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Abstract

The field of p-adic numbers Qp and the ring of p-adic inte-
gers Zp are essential constructions of modern number the-
ory. Hensel’s lemma, described by Gouvêa as the “most im-
portant algebraic property of the p-adic numbers,” shows
the existence of roots of polynomials over Zp provided an
initial seed point. The theorem can be proved for thep-adics
with significantly weaker hypotheses than for general rings.
We construct Qp and Zp in the Lean proof assistant, with
various associated algebraic properties, and formally prove
a strong form of Hensel’s lemma. The proof lies at the in-
tersection of algebraic and analytic reasoning and demon-
strates how the Lean mathematical library handles such a
heterogeneous topic.
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1 Introduction

It has long been a goal of the formalized mathematics com-
munity to verify the typical undergraduatemathematics cur-
riculum in a unified way using a single proof assistant. Var-
ious systems have achieved this goal to varying degrees [3,
22, 30, 34, 35], and it now seems reasonable to say that most
components of this curriculum have been formalized in one
system or another. Undeniably, though, some fields have re-
ceived much heavier attention than others; in particular, it
appears that formal developments in number theory and ge-
ometry have lagged behind those in other domains. This im-
balance becomes even greater when one looks beyond un-
dergraduate mathematics. While a few landmark projects
have verified deep mathematical results [17, 18, 21], the as-
sociated theory developments have been thin and specific to

CPP ’19, January 14–15, 2019, Cascais, Portugal

2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

the target theorems. Research-level theorems have been for-
malized, but research-level theories remain largely untouched.
A recent project begun at the Vrije Universiteit Amster-

dam aims to address this imbalance by bringing together
traditional mathematicians, formalizers, and tool develop-
ers to work toward modern results in number theory.1 With
researchers working at all levels of the theorem proving
pipeline, the project will search for technology and design
decisions that make it plausible to formalize deepmathemat-
ics that spans across fields. This paper breaks some initial
ground to build toward this goal by constructing the p-adic
numbersQp and the p-adic integers Zp in the Lean proof as-
sistant and verifying Hensel’s lemma, a foundational result
about these numbers.
The p-adics are a fundamental object of study in number

theory with both theoretic and numeric applications. Their
construction involves a mix of analytic and algebraic meth-
ods. For this reason, they make an excellent (or even neces-
sary) point from which to embark on a project to formalize
number theory. Hensel’s lemma, an analogue of Newton’s
method for approximating roots, holds a prominent place
in the study of the p-adics. Its computational applications
make it of interest to number theorists and computer scien-
tists alike.
In Section 2, we give an informal overview of the p-adic

numbers and Hensel’s lemma, outlining the construction
and proof followed in our formalization. Section 3 briefly
describes the Lean theorem prover and the mathematical li-
brary on which this project depends. Sections 4 and 5 ex-
plain the formal construction of Qp and Zp and the formal
proof of Hensel’s lemma, respectively, focusing on design
decisionsmade during the formalization process. In Sections 6
and 7, we consider related work and reflect on the project.
The formalization described in this paper is incorporated

into the Lean mathematical library, available on GitHub.2

Since this library is regularly changing, we preserve a snap-
shot of its status at the time this paper was submitted. This
snapshot, and a map between this paper and the formaliza-
tion, can be found on the author’s website.3 The code blocks
presented in this paper should be read as schematic, not lit-
eral: we sometimes change names, omit universe levels, and

1h�ps://lean-forward.github.io/
2h�ps://github.com/leanprover/mathlib/
3h�p://robertylewis.com/padics/
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swap implicit and explicit arguments for the sake of presen-
tation.

2 The p-adic Numbers and Hensel’s
Lemma

Readers who have seen the construction of the real numbers
R via Cauchy sequences of rationals will find the construc-
tion ofQp familiar. Tomotivate stepping fromQ toR, we tra-
ditionally point to the fact that Q is incomplete: there are se-
quences of rational numbers that seem to approach a value
but do not converge to any rational number. As an example,
consider the sequence r = (1, 1.4, 1.41, 1.414, 1.4142, . . .)where
the entry at index n is the greatest (n + 1)-digit rational
number whose square is less than 2. This sequence has no

limit in Q, since
√
2 is irrational. We obtain R by creating

points to represent the limit of r and similarly “convergent”
sequences.
More precisely, we say that a sequence s : N → Q is

Cauchy if for every positive ϵ ∈ Q, there exists a number N
such that for all k ≥ N , |sN − sk | < ϵ . Two sequences s and
t are equivalent, written s ∼ t , if for every positive ϵ ∈ Q,
there exists an N such that for all k ≥ N , |sk − tk | < ϵ .
Morally, a Cauchy sequence is one whose terms eventually
get arbitrarily close to each other, and should converge to a
(possibly irrational) value; two Cauchy sequences are equiv-
alent if they should converge to the same value. The set of
real numbers R is defined to be the quotient of the set of
Cauchy sequences with respect to ∼, which is to say that a
real number is a set of equivalent Cauchy sequences. It can
be shown that Cauchy sequences inherit the field operations
from Q, and that these operations respect ∼, so they can be
lifted to the quotient.
We often callR the completion ofQ because it is the small-

est extension of Q in which all Cauchy sequences converge.
But it is more accurate to say that R is a completion of Q,
since the notion of a Cauchy sequence is parametrized by a
notion of closeness. A function f onQ is a (generic) absolute
value if it is positive-definite (f (0) = 0 and f (k) > 0 other-
wise), subadditive (f (x + y) ≤ f (x) + f (y)), and multiplica-
tive (f (x · y) = f (x) · f (y)). We can replay the construction
above, replacing the standard absolute value on Q with any
generic absolute value. If we use the trivial absolute value
a(x) = (0 if x = 0 else 1), then a sequence of rationals is
Cauchy if and only if it is eventually constant, and so the
completion process adds no new points to Q.
There are infinitely many absolute values onQ, even iden-

tifying scalarmultiples: every prime number induces a unique
absolute value. Fix p ∈ N with p > 1, and for z ∈ Z with
z , 0, define the p-adic valuation νp (z) to be the largest
n such that pn | z, which we read as “pn divides z.” This
valuation extends to Q by setting νp (q/r ) = νp (q) − νp(r ),
where q and r are coprime. The p-adic norm on Q is defined
by |x |p = p−νp (x ) with |0|p = 0. If p is prime, this function
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Figure 1. If we represent Qp as left-infinite streams of dig-
its, we can perform addition and multiplication in base p by
carrying remainders to the left. 5-adically, . . . 444444+1 = 0
and . . . 313132 × 3 = 1. The former means that adding
. . . 444444 to any number is the same as subtracting 1. All
of these numbers (besides 0) have 5-adic norm equal to 1.

is an absolute value. Surprisingly, this exhausts the list of
possibilities. Ostrowski’s theorem [36] states that any ab-
solute value on Q is (a positive scalar power of) either the
standard absolute value, the trivial absolute value, or the p-
adic norm for some prime p. The p-adic numbers Qp are the
completion of Q with respect to the p-adic norm. Since a
positive scalar power of an absolute value induces an iso-
morphic completion, we can focus our attention on R and
the family {Qp | p prime}.
To get an intuition for how the p-adic numbers behave,

consider what it means for two rationals to be close under
thep-adic norm.A rational x has smallp-adic norm ifp−νp (x )

is small, that is, if νp(x) is large, which means that x is di-
visible by a large power of p. Thus |x − y |p is small if x and

y are separated by a multiple of pk for some large k . The
elements of a Cauchy sequence, then, are separated by mul-
tiples of larger and larger powers of p.
The traditional decimal expansion allows us to write any

nonzero real number in the form±Σki=−∞ai ·10i , where k is a
(finite, possibly negative) integer and each ai ∈ {0, 1, . . . , 9}
with ak , 0. We can analogously define a p-adic expansion
allowing us to write any nonzero element of Qp uniquely in

the form Σ
∞
i=k

ai · pi , with ai ∈ {0, 1, . . . ,p − 1} and ak , 0
(Figure 1). Such a series does not necessarily converge to
a real number, but it does converge under the p-adic norm.
Form ≥ n, the difference between themth and nth partial
sums is divisible bypn , so its norm is bounded byp−n , which
tends to 0 as n grows.
The p-adic norm on Q extends to a norm on Qp , such

that |Σ∞
i=k

ai · pi |p = p−k . These norms share a useful (if
counterintuitive) property. The familiar triangle inequality
states that |x + y | ≤ |x | + |y | for any x and y. But we can
show something stronger for the p-adic norm, namely the
nonarchimedean property, which states that

|x + y |p ≤ max(|x |p , |y |p ).

In fact, if |x |p , |y |p , it holds that |x + y |p = max(|x |p , |y |p ).
Under the standard absolute value, any Cauchy sequence

of integers is eventually constant, but this is not the case
under thep-adic norm. It can be shown that such a sequence
converges to a p-adic number z with |z |p ≤ 1, and so we
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Figure 2. This diagram displays initial segments of ele-
ments of Z3. The 3-adic integers are the infinite continua-
tion of this tree to the left. The distance between two 3-adic
integers is determined by the depth of their first common
ancestor, where deeper means closer. Thus, the open sets of
the topology on Z3 are generated by the down(left)-sets of
this infinite tree.

define thep-adic integers Zp = {z ∈ Qp | |z |p ≤ 1} (Figure 2).
Equivalently, a p-adic integer is a p-adic number whose p-
adic expansion has no nonzero values to the right of the
decimal point. Because of the nonarchimedean property, the
sum of two p-adic integers is still an integer, and thus Zp
forms a ring.
As a complete structure with a nonarchimedean norm,Qp

is a natural setting to develop a theory of analysis. Many
of the familiar notions of calculus over R are simplified in
this setting. For instance, deciding whether an infinite se-
ries of real numbers

∑∞
i=0 ri converges can be a subtle prob-

lem, and calculus students traditionally learn a list of conver-
gence tests to answer it. OverQp , the nonarchimedean prop-
erty guarantees that such a series converges if and only if
limi→∞ |ri |p = 0. Mahler’s theorem [31] describes a remark-
ably straightforward characterization of continuous func-
tions on Zp .
Applications ofp-adic analysis arise inmany areas of num-

ber theory, including in the studies of Diophantine equa-
tions and arithmetic progressions [28]. In computer science,
the p-adics can be used to implement efficient rational arith-
metic [24]. The p-adic integers Zp are particularly useful for
establishing facts about divisibility and modularity. Just as
analysis overQp is in some sense simpler than analysis over

R, the algebraic structure onZp makes these results compar-
atively easy to obtain. Another application is in the method
of Chabauty–Coleman [33], which can often be used to de-
termine rational points on algebraic varieties. This method
is used in the resolution of certain generalized Fermat equa-
tions [12], closely related to the mathematics that the Lean
Forward project will address.
Gouvêa [19] cites Hensel’s lemma [25] as the “most im-

portant algebraic property of the p-adic numbers.” This re-
sult, which establishes a connection between the number-
theoretic properties and the analysis of polynomial func-
tions over Zp , is the backbone of the study of the p-adics.
It is often applied to prove the (non)existence of solutions
to polynomial equations over various rings; in computer
science, it appears in floating point rounding algorithms.
Hensel’s lemma is stated in the literature in many forms.
The central idea is that for any univariate polynomial f over
Zp , if one can find a point a such that f (a) and f ′(a) sat-
isfy certain requirements, then f has a unique root within
a neighborhood of a. (We state the hypotheses explicitly in
Section 5.)
Hensel’s lemma can be used to reduce the problem of find-

ing roots of a polynomial over Zp to the (finite) problem of

finding roots over Z/pkZ, typically for small k . The local-

global principle, also known as theHasse orHasse-Minkowski
principle, is one of the central principles of Diophantine ge-
ometry [38]. It describes a general system that aims trans-
lating questions about roots over Q to questions about roots
over Qp and R, which are often easier to answer. A strik-
ing application of this principle shows that a quadratic form
over Q has nontrivial roots in Q if and only if it has nontriv-
ial roots in R and Qp for all prime p. The scope and appli-
cations of the local-global principle are actively explored in
number theory today; Browning [7] gives a survey of recent
results.

3 The Lean Mathematical Library

TheLean proof assistant, developed principally by Leonardo
de Moura, was first released in 2014 [14]. Lean implements
a version of the calculus of inductive constructions (CIC)
[11] with support for quotient types and classical reasoning.
Since the release of the most recent version in 2017 [13],
there has been a concerted effort to develop mathlib, a com-
prehensive library for use in mathematics and computer sci-
ence [9].
Lean’smathlib is younger and smaller than similar libraries

in other systems, such as Coq’s Mathematical Components
[30] or Isabelle’s Archive of Formal Proofs [35], but it con-
tains developments in many important areas of mathemat-
ics. It notably includes a proof of the law of quadratic reci-
procity, amodel of ZFC, and the construction of the Lebesgue
measure on R.
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class semigroup (α : Type) extends has_mul α :=

(mul_assoc : ∀ a b c : α, a * b * c = a * (b * c))

class monoid (α : Type) extends semigroup α,

has_one α :=

(one_mul : ∀ a : α, 1 * a = a)

(mul_one : ∀ a : α, a * 1 = a)

class group (α : Type) extends monoid α,

has_inv α :=

(mul_left_inv : ∀ a : α, a−1 * a = 1)

lemma one_inv (α : Type) [group α] :

1−1 = (1 : α) :=

inv_eq_of_mul_eq_one (one_mul 1)

Figure 3.A sample of the bottom of the algebraic hierarchy.
The lemma one_inv can be applied to any α for which Lean
can infer an instance of group α.

The datatypes available in mathlib include the concrete
types commonly found in mathematics, among them N, Z,
Q, R, and C; finite sets and multisets over a base type; and
embeddings and isomorphisms between types. The algebraic
hierarchy of mathlib is designed using type classes, which
endow a base type with extra structure in the forms of oper-
ations, properties, and notation [39, 42]. Lean’s type class
resolution mechanism automatically manages inheritance
between type classes (Figure 3). If a type class T' extends (di-
rectly or by transitivity) a type class T, any theorem proved
over T will apply to any type that instantiates T'. The alge-
braic hierarchy begins with semigroups and monoids and
extends to rich structures including fields, Noetherian rings,
and principal ideal domains. Van Doorn, von Raumer, and
Buchholz [40] give a more detailed explanation of how type
classes are used to define an algebraic hierarchy in Lean.
Topological structure is also managed using type classes.

In particular, topologies on metric spaces, normed spaces,
and similar structures are inherited from the topology de-
fined on uniform spaces [6], of which all of these structures
are instances. Topological notions such as limits and conti-
nuity are defined using filters [26], which specialize to more
familiar definitions on metric or normed spaces.
In contrast to many other libraries for CIC-based systems,

mathlib does not focus on constructive mathematics. Most
of the core datatypes are defined computably, making them
able to be reduced in the kernel or virtual machine. But
the more abstract mathematical theories freely use classi-
cal logic; these theories are mostly noncomputable. Since
the system can easily track the computability of a declara-
tion, terms that do not depend on additional axioms will still
compute.
Lean features a powerful metaprogramming framework

that allows users to write custom tactics in the language of

Lean itself [16]. There are a number of such tactics included
inmathlib. Relevant to this project are linarith, which proves
linear inequality goals using certified Fourier-Motzkin elim-
ination; ring, a tactic based on Gregoire and Mahboubi’s
work in Coq [20] which normalizes expressions in the lan-
guage of (semi)rings; and wlog, which reduces symmetric
goals to a single case.
The development described in this paper uses a large por-

tion of mathlib. In particular, it makes use of the concrete
datatypesQ and Z, along with many lemmas concerning di-
visibility and modular arithmetic; the topology library, for
properties about continuity and limits; the analysis library,
for the definitions of normed rings and fields and the topo-
logical properties of these structures; the abstract algebra li-
brary, to derive additional algebraic structure on Zp ; and the
polynomial library, which is needed even to state Hensel’s
lemma. This project has led to contributions to mathlib in
all of these domains.
Readers unused to Lean syntax should note that explicit

arguments to declarations are enclosed in parentheses (),
implicit arguments are enclosed in curly brackets {}, and
type class arguments are enclosed in square brackets []. Only
explicit arguments are given by the user when applying a
declaration. For instance, writing a theorem as

lemma one_mul {α : Type} [group α] (a : α) : . . .

specifies that the type α is supposed to be inferred automat-
ically (say, from the argument a). The group structure on
α, which is introduced anonymously, should be inferred by
type class resolution. In the context z : Z, Lean will con-
firm that one_mul z is a proof that 1 * z = z.
Another important feature of Lean syntax is its projection

notation. Suppose S is a structure (or record) type with a
field val, and t : S. The typical way to access the val field
of t is by S.val t; here S.val is a compound name, with val

living in the namespace S. Lean also admits the abbreviation
t.val, using the period to separate a term and a name. This
notation is not restricted to projections, although it is most
commonly used there. In general, if a term named T.op has
been defined and t : T, then t.op abbreviates T.op where
t is inserted as the first argument of type T. For a concrete
example, consider the type polynomial α and the operator

polynomial.eval : α → polynomial α → α

which evaluates a univariate polynomial at an argument. If
we have F : polynomial α and a : α, we can use the no-
tation F.eval a in place of polynomial.eval a F. This no-
tation can be nested, e.g. to replace

polynomial.eval a (polynomial.derivative F)

with F.derivative.eval a.
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4 Formalizing the p-adic Numbers

In this section we describe the formal construction of Qp
and Zp and the proofs of their associated algebraic proper-
ties. We approximately follow the presentation from Gou-
vêa [19], although many of the ideas here are canonical in
the mathematical literature. Broadly, our construction goes
by the following plan:

1. Define the p-adic valuation on Z, extend it to Q, and
use this to define the p-adic norm.

2. Show that thep-adic norm onQ is a non-archimedean
absolute value.

3. Define Qp as the completion of Q with respect to the
p-adic norm.

4. Show that Qp inherits field operations and a norm
from Q.

5. Define Zp as a subtype of Qp , and show that it instan-
tiates various algebraic structures.

Throughout this development, we will fix a natural num-
ber p. Some proofs in step 2 assume only that p > 1. In the
rest of the development, wework under the assumption that
p is prime. Wemanage this primality assumption using type
classes, so such arguments never need to be given explicitly.
In the code snippets below, we typically assume that these
arguments have been fixed as parameters, and only include
them in the signatures of our functions when we wish to
highlight them.
The valuation and norm functions defined in step 1 are

total: instead of taking proofs (e.g. that p is prime) as argu-
ments, they return the value 0 when their arguments are
not in the intended domain. This approach to defining par-
tial functions is common in logics that support only total
functions. Proofs of properties of these functions assume
that the arguments are in the intended domain; these proofs
are often inferred by the type class mechanism and are thus
transparent to the user.

4.1 The p-adic Valuation and Norm on Q

The p-adic valuation νp (z) of an integer z , 0 is the largest

k such that pk | z. This extends to Q by setting νp (q/r ) =
νp (q)−νp (r )whenq and r are coprime.We define these func-
tions in Lean using the operator nat.find_greatest P b,
which returns the greatest n ≤ b satisfying the predicate
P. Recall that z.nat_abs, q.num, and q.denom are projection
notation for int.nat_abs z, rat.num q, and rat.denom q

respectively.

def padic_val (p : N) (z : Z) : N :=

if z = 0 then 0

else if p > 1 then

nat.find_greatest (λ k, (p ^ k) | z) z.nat_abs

else 0

def padic_val_rat (p : N) (q : Q) : Z :=

(padic_val p q.num : Z)-(padic_val p q.denom : Z)

def padic_norm (p : N) (q : Q) : Q :=

if q = 0 then 0

else (p : Q)^(-(padic_val_rat p q))

These definitions are computable and can thus be evalu-
ated on closed inputs. Note that padic_val and padic_norm

both require the natural number p as an explicit argument.
In general, p cannot be inferred from context. This makes
it difficult to introduce generic notation for these functions,
or to use Q to instantiate type classes that depend on the
norm, such as normed_field . This complication will be re-
solved once we define Qp , since p will be an argument to
the type of p-adic numbers.

4.2 Properties of the p-adic Norm

Proving the essential properties of νp is similarly straight-
forward, under the assumption that p > 1. The only lemmas
that require p to be prime are the multiplicative properties,
e.g.:

lemma mul {m n : Z} (hm : m , 0) (hn : n , 0) :

padic_val p (m*n) = padic_val p m + padic_val p n

For the most part, the properties of padic_norm follow
from analogous properties of padic_val_rat , which them-
selves follow from analogous properties of padic_val. Lift-
ing proofs requires some care with casts between N, Z, and
Q.
The most involved proof in this section is the core of the

later proof that the p-adic norm is nonarchimedean.

theorem min_le_padic_val_rat_add {q r : Q}

(hq : q , 0) (hr : r , 0) (hqr : q + r , 0) :

min (padic_val_rat p q) (padic_val_rat p r)

≤ padic_val_rat p (q + r)

Proving this fact requires an elementary but subtle com-
putation. Once it is completed, the proof that padic_norm
p instantiates the is_absolute_value type class (Figure 4)
follows quickly. This instance depends on the primality of
p, which is inferred by type class resolution.

4.3 Completing Q

There are many related notions of Cauchy completions in
the mathematical literature, varying in the level of abstrac-
tion and in the structure on the base space. We considered
a number of options for constructing Qp .
The first and most generic option was to perform the uni-

form completion of Q with respect to the uniform structure
generated by the p-adic norm [27]. A uniform space is an ab-
straction that falls somewhere in between a metric space, in
which every two points are separated by a real-valued dis-
tance, and a topological space, which provides a generic but
unquantified notion of “separatedness.” A uniform structure
allows one to consider relative distances between points with-
out assigning concrete values to these distances. Any uni-
form space α can be completed by considering the space of
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class is_absolute_value {α} [ordered_field α]

{β} [ring β] (f : β → α) : Prop :=

(abv_nonneg : ∀ x, 0 ≤ f x)

(abv_eq_zero : ∀ {x}, f x = 0 ↔ x = 0)

(abv_add : ∀ x y, f (x + y) ≤ f x + f y)

(abv_mul : ∀ x y, f (x * y) = f x * f y)

parameters {α : Type} [comm_ring α]

parameters (β : Type) [ordered_field β]

parameters (abv : α → β) [is_absolute_value abv]

def cau_seq : Type :=

{f : N → α // is_cauchy abv f}

def equiv (f g : cau_seq) : Prop :=

∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - g j) < ε

def completion : Type := quotient cau_seq equiv

instance : comm_ring completion := . . .

Figure 4. A schematic depiction of the general Cauchy se-
quence completion. In Lean, parameters are automatically
included as arguments to declarations throughout the dura-
tion of a section.

Cauchy filters over α , where a Cauchy filter is a topologi-
cal generalization of a Cauchy sequence. When the uniform
structure on α is induced by a metric (or norm), this con-
struction reduces to the completion described in Section 2.
The uniform completion process has been formalized in

Lean and could, in principle, be immediately specialized to
obtain Qp . However, the generality of this construction is
not so amenable to a “concrete” number type like Qp . It
is quite difficult to lift operations that are not uniformly
continuous, such as multiplication, from the base type to
the completion space. Furthermore, one must reconcile the
filter-based notion of completeness with a sequential notion
in order to prove Hensel’s lemma, which depends on finding
a limit of a sequence of p-adic integers. These complications
created by the generality of the uniform completion came
with few upsides; it seemedmore prudent to take a different
approach. Regardless of the initial construction,Qp is easily
instantiated as a complete uniform space after the fact.
A second option was to specialize the uniform comple-

tion to the completion of a normed structure. (We rejected
the idea of using the metric completion, which falls in be-
tween, since it comes with all the disadvantages of the norm
completion and more.) Under this specialization, the inter-
face for lifting operations looksmore familiar. Norm comple-
tions are not uncommon in mathematics, so although imple-
menting an interface for this would take some initial effort,
it could be reused in the future.

Two downsides discouraged us from this approach. First,
the norm referred to in an arbitrary normed space is typ-
ically real-valued. Defining Qp would thus depend on R,
which is already a completion of Q (using a different com-
pletion process).While logically sound, this approachwould
be pedagogically dubious, since it removes the direct anal-
ogy between Qp and R; it would also obscure the fact that
the p-adic norm only takes rational values. A second, more
practical, concern with this approach was related to the nec-
essary type class inference. The norm on a space is generally
inferred automatically, and the default instance for Q is the
traditional absolute value. To use the p-adic norm instead,
we would have to locally override this instance. Doing this
would be possible but could lead to complications in future
developments that use the p-adic norm and traditional abso-
lute value on Q simultaneously.
The option we elected to follow is to directly define the

Cauchy sequence completion of a type α , with respect to an
absolute value on α taking values in an arbitrary ordered
field (Figure 4). If α has a ring or field structure, this struc-
ture lifts immediately to the completion. This generalizes
the former definition of R in mathlib; we implement both
R and Qp as instances of this general construction. It has
the added benefit that the ring operations on Qp are com-
putable, although this property is not used in the current
development. The downside to this approach is that some
work must be done to connect the concrete ϵ-definition of
convergence to more general topological notions. This ex-
tra work can be minimized by instantiating Qp as a normed
field, which we do in step 4.

def padic (p : N) [prime p] : Type :=

completion Q (padic_norm p)

notation Q_[p] := padic p

The completion function takes two explicit arguments, a
type and a field-valued function on that type. An implicit
argument, inferred by type class resolution, shows that the
field-valued function is an absolute value. Since the p-adic
norm is only an absolute value if p is prime, it is essential
to assume primality in the definition of Qp . This hypothesis
is also an implicit type class argument and normally will be
inferred automatically.

4.4 Operations on Qp

The field operations on Qp are obtained for free through
the Cauchy sequence construction. It also follows directly
that Q is embedded in Qp . (Any constant sequence of ratio-
nals is Cauchy and is not equivalent to any other constant
sequence of rationals, so each rational q induces a unique
p-adic number q̄.)

It takes more effort to lift the p-adic norm on Q to a norm
on Qp . Intuitively, one might be tempted to claim that “the
norm of the limit is the limit of the norms,” that is, that we
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should define the norm of a Cauchy sequence to be the limit
of the norms of each entry. But since the p-adic norm is
rational-valued, and Q is not complete, this would unhelp-
fully produce a Qp -valued norm. Note the contrast with the
real numbers: because the linear order onQ lifts to R, a real-
valued norm makes sense. Instead, we exploit an important
property of the p-adic norm, derived from the fact that its
values lie in the set {0}∪ {pk | k ∈ Z}. Because these values
are separated (except at 0), the norms of the entries of any
(nonzero) Cauchy sequence are eventually constant.

lemma stationary {f : cau_seq Q (padic_norm p)}

(hf : ¬ f ≈ 0) : ∃ N, ∀ m n, m ≥ N → n ≥ N →
padic_norm p (f n) = padic_norm p (f m)

def norm (f : cau_seq Q (padic_norm p)) : Q :=

if hf : f ≈ 0 then 0

else padic_norm p (f (stationary_point hf))

def padic_norm_e : Q_[p] → Q :=

quotient.lift norm norm_respects_equiv

Thus, the limit is indeed rational valued, and we can de-
fine a rational-valued normon the type of Cauchy sequences.
This norm respects equivalence, so it can be lifted to the
quotient Qp . With some work, the norm can be shown to
preserve the essential properties of the norm on Q, includ-
ing the nonarchimedean property. We can also check that
the norm is indeed an extension of the norm onQ, meaning
that for any q ∈ Q, |q̄ |p = |q |p .
Since we have defined Qp as the completion of Q with

respect to the p-adic norm, and the p-adic norm extends to
Qp , it is important to check that Qp is in fact complete with
respect to its norm. We again highlight the difference here
between Qp and R. Since the absolute value on R is real-
valued, as opposed to rational-valued, the arguments that
Qp and R are complete differ in significant ways. We do not
use a general proof to cover both cases, since despite some
structural similarity, the generalization is rather convoluted.
We also prove that Q is dense in Qp—meaning that every
q ∈ Qp is arbitrarily close to r̄ for some r ∈ Q—similarly to
howwe prove the analogous statement inR, with a separate
implementation to account for the different absolute value.
We have thus established thatQp is a complete field, densely

embedding Q, with a nonarchimedean norm that extends
the p-adic norm on Q. These properties uniquely character-
ize Qp : any structure with these properties is isomorphic to
Qp . (We have not yet formalized this statement.)
Finally, we instantiate Qp as a normed field. From this

instance, Qp inherits a topology and uniform structure. The
only complication,mentioned above, is that the generic norm
of a normed ring is real-valued instead of rational-valued.
But since the essential properties of the p-adic norm are al-
ready established, casting to R is less troublesome here; sim-
ilarly, the pedagogical concerns about using R in the con-
struction of Qp are no longer relevant.

From the normed field instance, we inherit the generic
notation ‖x‖ for the norm of a p-adic number x. Unlike for
the p-adic norm on Q, there is no ambiguity here about the
parameter p, since it can be inferred from the type of x.

4.5 Defining Zp

Thep-adic integers Zp are traditionally defined as the subset
{z ∈ Qp | |z |p ≤ 1}. This is equivalent to the completion of
Z using the p-adic norm, but for formalization purposes, the
former definition is much simpler.

def padic_int (p : N) [prime p] : Type :=

{z : Q_[p] // ‖z‖ ≤ 1}

notation Z_[p] := padic_int p

The notation here is for Lean’s subtype data structure,
meaning that a term z : Z_[p] is a dependent pair of a term
x : Q_[p] with a proof that ‖x‖ ≤ 1. Note that this is not
a “strict” subtype, in the sense that the term z does not have
type Q_[p]; rather z.val, the first projection of z, has this
type.We canmove between the two types with little friction
by defining a coercion from Z_[p] to Q_[p]. However, it is
still convenient to minimize this kind of context shift, as we
will discuss in Section 5.

From the properties of the p-adic norm, we obtain that Zp
is closed under sums and products and show that it forms
a subring of Qp . This subring has algebraic structure that
make it a fruitful object of study. Most fundamentally, we in-
stantiate Zp as a normed commutative local ring with maxi-
mal ideal {x ∈ Zp | |x |p < 1}. We also show it is complete—
meaning that any Cauchy sequence of p-adic integers con-
verges to a p-adic integer—and that it densely embeds Z.

As withQp , the topology on Zp is inherited from its norm.
The open sets are generated by the family of balls {x ∈ Zp |
|z − x |p < ϵ}, ranging over ϵ ∈ R>0 and z ∈ Zp .

5 Formalizing Hensel’s Lemma

Hensel’s lemma establishes another fundamental algebraic
property of Zp . This result provides simple criteria for lo-
cating p-adic integer roots of a polynomial; it is widely ap-
plied in p-adic analysis, and is also used in approximation
algorithms in computer science [32]. The general notion of
a Henselian local ring, defined to be a local ring for which
Hensel’s lemmaholds, appears in algebraic geometry.Weaker
analogues of Hensel’s lemma hold over other structures, in-
cluding the standard integers Z, but the hypotheses of these
analogues are harder to satisfy than those for Zp .
The formal proof of Hensel’s lemma follows a writeup

by Conrad [10]. Conrad’s description is more concrete than
Gouvêa’s [19] and avoids unnecessary detours into the group
Z/pZ, although the approaches are schematically identical.
We slightly modify Conrad’s proof to perform as much com-
putation as possible inside Zp , without stepping into Qp .
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Conrad [10, Theorem 4.1] states Hensel’s lemma as fol-
lows. Here, Zp [X ] is the ring of univariate polynomials over
a variable X with coefficients in Zp . The derivative f ′ is the
formal polynomial derivative, which does not rely on the
notion of a limit.

Theorem. Suppose that f (X ) ∈ Zp [X ] and a ∈ Zp satisfy

| f (a)|p < | f ′(a)|2p . There exists a unique z ∈ Zp such that

f (z) = 0 and |z − a |p < | f ′(a)|p . Furthermore, it holds that

|z − a |p = | f (a)|p/| f ′(a)|p and | f ′(z)|p = | f ′(a)|p .
Hensel’s lemma is sometimes statedwith the requirements

f (a) ≡ 0 mod p and f ′(a) . 0 mod p. This is a weaker
corollary ofwhatwe state here. The statementwe have proven
in Lean is a direct translation of the stronger version.

theorem hensels_lemma {p : N} [hp : prime p]

{F : polynomial Z_[p]} {a : Z_[p]} :

‖F.eval a‖ < ‖F.derivative.eval a‖^2 →
∃ z : Z_[p], F.eval z = 0 ∧
‖z - a‖ < ‖F.derivative.eval a‖ ∧
‖z - a‖ = ‖F.eval a‖ / ‖F.derivative.eval a‖ ∧
‖F.derivative.eval z‖ = ‖F.derivative.eval a‖ ∧
∀ z' : Z_[p], F.eval z' = 0 →

‖z' - a‖ < ‖F.derivative.eval a‖ → z' = z

While Hensel’s lemma can be proved in various different
settings at different levels of generality, nearly all proofs fol-
low the same approach: starting with the seed point a, they
recursively define a sequence of approximations to the de-
sired root, and argue that this sequence converges. This ar-
gument is typically seen as an analogy to Newton’s method
for finding roots of real functions.
Our proof goes by the following sketch:

1. Establish two generic polynomial identities that will
be used at multiple points of the proof.

2. Define a constant, depending only on a, that will be
used to bound various quantities.

3. Define a recursive sequence N→ Zp , simultaneously
proving bounds on the values of f along this sequence.

4. Show that this sequence is Cauchy.
5. Show that the limit of this Cauchy sequence has the

desired properties, in particular that it is a root of f .
6. Show that this root is unique within a neighborhood

of a.

This sketch comes directly from Conrad. Our approach
diverges slightly in step 3, where we reconfigure the recur-
sion to avoid unnecessary casts between Zp andQp . We also
assume that f (a) , 0 for much of the proof, and handle this
later as a (simple) degenerate case. Conrad does not make
this special case explicit, but the argument fails at a crucial
point if f (a) = 0.

5.1 Polynomial Identities

Two polynomial identities are used in the proof to rewrite
expressions into forms thatwe canmore easily bound. These
identities are not specific to the p-adic numbers.

The first identity allows us to separate components of
f (x) and f ′(x) from the expansion of f (x + y).
lemma binom_exp (f : polynomial α) (x y : α) :

∃ k : α, f.eval (x + y) = f.eval x +

(f.derivative.eval x) * y + k * y^2

This identity follows from a similar statement on commu-
tative semirings.

def binom_exp' {α} [comm_semiring α] (x y : α) :

∀ n : N, ∃ k : α,

(x + y)^n = x^n + n*x^(n-1)*y + k * y^2

After inducting on n, this proof follows nearly automati-
cally using Lean’s ring tactic. The only manual input is the
value to instantiate k. This value was computed using com-
puter algebra software, and using a link to such software
(e.g. [29]), even this step could potentially be automated.

The second identity shows that x −y divides f (x) − f (y).
lemma eval_sub (f : polynomial α) (x y : α) :

∃ z : α, f.eval x - f.eval y = z*(x - y)

This also follows from a similar algebraic statement, which
is proved by induction and ring evaluation.

5.2 A Bounding Value

In the subsequent steps we will fix F : polynomial Z_[p]

and a : Z_[p], and assume that the inequality

‖F.eval a‖ < ‖F.derivative.eval a‖^2

holds. (These assumptions are taken as parameters in Lean,
which are automatically inserted into declarations through-
out the duration of a section.) To establish bounds on the
terms of the sequence we will define in step 3, we define an
auxiliary constant T.

def T : R :=

‖(F.eval a).val / ((F.derivative.eval a).val)^2‖

The division must take place in Qp , since Zp is not a field.
However, our hypothesis guarantees that T < 1, so the quo-
tient is in fact an integer. It is trivial to prove the following
alternate characterization of T (which uses the norm on Zp ),
along with various simple facts about T that will be useful
for establishing bounds.

lemma T_def :

T = ‖F.eval a‖ / ‖F.derivative.eval a‖^2

5.3 Defining the Newton Sequence

The core step of the proof of Hensel’s lemma is to define a se-
quence {an } of values that converge to the desired solution.
The recursion is typically given by

a0 = a

an+1 = an − f (an)
f ′(an)



A Formal Proof of Hensel’s Lemma over the p-adic Integers CPP ’19, January 14–15, 2019, Cascais, Portugal

in informal texts. But without further information, this se-
quence lives in Qp instead of Zp ; we must establish proper-
ties about f (an) and f ′(an) before concluding that an+1 is
an integer. In an informal presentation, it is not a problem
to first define the sequence in Qp and show integrality after-
ward. But doing so in our formal development would intro-
duce another layer of casts, one which we would prefer to
avoid. We pay a cost to avoid it: the recursion to build {an}
must incorporate the properties needed to prove integrality,
making it slightly clumsier.
We define our induction hypothesis as follows:

def ih (n : N) (z : Z_[p]) : Prop :=

‖F.derivative.eval z‖ = ‖F.derivative.eval a‖ ∧
‖F.eval z‖ ≤ ‖F.derivative.eval a‖^2 * T ^ (2^n)

To construct our Newton sequence, we must (1) provide
a value satisfying ih 0, and (2) assuming we have a value z
: Z_[p] satisfying ih n z, produce a value z' : Z_[p] sat-
isfying ih (n+1) z'. The informal recursion indicates that
our base value should be a, and it is no trouble to prove ih
0 a. Under the assumption ih n z, we can check that

‖F.eval z / F.derivative.eval z‖ ≤ 1

and so the recursive value

z' := z - F.eval z / F.derivative.eval z

is indeed an integer.
The more difficult part of this induction is to show that

ih (n+1) z' holds. While there is no deep theory needed
to do this, we must calculate some chains of inequalities
that, while relatively straightforward, are long and nonlin-
ear. These computations invoke the inductive hypothesis
on z, the nonarchimedean property of the p-adic norm, and
both polynomial identities described in step 1. It takes roughly
70 lines of Lean code to perform these computations, com-
pared to roughly 10 in the informal presentation. Many of
these computations fall under the scope of the tool Polya [2]
developed by the author. In the future, such a tool could be
used to significantly condense this portion of our proof.
These computations are sufficient to define the following:

def newton_seq (n : N) : {z : Z_[p] // ih n z}

Projecting the first components, we obtain a sequence of
p-adic integers satisfying the induction hypothesis.

5.4 The Newton Sequence is Cauchy

The sequence we have defined should lead us to the root of
F promised by Hensel’s lemma. To reach it, we must show
that newton_seq is Cauchy, so that the completeness of Zp
guarantees that a limit exists. We first establish the follow-
ing lemma, which follows from another inequality compu-
tation:

lemma newton_seq_dist {n k : N} (hnk : n ≤ k) :

‖newton_seq k - newton_seq n‖ ≤
‖F.derivative.eval a‖ * T^(2^n)

(It is here that the special case f (a) = 0 diverges from the
general argument.) Since 0 ≤ T < 1, Lean’s analysis library
makes it easy to show that the right hand side tends to 0,
from which we can deduce (from general properties of se-
quences) that newton_seq is Cauchy. We can thus define
soln : Z_[p] to be the limit of newton_seq.

5.5 Properties of the Limit

From our induction hypothesis, we see that the values of
‖F.eval (newton_seq n)‖ tend to 0 as n grows. It follows
from the continuity of the norm (proved generally over normed
spaces) that ‖F.eval soln‖ = 0, and thus F.eval soln =

0, so we have found a root. The equation

‖F.derivative.eval soln‖ = ‖F.derivative.eval a‖
similarly follows from the induction hypothesis and the con-
tinuity of the norm and polynomial evaluation. A third limit
argument shows that

‖soln - a‖ = ‖F.eval a‖ / ‖F.derivative.eval a‖
which implies the (less precise but sometimes more useful)
bound ‖soln - a‖ < ‖F.derivative.eval a‖, the last prop-
erty we sought.
The limit arguments in this section, when unfolded into

the language of metric spaces, appear as frustrating manip-
ulations of small numbers ϵ and large numbers N . We work
to avoid as much frustration as possible by making these
arguments topologically. Establishing general results about
Cauchy sequences on topological spaces lets us keep the ϵ–
N manipulations largely isolated.

5.6 Uniqueness of the Solution

Hensel’s lemmadoesmore than just locate a root of the poly-
nomial f : it guarantees that the root is the only one within
a neighborhood of the seed point a. The uniqueness proof
follows from a short computation using the first polynomial
identity from step 1.

lemma soln_unique (z : Z_[p]) (he : F.eval z = 0)

(hlt : ‖z - a‖ < ‖F.derivative.eval a‖) :

z = soln

When a is already a root of f , uniqueness follows even
more directly. We can thus show Hensel’s lemma by a case
distinction on whether f (a) = 0, providing a as a witness in
the special case and soln in the general case.

6 Related Work

Although number theory is underrepresented in proof assis-
tant libraries compared to other fields of mathematics, var-
ious projects have formalized results in this area. The fol-
lowing incomplete list indicates the depth and flavor of such
projects.
The prime number theorem has been a popular target for

formalization, verified first in Isabelle/HOL by Avigad, Don-
nelly, Gray, and Raff [1] and subsequently by Harrison in
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HOL Light [23], Carneiro in Metamath [8], and others. Is-
abelle’s Archive of Formal Proofs contains a number of re-
lated entries, including Eberl’s proof of Dirichlet’s theorem
[15]. Elliptic curves and their number theoretic consequences
have been addressed in multiple formalizations, including
by Bartzia and Strub [4]. The transcendence of e and π , a
result that is at least adjacent to number theory, was first
formalized in Coq by Bernard, Bertot, Rideau, and Strub [5].
Analyses of the solutions to Pell’s equations have been for-
malized in various systems, as has the proof of Fermat’s
little theorem; these and other classical results appear on
Wiedijk’s list of formalizations of 100 fundamental theorems
[43].
The only formal construction of Qp and Zp found in the

literature is by Pelayo, Voevodsky, and Warren [37], carried
out in the Coq UniMath library [41]. Because of the univa-
lent foundations of UniMath, it is difficult to compare their
approachwith ours. One immediate difference is that Pelayo
et al. begin with an algebraic construction of Zp rather than
an analytic construction ofQp . This construction defines Zp
as a quotient on the ring of formal power series of Z, and
goes on to define Qp as the field of fractions on Zp . The
algebraic approach is perhaps more appropriate in a uni-
valent setting. A complete theory of the p-adics ultimately
requires both analytic and algebraic structure. No matter
which is chosen for the initial construction, the properties
of the other must eventually be derived. The UniMath de-
velopment ends soon after the ring and field structures are
defined, and does not prove any theorems about Zp or Qp .
An undocumented construction ofQp by Harrison is also

found in the HOL Light repository [22], where it is writ-
ten that the development is “meant as an example of us-
ing metric space completion.” The development defines Qp
as the metric completion of Q, which we believe is better
avoided for pedagogical reasons (Section 4.3). Since metric
space completion does not preserve the field operations on
Q, much of the construction is dedicated to redefining these
operations onQp . This development ends once the field struc-
ture on Qp is established, and does not prove any results
about the type. It is interesting to note how the construc-
tion in a simply typed logic differs from those in dependent
type theory. HOL Light does not allow one to define the
type Qp depending on p (nor on a proof that p is prime). In-
stead, Harrison defines a general type padic that contains
the image of Qp for each p. Such an approach is common in
HOL-based systems, but is rarely used in systems like Lean,
where the dependencies pose no problems.

Martin-Dorel, Hanrot, Mayero, and Théry describe a Coq
formalization of Hensel’s lemma for the standard integers,
and show some of its applications in verifying bounds on
rounding errors [32]. Their approach is more explicitly al-
gorithmic than ours, as their applications involve comput-
ing solutions to polynomials modulo powers of p (a process
known asHensel lifting). For this purpose, it is reasonable to

operate over the standard integers, since there are complica-
tions in defining Qp as a computable field. The statement of
Hensel’s lemma is rather less elegant than over Zp , however,
and its import as an algebraic property is hidden.

7 Concluding Thoughts

The p-adic numbers and Hensel’s lemma are an important
tool of modern number theory, including the study of Dio-
phantine equations. A recent project begun at the Vrije Uni-
versiteit Amsterdam aims to formalize results in this area.
ConstructingQp and Zp are essential steps toward this goal.
We plan to pursue consequences of Hensel’s lemma in fu-
ture work, beginning with applications of the local-global
principle. The p-adic numbers can be abstracted in different
ways, and Hensel’s lemma proved in more general contexts;
we plan to explore these possibilities. More concretely, it is
often useful to consider the alternative characterization of
Zp as the inverse limit of the rings Z/pnZ. We plan to show
the connection between this algebraic approach and our an-
alytic approach.
This development has also served as a case study for us-

ing Lean for such a project. Themix of analysis, algebra, and
concrete computation make the p-adic numbers an interest-
ing target; we found that Lean and its libraries were up to
the task. Similar developments could certainly be made us-
ing other proof assistants, but we found the classical library
and notational features of Lean to be quite helpful here; de-
pendent type theory is a convenient logical foundation to
use, sinceQp is naturally a dependent type. Two particularly
painful parts of the project were managing casts between
various number structures and proving long but straightfor-
ward nonlinear inequalities. The former is especially likely
to occur in further number theoretic developments, since it
is often necessary to move between N, Z, Q, R, Qp , Zp , and
other number structures. We hope to develop tools to assist
with this movement using Lean’s metaprogramming capa-
bilities.
As always, it is difficult to directly compare the lengths

of our formalization and the informal proofs we followed,
since they begin at different levels of background knowl-
edge. The portion of our formalization that proves Hensel’s
lemma is around 400 lines of code, corresponding to 1.5 pages
of text in Conrad’s informal proof; tools mentioned in the
previous paragraph should significantly decrease this ratio.
This development has added around 4500 lines of code to
the mathlib repository.
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