ that attacks Hybrid 1. A′ will run A internally. A′ runs the
simulated CRS generations algorithms for the commitment and NIZK, and
sends the simulated CRSes to A. It then runs the simulated commitment scheme
and sends simulated commitments to A (of randomly chosen ski for every i).
Whenever A tries to mine a message, A′ can intercept this mining request,
forward it to its own Fmine. If successful, A′ can sample a random number
ρ > Dp; else it samples a random number ρ ≤ Dp. It then calls the simulated
NIZK prover using ρ to simulate a NIZK proof and sends it to A. Whenever
A wants to corrupt a node i, A′ corrupts it with its Fmine, obtains ski, and
then runs the Explain algorithms of the commitment and NIZK schemes and
discloses the explanations to A. Clearly A’s view in this protocol is identically
distributed as in Hybrid 2.B. Moreover, if A succeedings in causing the bad
events defined by F to happen, clearly A′ will too.

10.5 Hybrid 3

Hybrid 3 is almost identical as Hybrid 2 except with the following modifications.
Whenever an already corrupt node makes a mining query to Fmine, it must
supply a ρ and a NIZK proof π. Fmine then verifies the NIZK proof π, and if
verification passes, it uses ρ < Dp as the result of the coin flip.

Lemma 7 Assume that the commitment scheme is perfectly binding, and the
NIZK scheme satisfies perfect knowledge extraction. Then, for any p.p.t. (A,Z),
there exists a negligible function negl(·) such that for any κ, the bad events
defined by F do not happen in Hybrid 3 except with probability negl(κ).

Proof We can replace the NIZK’s CRS generation Gen with Gen1 which gener-
ates a CRS that is identically distributed as the honest Gen, but additionally
generates an extraction trapdoor denoted τ1. Now, upon receiving A’s NIZK
proof π, Fmine performs extraction. The lemma follows by observing that due to
the perfect knowledge extraction of the NIZK and the perfect binding property
of the commitment scheme, it holds except with negligible probability that the
extracted witness does not match the node’s PRF secret key that Fmine had
chosen upfront.

In the lemma below, when we say that “assume that the cryptographic
building blocks employed are secure”, we formally mean that the pseudorandom
function family employed is secure; the non-interactive zero-knowledge proof
system that satisfies non-erasure computational zero-knowledge and perfect
knowledge extraction; the commitment scheme is computationally hiding under
selective opening and perfectly binding; and for the synchronous honest majority
protocol, additionally assume that the signature scheme is secure.

Lemma 8 Assume the cryptographic building blocks employed are secure. Then,
for any p.p.t. (A,Z), there exists a negligible function negl(·) such that for
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any κ ∈ N, relevant security properties (including consistency, validity, and
termination) are preseved with all but negl(κ) probability in Hybrid 3.

Proof As mentioned, only two types of bad events can possibly lead to breach
of the relevant security properties: 1) signature failure; and 2) bad events
defined by F . Thus the lemma follows in a straightforward fashion by taking a
union bound over the two.

10.6 Real-World Execution

We now show that the real-world protocol is just as secure as Hybrid 3 — recall
that the security properties we care about include consistency, validity, and
termination.

Lemma 9 If there is some p.p.t. (A,Z) that causes the relevant security
properties to be broken in the real world with probability µ, then there is some
p.p.t. A′ such that (A′,Z) can cause the relevant security properties to be
broken in Hybrid 3 with probability at least µ.

Proof We construct the following A′:

– A′ obtains CRSes for the NIZK and the commitment scheme from its Fmine

and forwards them to A. A′ also forwards the PKI it learns from Fmine to
A.

– Whenever A corrupts some node, A′ does the same with its Fmine, and
forwards whatever learned to A.

– Whenever A sends some message to an honest node, for any portion of the
message that is a “mined message” of any type, let (m, ρ, π) denote this
mined message — we assume that m contains the purported miner of this
message denoted i.

– A′ checks the validity of π and that ρ < Dp for an appropriate choice of
p depending on the message’s type; ignore the message if the checks fail;

– if the purported sender i is an honest node and node i has not successfully
mined m with Fmine, record a forgery event and simply ignore this
message. Otherwise, continue with the following steps.

– if the purported sender i is a corrupt node: A′ issues a corresponding
mining attempt to Fmine on behalf of i with the corresponding ρ and π
if no such mining attempt has been made before;

– Finally, A′ forwards m to the destined honest on behalf of the corrupt
sender.

– Whenever A′ receives some message from an honest node (of Hybrid 3): for
every portion of the message that is a “mined message” of any type, at this
point A′ must have heard from Fmine the corresponding ρ, and π terms. A′
augments the message with these terms and forwards the resulting message
to A.
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Note that conditioned on views (determined by all randomness of the
execution) with no forgery event then either the relevant bad events occur both
in Hybrid 3 and the real-world execution, or occur in neither. For views with
forgery events, it is not difficult to see that if Hybrid 3 (on this view) does not
incur the relevant bad events, then neither would the real-world execution (for
this view).
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