
A Recoverable Mutex Algorithm with Sub-logarithmic RMR on

Both CC and DSM

Prasad Jayanti∗ Siddhartha Jayanti† Anup Joshi‡

Abstract

In light of recent advances in non-volatile main memory technology, Golab and Ramaraju
reformulated the traditional mutex problem into the novel Recoverable Mutual Exclusion (RME)
problem. In the best known solution for RME, due to Golab and Hendler from PODC 2017,
a process incurs at most O( logn

log logn ) remote memory references (RMRs) per passage, where a
passage is an interval from when a process enters the Try section to when it subsequently returns
to Remainder. Their algorithm, however, guarantees this bound only for cache-coherent (CC)
multiprocessors, leaving open the question of whether a similar bound is possible for distributed
shared memory (DSM) multiprocessors.

We answer this question affirmatively by designing an algorithm that satisfies the same
complexity bound as Golab and Hendler’s for both CC and DSM multiprocessors. Our algorithm
has some additional advantages over Golab and Hendler’s: (i) its Exit section is wait-free, (ii) it
uses only the Fetch-and-Store instruction, and (iii) on a CC machine our algorithm needs each
process to have a cache of only O(1) words, while their algorithm needs O(n) words .

1 Introduction

In light of recent advances in non-volatile main memory technology, Golab and Ramaraju reformu-
lated the traditional mutex problem into the novel Recoverable Mutual Exclusion (RME) problem.
The best known algorithm for RME, due to Golab and Hendler [5], has sub-logarithmic remote
memory reference (RMR) complexity for Cache-Coherent (CC) multiprocessors, but unbounded
RMR complexity for Distributed Shared Memory (DSM) multiprocessors. In this paper, we present
an algorithm that ensures the same sublogarithmic bound as theirs for both CC and DSM mul-
tiprocessors, besides possessing some additional desirable properties. In the rest of this section,
we describe the model, the RME problem, the complexity measure, and then describe this paper’s
contribution in the context of prior work.

1.1 The Model

The advent of Non-Volatile Random Access Memory (NVRAM) [13][14][15] — memory whose con-
tents remain intact despite process crashes — has led to a new and natural model of a multiprocessor
and spurred research on the design of algorithms for this model. In this model, asynchronous pro-
cesses communicate by applying operations on shared variables stored in an NVRAM. A process
may crash from time to time. When a process π crashes, all of π’s registers lose their contents:
specifically, π’s program counter is reset to point to a default location ` in π’s program, and all other

∗Dartmouth College, Hanover NH 03755, USA
†Massachusetts Institute of Technology, Cambridge MA 02139, USA
‡Dartmouth College, Hanover NH 03755, USA

1

ar
X

iv
:1

90
4.

02
12

4v
2 

 [
cs

.D
C

] 
 2

9 
M

ay
 2

01
9



registers of π are reset to ⊥; however, the shared variables stored in the NVRAM are unaffected
by a crash and retain their values. A crashed process π eventually restarts, executing the program
beginning from the instruction at the default location `, regardless of where in the program π might
have previously crashed.

When designing algorithms for this model, informally the goal is to ensure that when a crashed
process restarts, it reconstructs the lost state by consulting the shared variables in NVRAM. To
appreciate that this goal can be challenging, suppose that a process π crashes when it is just about
to perform an operation such as r ← FAS(X, 5), which fetches the value of the shared variable
X into π’s register r and then stores 5 in X. If a different process π′ performs FAS(X, 10) and
then π restarts, π cannot distinguish whether it crashed immediately before or immediately after
executing its FAS instruction.

1.2 The Recoverable Mutual Exclusion (RME) problem

In the Recoverable Mutual Exclusion (RME) problem, there are n asynchronous processes, where
each process repeatedly cycles through four sections of code—Remainder, Try, Critical, and Exit
sections. An algorithm (for RME) specifies the code for the Try and Exit sections of each process.
Any process can execute a normal step or a crash step at any time. In a normal step of a process
π, π executes the instruction pointed by its program counter PCπ. We assume that if π executes
a normal step when in Remainder, π moves to Try; and if π executes a normal step when in CS, π
moves to Exit. A crash step models the crash of a process and can occur regardless of which section
of code the process is in. A crash step of π sets π’s program counter to point to its Remainder
section and sets all other registers of π to ⊥.

A run of an algorithm is an infinite sequence of steps. We assume every run satisfies the following
conditions: (i) if a process is in Try, Critical, or Exit sections, it later executes a (normal or crash)
step, and (ii) if a process enters Remainder because of a crash step, it later executes a (normal or
crash) step.

An algorithm solves the RME problem if all of the following conditions are met in every run of
the algorithm (Conditions (1), (3), (4) are from Golab and Ramaraju [7], and (2) and (5) are two
additional natural conditions from Jayanti and Joshi [9]):

1. Mutual Exclusion: At most one process is in the CS at any point.

2. Wait-Free Exit: There is a bound b such that, if a process π is in the Exit section, and executes
steps without crashing, π completes the Exit section in at most b of its steps.

3. Starvation Freedom: If the total number of crashes in the run is finite and a process is in the
Try section and does not subsequently crash, it later enters the CS.

4. Critical Section Reentry (CSR) [7]: If a process π crashes while in the CS, then no other
process enters the CS during the interval from π’s crash to the point in the run when π next
reenters the CS.

5. Wait-Free Critical Section Reentry (Wait-Free CSR) [9]: Given that the CSR property above
mandates that after a process π’s crash in the CS no other process may enter the CS until π
reenters the CS, it makes sense to insist that no process should be able to obstruct π from
reentering the CS. Specifically:

There is a bound b such that, if a process crashes while in the CS, it reenters the CS before
completing b consecutive steps without crashing.

(As observed in [9], Wait-Free CSR, together with Mutual Exclusion, implies CSR.)

2



1.3 Passage Complexity

In a CC machine each process has a cache. A read operation by a process π on a shared variable
X fetches a copy of X from shared memory to π’s cache, if a copy is not already present. Any
non-read operation on X by any process invalidates copies of X at all caches. An operation on
X by π counts as a remote memory reference (RMR) if either the operation is not a read or X’s
copy is not in π’s cache. When a process crashes, we assume that its cache contents are lost. In
a DSM machine, instead of caches, shared memory is partitioned, with one partition residing at
each process, and each shared variable resides in exactly one partition. Any operation (read or
non-read) by a process on a shared variable X is counted as an RMR if X is not in π’s partition.

A passage of a process π in a run starts when π enters Try (from Remainder) and ends at the
earliest later time when π returns to Remainder (either because π crashes or because π completes
Exit and moves back to Remainder).

A super-passage of a process π in a run starts when π either enters Try for the first time in the
run or when π enters Try for the first time after the previous super-passage has ended, and it ends
when π returns to Remainder by completing the Exit section.

The passage complexity (respectively, super-passage complexity) of an RME algorithm is the
worst-case number of RMRs that a process incurs in a passage (respectively, in a super-passage).

1.4 Our contribution

The passage complexity of an RME algorithm can, in general, depend on n, the maximum number
of processes the algorithm is designed for. The ideal of course would be to design an algorithm
whose complexity is independent of n, but is this ideal achievable? It is well known that, for the
traditional mutual exclusion problem, the answer is yes: MCS and many other algorithms that
use FAS and CAS instructions have O(1) passage complexity [3][4][11]. For the RME problem
too, algorithms of O(1) passage complexity are possible, but they use esoteric instructions not
supported on real machines, such as Fetch-And-Store-And-Store (FASAS) and Double Word CAS,
which manipulate two shared variables in a single atomic action [5][8]. The real question, however,
is how well can we solve RME using only operations supported by real machines.

With their tournament based algorithm, Golab and Ramaraju showed that O(log n) passage
complexity is possible using only read and write operations [7]. In fact, in light of Attiya et al’s
lower bound result [2], this logarithmic bound is the best that one can achieve even with the
additional support of comparison-based operations such as CAS. However in PODC ’17, by using
FAS along with CAS, Golab and Hendler [5] succeeded in breaching this logarithmic barrier for
CC machines: their algorithm has O( logn

log logn) passage complexity for CC machines, but unbounded
passage complexity for DSM machines. In this paper we close this gap with the design of an
algorithm that achieves the same sub-logarithmic complexity bound as theirs for both CC and
DSM machines. Some additional advantages of our algorithm over Golab and Hendler’s are:

1. Our algorithm satisfies the Wait-Free Exit property.

2. On a CC machine, Golab and Hendler’s algorithm requires a cache of Θ(n) words at each
process, but our algorithm needs a cache of only O(1) words. (We explain the reason in the
next subsection.)

3. Our algorithm needs only the FAS instruction (whereas Golab and Hendler’s needs both FAS
and CAS).

3



4. Our algorithm eliminates the race conditions present in Golab and Hendler’s algorithm that
cause processes to starve.1 (We describe these issues in detail in Appendix A.)

1.5 Comparison to Golab and Hendler [5]: Similarities and differences

Golab and Hendler [5] derived their sublogarithmic RME algorithm in the following two steps, of
which the first step is the intellectual workhorse:

• The first step is the design of an RME algorithm, henceforth referred to as GH, of O(n)
passage complexity and O(1 + fn) super-passage complexity, where f is the number of times
that a process crashes in the super-passage. The exciting implication of this result is that,
in the common case where a process does not fail in a super-passage, the process incurs only
O(1) RMRs in the super-passage.

• The second step is the design of an RME algorithm where the n processes compete by working
their way up on a tournament tree. This tree has n leaves and each of the tree nodes is
implemented by an instance of GH in which log n/ log log n processes compete. (thus, the
degree of each node is log n/ log log n, which makes the tree’s height O(log n/ log logn)). The
resulting algorithm has the desired O( logn

log logn) passage complexity and O((1 + f) logn
log logn)

super-passage complexity.

The GH algorithm is designed by converting the standard MCS algorithm [11] into a recoverable
algorithm. As we now explain, this conversion is challenging because MCS uses the FAS instruction
to insert a new node at the end of a queue. The queue has one node for each process waiting to
enter the CS, and a shared variable Tail points to the last node in the queue. When a process π
enters the Try section, it inserts its node x into the queue by performing FAS(Tail, x). The FAS
instruction stores the pointer to x in Tail and returns Tail’s previous value prev to π in a single
atomic action. The value in prev is vital because it points to x’s predecessor in the queue. Suppose
that π now crashes, thereby losing the prev pointer. Further suppose that a few more processes enter
the Try section and insert their nodes behind π’s node x. If π now restarts, it cannot distinguish
whether it crashed just before performing the FAS instruction or just after performing it. In the
former case, π will have to perform FAS to insert its node, but in the latter case it would be
disastrous for π to perform FAS since x was already inserted into the queue. Yet, there appears no
easy way for π to distinguish which of the scenarios it is in. Notice further that, like π, many other
processes might have failed just before or after their FAS, causing the queue to be disconnected into
several segments. All of these failed processes, upon restarting, have to go through the contents
of the shared memory to recognize whether they are in the queue or not and, if they are in, piece
together their fragment with other fragments without introducing circularity or other blemishes in
the queue. Since concurrent “repairing” by multiple recovering processes can lead to races, Golab
and Hendler make the recovering processes go through an RME algorithm RLock so that at most
one recovering process is doing the repair at any time. This RLock does not have to be too efficient
since it is executed by only a failing process, which can afford to perform O(n) RMRs. Thus, this
RLock can be implemented using one of the known RME algorithms. However, while a process is
trying to repair, correct processes can be constantly changing the queue, thereby making the repair
task even more challenging.

The broad outline of our algorithm is the same as what we have described above for GH, but
our algorithm differs substantially in important technical details, as we explain below.

1We communicated the issues described in Appendix A with the authors of [5] who acknowledged the bugs and
after a few weeks informed us that they were able to fix them.

4



• In GH a recovering process raises a fail flag only after confirming that there is evidence that
its FAS was successful. This check causes GH to deadlock (see Scenario 1 in Appendix A).
Our algorithm eliminates this check.

• Since the shared memory can be constantly changing while a repairing process π is scanning
the memory to compute the disjointed fragments (so as to connect π’s fragment to another
fragment), the precise order in which the memory contents are scanned can be crucial to
algorithm’s correctness. In fact, we found a race condition in GH that can lead to segments
being incorrectly pieced together: two different nodes can end up with the same predecessor,
leading to all processes starving from some point on (see Scenario 2 in Appendix A).

• When a repairing process explores from each node x, GH does a “deep” exploration, meaning
that the process visits x’s predecessor x1, x1’s predecessor x2, x2’s predecessor x3, and so
on until the chain is exhausted. Our algorithm instead does a shallow exploration: it simply
visits x’s predecessor and stops there. The deep exploration of GH from each of the n nodes
leads to O(n2) local computation steps per passage and requires each process to have a large
cache of O(n) words in order to ensure the desired O(n) passage-RMR-complexity. With our
shallow exploration, we reduce the number of local steps per passage to O(n) and the RMR
complexity of O(n) is achieved with a cache size of only O(1) words.

• How an exiting process hands off the ownership of CS to the next waiting process is done
differently in our algorithm so as to ensure a wait-free Exit section and eliminate the need
for the CAS instruction.

1.6 Related research

Beyond the works that we discussed above, Golab and Hendler [6] presented an algorithm at last
year’s PODC that has the ideal O(1) passage complexity, but this result applies to a different
model of system-wide crashes, where a crash means that all processes in the system simultaneously
crash. Ramaraju [12] and Jayanti and Joshi [9] design RME algorithms that also satisfy the FCFS
property [10]. These algorithms have O(n) and O(log n) passage complexity, respectively. Attiya,
Ben-Baruch, and Hendler present linearizable implementations of recoverable objects [1].

2 A Signal Object

Our main algorithm, presented in the next section, relies on a “Signal” object, which we specify and
implement in this section. The Signal object is specified in Figure 1, which includes a description
of two procedures — set and wait — through which the object is accessed.

X.State ∈ {1, 0}, initially 0.
• X.set() sets X.State to 1.
• X.wait() returns when X.State is 1.

Figure 1: Specification of a Signal object X.

2.1 An implementation of Signal Object

It is trivial to implement this object on a CC machine using a boolean variable Bit, initialized to
0. To execute set(), a process writes 1 in Bit, and to execute wait(), a process simply loops until

5



Bit has 1. With this implementation, both operations incur just O(1) RMRs on a CC machine.
Realizing O(1) RMR complexity on a DSM machine is less trivial, especially because the identity
of the process executing wait() is unknown to the process executing set(). Figure 2 describes our
DSM implementation X of a Signal object X, which assumes that no two processes execute the
wait() operation concurrently on the Signal object. Our implementation provides two procedures:
X .set() and X .wait(). Process π executes X .set() to perform X.set() and X .wait() to perform
X.wait(). Our implementation ensures that a call to X .set() and X .wait() incur only O(1) RMR.

Shared variables (stored in NVMM)
Bit ∈ {1, 0}, initially 0.
GoAddr is a reference to a boolean, initially NIL.

procedure X .set()

1. Bit← 1

2. addrπ ← GoAddr
3. if addrπ 6= NIL then
4. ∗addrπ ← true

procedure X .wait()

5. goπ ← new Boolean
6. ∗goπ ← false
7. GoAddr← goπ
8. if Bit == 0 then
9. wait till ∗goπ == true

Figure 2: Implementation of a Signal object specified in Figure 1. Code shown for a process π.

When π invokes X .set(), at Line 1 it records for future X .wait() calls that X.State = 1, hence
those calls can return without waiting. Thereafter, π finds out if any process is already waiting
for X.State to be set to 1. It does so by checking if any waiting process has supplied the address
of its own local-spin variable to π on which it is waiting (Lines 2-3). If π finds that a process is
waiting (i.e., addrπ 6= NIL), then it writes true into that process’s spin-variable to wake it up from
the wait loop (Line 4).

When a process π′ invokes X .wait(), at Line 5 it creates a new local-spin variable that it hosts
in its own memory partition (Line 5). It initializes that variable for waiting (Line 6) and notifies
the object about its address (Line 7) so that the caller of X .wait() can wake π′ up as described
above. Then π′ checks if Bit == 1 (Line 8), in which case X.State = 1 already and π′ can return
without waiting. Otherwise, π′ waits for ∗goπ′ to turn true (Line 9).

Theorem 1. X .set() and X .wait() described in Figure 2 implement a Signal object X (specified
in Figure 1). Specifically, the implementation satisfies the following properties provided no two
executions of X .wait() are concurrent: (i) X .set() is linearizable, i.e., there is a point in each
execution of X .set() when it appears to atomically set X .State to 1, (ii) When X .wait() returns,
X .State is 1, (iii) A process completes X .set() in a bounded number of its own steps, (iv) Once
X .State becomes 1, any execution of X .wait() by a process π completes in a bounded number of
π’s steps, (v) X .set() and X .wait() incur O(1) RMR on each execution.

3 The Algorithm

Our RME algorithm for k ports is presented in Figures 3-4. We assume that all shared variables
are stored in non-volatile main memory, and process local variables (subscripted by π) are stored in
respective processor registers. We assume that if a process uses a particular port during its super-
passage in a run, then no other process will use the same port during that super-passage. The
process decides the port it will use inside the Remainder section itself. Therefore, the algorithm
presented in Figures 3-4 is designed for use by a process π on port p.

6



Types
QNode = record{Pred : reference to QNode,

NonNil Signal : Signal object,CS Signal : Signal object } end record
Shared objects (stored in NVMM)

Crash, InCS, and Exit are distinct QNode instances, such that,
Crash.Pred = &Crash, InCS.Pred = &InCS, and Exit.Pred = &Exit.

SpecialNode is a QNode instance, such that, SpecialNode.Pred = &Exit,
SpecialNode.NonNil Signal = 1, and SpecialNode.CS Signal = 1.

RLock is a k-ported starvation-free RME algorithm
that incurs O(k) RMR per passage on CC and DSM machines.

Shared variables (stored in NVMM)
Tail is a reference to a QNode, initially &SpecialNode.
Node is an array[0 . . . k − 1] of reference to QNode. Initially, ∀i,Node[i] = NIL.

Try Section

10. if Node[p] = NIL then
11. mynodeπ ← new QNode
12. Node[p]← mynodeπ
13. mypredπ ← FAS(Tail,mynodeπ)
14. mynodeπ.Pred← mypredπ
15. mynodeπ.NonNil Signal.set()
16. else
17. mynodeπ ← Node[p]
18. if mynodeπ.Pred = NIL then mynodeπ.Pred← &Crash
19. mypredπ ← mynodeπ.Pred
20. if mypredπ = &InCS then go to Critical Section
21. if mypredπ = &Exit then
22. Execute Lines 28-29 of Exit Section and go to Line 10
23. mynodeπ.NonNil Signal.set()
24. Execute RLock
25. mypredπ.CS Signal.wait()
26. mynodeπ.Pred← &InCS

Exit Section

27. mynodeπ.Pred← &Exit
28. mynodeπ.CS Signal.set()
29. Node[p]← NIL

Figure 3: k-ported n-process RME algorithm for CC and DSM machines. Code shown for a
process π that uses port p ∈ {0, . . . , k − 1}. (Code continued in Figure 4.)

3.1 Informal description

The symbol & is the usual “address of” operator, prefixed to a shared object to obtain the address
of that shared object. The symbol “.” (dot) dereferences a pointer and accesses a field from the
record pointed to by that pointer. When invoked on a path σ in a graph, the functions start(σ)
and end(σ) return the start and end vertices of the path σ. We assume that a process π is in the
Remainder section when PCπ = 10 and is in the CS when PCπ = 27.

Our algorithm uses a queue structure as in the MCS lock [11] and QNode is the node type used
in such a queue. We modify the node structure in the following way to suit our needs. The node
of a process π has, apart from a Pred pointer, two instances of a Signal object: CS Signal and
NonNil Signal. π’s successor process will use the CS Signal instance from π’s node to wait
on π before entering the CS. The NonNil Signal instance is used by any repairing process to
wait till π sets the Pred pointer of its node to a value other than NIL. Every node has a unique
instance of these Signal objects. We ensure that the call to CS Signal.wait() happens from a
single predecessor and the call to NonNil Signal.wait() is made in a mutually exclusive manner,

7



Critical Section of RLock
30. if mypredπ 6= &Crash then go to Exit Section of RLock
31. tailπ ← Tail; Vπ ← φ; Eπ ← φ; tailpathπ ← NIL; headpathπ ← NIL
32. for iπ ← 0 to k − 1
33. curπ ← Node[iπ]
34. if curπ = NIL then continue
35. curπ.NonNil Signal.wait()
36. curpredπ ← curπ.Pred
37. if curpredπ ∈ {&Crash,&InCS,&Exit} then Vπ ← Vπ ∪ {curπ}
38. else Vπ ← Vπ ∪ {curπ, curpredπ};Eπ ← Eπ ∪ {(curπ, curpredπ)}
39. Compute the set Pathsπ of maximal paths in the graph (Vπ, Eπ)
40. Let mypathπ be the unique path in Pathsπ that contains mynodeπ
41. if tailπ ∈ Vπ then let tailpathπ be the unique path in Pathsπ that contains tailπ
42. for each σπ ∈ Pathsπ
43. if end(σπ).Pred ∈ {&InCS,&Exit} then
44. if start(σπ).Pred 6= &Exit then
45. headpathπ ← σπ
46. if tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit} then
47. mypredπ ← FAS(Tail, start(mypathπ))
48. else if headpathπ 6= NIL then mypredπ ← start(headpathπ) else mypredπ ← &SpecialNode
49. mynodeπ.Pred← mypredπ

Figure 4: (Code continued from Figure 3.) k-ported n-process recoverable mutual exclusion
algorithm for CC and DSM machines. Code shown for a process π that uses port p ∈ {0, . . . , k−1}.
Vertex names in Vπ are node references, hence the “.” symbol dereferences the address and accesses
the members of the node. The functions start(σ) and end(σ) used at Lines 43, 44, 46-48 return
the start and end vertices of the path σ.

thus ensuring that no two executions of wait() are concurrent on the same object instance. We
also use an array of references to QNodes called Node[]. This is a reference to a QNode that is
used by some process on port p to complete a passage. In essence Node[p] binds a process π to
the port p through the QNode π uses for its passage.

We first describe how π would execute the Try and Exit section in absence of a crash as follows,
and then proceed to explain the algorithm if a crash is encountered anywhere. When a process
π wants to enter the CS through port p from the Remainder section, it starts executing the Try
section. At Line 10 it checks if any previous passage ended in a crash. If that is not the case, π
finds Node[p] = NIL. It then executes Line 11 which allocates a new QNode for π in the NVMM,
such that the Pred pointer holds NIL, and the objects CS Signal and NonNil Signal have
State = 0 (i.e., their initial values). At Line 12 the process stores a reference to this new node
in Node[p] so that it can reuse this node in future in case of a crash. π then links itself to the
queue by swapping mynodeπ into Tail (Line 13) and stores the previous value of Tail (copied
in mypredπ) into mynodeπ.Pred (Line 14). The value of mypredπ, from Line 13 onwards, is an
address of π’s predecessor’s node. At Line 15 π announces that it has completed inserting itself
in the queue by setting mynodeπ.NonNil Signal to 1 (more later on why is this announcement
important). π then proceeds to Line 25 where it waits for mypredπ.CS Signal to become 1. If
the owner of the node pointed by mypredπ has already left the CS, then mypredπ.CS Signal is
1; otherwise, π has to wait for a signal from its predecessor (see description of Signal object in
previous section). Once π comes out of the call to mypredπ.CS Signal.wait(), it makes a note in
mynodeπ.Pred that it has ownership of the CS (Line 26). π then proceeds to the CS.

When π completes the CS, it first makes a note to itself that it no longer needs the CS by
writing &Exit in mynodeπ.Pred (Line 27). It then wakes up any successor process that might be

8



waiting on π to enter the CS (Line 28). π then writes NIL into Node[p] at Line 29, which signifies
that the passage that used this node has completed.

When π begins a passage after the previous passage ended in a crash, π starts by checking
Node[p] at Line 10. If it has the value NIL, then π crashed before it put itself in the queue,
hence it treats the situation as if π didn’t crash in the previous passage and continues as described
above. Otherwise, π moves to Line 17 where it recovers the node it was using in the previous
passage. If π crashed while putting itself in the queue (i.e., right before executing Lines 13 or 14),
it treats the crash as if it performed the FAS at Line 13 and crashed immediately. Hence, it makes
a note to itself that it crashed by writing &Crash in mynodeπ.Pred (Line 18). It then reads
the value of mynodeπ.Pred into mypredπ (Line 19). At Line 20 π checks if it crashed while in
the CS, in which case it moves to the CS. At Line 21 it checks if it already completed executing
the CS, in which case recovery is done by executing Lines 28-29 and then re-executing Try from
Line 10. If π reaches Line 23, it is clear that it crashed before entering the CS in the previous
passage. In that case repairing the queue might be needed if π didn’t set mynodeπ.Pred to point
to a predecessor node. In any case, π announces that mynodeπ.Pred no longer has the value NIL
setting mynodeπ.NonNil Signal to 1. π then goes on to capture RLock so that it gets exclusive
access to repair the queue if it is broken at its node.

High level view of repairing the queue after a crash

Before diving into the code commentary of the CS of RLock, where π repairs the queue broken
at its end, we describe how the repairing happens at a high level. π uses the RLock to repair
the queue, if it crashed around the FAS operation (Lines 13-14) in the Try section. A crash by a
process on Lines 13-14 can give rise to the following scenarios: (i) the queue is not affected by the
crash (crash at Line 13 or at Line 14 but the queue was already broken), (ii) the queue is broken
due to the crash (crash at Line 14). Therefore consider the following configuration2. Assume there
is a node x that was used by some process in its passage and the process has completed that passage
succesfully so that x.Pred = &Exit. Process π1, π3, and π5 have crashed at Line 14. Process
π2, π4, and π6 are executing the procedure wait() at Line 25, such that, π2’s predecessor is π1,
π4’s predecessor is π3, and π6’s predecessor is π5. Process π7 and π8 have crashed at Line 13. We
describe the repair by each of these crashed processes as follows.

Each of the crashed processes executes the RLock and waits for its turn to repair the queue in
a mutually exclusive manner. Assume that the repair is performed by the processes in the order:
(π1, π7, π5, π8, π3). When π1 performs the repair, it first scans the Node array and notices that
the queue is broken at process π4 and π5’s nodes (it notices that by reading &Crash in the Pred
pointer of the process nodes). Node array also gives an illusion to π1 that queue is broken at π7
and π8’s node although these processes didn’t perform a FAS prior to their crash. π1 also notices
that no node has a predecessor node whose Pred pointer is set to &InCS or &Exit, hence, no
process is in the CS or is poised to enter it. Therefore π1 sets its own node’s predecessor to be
SpecialNode (from Figure 3, SpecialNode.Pred = &Exit). Note, no other crashed process
will set their own node’s Pred pointer to point to SpecialNode simultaneously because repair
operation is performed in a mutually exclusive manner by π1. Also, the Pred pointer of each
node has a non-NIL value (if not, then π1 waits till it sees a non-NIL value before doing the actual
repair). This way π1 completes the repair operation on the queue and is now poised to enter the
CS.

When π7 (crashed at Line 13) performs the repair, it first scans the Node array and notices
that the queue is broken at process π4, π5, π7, and π8’s nodes. Since it notices that no process

2Please refer to Figure 5 of Section B in the Appendix for a visual illustration.

9



points to π2, it sets the Pred pointer of its own node to point to π2’s node. Thereby π7 finishes
the repair by placing itself in the queue, without ever performing the FAS, and gives up its control
over RLock to return to the Try section.

When π5 (crashed at Line 19) performs the repair, it follows an approach similar to that of π7’s.
It sees that the queue is broken at process π3, π5, and π8. It then notices that no process points to
π7 and therefore sets the Pred pointer of its own node to point to π7’s node. This way π5 and π6
are now attached to the queue in a way that there is a path from their node to a node containing
the address &Exit. Also, Tail points to π6’s node, so it appears as if the queue is unbroken if a
traversal was done starting at the Tail pointer.

Now that a traversal from Tail would lead to a node used by a process that is in Critical section
(π1 in this case), the queue is partially in place. In order to fix the remaining broken fragments the
queue might need to be broken somehow to fit the remaining fragments. However, π3 and π8 can
do the repair from here on without affecting the existing structure of the queue. π8 can put itself
in the queue by performing the FAS operation on the Tail with its own node. Whereas π3 first
identifies the fragment its node is part of, and thereby all the nodes that are part of its fragment.
It then performs a FAS one more time on Tail with the last node in its own fragment (i.e., π4’s
node) and sets the Pred pointer of its own node to the previous value of Tail that is returned by
the FAS (address of π8’s node). This ends the repair operation for π3 and thereby the repair for
all the process.

Informal description of CS of RLock

We proceed to give a description of the CS of RLock that does the above mentioned repair. At
Line 30 π checks if it was already in the queue before its last crash (such a situation may occur
either when π crashes after executing the CS of RLock to completion but before executing the
Exit section of RLock, or when π crashes in the Try after performing Line 14). If so, it notices
that there is no need for repair, hence, it goes to the Exit section of RLock. Otherwise, at
Line 31 π reads the reference to the node pointed to by Tail into the variable tailπ and initializes
other variables used during the repair procedure. Thereafter π constructs a graph that models
the queue structure. To this purpose, it reads each node pointed to by the Node array in order
to construct the graph (Lines 32-38). The graph is constructed as follows. First a cell from the
Node array is read into curπ (i.e., Node[iπ]) at Line 33 and checked if it is a node of some process
(Line 34). If Node[iπ] = NIL, π moves on to the next cell in the array. Otherwise, at Line 35 π
waits till Node[iπ].Pred assumes a non-NIL value (i.e., wait for the owner of that node to have
executed either Line 15 or 23). Once curπ’s Pred pointer has a non-NIL value, that value is
read into curpredπ (Line 36). There are now two possibilities: (i) the Pred pointer points to one
of &Crash, &InCS, or &Exit, or (ii) the Pred pointer points to another node. The purpose
of waiting for curπ.NonNil Signal = 1 is simple: we want to be sure which of the above two
cases is true about curπ. In the first case only curπ is added as a vertex to the graph (the name
of that vertex is the value of curπ). In the second case curπ and curpredπ are added as vertices
and a directed edge (curπ, curpredπ) is added to the graph (we consider this as a simple graph, so
repeated addition of a vertex counts as adding it once). This process is repeated until all cells from
the Node array are read. Once all the nodes are read from the cells of Node array, including nodes
not yet in the queue (π7 and π8 in the above example), we have the graph (Vπ, Eπ) that models the
broken queue structure such that each maximal path in the graph models a broken queue fragment.
Note, such a graph is a directed acyclic graph. At Line 39 set Pathsπ of maximal paths in the
graph (Vπ, Eπ) is created and at Line 40 a path mypathπ is picked from Pathsπ such that mynodeπ
appears in it. At Line 41 a path tailpathπ containing the node tailπ is picked from Pathsπ if tailπ

10



appears in the graph. In Lines 42-45 we try to find a path in the graph such that its start vertex
belongs to a process that has not finished the critical section but a traversal on that path leads to
a node holding one of the addresses &InCS or &Exit (i.e., it leads to a node in or out of CS). If
such a path is found, headpathπ is set to point to that path, otherwise, headpathπ remains NIL.
In Line 46 we first check if the queue is already partially repaired (e.g., if the repair was being
performed by π8 or π3 in the example above). If so, at Line 47 the fragment containing mynodeπ
is inserted into the queue by performing a FAS on Tail with the last node in that fragment (i.e.,
start(mypathπ) would give the address of last node appearing in mynodeπ’s fragment). We note
the previous value of Tail into mypredπ so that we can update mynodeπ.Pred later. Otherwise,
π needs to connect its own fragment to the queue. To this purpose it needs to be ensured that
the queue is not broken at its head and some active process is poised to enter or is in the Critical
section. Line 48 does this by checking if Lines 42-45 found a path in the graph such that its start
vertex belongs to a process that has not finished the Critical section but a traversal on that path
leads to a node out of CS (i.e., is headpathπ 6= NIL). If headpathπ 6= NIL, then π’s predecessor
is set to be the start node on the path headpathπ (π7, π5 in the example above). Otherwise, the
queue is broken at its head, therefore, at Line 48, π’s predecessor is set to be SpecialNode (π1
in example above). At Line 49, π has the correct address to its predecessor node in mypredπ (as
noted in Lines 46-48) which is written into mynodeπ.Pred. This completes the CS of RLock and
the repair of π’s fragment. π then proceeds back to Line 25 after completing the Exit section of
RLock.

3.2 Main theorem

The correctness properties of the algorithm are captured in the following theorem.

Theorem 2. The algorithm in Figures 3-4 solves the RME problem for k ports on CC and DSM
machines and additionally satisfies the Wait-free Exit and Wait-free CSR properties. It has an
RMR complexity of O(1) for a process that does not crash during its passage, and O(fk) for a
process that crashes f times during its super-passage.

3.3 O((1 + f) log n/ log log n) RMRs Algorithm

To obtain a sub-logarithmic RMR complexity algorithm on both CC and DSM machines, we use
the arbitration tree technique used by Golab and Hendler (described in Section 5 in [5]). Therefore,
the following theorem follows from Theorem 2.

Theorem 3. The arbitration tree algorithm solves the RME problem for n processes on CC and
DSM machines and additionally satisfies the Wait-free Exit and Wait-free CSR properties. It has
an RMR complexity of O((1 + f) log n/ log log n) per super-passage for a process that crashes f
times during its super-passage.

11



References

[1] Attiya, H., Ben-Baruch, O., and Hendler, D. Nesting-Safe Recoverable Linearizability:
Modular Constructions for Non-Volatile Memory. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing (2018), ACM, pp. 7–16.

[2] Attiya, H., Hendler, D., and Woelfel, P. Tight RMR Lower Bounds for Mutual Exclu-
sion and Other Problems. In Proc. of the Fortieth ACM Symposium on Theory of Computing
(New York, NY, USA, 2008), STOC ’08, ACM, pp. 217–226.

[3] Craig, T. S. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap. Tech. Rep.
TR-93-02-02, Department of Computer Science, University of Washington, February 1993.

[4] Dvir, R., and Taubenfeld, G. Mutual exclusion algorithms with constant RMR complexity
and wait-free exit code. In Proceedings of The 21st International Conference on Principles of
Distributed Systems (2017), OPODIS 2017.

[5] Golab, W., and Hendler, D. Recoverable mutual exclusion in sub-logarithmic time. In
Proceedings of the ACM Symposium on Principles of Distributed Computing (New York, NY,
USA, 2017), PODC ’17, ACM, pp. 211–220.

[6] Golab, W., and Hendler, D. Recoverable Mutual Exclusion Under System-Wide Failures.
In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (New
York, NY, USA, 2018), PODC ’18, ACM, pp. 17–26.

[7] Golab, W., and Ramaraju, A. Recoverable Mutual Exclusion: [Extended Abstract]. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (New York,
NY, USA, 2016), PODC ’16, ACM, pp. 65–74.

[8] Jayanti, P., Jayanti, S., and Joshi, A. Optimal Recoverable Mutual Exclusion using only
FASAS. In The 6th Edition of The International Conference on Networked Systems (2018),
NETYS 2018.

[9] Jayanti, P., and Joshi, A. Recoverable FCFS mutual exclusion with wait-free recovery. In
31st International Symposium on Distributed Computing (2017), DISC 2017, pp. 30:1–30:15.

[10] Lamport, L. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun.
ACM 17, 8 (Aug. 1974), 453–455.

[11] Mellor-Crummey, J. M., and Scott, M. L. Algorithms for Scalable Synchronization on
Shared-memory Multiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–65.

[12] Ramaraju, A. RGLock: Recoverable mutual exclusion for non-volatile main memory systems.
Master’s thesis, University of Waterloo, 2015.

[13] Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y.-C., Shelby,
R. M., Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-L., et al. Phase-change random
access memory: A scalable technology. IBM Journal of Research and Development 52, 4/5
(2008), 465.

[14] Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. The missing
memristor found. nature 453, 7191 (2008), 80.

12



[15] Tehrani, S., Slaughter, J. M., Deherrera, M., Engel, B. N., Rizzo, N. D., Salter,
J., Durlam, M., Dave, R. W., Janesky, J., Butcher, B., et al. Magnetoresistive
random access memory using magnetic tunnel junctions. Proceedings of the IEEE 91, 5 (2003),
703–714.

13



A Issues with Golab and Hendler’s [5] Algorithm

In this section we describe two issues with Golab and Hendler’s FAS and CAS based algorithm.
The Algorithm in question here appears in Figures 6, 7, 8 in [5] and we use the exact line numbers
and variable names as they appear in the paper.

A.1 Scenario 1: Process deadlock inside Recover

The first issue with the GH algorithm is that processes deadlock waiting on each other inside the
Recover section. This issue is described as below:

1. Process P4 requests the lock by starting a fresh passage, goes to the CS, completes the Exit,
and then goes back to Remainder.

2. Process P2 starts a fresh passage, executes the code till (but not including) Line 26 and
crashes.

3. Remainder section puts P2 into Recover, P2 starts executing IsLinkedTo(2) from Line 44
because mynode.nextStep = 26 and mynode.prev =⊥ for P2.

4. P2 sleeps at Line 68 with i = 0.

5. Process P4 starts another passage, executes till (but not including) Line 26 and crashes.

6. Thereafter, P4 goes to Recover, starts executing IsLinkedTo(4) from Line 44 becausemynode.nextStep =
26 and mynode.prev =⊥ for P4.

7. P2 starts executing procedure IsLinkedTo() where it left and executes several interations
until i = 4. Now it waits on lnodes[4].prev (P4’s mynode) to become non-⊥.

8. P4 starts executing procedure IsLinkedTo() where it left and executes several iterations until
i = 2 and now it waits on lnodes[2].prev (P2’s mynode) to become non-⊥.

9. From now on no process including P2 and P4 ever crash. Therefore P2 and P4 are then waiting
on each other and no one ever sets mynode.prev to a non-⊥ value. This results in violation
of Starvation freedom property.

A.2 Scenario 2: Starvation Freedom Violation

The second issue with their algorithm is a process may starve even though it never crashed. The
issue is as described below:

1. Process P0 initiates a new passage, goes to CS, and no other process comes after it, so tail is
pointing to P0’s node.

2. P1 initiates a new passage, performs FAS on tail and goes behind P0, and sets its own
mynode.prev field to point to P0’s node.

3. P2 initiates a new passage, performs FAS on tail and goes behind P1, but crashes immediately,
hence losing its local variable prev before setting its own mynode.prev field.

4. P2 performs isLinkedTo(2), which returns true because tail is pointing to P2’s mynode.

14



5. P3 initiates a new passage, performs FAS on tail and goes behind P2, and sets its own
mynode.prev field to point to P2’s node.

6. P2 acquires rLock in order to recover from the crash, and performs iterations with i = 0, 1, 2, 3
of the for-loop on Line 76. At this point the relation R maintained in the rlock contains (0,
1), (2, 3), (3, TAIL).

7. P4 initiates a new passage, performs FAS on tail and goes behind P3, but loses its local
variable prev before setting its own mynode.prev field.

8. P5 initiates a new passage, performs FAS on tail and goes behind P4, and sets its own
mynode.prev field to point to P4’s node.

9. P2 resumes and performs iterations with i = 4, 5 of the for-loop at Line 76, adding (4,5) to
R.
At this point R = (0, 1), (2, 3), (3, TAIL), (4,5). Therefore, process 2 identifies

• (0,1) as the non-failed fragment (segment 1),

• (4,5) as the middle segment (segment 2), and

• (2,3), (3,TAIL) as the tail segment (segment 3).

10. On Line 93 P2 sets mynode.prev to point to P5’s node and tail still points to P5’s node.

11. P6 initiates a new passage, performs FAS on tail and goes behind P5, and sets its own
mynode.prev field to point to P5’s node. Note, at this point, both P2 and P6 set their
respective mynode.prev field to point to the P5’s node and tail points to P6’s node.

12. Thereafter P6 executes the remaining lines of Try section setting P5’s mynode.next to point
to its own node at Line 30, and then continues to busy-wait on Line 31.

13. P2 then comes out of the rlock, continues to Line 28 in Try, sets P5’s mynode.next to point
to its own node at Line 30, and continues to busy-wait on Line 31.

14. Hereafter, assume that no process fails, we have that all the processes coming after P6 in-
cluding P6 itself forever starve. This is because P5 was supposed to wake P6 up from the
busy-wait, but it would wake up P2 instead. P2 never wakes any process up because it is not
visible to any process. This violates Starvation Freedom.

B Illustration for Repair

Figure 5 illustrates the bird’s eye view of queue repair performed by crashed processes. Refer to
Section 3.1 for a detailed description.

15



Node used by π:

π

mynodeπ.Pred

With π1, π3, π5, π7, and π8 crashed, initial state of the queue
(π1, π3, π5 crashed at Line 14 and π7, π8 crashed at Line 13):

Tail :

π8 π7 π6 π5 π4 π3 π2 π1

Node out of CS:

x

π1 performs repair:

Tail :

π8 π7 π6 π5 π4 π3 π2 π1

Node out of CS:

x

π7 performs repair:

Tail :

π8 π6 π5 π4 π3 π7 π2 π1

Node out of CS:

x

π5 performs repair:

Tail :

π8 π4 π3 π6 π5 π7 π2 π1

Node out of CS:

x

π8 performs repair:

Tail :

π4 π3 π8 π6 π5 π7 π2 π1

Node out of CS:

x

π3 performs repair:

Tail :

π4 π3 π8 π6 π5 π7 π2 π1

Node out of CS:

x

Figure 5: Queue states after repair is performed by different processes in a sequence. Explosion
symbol in place of a Pred pointer on a node denotes the said process has crashed without updating
the Pred pointer of its node.

16



C Proof of correctness

In this section we present a proof of correctness for the algorithm presented in Figures 3-4. We
prove the algorithm by giving an invariant for the algorithm and then proving correctness using the
invariant. Figures 8-11 give the invariant satisfied by the algorithm. The proof that the algorithm
satisfies the invariant is by induction and is presented in Appendix E.

We begin with some notation used in the proof and the invariant. A process may crash several
times during its super-passage, at which point all its local variables get wiped out and the program
counter is reset to 10 (i.e. first instruction of Try). In order to prove correctness we maintain a
set of hidden variables that help us in the arguments of our proof. Following is the list of hidden
variables for a process π and the locations that the variables are updated in the algorithm:

p̂ortπ: This variable stores the port number that π uses to complete its super-passage. The
Remainder section decides which port will be used by π for the super-passage. When π
is not active in a super-passage, we assume that p̂ortπ = NIL.

P̂Cπ: This variable takes line numbers as value according to the value of program counter, i.e.,
PCπ. Figures 6-7 show the annotated versions of our code from Figures 3-4 (annotations

in <>) where we show the value that P̂Cπ takes at each line. We assume that the change

in P̂Cπ happens atomically along with the execution of the line. P̂Cπ remains the same
as before a line is executed for those lines in the figure that are not annotated (for
example, Lines 10, 16-21).

Try Section

10. if Node[p] = NIL then

11. mynodeπ ← new QNode; < P̂Cπ ← 12 >

12. Node[p]← mynodeπ; < P̂Cπ ← 13 >

13. mypredπ ← FAS(Tail,mynodeπ); < P̂Cπ ← 14 >

14. mynodeπ.Pred← mypredπ; < P̂Cπ ← 15 >

15. mynodeπ.NonNil Signal.set(); < P̂Cπ ← 25 >
16. else
17. mynodeπ ← Node[p]
18. if mynodeπ.Pred = NIL then mynodeπ.Pred← &Crash
19. mypredπ ← mynodeπ.Pred
20. if mypredπ = &InCS then go to Critical Section
21. if mypredπ = &Exit then

22. Execute Lines 28-29 of Exit Section and go to Line 10; < P̂Cπ ← 11 >
23. mynodeπ.NonNil Signal.set()
24. Execute RLock

25. mypredπ.CS Signal.wait(); < P̂Cπ ← 26 >

26. mynodeπ.Pred← &InCS; < P̂Cπ ← 27 >

Exit Section

27. mynodeπ.Pred← &Exit; < P̂Cπ ← 28 >

28. mynodeπ.CS Signal.set(); < P̂Cπ ← 29 >

29. Node[p]← NIL; < P̂Cπ ← 11 >

Figure 6: Annotated version of code from Figure 3. p̂ortπ = p.

n̂odeπ: This variable is used to denote the QNode that π is using in the current configuration

for the current passage. Detailed description of the values that n̂odeπ takes appears in
the Definitions section of Figure 8.

17



Critical Section of RLock
30. if mypredπ 6= &Crash then

go to Exit Section of RLock;

< P̂Cπ ← 25 >
31. tailπ ← Tail; Vπ ← φ; Eπ ← φ; tailpathπ ← NIL; headpathπ ← NIL
32. for iπ ← 0 to k − 1
33. curπ ← Node[iπ]
34. if curπ = NIL then continue
35. curπ.NonNil Signal.wait()
36. curpredπ ← curπ.Pred
37. if curpredπ ∈ {&Crash,&InCS,&Exit} then Vπ ← Vπ ∪ {curπ}
38. else Vπ ← Vπ ∪ {curπ, curpredπ};Eπ ← Eπ ∪ {(curπ, curpredπ)}
39. Compute the set Pathsπ of maximal paths in the graph (Vπ, Eπ)
40. Let mypathπ be the unique path in Pathsπ that contains mynodeπ
41. if tailπ ∈ Vπ then let tailpathπ be the unique path in Pathsπ that contains tailπ
42. for each σπ ∈ Pathsπ
43. if end(σπ).Pred ∈ {&InCS,&Exit} then
44. if start(σπ).Pred 6= &Exit then
45. headpathπ ← σπ
46. if tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit} then

47. mypredπ ← FAS(Tail, start(mypathπ)); < P̂Cπ ← 14 >
48. else

if headpathπ 6= NIL then mypredπ ← start(headpathπ) else mypredπ ← &SpecialNode ;

< P̂Cπ ← 14 >

49. mynodeπ.Pred← mypredπ ; < P̂Cπ ← 25 >

Figure 7: Annotated version of code from Figure 4. p̂ortπ = p.

We say that a process is in the CS if and only if P̂Cπ = 27. If π is not active in a super-passage
and hence in the Remainder section, PCπ = 10, P̂Cπ = 15, and the values of the rest of the hidden
variables are as defined above. We assume that initially all the local variables take arbitrary values.

Lemma 4 (Mutual Exclusion). At most one process is in the CS in every configuration of every
run.

Proof. Suppose there are two processes πi and πj that are both in CS in a configuration C. There-

fore, P̂Cπi = 27 and P̂Cπj = 27 in C. By definition of Q, πi ∈ Q and πj ∈ Q. Therefore, by
Condition 19 of the invariant, one of the two processes is not π1 in the ordering of processes in Q.
Without loss of generality, let πi = π1 and πj be a process coming later in the ordering. Therefore,

by Condition 19(d)i, P̂Cπj ∈ {15,25}, a contradiction.

Lemma 5 (Starvation Freedom). If the total number of crashes in the run is finite and a process
is in the Try section and does not subsequently crash, it later enters the CS.

Proof. As noted in the statement of the claim, we assume that the total number of crashes in the
run is finite.

A process π using a port p would not enter the CS during its passage if PCπ is forever stuck at
a certain line in the algorithm before entering the CS. Hence, in order to prove starvation freedom
we have to argue that PCπ advances to the next line for every step in the algorithm. An inspection
of the Try section reveals that π has procedure calls at Lines 15, 23, and 25, and inside the CS
of RLock at Line 35. Since we require the RLock to be a recoverable starvation-free mutual
exclusion lock, any process that executes Line 24 is guaranteed to eventually reach Line 30 of
the Critical section of RLock (and hence reaches Line 35). Particularly, Golab and Ramaraju’s

18



Assumptions:
• Algorithm in Figures 3-4 assumes that every process uses a single port throughout its super-passage and no two

processes execute a super-passage with the same port when their super-passages overlap. The Remainder section
ensures that this assumption is always satisfied. Therefore, when a process continues execution after a crash,
it uses the same port it chose at the start of the current super-passage. Hence, the Remainder section guarantees
that the following condition is always met for active processes:

∀π ∈ Π, ∃p ∈ P, (p̂ortπ = p ∧ ∀p′ ∈ P, p 6= p′)⇒ p̂ortπ 6= p′.
Definitions (Continued in Figure 9):
• P is a set of all ports.
• Π is a set of all processes.
• N is a set containing the node SpecialNode and any of the QNodes created by any process at Line 11

during the run so far.
• N ′ = {&qnode | qnode ∈ N} is a set of node addresses from the nodes in N .

• n̂odeπ =


Node[p̂ortπ], if P̂Cπ ∈ [13,15] ∪ [25,29],

mynodeπ, if PCπ = 12,

NIL, otherwise (i.e., P̂Cπ ∈ [11,12] ∧ PCπ ∈ [10,11]).

Conditions (Continued in Figures 9-10):

1. ∀π ∈ Π, (P̂Cπ ∈ {11,12} ⇔ Node[p̂ortπ] = NIL) ∧ (P̂Cπ ∈ {13,14} ⇔ n̂odeπ.Pred ∈ {NIL,&Crash})
∧ (P̂Cπ ∈ {15,25,26} ⇔ n̂odeπ.Pred ∈ N ′) ∧ (P̂Cπ = 27⇔ n̂odeπ.Pred = &InCS)

∧ (P̂Cπ ∈ {28,29} ⇔ n̂odeπ.Pred = &Exit)

2. ∀π ∈ Π, (PCπ ∈ [13,15] ∪ [18,29] ∪ [30,48]⇒ mynodeπ = Node[p̂ortπ])

∧ (PCπ ∈ {15} ∪ [20,24] ∪ [25,26] ∪ [30,48] ⇒ mypredπ = Node[p̂ortπ].Pred)

∧ ((PCπ ∈ [20,24] ∪ [30,48] ∧ P̂Cπ ∈ {13,14})⇒ mypredπ = &Crash)

3. ∀π ∈ Π,Node[p̂ortπ] 6= NIL⇒ (Node[p̂ortπ] ∈ N ′

∧ ((∃π′ ∈ Π, π 6= π′ ∧Node[p̂ortπ].Pred = Node[p̂ortπ′ ])

∨ (Node[p̂ortπ].Pred ∈ N ′ ∧Node[p̂ortπ].Pred.Pred = &Exit)

∨ Node[p̂ortπ].Pred ∈ {NIL,&Crash,&InCS,&Exit})
∧ (∀π′′ ∈ Π, π 6= π′′ ⇒

((Node[p̂ortπ] = Node[p̂ortπ′′ ]⇒ Node[p̂ortπ] = NIL)

∧ (Node[p̂ortπ].Pred = Node[p̂ortπ′′ ].Pred ⇒
Node[p̂ortπ].Pred ∈ {NIL,&Crash,&Exit}))))

4. ∀π, π′ ∈ Π, (π 6= π′ ⇒ (n̂odeπ 6= n̂odeπ′ ∨ n̂odeπ = n̂odeπ′ = NIL))

∧ ((π 6= π′ ∧ n̂odeπ 6= NIL ∧ n̂odeπ′ 6= NIL) ⇒
(n̂odeπ.Pred 6= n̂odeπ′ .Pred ∨ n̂odeπ.Pred ∈ {NIL,&Crash,&Exit}))

∧ (∃b ∈ N, (1 ≤ b ≤ k ∧ n̂odeπ .Pred.Pred · · · .Pred︸ ︷︷ ︸
b times

∈ {NIL,&Crash,&InCS,&Exit}))

5. ∀ qnode ∈ N , qnode.Pred ∈ {NIL,&Crash,&InCS,&Exit} ∪ N ′

∧ ((∀π ∈ Π, n̂odeπ 6= &qnode)⇔ (∀p′ ∈ P,Node[p] 6= qnode ∧ ∀π′ ∈ Π,mynodeπ′ 6= &qnode))

∧ (qnode.CS Signal = 1⇒ (qnode.Pred = &Exit ∧ (∀π ∈ Π, n̂odeπ = qnode⇒ P̂Cπ = 29)))
∧ (qnode.NonNil Signal = 1 ⇒

(qnode.Pred 6= NIL ∧ (∀π ∈ Π, n̂odeπ = qnode⇒ P̂Cπ ∈ [13,15] ∪ [25,29])))
∧ (qnode.CS Signal = 0⇒ qnode.Pred ∈ {NIL,&Crash,&InCS})
∧ (qnode.NonNil Signal = 0⇒ qnode.Pred = NIL)

Figure 8: Invariant for the k-ported recoverable mutual exclusion algorithm from Figures 3-4.
(Continued in Figures 9-10.)

read-write based recoverable extension of Yang and Anderson’s lock (see Section 3.2 in [7]) is one
such lock that also guarantees a wait-free exit. Of these procedure calls, only the ones at Lines 25
and 35 concern us in the proof, since their implementation involves a wait loop. Therefore, if all
the calls to wait are shown to complete, π is guaranteed to enter the CS eventually.

We comment on a few other steps in the algorithm as follows before diving into the proof. The

19



Definitions (Continued from Figure 8):

• For a QNode instance n̂odeπ used by a process π ∈ Π, fragment(n̂odeπ) is a sequence of

distinct QNode instances (n̂odeπ1 , n̂odeπ2 , . . . , n̂odeπj ) such that:

– ∀i, n̂odeπi ∈ N ,

– ∀i ∈ [1, j − 1], n̂odeπi+1 .Pred = n̂odeπi (e.g., n̂odeπ2 .Pred = n̂odeπ1),

– n̂odeπ1 .Pred ∈ {NIL,&Crash,&InCS,&Exit},

– ∀q ∈ P,Node[q].Pred 6= n̂odeπj ,

– head(fragment(n̂odeπ)) = n̂odeπ1 and tail(fragment(n̂odeπ)) = n̂odeπj ,

– |fragment(n̂odeπ)| = j.
For example, for the initial state of the queue in Figure 5, (π1, π2), (π3, π4), (π5, π6), (π7), (π8) are
distinct fragments. After π3 performs repair in the illustration of Figure 5, the only fragment of the queue
is: (π1, π2, π7, π5, π6, π8, π3, π4). Note, in this example a node assumes the name of its process for

brevity (i.e., π1 should be read as n̂odeπ1). The set membership symbol ∈ used on the sequence denotes
membership of a node in the fragment. For example, π2 ∈ fragment(π1) in both examples discussed above.
Note, for simplicity we define fragment(NIL) = NIL and |fragment(NIL)| = 0. Conditions of the invariant
assert that the set of nodes in shared memory operated by the algorithm satisfy this definition of fragment.

• Q = {π ∈ Π | (P̂Cπ ∈ {15,25,26} ∧ head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit}) ∨ P̂Cπ = 27}
is a set of queued processes.

Conditions (Continued from Figure 8):

6. ∀π ∈ Π, (PCπ = 10⇒ P̂Cπ ∈ [11,15] ∪ [25,29]) ∧ (PCπ = 11⇒ P̂Cπ ∈ [11,12])

∧ (PCπ ∈ [12,15] ∪ {25} ⇒ P̂Cπ = PCπ) ∧ (PCπ ∈ [16,20]⇒ P̂Cπ ∈ [13,15] ∪ [25,29])

∧ (PCπ = 21⇒ P̂Cπ ∈ [13,15] ∪ [25,26] ∪ [28,29]) ∧ (PCπ = 22⇒ P̂Cπ ∈ [28,29])

∧ (PCπ ∈ [23,24] ∪ {30} ⇒ P̂Cπ ∈ [13,15] ∪ [25,26]) ∧ (PCπ ∈ [31,48]⇒ P̂Cπ ∈ [13,14])

∧ (P̂Cπ = 11⇒ PCπ ∈ {10,11}) ∧ (P̂Cπ = 12⇒ PCπ ∈ [10,12])

∧ (P̂Cπ ∈ {13,14} ⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16,21] ∪ {23,24} ∪ [30,48]))

∧ (P̂Cπ ∈ {15,25,26} ⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16,21] ∪ {23,24} ∪ {30}))
∧ (P̂Cπ = 27⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16,20]))

∧ (P̂Cπ ∈ {28,29} ⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16,22]))

7. ∀π, π′ ∈ Π, fragment(n̂odeπ) 6= fragment(n̂odeπ′)⇒
(∀π′′ ∈ Π, n̂odeπ′′ ∈ fragment(n̂odeπ)⇒ n̂odeπ′′ /∈ fragment(n̂odeπ′))

∧ head(fragment(n̂odeπ)).Pred = &InCS ⇒ ((π 6= π′ ∧ head(fragment(n̂odeπ′)).Pred = &InCS) ⇒
n̂odeπ′ ∈ fragment(n̂odeπ))

∧ head(fragment(n̂odeπ)).Pred = &Exit ⇒ (P̂Cπ ∈ [28,29] ∨
(π 6= π′ ∧ head(fragment(n̂odeπ′)).Pred = &Exit ∧ P̂Cπ′ /∈ [28,29]) ⇒

n̂odeπ′ ∈ fragment(n̂odeπ))

∧ (|fragment(n̂odeπ)| > 1 ⇒
((n̂odeπ′ ∈ fragment(n̂odeπ) ∧ n̂odeπ′ 6= head(fragment(n̂odeπ)))⇒ P̂Cπ′ ∈ {15,25}))

8. ∀π ∈ Π, PCπ ∈ {12,13} ⇒ (mynodeπ ∈ N ′ ∧ (∀q ∈ P,Node[q] 6= mynodeπ ∧Node[q].Pred 6= mynodeπ)
∧ mynodeπ.CS Signal = 0 ∧ mynodeπ.NonNil Signal = 0

∧ mynodeπ = head(fragment(mynodeπ)) ∧ |fragment(mynodeπ)| = 1
∧ fragment(mynodeπ) 6= fragment(Tail) ∧ mynodeπ.Pred = NIL)

Figure 9: (Continued from Figure 8.) Invariant for the k-ported recoverable mutual exclusion
algorithm from Figures 3-4. (Continued in Figure 10.)

for loop at Line 32 executes for k iterations, therefore, Lines 32-38 execute a bounded number
of times. Computing the set of maximal paths at Line 39 is a local computation step and has
a bounded time algorithm, therefore, the step is executed a bounded number of times. The set
Pathsπ is a finite set and finding the path mypathπ at Line 40 is a local computation step which has

20



Conditions (Continued from Figure 9):

9. ∀π ∈ Π, PCπ = 14⇒ (n̂odeπ ∈ N ′ ∧ n̂odeπ.Pred = NIL ∧ n̂odeπ = head(fragment(n̂odeπ))

∧ n̂odeπ.CS Signal = 0 ∧ n̂odeπ.NonNil Signal = 0

∧ (∀π′ ∈ Π, (π′ 6= π ∧ n̂odeπ′ ∈ fragment(n̂odeπ))⇒ P̂Cπ′ ∈ {15,25})
∧ mypredπ ∈ N ′ ∧ mypredπ = tail(fragment(mypredπ))
∧ (mypredπ.CS Signal = 1

∨ (∃π′ ∈ Π, π 6= π′ ∧ n̂odeπ′ = mypredπ ∧ P̂Cπ′ ∈ {14,15} ∪ [25,28]))

∧ (mypredπ.Pred = &InCS⇒ (∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 27 ∧mypredπ = n̂odeπ′))

∧ (mypredπ.Pred = &Exit⇒ (((∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ [28,29]

∧ mypredπ = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] 6= mypredπ)) ∧ |Q| = 0))
∧ (mypredπ.Pred /∈ {&InCS,&Exit} ⇒

(∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ [14,15] ∪ [25,26] ∧mypredπ = n̂odeπ′))

∧ (head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} ⇒ (∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 14

∧ mypredπ = tail(fragment(n̂odeπ′)) ∧ n̂odeπ′ = head(fragment(n̂odeπ′))))

∧ fragment(n̂odeπ) 6= fragment(mypredπ))

10. ∀π ∈ Π, ((P̂Cπ ∈ {13,14} ∧ n̂odeπ.Pred = NIL)⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16,18]))

∧ ((P̂Cπ ∈ {13,14} ∧ n̂odeπ.Pred = &Crash)⇒ PCπ ∈ {10} ∪ [16,21] ∪ [23,24] ∪ [30,48])

11. ∀π ∈ Π, (PCπ ∈ [19,21] ∪ [23,24] ∪ [30,48] ∧ P̂Cπ ∈ {13,14}) ⇒ n̂odeπ.Pred = &Crash

12. ∀π ∈ Π, (P̂Cπ = 13⇒ |fragment(n̂odeπ)| = 1)

∧ (P̂Cπ ∈ {13,14} ⇒ (n̂odeπ = head(fragment(n̂odeπ)) ∧ fragment(n̂odeπ) 6= fragment(Tail)))

∧ (P̂Cπ = 14⇒ (∀π′ ∈ Π, (π′ 6= π ∧ n̂odeπ′ ∈ fragment(n̂odeπ))⇒ P̂Cπ′ ∈ {15,25}))

13. ∀π ∈ Π, PCπ ∈ {15,25} ⇒ (n̂odeπ ∈ N ′ ∧ n̂odeπ.Pred = mypredπ ∧mypredπ ∈ N ′)

14. ∀π ∈ Π, P̂Cπ ∈ {15,25} ⇒ (n̂odeπ ∈ N ′ ∧ n̂odeπ.Pred ∈ N ′

∧ (n̂odeπ.Pred.CS Signal = 1

∨ (∃π′ ∈ Π, π 6= π′ ∧ n̂odeπ′ = n̂odeπ.Pred ∧ P̂Cπ′ ∈ {14,15} ∪ [25,28]))

∧ (n̂odeπ.Pred.Pred = &InCS⇒
(∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 27 ∧ n̂odeπ.Pred = n̂odeπ′))

∧ (n̂odeπ.Pred.Pred = &Exit⇒ (((∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ [28,29]

∧ n̂odeπ.Pred = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] 6= n̂odeπ.Pred)) ∧ |Q| = 0))

∧ (n̂odeπ.Pred.Pred /∈ {&InCS,&Exit} ⇒
(∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ [14,15] ∪ [25,26] ∧ n̂odeπ.Pred = n̂odeπ′)))

15. ∀π ∈ Π, (P̂Cπ ∈ {15,25} ∧ head(fragment(n̂odeπ)).Pred ∈ {NIL,&Crash})⇒
(∃π′ ∈ Π, π′ 6= π ∧ P̂Cπ′ = 14 ∧ n̂odeπ′ = head(fragment(n̂odeπ))

∧ (∀π′′ ∈ Π, (π′′ 6= π′ ∧ n̂odeπ′′ ∈ fragment(n̂odeπ))⇒
(P̂Cπ′′ ∈ {15,25} ∧ n̂odeπ′′ .CS Signal = 0)))

Figure 10: (Continued from Figure 9.) Invariant for the k-ported recoverable mutual exclusion
algorithm from Figures 3-4. (Continued in Figure 11.)

a bounded time algorithm, therefore, the step is executed a bounded number of times. Similarly,
Line 41 is a local computation step which has a bounded time algorithm, therefore, the step is
executed a bounded number of times. As observed above, Pathsπ is a finite set, therefore the loop
at Line 42 iterates a finite number of times. Hence, Lines 42-45 execute a bounded number of
times. Note, since our algorithm has a wait-free exit (see Lemma 6), π goes back to the Remainder
section in a bounded number of normal steps once it finishes the CS. From the above it follows that
π executes wait loops inside the calls for wait only at Lines 25 and 35. Therefore, we consider
these two cases where π could potentially loop as follows and ensure that it eventually gets past
these lines.

21



Conditions (Continued from Figure 10):

16. Tail ∈ N ′ ∧ Tail = tail(fragment(Tail)) ∧ (∃i ∈ [0, k − 1],Tail = Node[i] ∨Tail.Pred = &Exit)
∧ (Tail.CS Signal = 1

∨ (∃π′ ∈ Π, π 6= π′ ∧ n̂odeπ′ = Tail ∧ P̂Cπ′ ∈ {14,15} ∪ [25,28]))

∧ (Tail.Pred = &InCS⇒ (∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 27 ∧Tail = n̂odeπ′))

∧ (Tail.Pred = &Exit⇒ (((∃π′ ∈ Π, P̂Cπ′ ∈ [28,29] ∧ Tail = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] 6= Tail))
∧ |Q| = 0))

∧ (Tail.Pred /∈ {&InCS,&Exit} ⇒ (∃π′ ∈ Π, P̂Cπ′ ∈ [14,15] ∪ [25,26] ∧Tail = n̂odeπ′)))

∧ (head(fragment(Tail)).Pred ∈ {NIL,&Crash} ⇒ (∃π′ ∈ Π, P̂Cπ′ = 14

∧ Tail = tail(fragment(n̂odeπ′)) ∧ n̂odeπ′ = head(fragment(n̂odeπ′))))

∧ ((∃π ∈ Π, P̂Cπ ∈ [14,15] ∪ [25,29]) ⇔ (∃π′ ∈ Π,Tail = n̂odeπ′ ∧ P̂Cπ′ ∈ [14,15] ∪ [25,29]))

17. ∀π ∈ Π, ((PCπ ∈ [24,29] ∪ [30,49] ∨ P̂Cπ ∈ [25,29])⇒ n̂odeπ.NonNil Signal = 1)

∧ (P̂Cπ = 29⇒ n̂odeπ.CS Signal = 1)

18. |Q| = 0⇒ ((Tail.Pred = &Exit ∨ ∃π ∈ Π, (P̂Cπ = 14 ∧Tail = tail(fragment(n̂odeπ))

∧ n̂odeπ = head(fragment(n̂odeπ))))
∧ (∀π′ ∈ Π, PCπ′ ∈ [11,15] ∪ {25} ∪ [28,29]))

19. If |Q| = l > 0, then there is an order π1, π2, . . . , πl of distinct processes in Q such that:

(a) P̂Cπ1 ∈ {15} ∪ [25,27]

(b) (∃π ∈ Π, P̂Cπ ∈ [28,29] ∧ n̂odeπ1 .Pred = n̂odeπ)

∨ (n̂odeπ1 .Pred ∈ N ′ − {n̂odeπ′ |π′ ∈ Π ∧ n̂odeπ′ 6= NIL})

(c) P̂Cπ1 ∈ {15,25} ⇒ (n̂odeπ1 .Pred.CS Signal = 1 ∨
(∃π′ ∈ Π, π1 6= π′ ∧ n̂odeπ′ = n̂odeπ1 .Pred ∧ P̂Cπ′ = 28))

(d) ∀i ∈ [2, l]:

i. P̂Cπi ∈ {15,25}
ii. n̂odeπi .Pred = n̂odeπi−1

Observation: n̂odeπi ∈ fragment(n̂odeπ1).

(e) n̂odeπl = tail(fragment(n̂odeπ1))

(f) n̂odeπ1 = head(fragment(n̂odeπ1)) ∨ n̂odeπ1 .Pred.Pred = &Exit

(g) ∀π ∈ Π, π 6= π1 ⇒ P̂Cπ ∈ [11,15] ∪ {25} ∪ [28,29]

(h) ∀π ∈ Π, (π 6= π1 ∧ n̂odeπ 6= NIL ∧ n̂odeπ.Pred ∈ N ′)⇒ (n̂odeπ.Pred.CS Signal = 0)

Observation: ∀π ∈ Π, π 6= π1 ⇒ P̂Cπ 6= 27.

Proof: If π ∈ Q, then by Condition 19(d)i, P̂Cπ 6= 27. If π /∈ Q, then, P̂Cπ 6= 27, by definition of Q.

Figure 11: (Continued from Figure 10.) Invariant for the k-ported recoverable mutual exclusion
algorithm from Figures 3-4.

Case 1: π completes the step at Line 35.

When PCπ = 35, by Condition 30, curπ.NonNil Signal = 1 or (∃π′ ∈ Π, π 6= π′∧curπ = n̂odeπ′∧
P̂Cπ′ ∈ [13,15]). Suppose curπ.NonNil Signal = 1. curπ.NonNil Signal is an instance of the
Signal object from Section 2.1, it follows that the call to curπ.NonNil Signal.wait() on Line 35
returns in a wait-free manner. Therefore, π completes the step at Line 35.

Assume curπ.NonNil Signal 6= 1 and (∃π′ ∈ Π, π 6= π′ ∧ curπ = n̂odeπ′ ∧ P̂Cπ′ ∈ [13,15]).

Suppose PCπ′ = P̂Cπ′ and there are no crash steps by π′ before completing Line 15. In that case π′

executes curπ.NonNil Signal.set() to completion at Line 15 and sets curπ.NonNil Signal = 1

in a wait-free manner. It follows that the call to curπ.NonNil Signal.wait() on Line 35 returns

22



subsequently in a wait-free manner. Therefore, assume that PCπ′ 6= P̂Cπ′ . By Conditions 6, 17 and
the fact that curπ.NonNil Signal 6= 1, PCπ′ ∈ {10} ∪ [16,21] ∪ {23}. Therefore, π′ eventually
executes curπ.NonNil Signal.set() to completion at Line 23 and sets curπ.NonNil Signal =
1 in a wait-free manner. It follows that the call to curπ.NonNil Signal.wait() on Line 35
returns subsequently in a wait-free manner. Note, in case of a crash by π′ before executing
curπ.NonNil Signal.set() to completion, π′ starts at Line 10 and reaches Line 23. This is because

P̂Cπ′ ∈ [13,15] implies Node[p̂ortπ′ ] 6= NIL and n̂odeπ′ .Pred /∈ {&InCS,&Exit}. Therefore, the
if conditions at Lines 10, 20, and 21 are not met and π′ reaches Line 23. From the above it follows
that π completes the step at Line 35. �
Case 2: π completes the step at Line 25.
In order to argue that π completes the step at Line 25, we consider two cases. For the first

case we have head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit} and the second occurs when

head(fragment(n̂odeπ)).Pred ∈ {NIL,&Crash}. The first case occurs when π ∈ Q and the

second occurs when π /∈ Q, both because of the value of head(fragment(n̂odeπ)).Pred. We argue
both the cases as follows.

Case 2.1: head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit}.
By definition of Q, π ∈ Q. By Condition 19, there is an ordering π1, π2, . . . , πl
of the processes in Q, and π appears somewhere in that ordering. Assume for
a contradiction that there is a run R in which π never completes the step at
Line 25. Therefore, in R there are some processes (including π) in Q that ini-
tiate the passage but never enter the CS. Since the processes never enter the
CS, after a certain configuration they are forever stuck at Line 25. Let πj ∈ Q
be the process in R that forever loops at Line 25, such that it has the least
index j according to the ordering defined by Condition 19. Let C be the ear-
liest configuration in R such that all the processes appearing before πj in the
ordering defined by Condition 19 have gone back to the Remainder section after
completing the CS and πj is still stuck at Line 25. Since those processes are
no more queued processes, πj appears first in the ordering, i.e., πj = π1. Since

PCπ = 25, by Condition 19c, n̂odeπj .Pred.CS Signal = 1 or (∃π′ ∈ Π, πj 6=
π′ ∧ n̂odeπ′ = n̂odeπj .Pred ∧ P̂Cπ′ = 28). If n̂odeπj .Pred.CS Signal = 1,

then πj returns from the call to n̂odeπj .Pred.CS Signal.wait() at Line 25 com-

pleting the step. Otherwise, suppose n̂odeπj .Pred.CS Signal 6= 1 and (∃π′ ∈
Π, πj 6= π′ ∧ n̂odeπ′ = n̂odeπj .Pred ∧ P̂Cπ′ = 28). If PCπ′ = P̂Cπ′ , then

π′ eventually executes n̂odeπ′ .CS Signal.set() to completion at Line 28 and

sets n̂odeπ′ .CS Signal = 1 in a wait-free manner. It follows that the call to
n̂odeπj .Pred.CS Signal.wait() at Line 25 returns subsequently in a wait-free

manner. If PCπ′ 6= P̂Cπ′ , then, by Condition 6, PCπ ∈ {10} ∪ [16,22]. By

Condition 1, Node[p̂ortπ′ ] 6= NIL and n̂odeπ′ .Pred = &Exit. Therefore, the
if conditions at Lines 10 and 20 are not met, but the one at Line 21 is met
and π′ executes Line 28 as written in Line 22. Therefore, π′ eventually executes

n̂odeπ′ .CS Signal.set() to completion at Line 28 and sets n̂odeπ′ .CS Signal = 1

in a wait-free manner. It follows that the call to n̂odeπj .Pred.CS Signal.wait()
at Line 25 returns subsequently in a wait-free manner. Thus πj eventually enters
the CS by completing the remaining Try section at Line 26. This contradicts the
assumption that πj is a process in Q with the least index j defined by the order-

23



ing by Condition 19. Therefore, we conclude that π itself completes the step at
Line 25 and eventually enters the CS.

Case 2.2: head(fragment(n̂odeπ)).Pred ∈ {NIL,&Crash}.
Let C be a configuration when P̂Cπ = 25 and head(fragment(n̂odeπ)).Pred ∈
{NIL,&Crash}. By Condition 15, ∃πi1 ∈ Π, πi1 6= π ∧ P̂Cπi1 = 14 ∧ n̂odeπi1 =

head(fragment(n̂odeπ)). Suppose n̂odeπi1 .Pred = NIL. By Condition 10, PCπi1 =

P̂Cπi1 (or PCπi1 ∈ {10} ∪ [16,18]), we cover this case later). By Condition 13,

mypredπi1 ∈ N
′. If πi1 takes normal steps at Line 14, then it sets n̂odeπi1 .Pred =

mypredπi1 and sets P̂Cπi1 = 15. We hold the argument for the current case when

n̂odeπi1 .Pred = NIL briefly and argue the case when n̂odeπi1 .Pred = &Crash as

follows and then join the two arguments (i.e., n̂odeπi1 .Pred ∈ {NIL,&Crash})
later. So now assume that n̂odeπi1 .Pred = &Crash (this covers the case when

n̂odeπi1 .Pred = NIL and PCπi1 ∈ {10}∪[16,18]), since n̂odeπi1 .Pred = &Crash
at Line 18 eventually). By Condition 10, PCπi1 ∈ {10} ∪ [16,21] ∪ [23,24] ∪
[30,48]. For every value of PCπi1 , it follows that πi1 eventually executes Line 49
(note, by Case 1 above, πi1 completes all steps at Line 35). Once πi1 exe-

cutes Line 49, it sets P̂Cπi1 = 25. Hence, in both cases (i.e., n̂odeπi1 .Pred ∈
{NIL,&Crash}) P̂Cπi1 = 25 eventually. Let C ′ be the earliest configuration after

C when P̂Cπi1 = 25, by Condition 1, n̂odeπi1 .Pred ∈ N
′ in C ′. If head(fragment(n̂odeπ)).Pred ∈

{&InCS,&Exit} in C ′, then by the same argument as in Case 2.1 we are done.

Otherwise, again by Condition 15, ∃πi2 ∈ Π, πi2 6= π ∧ P̂Cπi2 = 14 ∧ n̂odeπi2 =

head(fragment(n̂odeπ)).

We now show as follows that head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit}
eventually. Assume to the contrary that head(fragment(n̂odeπ)).Pred /∈ {&InCS,&Exit}
forever. We know there are k active processes, and by Conditions 3, 4, and 7, there
are a finite number of distinct fragments. Applying the above argument about π
and πi1 inductively on these fragments, the fragments increase in size monoton-
ically and we get to a configuration such that each process satisfies one of three

cases as follows: (i) the process has its node appear in fragment(n̂odeπ), (ii) there

is a process πi3 such that head(fragment(n̂odeπi3 )).Pred ∈ {&InCS,&Exit} and

the process has its node appear in fragment(n̂odeπi3 ), or (iii) the process is in the
Remainder section after completing the super-passage. Let C ′′ be the earliest

such configuration. In C ′′ we have ∃πi4 ∈ Π, πi4 6= π ∧ P̂Cπi4 = 14 ∧ n̂odeπi4 =

head(fragment(n̂odeπ)). We can now apply the above argument about π and πi1
on π and πi4 . We continue to do so until we get to a configuration where each pro-
cess satisfies one of the following two cases: (i) the process has its node appear in

fragment(n̂odeπ), (ii) the process forever remains in the Remainder section after
completing the super-passage. Let C ′′′ be earliest such configuration where we have

∃πi5 ∈ Π, πi5 6= π ∧ P̂Cπi5 = 14 ∧ n̂odeπi5 = head(fragment(n̂odeπ)). Note, we

have P̂Cπi5 = 14 in C ′′′, and every other process π′ has either P̂Cπ′ = 11 (for being

in the Remainder section) or P̂Cπ′ ∈ {15,25} (for being in fragment(n̂odeπ) =

24



fragment(n̂odeπi5 )) for all configurations after C ′′′. We can apply the above ar-

gument about π and πi1 on π and πi5 so that ∃πi6 ∈ Π, πi6 6= π ∧ P̂Cπi6 =

14∧n̂odeπi6 = head(fragment(n̂odeπ)). This contradicts the above conclusion that

only P̂Cπi5 = 14 in all configurations after C ′′′. Therefore we conclude that our

assumption that head(fragment(n̂odeπ)).Pred /∈ {&InCS,&Exit} forever is in-

correct and head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit} eventually. Hence,
by the same argument as in Case 2.1 we are done.

From the above it follows that π completes the step at Line 25. �
From the above it follows that π completes the steps at Lines 25 and 35 whenever it encounters

them during the passage. Therefore, the algorithm satisfies starvation freedom.

Lemma 6 (Wait-free Exit). There is a bound b such that, if a process π is in the Exit section,
and executes steps without crashing, π completes the Exit section in at most b of its steps.

Proof. An inspection of the algorithm reveals that Lines 27-29 do not involve repeated execution of
any steps. The implementation of the Signal object from Figure 2 shows that the code for X .set()
does not involve a loop, Hence, the call to mynodeπ.CS Signal.set() at Line 28 terminates. Hence
the claim.

Lemma 7 (Wait-Free CSR). There is a bound b such that, if a process crashes while in the CS,
it reenters the CS before completing b consecutive steps without crashing.

Proof. Suppose π crashes while in the CS, i.e., when P̂Cπ = 27, π crashes. By Condition 1,

Node[p̂ortπ] 6= NIL and n̂odeπ.Pred = &InCS. Therefore, when π restarts from the crash and
starts executing at Line 10, it finds that the if conditions at Lines 10 and 18 are not met. It

therefore reaches Line 20 with mypredπ = n̂odeπ.Pred (by Condition 2) by executing Lines 10,
16-19 (none of which are repeatedly executed). The if condition at Line 20 is met and π is put
into the CS in a wait-free manner. Hence the claim.

Lemma 8 (Critical Section Reentry). If a process π crashes inside the CS, then no other
process enters the CS before π reenters the CS.

Proof. This is immediate from Lemma 4 and Lemma 7 as observed in [9].

D Proof of correctness of Signal object

Proof of Theorem 1. Let α be the earliest event where some process performed Line 1 and β be
the earliest event where some process π′ performed Line 8 and does not subsequently fail.
Case 1: α occurs before β.
In this case we linearize the execution as follows:

• every execution of X .set() is linearized to its Line 1,

• every execution of X .wait() is linearized to its Line 8, where X .State is 1 (since α precedes
β).

25



Since α occurs before β, π′ notices that Bit = 1 at Line 8 and hence returns from the call to
wait().
Case 2: β occurs before α.
Consider the execution of X .set() that is the first to complete. Let π be the process that performs
this execution of X .set(). At Line 2 π reads goπ′ from GoAddr into addrπ. Since β occurs before
α, addrπ 6= NIL, therefore, at Line 4 π sets ∗goπ′ to true. This releases π′ from its busy-wait at
Line 9. We linearize the call to X .set() by π to its Line 4, and every other complete execution of
X .set() in the run to its point of completion. Note, β is the earliest event where some process π′

performed Line 8 and does not subsequently fail and we assume that no two executions of X .wait()
are concurrent. Therefore, every other execution of X .wait(), happens after the call considered in
α sets Bit to 1. This implies that such a call would complete because the calling process would
read Bit = 1 at Line 8 and return.

RMR Complexity: It is easy to see that the RMR Complexity of X .set() is O(1) since there
are a constant steps in any execution of X .set(). For any execution of X .wait() by a process π,
π creates a new boolean at Line 5 that resides in π’s memory partition. Therefore, the busy-wait
by π at Line 9 incurs a O(1) RMR and the rest of the lines in X .wait() (Lines 5-8) incur a O(1)
RMR.

E Proof of invariant

In this section we prove that our algorithm from Figures 3-4 satisfies the invariant described in
Figures 8-11. In order to prove that we need support from a few extra conditions that we present
in Figures 12-14. Therefore, we prove that our algorithm satisfies all the conditions described in
Figures 8-14.

Lemma 9. The algorithm in Figures 3-4 satisfies the invariant (i.e., the conjunction of the 39
conditions) stated in Figures 8-14, i.e., the invariant holds in every configuration of every run of
the algorithm.

Proof. We prove the lemma by induction. Specifically, we show (i) base case: the invariant holds
in the initial configuration, and (ii) induction step: if the invariant holds in a configuration C and
a step of a process takes the configuration C to C ′, then the invariant holds in C ′.

In the initial configuration, we have Tail = &SpecialNode, ∀π ∈ Π, PCπ = 10, P̂Cπ = 11,
and Node[p̂ortπ] = NIL. Note, |Q| = 0 by definition of Q. Since all processes are in the Remainder

section, Condition 1 holds because of the value of the Node array as noted above. Since n̂odeπ =
NIL by definition, Condition 4, 7 holds. Since Tail = &SpecialNode, Condition 16 holds. Since
|Q| = 0, Tail = &SpecialNode as noted above, hence, Condition 18 holds. All of the remaining
conditions of the invariant hold vacuously in the initial configuration. Hence, we have the base
case.

To verify the induction step, Let C be an arbitrary configuration in which the invariant holds,
π be an arbitrary process, and C ′ be the configuration that results when π takes a step from C.
In the following, we enumerate each possible step of π and argue that the invariant continues to
hold in C ′, even though the step changes the values of some variables. Since our invariant involves
universal quantifiers for all the conditions, we have only argued it thoroughly as it is applicable to
π and wherever necessary for another process for the sake of brevity. We also skip arguing about
conditions that hold vacuously, are easy to verify, are argued before in a similar way, or need not be
argued if the step does not affect the condition. Induction step due to a crash step of π is argued

26



Definitions (Continued from Figure 9):
• owner(qnode) denotes the process that created the qnode at Line 11.
Conditions (Continued from Figure 11):

20. ∀π ∈ Π, (PCπ = 31 ∧ head(fragment(Tail)).Pred ∈ {&InCS,&Exit})⇒
fragment(n̂odeπ) 6= fragment(Tail)

21. ∀π ∈ Π, (PCπ ∈ [32,41]⇒ tailpathπ = NIL) ∧ (PCπ ∈ [32,41]⇒ headpathπ = NIL)
∧ (PCπ = 32⇒ iπ ∈ [0, k]) ∧ (PCπ ∈ [33,38]⇒ iπ ∈ [0, k − 1])
∧ (PCπ ∈ [39,49]⇒ iπ = k) ∧ (PCπ ∈ [32,49]⇒ tailπ ∈ N ′)

22. ∀π ∈ Π, PCπ ∈ [32,49]⇒ (tailπ ∈ Vπ ∨ (∃i ∈ [iπ, k − 1], tailπ = Node[i]) ∨ (tailπ.Pred = &Exit))

23. ∀π ∈ Π, if PCπ ∈ [32,49], then:

(a) (Vπ, Eπ) is a directed acyclic graph,

(b) Maximal paths in (Vπ, Eπ) are disjoint.

24. ∀π ∈ Π, if PCπ ∈ [32,49], then one of the following holds (i.e., (a) ∨ (b) ∨ (c) ∨ (d)):

(a) head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}
(b) there is a unique maximal path σ in the graph (Vπ, Eπ), such that, end(σ).Pred ∈ {&InCS,&Exit}

and start(σ).Pred 6= &Exit

(c) iπ < k and ∃i′ ∈ [iπ, k − 1],Node[i′].Pred.Pred ∈ {&InCS,&Exit}
∧ tail(fragment(Node[i′])).Pred 6= &Exit

(d) |Q| = 0

25. ∀π ∈ Π, (PCπ ∈ [32,39] ∧ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit})⇒
∀n̂odeπ′ ∈ fragment(n̂odeπ), ((∃iπ < i′ < k,Node[i′] = n̂odeπ′) ∨
(n̂odeπ′ ∈ Vπ ∧ (n̂odeπ 6= n̂odeπ′ ⇒ (n̂odeπ′ , n̂odeπ′ .Pred) ∈ Eπ)))

26. ∀π ∈ Π, If PCπ ∈ [32,41] and there is a maximal path σ in (Vπ, Eπ) such that end(σ).Pred ∈
{&InCS,&Exit}, then, for an arbitrary vertices v and v′ on the path σ,

∀n̂ode ∈ fragment(v), ((∃iπ < i′ < k,Node[i′] = n̂ode) ∨ (n̂ode ∈ Vπ
∧ (n̂ode.Pred /∈ {&InCS,&Exit} ⇒ (n̂ode, n̂ode.Pred) ∈ Eπ))),

and (fragment(v) 6= fragment(v′)⇒
(v.Pred ∈ {&InCS,&Exit} ∨ v′.Pred ∈ {&InCS,&Exit}))

Figure 12: (Continued from Figure 11.) Invariant for the k-ported recoverable mutual exclusion
algorithm from Figures 3-4. (Continued in Figure 13.)

in the end. To aid in reading we have numbered each step according to the value of the program
counter wherever possible. For the purpose of this proof we assume that π executes the algorithm
using the port p, hence p̂ortπ = p.

10 (a). π executes Line 10 when P̂Cπ ∈ {11,12}.
In C, PCπ = 10 and P̂Cπ ∈ {11,12}. By Condition 1, Node[p̂ortπ] = NIL.

The if condition at Line 10 evaluates to true. Therefore, this step changes PCπ and P̂Cπ to
11.
Condition 1: As argued above, P̂Cπ = 11 and Node[p̂ortπ] = NIL in C ′. Therefore the
condition holds in C ′.

10 (b). π executes Line 10 when P̂Cπ /∈ {11,12}.
In C, PCπ = 10 and P̂Cπ /∈ {11,12}. By Condition 1, Node[p̂ortπ] 6= NIL.
The if condition at Line 10 evaluates to false. Therefore, this step changes PCπ to 16.
The step does not affect any condition, so the invariant continues to hold in C ′.

11. π executes Line 11.

27



Conditions (Continued from Figure 11):

27. ∀π ∈ Π, if PCπ ∈ [32,49], then:

(a) ∀v ∈ Vπ, v ∈ N ′ ∧ (iπ > p̂ortπ ⇒ mynodeπ ∈ Vπ)

(b) ∀ 0 ≤ i′ < iπ, (Node[i′] ∈ fragment(n̂odeπ) ∧ fragment(tailπ) 6= fragment(n̂odeπ))⇒ Node[i′] ∈ Vπ
(c) ∀ 0 ≤ i′ < iπ, ∀v ∈ Vπ, ( ̂portowner(v) = i′ ∧ v 6= Node[i′])⇒ (v.Pred = &Exit ∧ ∀p′ ∈ P,Node[p′] 6= v)

(d) ∀ 0 ≤ i′ < iπ, (Node[i′].Pred /∈ {&Crash,&InCS,&Exit} ∧Node[i′] ∈ Vπ)⇒
(Node[i′],Node[i′].Pred) ∈ Eπ

(e) ∀ 0 ≤ i′ < iπ, ((∀v ∈ Vπ,Node[i′] 6= v) ⇒
((head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∧Node[i′] ∈ fragment(tailπ))

∨ head(fragment(Node[i′])).Pred ∈ {NIL,&Crash}))
(f) ∀v ∈ Vπ, end(v).Pred = &Crash⇒ head(fragment(v)).Pred = &Crash

(g) ∀v ∈ Vπ, If there is a pair (v, u) ∈ Eπ, then u ∈ Vπ and (v.Pred = u ∨ v.Pred ∈ {&InCS,&Exit})
(h) ∀(u, v) ∈ Eπ, (∃i ∈ [0, k − 1],Node[i] = u) ∨ (∀i′ ∈ [0, k − 1],Node[i′].Pred 6= v)

(i) ∀(v, w) ∈ Eπ, (v.Pred ∈ {w,&InCS,&Exit}) ∧ (v.Pred ∈ {&InCS,&Exit} ⇒ w.Pred = &Exit)

(j) ∀(u, v) ∈ Eπ, u 6= mynodeπ

(k) iπ > p̂ortπ ⇒ there is a path σ in the graph (Vπ, Eπ), such that, end(σ) = mynodeπ.

28. ∀π ∈ Π, (PCπ ∈ [32,47] ∧ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit})⇒
fragment(n̂odeπ) 6= fragment(Tail)

∧ ((PCπ ∈ [39,47]) ∧ tailπ /∈ Vπ)⇒ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit})
∧ ((PCπ ∈ [42,47]) ∧ tailpathπ 6= NIL)⇔ tailπ ∈ Vπ)

29. ∀π ∈ Π, (PCπ ∈ [32,49] ∧ head(fragment(tailπ)).Pred /∈ {&InCS,&Exit})⇒
head(fragment(Tail)).Pred /∈ {&InCS,&Exit}

30. ∀π ∈ Π, (PCπ = 34⇒ (curπ = NIL ∨ (curπ ∈ N ′ ∧ (curπ = Node[iπ] ∨ curπ.Pred = &Exit))))

∧ (PCπ = 35⇒ (curπ.NonNil Signal = 1 ∨ (∃π′ ∈ Π, π 6= π′ ∧ curπ = n̂odeπ′ ∧ P̂Cπ′ ∈ [13,15])))
∧ (PCπ ∈ [35,38]⇒ (curπ ∈ N ′ ∧ (curπ = Node[iπ] ∨ curπ.Pred = &Exit)))
∧ (PCπ ∈ [36,37]⇒ curπ.Pred ∈ {&Crash,&InCS,&Exit} ∪ N ′) ∧ (PCπ = 38⇒ curpredπ ∈ N ′)

31. ∀π ∈ Π, ((PCπ ∈ [42,47] ∧ tailpathπ 6= NIL ∧ end(tailpathπ).Pred /∈ {&InCS,&Exit}) ∨ PCπ = 48)⇒
head(fragment(tailπ)).Pred /∈ {&InCS,&Exit}

32. ∀π ∈ Π, if PCπ ∈ [39,41] and head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}, then there is a maximal path
σ in the graph (Vπ, Eπ) such that:

(a) end(σ) = mynodeπ

(b) start(σ) = tail(fragment(mynodeπ))

33. ∀π ∈ Π, if PCπ ∈ [41,49], then mypathπ is the unique path in Pathsπ such that mynodeπ appears in mypathπ

34. ∀π ∈ Π, if PCπ = 39 and for every maximal path σ in (Vπ, Eπ), ¬(end(σ).Pred ∈ {&InCS,&Exit}
∧ start(σ).Pred 6= &Exit), then (head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∨ |Q| = 0)

Figure 13: (Continued from Figure 12.) Invariant for the k-ported recoverable mutual exclusion
algorithm from Figures 3-4. (Continued in Figure 14.)

In C, PCπ = 11. By Condition 6, P̂Cπ ∈ [11,12] in C. By definition, n̂odeπ = NIL in C.
This step creates a new QNode in the shared memory which gets included in the set N . The
node gets a unique address and the variable mynodeπ holds the address of this new node. This
step also initializes this new node so thatmynodeπ.Pred = NIL, mynodeπ.NonNil Signal =
0, and mynodeπCS Signal = 0. The step then changes PCπ and P̂Cπ to 12.

Condition 4: As argued above, the step creates a new QNode in shared memory that n̂odeπ
is pointing to in C ′. The step also initializes n̂odeπ.Pred to NIL. Therefore, the condition
holds in C ′.

28



Conditions (Continued from Figure 11):

35. ∀π ∈ Π, if PCπ = 39 and there is a maximal path σ in (Vπ, Eπ), such that,
end(σ).Pred ∈ {&InCS,&Exit} ∧ start(σ).Pred 6= &Exit, then

(head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}
∨ ∃n̂ode ∈ N , (n̂ode = start(σ) ∧ n̂ode = tail(fragment(n̂ode))

∧ head(fragment(n̂ode)).Pred ∈ {&InCS,&Exit}
∧ fragment(n̂odeπ) 6= fragment(n̂ode)))

36. ∀π ∈ Π, (PCπ ∈ {44,45} ⇒ end(σπ).Pred ∈ {&InCS,&Exit})
∧ (PCπ = 45⇒ (|σπ| > 1 ∧ start(σπ) = tail(fragment(start(σπ)))))

37. ∀π ∈ Π, (PCπ ∈ [40,48] ∧ headpathπ = NIL) ⇒
(head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∨ |Q| = 0
∨ (There is a maximal path σ in (Vπ, Eπ), such that,
end(σ).Pred ∈ {&InCS,&Exit} ∧ start(σ).Pred 6= &Exit, and

∃n̂ode ∈ N , (n̂ode = start(σ) ∧ n̂ode = tail(fragment(n̂ode))

∧ head(fragment(n̂ode)).Pred ∈ {&InCS,&Exit}
∧ fragment(n̂odeπ) 6= fragment(n̂ode))))

38. ∀π ∈ Π, (PCπ ∈ [40,48] ∧ headpathπ 6= NIL) ⇒
((∃σ ∈ Pathsπ, headpathπ = σ) ∧ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}
∨ ∃n̂ode ∈ N , (n̂ode = start(headpathπ) ∧ n̂ode = tail(fragment(n̂ode))

∧ (n̂ode.Pred = &InCS⇒ (∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 27 ∧ n̂ode = n̂odeπ′))

∧ (n̂ode.Pred = &Exit ⇒ |Q| = 0)

∧ (n̂ode.Pred /∈ {&InCS,&Exit} ⇒
(∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ {15} ∪ [25,26] ∧ n̂ode = n̂odeπ′))

∧ head(fragment(n̂ode)).Pred ∈ {&InCS,&Exit}
∧ fragment(n̂odeπ) 6= fragment(n̂ode)))

39. ∀π ∈ Π, PCπ = 49⇒ (P̂Cπ = 14 ∧ mypredπ ∈ N ′ ∧ mypredπ = tail(fragment(mypredπ))

∧ (mypredπ.Pred = &InCS⇒ (∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 27 ∧mypredπ = n̂odeπ′))

∧ (mypredπ.Pred = &Exit⇒ (((∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ [28,29]

∧ mypredπ = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] 6= mypredπ)) ∧ |Q| = 0))
∧ (mypredπ.Pred /∈ {&InCS,&Exit} ⇒

(∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ ∈ [14,15] ∪ [25,26] ∧mypredπ = n̂odeπ′))

∧ (head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} ⇒ (∃π′ ∈ Π, π 6= π′ ∧ P̂Cπ′ = 14

∧ mypredπ = tail(fragment(n̂odeπ′)) ∧ n̂odeπ′ = head(fragment(n̂odeπ′))))

∧ fragment(n̂odeπ) 6= fragment(mypredπ))

Figure 14: (Continued from Figure 13.) Invariant for the k-ported recoverable mutual exclusion
algorithm from Figures 3-4.

Condition 8: Since the step creates a new node in shared memory, no process has a reference
to the node except for π in C ′. Therefore, ∀q ∈ P,Node[q] 6= mynodeπ ∧Node[q].Pred 6=
mynodeπ. Since the nothing except mynodeπ has a reference to the new node, mynodeπ =
head(fragment(mynodeπ)), |fragment(mynodeπ)| = 1, and fragment(mynodeπ) 6= fragment(Tail)
holds. Also, as observed above, mynodeπ.NonNil Signal = 0, andmynodeπCS Signal = 0

in C ′. Therefore, the condition holds in C ′.

12. π executes Line 12.
In C, PCπ = 12 and P̂Cπ = 12. By Condition 8, mynodeπ ∈ N ′, ∀q ∈ P,Node[q] 6=
mynodeπ ∧ Node[q].Pred 6= mynodeπ, mynodeπ.Pred = NIL, fragment(mynodeπ) 6=
fragment(Tail), mynodeπ = head(fragment(mynodeπ)), and |fragment(mynodeπ)| = 1.

This step sets Node[p̂ortπ] to mynodeπ and updates PCπ and P̂Cπ to 13.

29



Condition 3: As argued above, mynodeπ ∈ N ′, mynodeπ.Pred = NIL, and |fragment(mynodeπ)| =
1 in C ′. The step sets Node[p̂ortπ] to mynodeπ, it follows from the above that only
Node[p̂ortπ] = mynodeπ and ∀q ∈ P, q 6= p̂ortπ ⇒ Node[q] 6= mynodeπ in C ′. There-
fore, the condition holds in C ′.
Condition 4: By the same argument as for Condition 3 above, we have ∀q ∈ P, q 6= p̂ortπ ⇒
Node[q] 6= mynodeπ in C ′. Also, mynodeπ.Pred = NIL, therefore, from the definition of

n̂odeπ it follows that the condition holds in C ′.
Condition 12: As discussed above,|fragment(mynodeπ)| = 1, fragment(mynodeπ) 6= fragment(Tail),
and mynodeπ = head(fragment(mynodeπ)) in C, which continues to hold in C ′. Therefore,
the condition holds in C ′.

13. π executes Line 13.
In C, PCπ = 13 and P̂Cπ = 13.
This step performs a FAS operation on the Tail pointer so that Tail now points to the same
node as pointed by mynodeπ, and sets mypredπ to the value held by Tail in C. It updates
PCπ and P̂Cπ to 14.
Condition 9: Applying Condition 16 to C we note that what holds true for Tail in C, holds
true for mypredπ in C ′. Also applying Condition 8 to C we note that mynodeπ ∈ N ′,
mynodeπ.Pred = NIL, mynodeπ = head(fragment(mynodeπ)), |fragment(mynodeπ)| = 1,
fragment(mynodeπ) 6= fragment(Tail), mynodeπ.CS Signal = 0, andmynodeπ.NonNil Signal =
0 in C. In C ′ it holds that fragment(mynodeπ) 6= fragment(mypredπ). It follows that the
condition holds in C ′.
Condition 12: The truth value of the condition follows from the reasoning similar to Condi-
tion 9 as argued above.
Condition 16: By Condition 8, mynodeπ ∈ N ′, |fragment(mynodeπ)| = 1, andmynodeπ.Pred =
NIL in C. It follows from the same condition that tail(fragment(mynodeπ)) = mynodeπ.

Since the step sets Tail = mynodeπ in C ′ and P̂Cπ = 14 in C ′, it follows that Condition 16
holds in C ′.
Condition 18: Suppose |Q| = 0 in C. By the condition, ∀π′ ∈ Π, PCπ′ ∈ [11,15] ∪ {25} ∪
[28,29] in C, which continues to hold in C ′. As argued above, mynodeπ = head(fragment(mynodeπ))
and |fragment(mynodeπ)| = 1, therefore, mynodeπ = tail(fragment(mynodeπ)) in C and
C ′. Since Tail = mynodeπ in C ′, the condition holds in C ′.

14. π executes Line 14.
In C, PCπ = 14 and P̂Cπ = 14.
The step sets mynodeπ.Pred = mypredπ and updates PCπ and P̂Cπ to 15.
Condition 1: By Condition 9, mypredπ ∈ N ′ in C. Since the step sets mynodeπ.Pred =
mypredπ, Node[p̂ortπ].Pred ∈ N ′ in C ′. Therefore, the condition holds in C ′.
Condition 3: By Condition 9, mypredπ = tail(fragment(mypredπ)). Therefore, ∀q ∈
P,Node[q].Pred 6= mypredπ in C. It follows that ∀q ∈ P, p̂ortπ 6= q ⇒ Node[q].Pred 6=
mypredπ in C ′. Again from Condition 9 we observe the following about mypredπ. Either

mypredπ.Pred = &Exit or ∃π′ ∈ Π, π 6= π′ ∧mypredπ = n̂odeπ′ ∧ P̂Cπ′ ∈ [14,15]∪ [25,27]
(i.e., Node[p̂ortπ].Pred = Node[p̂ortπ′ ]). Thus the condition holds in C ′.

Condition 4: By Condition 4, |fragment(n̂odeπ)| = b1 ≤ k and |fragment(n̂odeπ)| = b2 ≤ k

in C. By Condition 7, for a process π′, it can not be the case that n̂odeπ′ ∈ fragment(n̂odeπ)

and n̂odeπ′ ∈ fragment(mypredπ) in C. Therefore, b1 + b2 ≤ k in C. It follows that in C ′

|fragment(n̂odeπ)| = b1 + b2 ≤ k. Therefore, the condition holds in C ′.

Condition 7: fragment(mypredπ) = fragment(n̂odeπ) in C ′. Therefore, the condition holds

30



in C ′ as it held and applied to fragment(mypredπ) in C.

Condition 9: Applying the condition to fragment(n̂odeπ) in C, we get that ∀π′ ∈ Π, π′ 6=
π ∧ n̂odeπ′ ∈ fragment(n̂odeπ) ⇒ P̂Cπ′ ∈ {15,25}, which holds in C ′. We have P̂Cπ = 15

in C ′. Suppose there is a π′′ ∈ Π, π′′ 6= π such that head(fragment(mypredπ)) = n̂odeπ′′ and

PCπ′′ = 14 in C. It follows that ∀π′ ∈ Π, π′ 6= π′′ ∧ n̂odeπ′ ∈ fragment(n̂odeπ′′) ⇒ P̂Cπ′ ∈
{15,25} in C ′. Therefore, the condition holds for π′′ and vacuously for other processes in C ′.

Condition 13: Since n̂odeπ.Pred = mypredπ in C ′ and invoking the Condition 9 on C and
mypredπ, it follows that the condition holds in C ′.
Condition 14: This condition holds by an argument similar to Condition 13 as argued above.
Condition 15: Suppose head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} in C. It follows

that ∃π′ ∈ Π, π′ 6= π ∧ P̂Cπ′ = 14 ∧ n̂odeπ′ = head(fragment(n̂odeπ)) ∧ (∀π′′ ∈ Π, (π′′ 6=
π′ ∧ n̂odeπ′′ ∈ fragment(n̂odeπ)) ⇒ P̂Cπ′′ ∈ {15,25}) in C ′. Therefore, the condition holds
in C ′.
Condition 19: If head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} in C, it follows that π /∈
Q in C ′. Therefore, it is easy to see that the condition holds in C ′. If head(fragment(mypredπ)).Pred ∈
{&InCS,&Exit} in C, it follows that π ∈ Q in C ′. We have two cases to consider, |Q| > 0 or
|Q| = 0 in C. If |Q| > 0 in C, Conditions 19d and 19e are the only ones affected. It is easy to
see from the definition of a fragment that these conditions continue to hold in C ′, therefore,
the whole condition would hold in C ′. Suppose |Q| = 0 and mypredπ.Pred = &Exit in C. It
follows that π = π1 according to the ordering defined by the condition. Condition 19a holds in
C ′ since P̂Cπ = 15 in C ′. Condition 19b holds in C ′ since mypredπ.Pred = &Exit in C and
C ′. Applying Condition 14 to mypredπ, and by the fact that mypredπ.Pred = &Exit,
it follows that Condition 19c holds in C ′. Conditions 19d, 19e, and 19f hold in C ′ by
the definition of fragment(mynodeπ) and the fact that mypredπ.Pred = &Exit. Since
|Q| = 0 in C, invoking Condition 18 on C we see that Condition 19g holds in C ′. Lastly,

∀π′ ∈ Π, π′ 6= π ∧ n̂odeπ′ 6= NIL ∧ n̂odeπ′ .Pred ∈ N ′ we have P̂Cπ′ ∈ {15,25} from Condi-

tion 1. Since |Q| = 0 in C, head(fragment(n̂odeπ′)).Pred ∈ {NIL,&Crash} by definition of

Q. Therefore, by Condition 15, n̂odeπ′ .CS Signal = 0 in C, which continues to hold in C ′.

15. π executes Line 15.
In C, PCπ = 15 and P̂Cπ = 15.
The step executes mynodeπ.NonNil Signal.set() so that mynodeπ.NonNil Signal = 1

as a result of the step. It also updates PCπ and P̂Cπ to 25.
Condition 17: As discussed above, mynodeπ.NonNil Signal = 1 and P̂Cπ = 25 in C ′.
Therefore, the condition holds in C ′.

16. π executes Line 16.
In C PCπ = 16 and P̂Cπ ∈ [13,15] ∪ [25,29].
This step changes PCπ to 17.
The step does not affect any condition, so the invariant continues to hold in C ′.

17. π executes Line 17.
In C PCπ = 16 and P̂Cπ ∈ [13,15] ∪ [25,29].
This step sets mynodeπ to Node[p̂ortπ] and changes PCπ to 17.
Condition 2: Since mynodeπ = Node[p̂ortπ] in C ′, the condition holds in C ′.

18 (a). π executes Line 17 when P̂Cπ ∈ {13,14}.
In C, PCπ = 18 and P̂Cπ ∈ {13,14}. By Condition 1, n̂odeπ.Pred ∈ {NIL,&Crash}.

31



This step checks if n̂odeπ.Pred = NIL and sets it to &Crash, if so. It then changes PCπ to
19.
Condition 1: By the step, n̂odeπ.Pred = &Crash. Therefore, the condition holds in C ′.

Condition 10: Since P̂Cπ ∈ {13,14}, n̂odeπ.Pred = &Crash, and PCπ = 19, the condition
holds in C ′.
Condition 11: The condition holds by the same argument as for Condition 10 above.

18 (b). π executes Line 17 when P̂Cπ /∈ {13,14}.
In C, PCπ = 18 and P̂Cπ /∈ {13,14}. By Condition 1, n̂odeπ.Pred /∈ {NIL,&Crash}.
The if condition at Line 18 is not met, hence the step changes PCπ to 19.
The step does not affect any condition, so the invariant continues to hold in C ′.

19. π executes Line 19.
In C PCπ = 19.
This step sets mypredπ to Node[p̂ortπ].Pred and changes PCπ to 20.
Condition 2: Since mypredπ = Node[p̂ortπ].Pred in C ′, the condition holds in C ′.

20 (a). π executes Line 20 when P̂Cπ = 27.

In C PCπ = 20 and P̂Cπ = 27. By Condition 1, n̂odeπ.Pred = &InCS. By Condition 2,

mypredπ = n̂odeπ.Pred in C.
In this step the if condition is met, therefore, π moves to the CS and updates PCπ to 27.
The step does not affect any condition, so the invariant continues to hold in C ′.

20 (b). π executes Line 20 when P̂Cπ 6= 27.

In C PCπ = 20 and P̂Cπ 6= 27. By Condition 1, n̂odeπ.Pred 6= &InCS. By Condition 2,

mypredπ = n̂odeπ.Pred in C.
In this step the if condition is not met, therefore, π updates PCπ to 21.
The step does not affect any condition, so the invariant continues to hold in C ′.

21 (a). π executes Line 21 when P̂Cπ ∈ {28,29}.
In C PCπ = 21 and P̂Cπ ∈ {28,29}. By Condition 1, n̂odeπ.Pred = &Exit. By Condi-

tion 2, mypredπ = n̂odeπ.Pred in C.
In this step the if condition is met, therefore, π updates PCπ to 22.
The step does not affect any condition, so the invariant continues to hold in C ′.

21 (b). π executes Line 21 when P̂Cπ /∈ {28,29}.
In C PCπ = 21 and P̂Cπ /∈ {28,29}. By Condition 1, n̂odeπ.Pred 6= &Exit. By Condi-

tion 2, mypredπ = n̂odeπ.Pred in C.
In this step the if condition is not met, therefore, π updates PCπ to 23.
The step does not affect any condition, so the invariant continues to hold in C ′.

22. π executes Line 22.
In C PCπ = 22 and P̂Cπ ∈ {28,29}.
π sets P̂Cπ = 28, then executes Lines 28 and 29 as part of the Try section, and then changes
PCπ to 10 and P̂Cπ to 11.
For the correctness of the invariant, refer to the induction steps for Lines 28 and 29, since the
execution of the step is same as executing the two lines and then executing a“go to Line 10”.

23. π executes Line 23.
In C PCπ = 23. By Condition 6, P̂Cπ ∈ [13,15] ∪ [25,26].

32



The step executes mynodeπ.NonNil Signal.set() so that mynodeπ.NonNil Signal = 1

as a result of the step. It also updates PCπ to 24.
Condition 17: As discussed above, mynodeπ.NonNil Signal = 1 and PCπ = 24 in C ′.
Therefore, the condition holds in C ′.

24. π executes Line 24.
In C PCπ = 24. By Condition 6, P̂Cπ ∈ [13,15] ∪ [25,26] in C.
The step executes the Try section of RLock in order to access the Critical Section of RLock
starting at Line 30. Since the RLock is assumed to be satisfying Starvation Freedom, π
reaches Line 30 eventually. Hence, the step changes PCπ to 30. Note, we can use Golab
and Ramaraju’s [7] read-write based recoverable extension of Yang and Anderson’s lock (see
Section 3.2 in [7]) as RLock for this purpose.
The step does not affect any condition, so the invariant continues to hold in C ′.

25. π executes Line 25
In C, PCπ = 25 and P̂Cπ = 25. We have n̂odeπ 6= NIL and n̂odeπ.Pred ∈ N ′ by Condition 1

in C. By Condition 14, either n̂odeπ.Pred.CS Signal = 1, or ∃π′ ∈ Π, π 6= π′ ∧ n̂odeπ′ =

n̂odeπ.Pred ∧ P̂Cπ′ ∈ {14,15} ∪ [25,28] in C.
The step executesmypredπ.CS Signal.wait() so that the procedure call returns whenmypredπ.CS Signal =

1. The step also updates PCπ and P̂Cπ to 26 when it returns from the procedure call.

Condition 19: Suppose n̂odeπ.Pred.CS Signal = 1 in C. By Condition 19h, π = π1 in
C. It follows that the condition continues to hold in C ′ as it held in C. Therefore, assume

n̂odeπ.Pred.CS Signal 6= 1 in C. Since mypredπ.CS Signal.wait() returns and the step
completes, by the specification of the Signal object, mypredπ.CS Signal = 1 in C ′. By

Condition 5, mypredπ.Pred = &Exit in C ′. Therefore, head(fragment(n̂odeπ)).Pred =
&Exit in C ′. It follows that π ∈ Q in C ′ by the definition of Q. By Condition 7,

∀π′ ∈ Π, (π 6= π′ ∧ head(fragment(n̂odeπ′)).Pred = &Exit ∧ P̂Cπ′ /∈ [28,29]) ⇒ n̂odeπ′ ∈
fragment(n̂odeπ). We now proceed to prove that Condition 19 holds in C ′ as follows. We have

mypredπ.Pred = &Exit and mypredπ.CS Signal = 1 in C ′. Therefore, ∀π′ ∈ Π, n̂odeπ′ =

mypredπ ⇒ P̂Cπ′ = 29 in C ′ by Condition 5. Since n̂odeπ.Pred.Pred = &Exit, Con-
dition 19f holds and it follows that π = π1. Since P̂Cπ = 26, Condition 19a holds in
C ′. We also note from the above that Conditions 19b and 19c hold in C ′. By the def-

inition of fragment(n̂odeπ) and Condition 7 it follows that Conditions 19d and 19e hold.

For any process π′, if n̂odeπ′ .Pred = &Exit, then by Condition 1, P̂Cπ′ ∈ {28,29}. If

n̂odeπ′ 6= head(fragment(n̂odeπ′)), then by Condition 7, P̂Cπ′ ∈ {15,25}. If n̂odeπ′ .Pred ∈
{NIL,&Crash}, then by Condition 1, P̂Cπ′ ∈ {13,14}. By Condition 7 there is only one
fragment whose head node has its Pred pointer set to &Exit. It follows that Condition 19g
holds from the above. From Conditions 5, 9, 14, and 15 it follows that Condition 19h holds
in C ′. Therefore, the entire condition holds in C ′.

26. π executes Line 26.
In C PCπ = 26.
The step sets n̂odeπ.Pred = &InCS, updates PCπ and P̂Cπ to 27, and goes to the CS.

Condition 1: As argued above, n̂odeπ.Pred = &InCS and P̂Cπ = 27 in C ′. Therefore, the
condition holds in C ′.
Condition 9: Suppose there is a π′′ ∈ Π, π′′ 6= π such that mypredπ′′ = n̂odeπ in C. It follows

that n̂odeπ.Pred = &InCS and P̂Cπ = 27 in C ′. Therefore, the condition holds for π′′ and

33



vacuously for other processes in C ′.

27. π executes Line 27.
In C PCπ = 27.
The step sets n̂odeπ.Pred = &Exit, and updates PCπ and P̂Cπ to 28.

Condition 1: As argued above, n̂odeπ.Pred = &Exit and P̂Cπ = 28 in C ′. Therefore, the
condition holds in C ′.
Condition 9: Suppose there is a π′′ ∈ Π, π′′ 6= π such that mypredπ′′ = n̂odeπ in C. It follows

that n̂odeπ.Pred = &Exit and P̂Cπ = 28 in C ′. Therefore, the condition holds for π′′ and
vacuously for other processes in C ′.

Condition 18: If |Q| > 1 in C, the condition holds vacuously in C ′. If Tail 6= n̂odeπ, then by

Condition 7 and 16, the condition holds in C ′. Otherwise, suppose |Q| = 1 and Tail = n̂odeπ
in C. Tail.Pred = &Exit in C ′ by the step. Therefore, the condition holds in C ′.
Condition 19: Applying the condition to π in C, π = π1 according to the ordering of the
condition. If |Q| = 1, the condition holds vacuously in C ′. Therefore, suppose |Q| > 1 in C.

There is a process π′ ∈ Π such that π′ = π2 according to the ordering and mypredπ′ = n̂odeπ
in C. By Condition 19d, P̂Cπ′ ∈ {15,25} in C which continues to hold in C ′. Therefore, it
follows that Conditions 19a, 19b, and 19c hold for π′ in C ′. It is easy to see that the rest of
the sub-conditions hold in C ′ as a result of the step. Therefore, the condition holds in C ′.

28. π executes Line 28.
In C PCπ = 28 and P̂Cπ = 28.
The step executes mynodeπ.CS Signal.set() so that mynodeπ.CS Signal = 1 as a result

of the step. It also updates PCπ and P̂Cπ to 29.
Condition 17: As discussed above, mynodeπ.CS Signal = 1 and P̂Cπ = 29 in C ′. Therefore,
the condition holds in C ′.

29. π executes Line 29.
In C PCπ = 29 and P̂Cπ = 29.
The step sets Node[p̂ortπ] to NIL, sets PCπ to 10, and P̂Cπ to 11.

Condition 1: As argued above, Node[p̂ortπ] = NIL and P̂Cπ = 11 in C ′. Therefore, the
condition holds in C ′.
Condition 5: By Condition 3 implies that ∀π′ ∈ Π, π′ 6= π ⇒ n̂odeπ′ 6= n̂odeπ in C. By Condi-

tion 1, n̂odeπ.Pred = &Exit in C which holds in C ′. By Condition 17, n̂odeπ.CS Signal = 1

and n̂odeπ.NonNil Signal = 1 in C, which holds in C ′. Since n̂odeπ = NIL in C ′, it follows

that for the QNode pointed to by n̂odeπ in C the condition holds in C ′.

Condition 9: Suppose there is a π′′ ∈ Π, π′′ 6= π such that mypredπ = n̂odeπ′′ and PCπ′′ = 14
in C. It follows that ∀p′ ∈ P,Node[p′] 6= mypredπ in C ′. Therefore, the condition holds for
π′′ and vacuously for other processes in C ′.

30 (a). π executes Line 30 when P̂Cπ ∈ {13,14}.
In C, PCπ = 30 and P̂Cπ ∈ {13,14}. By Condition 10, n̂odeπ.Pred = &Crash. By

Condition 2, mypredπ = n̂odeπ.Pred in C.

The if condition at Line 30 is not met since n̂odeπ.Pred = &Crash, therefore, PCπ changes
to 31.
Condition 6: Since PCπ = 31 and P̂Cπ ∈ {13,14} in C ′, the condition is satisfied.
Condition 20: Suppose head(fragment(Tail)).Pred ∈ {&InCS,&Exit} in C. We have

n̂odeπ.Pred = &Crash, i.e., head(fragment(n̂odeπ)).Pred = &Crash. It follows that

34



fragment(n̂odeπ) 6= fragment(Tail) in C, which holds in C ′. Therefore, the condition holds
in C ′.

30 (b). π executes Line 30 when P̂Cπ /∈ {13,14}.
In C, PCπ = 30 and P̂Cπ /∈ {13,14}. By Condition 6, P̂Cπ ∈ {15} ∪ {25,26}. By

Condition 10, n̂odeπ.Pred ∈ N ′. By Condition 2, mypredπ = n̂odeπ.Pred in C.

The if condition at Line 30 is met since n̂odeπ.Pred 6= &Crash, therefore, π executes the
Exit section of RLock. π then changes PCπ and P̂Cπ to 25.

Condition 17: Applying Condition 17 to C, we have n̂odeπ.NonNil Signal = 1 since PCπ =
30 in C. Therefore, the condition holds in C ′.

31. π executes Line 31.
In C PCπ = 31.
The step initializes tailπ to Tail, the set Vπ and Eπ as empty sets, tailpathπ to NIL, and
headpathπ to NIL. Since the invariant requires that iπ be between [0, k] when PCπ = 32, we
assume that the step implicitly initializes iπ to 0, although not noted in the code. Finally,
the step sets PCπ to 32.
Condition 21: Follows immediately from the description of the step above.
Condition 22: This condition follows immediately from Condition 16.
Condition 23: Since (Vπ, Eπ) are initialized to be empty sets, the condition follows.
Condition 24: Consider the fragments formed from the nodes pointed to by the cells in
the Node array. If all the fragments have the Pred pointer of their head node to be
in {NIL,&Crash}, then by definition of Q it is an empty set. Hence, Condition 24d
holds. Otherwise, there is a fragment whose head node has its Pred pointer to be one
of {&InCS,&Exit}. It follows that Condition 24c holds.

Condition 25: By Condition 12 it follows that ∀n̂odeπ′ ∈ fragment(n̂odeπ), ∃i ∈ [0, k −
1],Node[i] = n̂odeπ′ . Therefore, the condition holds in C ′.
Condition 26: Since (Vπ, Eπ) is an empty set in C ′, the condition holds vacuously.
Condition 27: All the conditions holds vacuously since the graph is empty and iπ = 0.

Condition 28: Suppose head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}. Since n̂odeπ.Pred =
&Crash in C ′, it follows that the condition holds in C ′.
Condition 29: Immediate from the description of the step above.

32 (a). π executes Line 32 when iπ < k.
In C, PCπ = 32 and iπ < k.
In this step the correctness condition of the for loop (i.e., iπ ∈ [0, k − 1]) evaluates to true
and PCπ is updated to 33.
Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

32 (b). π executes Line 32 when iπ = k.
In C, PCπ = 32 and iπ = k.
In this step the correctness condition of the for loop (i.e., iπ ∈ [0, k − 1]) evaluates to false
and PCπ is updated to 39.
Condition 28: From Condition 22 it follows that either tailπ ∈ Vπ ∨ tailπ.Pred = &Exit in
C ′. In either case the condition holds in C ′.
Condition 32: This follows immediately from Conditions 23, 25, 27 and the definition of
fragment.

35



Condition 34: Follows immediately from Condition 24 and the fact that iπ = k.
Condition 35: Follows from Conditions 23, 24, 26, 27, the definition of fragment, and the fact

that n̂odeπ.Pred = &Crash.

33. π executes Line 33.
In C, PCπ = 33. By Condition 21, iπ ∈ [0, k − 1].
In this step, π sets curπ to Node[iπ]. It then updates PCπ to 35.
Condition 30: Node[iπ] either has the value NIL or it does not. If it is the first case, we are
done. In the second the condition follows from Condition 3.

34 (a). π executes Line 34 when curπ = NIL.
In C, PCπ = 34. and curπ = NIL.
Since the if is met, π is required to break the current iteration of the loop and start with its
next iteration. Therefore, π increments iπ by 1 and changes PCπ to 32.
Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

34 (b). π executes Line 34 when curπ 6= NIL.
In C, PCπ = 34 and curπ 6= NIL.
Since the if is not met, π changes PCπ to 35.
Condition 30: The condition holds in C ′ as it held in C.

35. π executes Line 35.
In C PCπ = 35.
The step executes curπ.NonNil Signal.wait() so that the procedure call returns when
curπ.NonNil Signal = 1. The step also updates PCπ to 36 when it returns from the
procedure call.
Condition 30: Since curπ.NonNil Signal = 1 as a result of the step, by Condition 5,
curπ.Pred ∈ {&Crash,&InCS,&Exit} in C ′. Therefore, the condition holds in C ′.

36. π executes Line 36.
In C PCπ = 36.
The step sets curpredπ to curπ.Pred and updates PCπ to 37.
Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

37 (a). π executes Line 37 when curpredπ ∈ {&Crash,&InCS,&Exit}.
In C, PCπ = 37 and curpredπ ∈ {&Crash,&InCS,&Exit}.
The if condition at Line 37 is met, therefore, the step adds curπ to the set Vπ. It then
increments iπ by 1 and updates PCπ to 32.
Condition 23: Since the step adds only a vertex to the graph, the condition remains unaffected
by the step.
Condition 24: If curπ.Pred = &InCS, then Condition 24b is satisfied by the addition of
curπ to Vπ. Otherwise, the condition holds as it held in C ′.
Condition 26: If curπ.Pred = &Crash, then the condition holds vacuously. Otherwise,
curπ.Pred ∈ {&InCS,&Exit} and it follows that the condition holds in C ′.
Condition 27: All sub-conditions are easy to argue, hence it follows that the condition holds
in C ′.

37 (b). π executes Line 37 when curpredπ /∈ {&Crash,&InCS,&Exit}.
In C, PCπ = 37 and curpredπ /∈ {&Crash,&InCS,&Exit}.

36



The if condition at Line 37 is not met, therefore, π updates PCπ to 38.
Condition 28: Since curpredπ /∈ {&Crash,&InCS,&Exit}, curpredπ was initialized from
curπ.Pred at Line 36. It follows that curpredπ ∈ N ′. Therefore the condition holds in C ′.

38. π executes Line 38.
In C PCπ = 38.
The step adds the elements curπ and curpredπ to the set Vπ and the edge (curπ, curpredπ)
to the set Eπ. It then increments iπ by 1 and updates PCπ to 32.
Condition 23: If curπ.Pred /∈ Vπ in C, then the condition holds in C ′. Hence, assume
curπ.Pred ∈ Vπ in C (note, curπ.Pred = curpredπ in C). We have to argue that after the
addition of the edge (curπ, curpredπ) in Eπ, the graph (Vπ, Eπ) still remains directed and
acyclic and the maximal paths in it remain disjoint in C ′. During the configuration C, let σ1
be the path in the graph (Vπ, Eπ) containing curπ and σ2 be the path containing curpredπ.

If σ1 6= σ2, then the graph (Vπ, Eπ) continues to be directed and acyclic in C ′. We argue that
the maximal paths are disjoint as follows. Suppose for a contradiction that after adding the
edge (curπ, curpredπ) there are two maximal paths σ and σ′ that are not disjoint. It follows
that this situation arises due to the addition of the edge (curπ, curpredπ), hence σ and σ′

either share curπ or curpredπ. Suppose they share curπ as a common vertex. In C there is
an edge (curπ, u) ∈ Eπ (and therefore in the path σ1) such that u 6= curpredπ. Applying
Condition 27i to C, curπ.Pred = u or curπ.Pred ∈ {&InCS,&Exit} which is impossible
since curπ.Pred = curpredπ. Hence, assume that they share curpredπ as a common vertex. It
follows that there is an edge (v, curpredπ) ∈ Eπ appearing in the path σ2 in the configuration
C. By Condition 27c, ∃i′ ∈ [0, iπ−1], v = Node[i′] or v.Pred = &Exit∧∀p′ ∈ P,Node[p′] 6=
v. If ∃i′ ∈ [0, iπ−1], v = Node[i′], then Node[i′].Pred = Node[iπ].Pred, which contradicts
Condition 3. Otherwise, by Condition 27h, ∀i′ ∈ [0, k − 1],Node[i′].Pred 6= curpredπ, a
contradiction (since Node[iπ].Pred = curpredπ in C). Hence, it holds that if σ1 6= σ2 in C,
the maximal paths are disjoint in the graph in C ′.

Otherwise, σ1 = σ2. It follows that start(σ1) = start(σ2) = curpredπ and end(σ1) =
end(σ2) = curπ (i.e., there is a path from curpredπ to curπ) in C. Applying Condition 27i
inductively we see that curpredπ.Pred 6= &Exit, otherwise it would imply curπ.Pred =
&Exit. It follows by the contrapositive of Condition 27c that there is a distinct i′ ∈ [0, iπ−1]
for every vertex w in the path σ1 such that Node[i′] = w in C. That is, every vertex

w in the path σ1 is also a node n̂odeπ′ for some π′ ∈ Π. However, since curπ.Pred /∈
{NIL,&Crash,&InCS,&Exit} (because there is a cycle with the presence of σ1 and the
pointer curπ.Pred), we have a contradiction to Condition 4 since there is no b ∈ N for which
the condition is satisfied. Therefore, σ1 6= σ2 in C.

From this argument it follows that the condition holds in C ′.
Condition 24: If Condition 24a holds in C, it continues to hold in C ′ and therefore the
condition is satisfied. Similarly for Condition 24b, because curπ.Pred 6= &Exit and if
curπ = end(σ) for some maximal path which satisfied the condition, then it continues to
satisfy the condition in C ′. If iπ < k − 1 and the condition held in C due to Condition 24c,
then it continues to hold in C ′ for the new value of iπ. If iπ = k − 1 and the condition
held in C due to Condition 24c, it follows that Node[k − 1].Pred 6= &Exit (by assumption
above) and Node[k− 1].Pred.Pred ∈ {&InCS,&Exit}. Therefore, by the step (Node[k−
1],Node[k − 1].Pred) is added as an edge in the graph and we have a path that satisfies
Condition 24b in C ′. If Condition 24d holds in C, then it holds in C ′ as well.
Condition 25: This condition holds by the definition of fragment and since the edge gets

37



added to the graph.
Condition 26: It is easy to see that the second part of the condition holds because one of the
nodes among v and v′ was used up to enter the CS and hence even though the path runs
through that node in the graph, the fragment is cut. Therefore, we argue the first part as

follows. Suppose there is a i < iπ such that Node[i] = n̂ode for a n̂ode ∈ fragment(v).

In a previous iteration the node was added in the graph, and if n̂ode.Pred was an actual
node, then it also got added to the graph along with an edge between them. Therefore, the
condition holds in C ′.
Condition 27: As argued above, curπ.Pred ∈ N ′ (i.e., curpredπ ∈ N ′), it follows that ∀v ∈
Vπ, v ∈ N ′ in C ′. It is easy to see that the rest part of Condition 27a holds. Condition 27i holds
because if curπ.Pred ∈ {&InCS,&Exit}, then the owner of curpredπ already completed
Line 28 to let the owner of curπ into CS. Condition 27h holds from Condition 3. It is easy
to see that the remaining sub-conditions hold in C ′.

39. π executes Line 39.
In C, PCπ = 39.
The step computes the maximal paths in the graph (Vπ, Eπ) and the set Pathsπ contains
every such maximal path. The step then sets PCπ to 40.
Condition 37: If there is a maximal path σ in (Vπ, Eπ) such that end(σ).Pred ∈ {&InCS,&Exit}
and start(σ).Pred 6= &Exit, then the condition holds vacuously. Otherwise there is no
maximal path σ for which end(σ).Pred ∈ {&InCS,&Exit} and start(σ).Pred 6= &Exit.
By Condition 34, head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∨ |Q| = 0 in C, which
continues to hold in C ′. Since Pathsπ is a set of all maximal paths in (Vπ, Eπ), there is no
path σ ∈ Pathsπ for which end(σ).Pred ∈ {&InCS,&Exit} and start(σ).Pred 6= &Exit.
Therefore, the condition holds in C ′.

40. π executes Line 40.
In C, PCπ = 40. By Condition 27a, n̂odeπ ∈ Vπ and by Condition 2, n̂odeπ = mynodeπ.
By Condition 23b, all maximal paths in the graph are disjoint, therefore, every vertex in Vπ
appears in a unique path in Pathsπ.
As argued above, mynodeπ ∈ Vπ in C, therefore, there is a path σ in Pathsπ such that
mynodeπ ∈ σ. The step sets mypathπ to be the unique path in Pathsπ in which mynodeπ
appears. It then updates PCπ to 41.
Condition 33: As argued above, in C ′ mypathπ is the unique path in Pathsπ in which
mynodeπ appears. Therefore, the condition holds in C ′.

41. π executes Line 41.
In C, PCπ = 41. By Condition 21, tailpathπ = NIL in C. By Condition 23b, all maximal
paths in the graph are disjoint, therefore, every vertex in Vπ appears in a unique path in
Pathsπ.
In this step π checks if tailπ ∈ Vπ. If so, it sets tailpathπ to be the unique path in Pathsπ in
which tailπ appears. Otherwise, it just updates PCπ to 42.
Condition 28: As argued above, the step sets tailpathπ to be the unique path in Pathsπ in
which tailπ appears. Therefore, the condition holds in C ′.
Condition 31: If tailpathπ 6= NIL and end(tailpathπ).Pred /∈ {&InCS,&Exit}, it from
Condition 27 that head(fragment(tailπ)).Pred /∈ {&InCS,&Exit}. Hence, the condition
follows from Condition 29.

38



42 (a). π executes Line 42 when there is a path in Pathsπ not iterated on already.
In C, PCπ = 42 and there is a path in Pathsπ not iterated on already.
In this step π picks a path σπ from Pathsπ that it didn’t iterate on already in the loop on
Lines 42-45. It then sets PCπ to 43.
Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

42 (b). π executes Line 42 when there is no path in Pathsπ not iterated on already.
In C, PCπ = 42 and there is no path in Pathsπ not iterated on already.
In this step π finds that it has already iterated on all the paths from Pathsπ hence it just
updates PCπ to 46.
Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

43. π executes Line 43.
In C, PCπ = 43.
In this step, π checks if end(σπ).Pred ∈ {&InCS,&Exit}. If so, it updates PCπ to 44;
otherwise it updates PCπ to 42.
Condition 36: If PCπ = 44 in C ′, it is because of the if condition at Line 43 succeeded.
From the description of the step given above, it follows that the condition holds in C ′.

44. π executes Line 44.
In C, PCπ = 44.
In this step, π checks if start(σπ).Pred 6= &Exit. If so, it updates PCπ to 45; otherwise it
updates PCπ to 42.
Condition 36: If PCπ = 45 in C ′, it is because of the if condition at Line 44 succeeded.
Therefore, end(σπ).Pred ∈ {&InCS,&Exit} and start(σπ).Pred 6= &Exit. It follows
that the length of the path is more than 1 and start(σπ) = tail(fragment(start(σπ))).
Therefore, from the description of the step given above, it follows that the condition holds in
C ′.

45. π executes Line 45.
In C, PCπ = 45.
The step sets headpathπ = σπ and updates PCπ to 46.
Condition 38: This condition follows as a result of Conditions 1, 34, 35 and since the step
sets headpathπ = σπ.

46 (a). π executes Line 46 when tailpathπ 6= NIL ∧ end(tailpathπ).Pred /∈ {&InCS,&Exit}.
In C, PCπ = 46 and tailpathπ 6= NIL ∧ end(tailpathπ).Pred /∈ {&InCS,&Exit}.
In this step π checks for the if condition at Line 46 to be met. Since tailpathπ 6= NIL ∧
end(tailpathπ).Pred /∈ {&InCS,&Exit}, the if condition is not met, hence, π updates PCπ
to 48.
Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

46 (b). π executes Line 46 when tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit}.
In C, PCπ = 46 and tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit}.
In this step π checks for the if condition at Line 46 to be met. Since tailpathπ = NIL ∨
end(tailpathπ).Pred ∈ {&InCS,&Exit}, the if condition is met, hence, π updates PCπ to
47.

39



Since no shared variables are changed and no condition of the invariant is affected by the
step, all the conditions continue to hold in C as they held in C ′.

47. π executes Line 47.
In C, PCπ = 47.
In this step π performs a FAS on Tail with the node start(mypathπ) and stores the returned

value of the FAS into mypredπ. It then updates P̂Cπ to 14 and PCπ to 49.

Condition 39: By Condition 28, fragment(n̂odeπ) 6= fragment(Tail) in C. Applying Condi-
tion 16 to C and Tail we see that the condition holds in C ′.

48. π executes Line 48.
In C, PCπ = 48.
If headpathπ 6= NIL then the step sets mypredπ = start(headpathπ); otherwise it sets

mypredπ = &SpecialNode. The step then updates P̂Cπ = 14 and PCπ = 49.
Condition 39: For any value thatmypredπ takes in the step, we note that head(fragment(mypredπ)).Pred ∈
{&InCS,&Exit}. If headpathπ 6= NIL, then all the parts of the condition are satisfied

in C ′ which can be verified from Condition 38 holding in C. Also, fragment(n̂odeπ) 6=
fragment(first(headpathπ)) in C ′, since head(fragment(first(headpathπ))).Pred ∈ {&InCS,&Exit}.
If headpathπ = NIL then mypredπ = &SpecialNode in C ′ and it is easy to verify again
that the condition holds in C ′. Therefore, the condition holds in C ′.

49. π executes Line 49.
In C PCπ = 49.
As a result of the step, mynodeπ.Pred to mypredπ and updates P̂Cπ to 25 in C ′. π also
executes the Exit section of RLock, hence PCπ = 25 in C ′.
The argument for correctness for this step is similar to that of the argument given for execution
of Line 14. Therefore, we refer the reader to those arguments above.

Crash. π executes a crash step.
This step changes PCπ to 10 and sets the rest of the local variables to arbitrary values. The
values of the shared variables remain the same as before the crash.
The step does not affect any condition, so the invariant continues to hold in C ′.

Thus, by induction it follows that the invariant holds in every configuration of every run of the
algorithm.

40


	1 Introduction
	1.1 The Model
	1.2 The Recoverable Mutual Exclusion (RME) problem
	1.3 Passage Complexity
	1.4 Our contribution
	1.5 Comparison to Golab and Hendler Golab:rmutex2: Similarities and differences
	1.6 Related research

	2 A Signal Object
	2.1 An implementation of Signal Object

	3 The Algorithm
	3.1 Informal description
	3.2 Main theorem
	3.3 O((1 + f) logn/ loglogn) RMRs Algorithm

	A Issues with Golab and Hendler's Golab:rmutex2 Algorithm
	A.1 Scenario 1: Process deadlock inside Recover
	A.2 Scenario 2: Starvation Freedom Violation

	B Illustration for Repair
	C Proof of correctness
	D Proof of correctness of Signal object
	E Proof of invariant

