
Dynamic Class Initialization Semantics:
A Jinja Extension

Susannah Mansky
Department of Computer Science

University of Illinois at Urbana-Champaign
USA

sjohnsn2@illinois.edu

Elsa L. Gunter
Department of Computer Science

University of Illinois at Urbana-Champaign
USA

egunter@illinois.edu

Abstract
The Java Virtual Machine (JVM) postpones running class
initialization methods until their classes are first referenced,
such as by a new or static instruction. This process is called
dynamic class initialization. Jinja is a semantic framework
for Java and JVM developed in the theorem prover Isabelle
that includes several semantics: Java-level big-step and small-
step semantics, JVM-level small-step semantics, and an in-
termediate compilation step, J1, between these two levels.
In this paper, we extend Jinja to include support for static
instructions and dynamic class initialization. We also extend
and re-prove related proofs, including Java-level type safety,
equivalence between Java-level big-step and small-step se-
mantics, and the correctness of a compilation from the Java
level to the JVM level through J1. This work is based on the
Java SE 8 specification.

CCSConcepts •Theory of computation→Operational
semantics;

Keywords operational semantics, Java, Java Virtual Ma-
chine, dynamic class initialization, interactive theorem prov-
ing, compilation, type safety

ACM Reference Format:
Susannah Mansky and Elsa L. Gunter. 2019. Dynamic Class Initial-
ization Semantics: A Jinja Extension. In Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs
(CPP ’19), January 14–15, 2019, Cascais, Portugal. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3293880.3294104

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294104

1 Introduction
In order to prove properties of programs, it is necessary
to have a model for the behavior of the language they are
written in. Jinja [Klein and Nipkow 2006] is an Isabelle de-
velopment modeling a subset of Java, JVM byte code, and
compilation from one to the other. This subset represents
the core of the language and its behavior, but was not meant
to be a complete representation. We sought to extend the
subset covered.
Our motivation for this work is to achieve a semantics

representing a large enough subset of the language to prove
properties about the class use of programs. In particular, we
wish to prove the safety of a regression testing algorithm
described by Gligoric et al. [Gligoric et al. 2015], which col-
lects the names of classes touched by a test during its run. A
test is only rerun when a class in its touch-set has changed.
Proving safety requires showing that any given test’s be-
havior will be unchanged if its touch-set remains the same.
Static instructions and dynamic class initialization are core
uses of classes in typical programs, so any verification of this
algorithm would need to address these features to be con-
vincing. We therefore found it imperative to include them in
the model we will use in our proof.
In this paper, we present an extension of Jinja’s model

to include static fields and methods and the instructions on
them. We also give semantics for dynamic class initialization
- the running of class initialization methods when classes
are first referenced (interrupting the expression referencing
the class), such as by static instructions - in order to more
accurately represent the handling of statics. We then use
these updated semantics to extend proofs at the Java level of
progress, type safety, and equivalence of big-step and small-
step semantics, and to extend the compiler from Java to
JVM, including proofs of its correctness. While the language
features we add here have been represented in some other
models of Java (e.g., [Attali et al. 1998; Bogdanas and Roşu
2015]) and the JVM (e.g., [Atkey 2008; Belblidia and Debbabi
2007; Bertelsen 1997; Liu and Moore 2003]) and both ([Stärk
et al. 2012]), these models variously have no supporting
theory, do not support both features, or do not have the
flexibility we need to prove properties over programs in
general.

209

https://doi.org/10.1145/3293880.3294104
https://doi.org/10.1145/3293880.3294104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3293880.3294104&domain=pdf&date_stamp=2019-01-14

CPP ’19, January 14–15, 2019, Cascais, Portugal Susannah Mansky and Elsa L. Gunter

Initialization is described in the JVM specification as a pro-
cedure performed during the execution of a single instruc-
tion. We have chosen to represent this using a small-step
approach, as a big-step approach is too unwieldy; however,
the Java-level big-step semantics (and its equivalence with
small-step semantics at the same level) gives us confidence
in our representation.
Section 2 talks about Jinja, what it previously included,

and how its semantics was represented. Sections 3 and 4 give
a specification of the features that we added, based on the
Java SE 8 specifications for Java and JVM [Gosling et al. 2015;
Lindholm et al. 2015]. Section 5 briefly discusses the impact
of these features on the structure of the semantics. Section 6
presents the actual syntax and semantics changes. Section
7 provides some details regarding the updated type safety
and equivalence proofs. Section 8 presents the major details
in our update to the Java to JVM compiler and the proof of
its correctness. Section 9 provides some reflections on the
work. Finally, Sections 10 and 11 discuss some related work,
wrap up, and suggest future directions.

The Isabelle development for the work presented here
can be found online at https://github.com/susannahej/
jinja-dci.

2 Jinja
Jinja was developed to give a formal semantics for both Java
and JVM byte code in a unified way. The authors wrote
the semantics in the theorem prover Isabelle because this
allowed them to write definitions and proofs based on this
semantics. These proofs include type safety of the small-step
semantics, equivalence of two semantics, and the correctness
of a compiler from the Java level to the JVM level. The value
of using a system like Isabelle to build a semantic framework
is precisely the ability to prove these kinds of results, which
is why we have chosen to extend this framework: in order to
prove that a test behaves the same on two different programs,
we need both a definition of the language and a framework
that allows meta-reasoning at this level.
In this section, we will describe the features already cov-

ered by the Jinja framework to provide a basis for our exten-
sion.

2.1 Java Level
Jinja’s Java-level semantics J defines 15 expressions: new,
Cast, Val, BinOp, Var, LAss (local assignment), FAcc (field
access), FAss (field assignment), Call, Block, Seq, Cond,
While, throw, and TryCatch. Semantics are given for these
in both big-step (evaluate) and small-step (reduce) style. Both
styles are defined as inductive relations on pairs of expres-
sion and state relative to a given program P , and are written
as P ⊢ ⟨e, s⟩ ⇒ ⟨e ′, s ′⟩ and P ⊢ ⟨e, s⟩ → ⟨e ′, s ′⟩, respectively,
where a state s is made of the heap h and the local variable
mapping l .

FAcc:
P ⊢ ⟨e, s0⟩ ⇒ ⟨addr a, (h, l)⟩

h a = Some(C, f s) fs(F ,D) = Some v

P ⊢ ⟨e • F {D}, s0⟩ ⇒ ⟨Val v, (h, l)⟩

FAccNull:
P ⊢ ⟨e, s0⟩ ⇒ ⟨null, s1⟩

P ⊢ ⟨e • F {D}, s0⟩ ⇒ ⟨THROW NullPointer, s1⟩

FAccThrow:
P ⊢ ⟨e, s0⟩ ⇒ ⟨throw e ′, s1⟩

P ⊢ ⟨e • F {D}, s0⟩ ⇒ ⟨throw e ′, s1⟩

Figure 1. Example rules from Jinja’s Java-level big-step se-
mantics

The small-step rules for new and the big- and small-step
rules for FAcc can be seen in Figures 1 and 2. (The big-step
and small-step rules for new are the same, since there are no
subexpressions to reduce.)
In J the expression new takes one argument: the name of

the class to be instantiated. In both semantic styles, there are
two cases: the heap is out of memory or it is not. The former
case results in an OutOfMemory exception being thrown; the
latter results in the operation being completed. Each case is
written as its own rule.

The expression FAcc takes three arguments: a subexpres-
sion e that should evaluate to an object pointer, the name
of the field whose value is being fetched, and the name of
the class that defines that field in the object being passed.
The evaluation of e has three cases: e evaluates to a pointer,
e evaluates to null, or e evaluates to a thrown expression.
In big-step style, there is a rule for each of these cases. In
small-step style, there are four rules: one reduces the subex-
pression; each of the others handles one these three cases.
See also that this expression only works for fields belonging
to a class instance, since e must evaluate to a pointer. Adding
static fields requires storing them somewhere other than in a
class instance, in order to ensure that they outlive any given
object.

2.2 JVM Level
Jinja’s JVM semantics covers 15 instructions: load, store,
push, new, getfield, putfield, checkcast, invoke, pop,
return, iadd, goto, cmpeq, iffalse, and throw. The rules
for the execution of these instructions were written as a func-
tion exec_instr in small-step style. This function takes nine
arguments: the instruction i to be performed, the program P,
the heap h, the stack stk, the local variables loc, the current
class C_0, the current method M_0, the program counter pc,
and the frame stack frs. It returns a triple made up of an
optional exception, the updated heap, and the updated frame
stack. In Jinja, this triple makes up a program state.

210

Dynamic Class Initialization Semantics: A Jinja Extension CPP ’19, January 14–15, 2019, Cascais, Portugal

RedNew:
new_Addr h = Some a P ⊢ C has_fields FDTs

h′ = h(a 7→ (C, init_fields FDTs))

P ⊢ ⟨new C, (h, l)⟩ → ⟨addr a, (h′, l)⟩

RedNewFail:
new_Addr h = None

P ⊢ ⟨new C, (h, l)⟩ → ⟨THROW OutOfMemory, (h, l)⟩

FAccRed:
P ⊢ ⟨e, s⟩ → ⟨e ′, s ′⟩

P ⊢ ⟨e • F {D}, s⟩ → ⟨e ′ • F {D}, s ′⟩

RedFAcc:
h a = Some(C, fs) fs(F ,D) = Some v

P ⊢ ⟨addr a • F {D}, (h, l)⟩ → ⟨Val v, (h, l)⟩

RedFAccNull:

P ⊢ ⟨null • F {D}, s⟩ → ⟨THROW NullPointer, s⟩

RedFAccThrow:

P ⊢ ⟨throw e • F {D}, s⟩ → ⟨throw e, s⟩

Figure 2. Example rules from Jinja’s Java-level small-step
semantics

"exec_instr (New C) P h stk loc C0 M pc frs =
(case new_Addr h of
None => (Some (sys_xcpt OutOfMemory), h,

(stk, loc, C0, M, pc)#frs)
| Some a => (None, h(a |-> blank P C),

(Addr a#stk,loc,C0,M,pc+1)#frs))"

"exec_instr (Getfield F C) P h stk loc C0 M pc frs =
(let v = hd stk;

xp' = if v=Null
then Some (sys_xcpt NullPointer)
else None;

(D,fs) = the(h(the_Addr v))
in (xp', h,

(the(fs(F,C))#(tl stk),loc,C0,M,pc+1)#frs))"

Figure 3. Example rules from Jinja’s JVM instruction execu-
tion function

The rules for new and getfield can be seen in Figure 3.
In Jinja’s JVM the instruction new is written as New and as

in J takes one argument: the name of the class to be instanti-
ated. The rule has the same two cases as in J: the heap is out
of memory or it is not. This is done using a branching case
statement.

"exec (P, None, h, (stk,loc,C,M,pc)#frs) =
(let i = instrs_of P C M ! pc;
(xp',h',frs') = exec_instr i P h stk loc C M pc frs
in Some(case xp' of None => (None,h',frs')

| Some a =>
find_handler P a h ((stk,loc,C,M,pc)#frs)))"

| "exec _ = None"

Figure 4. Single step execution function for JVM level

The instruction getfield is written as Getfield and
takes two arguments: the name of the field whose value
is being fetched, and the name of the class that defines that
field in the object being passed. The field’s value is fetched
from the object referenced by the pointer on top of the stack.
This rule also has two cases: the pointer on top of the stack
is Null or it is not. The former results in a NullPointer
exception; the latter results in a completed operation. Like
with FAcc at the Java level, this instruction looks up the field
F in a class instance, using a pointer from the top of the
stack.

The function exec_instr defined partially above is then
wrapped inside a function exec shown in Figure 4, which
takes a program and a program state and optionally returns
the next program state. A program state is made up of an
optional exception, a heap, and a frame stack. exec uses
the top frame in the frame stack to determine the current
instruction, which it then passes to exec_instr along with
the other pieces of the frame. It gives the next state given by
exec_instr if there is no exception; otherwise, it attempts
to handle the exception instead by checking the exception
table of each frame until a handler is found (and placed on
top of the frame stack) or the frame stack is empty.

2.3 Extending Jinja
While Jinja represents a massive and impressive piece of
work, there are still many features of Java and the JVM that
it does not support. Our motivating example, in particular,
involves proving that the behavior of a test does not change
if the classes it uses (“touches”) are unchanged. More accu-
rately, we wish to prove that the algorithm for collecting
“touched” classes given by [Gligoric et al. 2015] collects a
set of classes large enough to have this property. Static in-
structions and dynamic class initialization are cornerstone
features for class use, and are thus a place where this collec-
tion might easily be subtly incorrect. Therefore, we required
a semantics that included both of these features, and chose
to extend Jinja as Isabelle provides an especially good frame-
work for proofs about algorithms of this sort. The latter in
particular was not a straightforward extension.

211

CPP ’19, January 14–15, 2019, Cascais, Portugal Susannah Mansky and Elsa L. Gunter

We have also updated several of the large results of the
Jinja framework to include statics and dynamic class ini-
tialization: type safety, equivalence of the two Java-level
semantics, and the correctness of a compiler from the Java
level to the JVM level. Due to the more complicated nature
of dynamic class initialization, these updates required up-
dated proof statements in addition to updated proofs. We
will detail these changes in Sections 7 and 8.

It should be noted that Lochbihler [Lochbihler 2007] wrote
an extension of Jinja, JinjaThreads, which adds threads to
both Jinja and Jinja’s JVM. We are very interested in the
implications threads have on dynamic class initialization,
but threads are largely orthogonal to our current proof goals,
so we have left this combination as future work.

3 Static Instructions
In Java, classes can have static fields and methods: these
fields and methods belong to the class rather than to any
instantiation of it. A static instruction is one that uses or
manipulates static fields or methods. The static instructions
used in JVM byte code are as follows:

getstatic C F D - fetches the value of a static field F
belonging to class C , defined by class D

putstatic C F D - assigns a value to a static field F be-
longing to class C , defined by class D
invokestaticM C n - calls the static methodM of class

C which takes n arguments
These instructions correspond to with the Java-level ex-

pressions SFAcc (C •s F {D}), SFAss (C •s F {D} := e), and
SCall (C •s M(es)), respectively.

Static instructions, methods, and fields are a core feature
of Java that see a lot of use. Because of this, it makes sense
for a reasonable semantics for Java to include them. How-
ever, supporting static instructions requires deciding how
and when the values of static fields are first set. In the se-
mantics of Java, this is done during class preparation and
initialization, so this is the approach we have chosen.

4 Dynamic Class Initialization
In the JVM, class initialization methods are called dynam-
ically. Rather than initializing classes up front, Java waits
until the the class is actually used. Because of this, compilers
can make the decision to postpone the loading and linking of
classes. Loading is the process of finding a binary representa-
tion of a class and using a class loader on that representation
to create the class. This process is followed by linking, which
includes verification (checking that the code is structurally
correct), preparation (setting static fields to default values
based on type), and resolution of symbolic references. A class
must be loaded and linked before it is initialized. In our se-
mantics, we assume that classes have been loaded, verified,
and resolved ahead of time, but not necessarily prepared.

(Unprepared classes are prepared when initialization is first
called on them.)
The process of initialization can result in a number of

errors. As a result, it can cause different behaviors depending
on when it occurs in a program. For example, if initialization
is only attempted inside of blocks with the proper error
handlers, then the program may exit or continue gracefully
in a way that would not be possible if the process were run
prematurely.
Initialization checks are triggered by the use of a class

or one of its subclasses. In particular, in the supported sub-
set of JVM instructions, if a class C is not initialized, class
initialization occurs when:

• an instruction among new, getstatic, putstatic, or
invokestatic references C ,

• one of C’s subclasses is being initialized, or
• at startup of the JVM, ifC is the designated initial class.

At the Java level, initialization is called by the same or
corresponding events. If triggered by the evaluation of an
expression, initialization is not called until the expression’s
subexpressions are completely evaluated.

Introducing dynamic class initialization into Jinja requires
that the initialization procedure be called at every point that
triggers it. The direct effect of this on the semantics is the
addition of rules describing the procedure and calls to it
within the rules that trigger it.

4.1 The Initialization Procedure
After it has been loaded and linked, a class C can be in one
of four states:

1. Prepared: Loaded and linked, but not initialized
2. Processing1: Currently being initialized
3. Done: Fully initialized
4. Error: Initialization is in an erroneous state, perhaps

due to an error in a previous initialization attempt (or
in another thread in a multithreaded program)

The current state of a class C affects how the initialization
of that class proceeds.

Once one of the initialization triggers listed above occurs,
the following procedure is performed2:

1. Check current state.
• If class C is currently being initialized (i.e.,
Processing), that means that this call is recursive,

1This case would be seen by the initialization procedure whenever a class’s
initialization method makes a static instruction call to one of its own static
fields or methods, including instructions for getting and putting values
from and to static fields. In this case, we would not want to re-call the
initialization method.
2This procedure is simplified to reflect a world without threads, assertions,
interfaces, or exceptions that take arguments, as we do not currently support
these features.

212

Dynamic Class Initialization Semantics: A Jinja Extension CPP ’19, January 14–15, 2019, Cascais, Portugal

i.e., inside of the initialization procedure; return
without error3.

• If classC is already fully initialized (i.e., Done), noth-
ing else is required; return without error.

• If classC’s initialization is in an erroneous state (i.e.,
Error), throw NoClassDefFoundError.

• Otherwise, continue to next step.
2. Mark C’s initialization procedure as Processing.
3. If C has a superclass S , initialize S .

• If this results in throwing an exception, markC’s ini-
tialization as being in an erroneous state. Then throw
the same exception that S’s initialization threw.

• Otherwise, continue to next step.
4. Execute the class initialization method of C .

• If execution completes normally, mark C’s initializa-
tion as Done and return without error.

• Otherwise, an exception E was thrown. Mark C’s
initialization as being in an erroneous state, then
throw E.

Formalizing this procedure is the core of our extension to
the semantics.

5 Impact on the Formal Semantics
Adding static instructions is a fairly straightforward exten-
sion to the existing semantics. However, dynamic class ini-
tialization is much less straightforward. Initialization is a
procedure that is written into the JVM byte code specification
as if it is meant to be done all at once inside the computation
of a single instruction, and so it is most naturally represented
in big-step style. As with anything in big-step, it is possible
to transform this process into one done over small steps, and
this is what we have chosen to do. However, as we went
on to prove that the Java-level big-step implementation is
both equivalent to the Java-level small-step approach, and is
correctly simulated by the JVM-level small-step semantics,
we are confident in our transformation.

In this approach, it is necessary to find a way to make sure
that the results of step 4 of the initialization procedure are
properly propagated, that control is returned to the calling
location upon completion, and that the procedure is not
called again by the same expression (or instruction). This
means that the semantics must recognize and handle the
returning of an initialization method, and that the semantic
context must be aware of a just-run procedure. As the Java-
level and JVM-level semantics have different structures, we
have two separate but similar solutions to these problems.

At the Java-level, we added two runtime-only expressions.
The first of these, INIT, is used to run steps 1 through 3 of
the initialization procedure, and calls step 4. The second, RI,
acts as a container for the body of the initialization method

3Note that if this was the result of a getstatic instruction call inside the
initialization method, this means that the value fetched would be the default
for the field, unless a putstatic instruction has already been performed.

during step 4, so that it is kept in context to allow for post-
processing upon completion.

At the JVM level, the scope of any method in the JVM is its
corresponding frame - created when the method is invoked,
and permanently removed upon its return or failure to catch
an exception passed to it. We have adding a flag to this struc-
ture that can take one of several values used to signal the
current role of a frame in an initialization procedure. This
flag is used to guarantee that the post-processing behavior
of the initialization procedure is followed, that the procedure
is only called once per instruction, and that thrown errors
are passed properly. We will go into more detail about this
flag in Section 6.2.2. We also added helper functions that are
called directly by exec in lieu of exec_instr when neces-
sary. These functions handle the creation of initialization
frames and the marking of classes as being in the Error state,
and are called based on a frame’s initialization flag.

These changes also have an impact on the proofs of type
safety, semantic equivalence, and compiler correctness. In
addition to creating new cases for each, the initialization
procedure complicates what it means for a state to be correct.

6 Semantic Extensions
6.1 Updated Structure
In order to support statics and the initialization procedure,
we first needed to add extra arguments to various construc-
tors and functions. First, we added a flag to the field and
method types to mark whether they are static. Second, we
added a “static heap” (sh) to the program state for storing the
static state of each prepared class, including its static fields
and its initialization state flag.
In the Java-level small-step semantics we further added

an “indicator boolean” to each side of the relation, which in-
dicates whether the need for initialization has been checked
for the current subexpression. The stepping relation is now
written as P ⊢ ⟨e, s,b⟩ → ⟨e ′, s ′,b ′⟩.

At the JVM level, we additionally updated the frame type
to include an initialization call status flag. A corresponding
argument (ics) has been added to the exec_instr function.

6.2 Semantics of the Initialization Procedure
In this section, we translate the steps of the initialization pro-
cedure from Section 4.1 into formal operational semantics.

6.2.1 Java Level
The initialization procedure is performed at the Java level
by two runtime-only expressions added for this purpose.
To keep track of the context of a call to the initialization
procedure, the below expressions have an “expression on
hold” to return to upon completion:

• INIT C ′ (Cs , b)x e ′, which handles the initialization
of class C ′; Cs is the list of classes to be initialized
as a consequence (with C ′ at the end), built up by a

213

CPP ’19, January 14–15, 2019, Cascais, Portugal Susannah Mansky and Elsa L. Gunter

None:
sh C = None

P ⊢ ⟨INIT C ′ (C#Cs, False)x e ′, (h, l , sh),b⟩ →
⟨INIT C ′ (C#Cs, False)x e ′,

(h, l , sh(C 7→ (sblank P C, Prepared))),b⟩

Processing:
sh C = Some(obj, Processing)

P ⊢ ⟨INIT C ′ (C#Cs, False)x e ′, (h, l , sh),b⟩ →
⟨INIT C ′ (Cs, True)x e ′, (h, l , sh),b⟩

Done:
sh C = Some(obj, Done)

P ⊢ ⟨INIT C ′ (C#Cs, False)x e ′, (h, l , sh),b⟩ →
⟨INIT C ′ (Cs, True)x e ′, (h, l , sh),b⟩

Error:
sh C = Some(obj, Error)

P ⊢ ⟨INIT C ′ (C#Cs, False)x e ′, (h, l , sh),b⟩ →
⟨RI(C, THROW NoClassDefFoundError);Cs x e ′,

(h, l , sh),b⟩

Figure 5. small-step rules for INIT, non-Prepared

sequence of step 3s, then removed as completed; b is a
boolean indicating whether the class on the top of this
list (if it exists) has performed steps 1 through 3 of its
initialization procedure; e ′ is the expression on hold

• RI(C , e);Csx e ′, which is a container for running the
class initialization method of C and marking its ini-
tialization state; e is either an exception thrown to C’s
procedure during step 3, or the expression being run
by step 4; Cs is the list of classes still to be initialized;
e ′ is the expression on hold

The small-step rules for INIT are given in Figures 5, 6,
and 7. Note that in the rules described in Figure 5 and in
the first two rules in Figure 6, INIT’s boolean is set to False,
indicating that the head of the class list (C) has not yet had
steps 1 through 3 performed. The big-step rules for RI are
given in Figure 8.
The first rule for INIT, None, describes the case where

classC has not yet been linked; it creates a blank instance of
the class with default values for the static fields, inserts this
instance into the static heap as the object associated with
class C , sets C’s initialization state to Prepared, then steps
again to the same INIT expression with the new static heap.
The next three rules, Processing, Done, and Error, de-

scribe the first three branches in step 1 of the initialization
procedure. In these cases, class C does not need to be ini-
tialized, and there are no further classes to check. For the
first two, this means that the list of classes (Cs) is complete
and ready to be initialized. They therefore step to INIT over

InitNonObject:
sh C = Some(obj, Prepared)

C , Object class P C = Some(D, r)
sh′ = sh(C 7→ (obj, Processing))

P ⊢ ⟨INIT C ′ (C#Cs, False)x e ′, (h, l , sh),b⟩ →
⟨INIT C ′ (D#C#Cs, False)x e ′, (h, l , sh′),b⟩

InitObject:
sh C = Some(obj, Prepared)

C = Object sh′ = sh(C 7→ (obj, Processing))

P ⊢ ⟨INIT C ′ (C#Cs, False)x e ′, (h, l , sh),b⟩ →
⟨INIT C ′ (C#Cs, True)x e ′, (h, l , sh′),b⟩

InitRInit:

P ⊢ ⟨INIT C ′ (C#Cs, True)x e ′, (h, l , sh),b⟩ →
⟨RI(C,C •s clinit([]));Cs x e ′, (h, l , sh),b⟩

Figure 6. small-step rules for INIT, when C is Prepared

Cs , with the boolean set to True. In the Error case, how-
ever, C’s initialization procedure is ended abruptly due to
the Error state. The result is the same as if C’s class initial-
ization method itself had resulted in an uncaught exception:
every class inCs will receive an error in step 3, meaning their
initializations also result in an error. This is handled by pass-
ing the list of classes to RI with the appropriate exception
expression (THROW NoClassDefFoundError) as if produced
by C’s initialization method.
The first rule in Figure 6, InitNonObject, describes the

case where C’s state is Prepared and C has a superclass, so
steps 2 and 3 are both performed. The hypothesis class P C =
Some(D, r) indicatesC’s direct superclass in P is D. Thus D is
added to the list of classes to initialize, and C’s initialization
flag is set to Processing in the meantime. Note that after
this step, steps 1 and 2 have been performed for class C , and
that step 3 will be complete once D’s initialization procedure
completes.

The next rule, InitObject, describes the case where step
3 of the above procedure is skipped because the class being
initialized is the class Object, which does not have a super-
class. Thus Object’s initialization flag is set to Processing
as in step 2, and then INIT’s boolean is set to True to indicate
it is safe to proceed to step 4.

The next rule, InitRInit, describes the case where steps
1 through 3 ofC’s initialization procedure are complete. The
next step is the execution of C’s class initialization method
clinit (a static method taking no arguments), which is car-
ried out by wrapping a call to this method in the RI construc-
tor, keeping C , Cs , and e ′.

The final rule for INIT, given in both big- and small-step
in Figure 7, describes how INIT is finally discharged once
its list is completely initialized (and therefore empty). In

214

Dynamic Class Initialization Semantics: A Jinja Extension CPP ’19, January 14–15, 2019, Cascais, Portugal

P ⊢ ⟨e, s⟩ ⇒ ⟨e ′, s ′⟩

P ⊢ ⟨INIT C (Nil,b)x e, s⟩ ⇒ ⟨e ′, s ′⟩
Final

RedInit:
¬sub_RI e ′

P ⊢ ⟨INIT C (Nil,b)x e ′, s,b ′⟩ → ⟨e ′, s, icheck P C e ′⟩

Figure 7. big-step rule and small-step rules for returning
from INIT

RInit:
P ⊢ ⟨e, s⟩ ⇒ ⟨Val v, (h′, l ′, sh′)⟩ sh′ C = Some(sfs, i)

sh′′ = sh′(C 7→ (sfs, Done)) C ′ = last(C#Cs)
P ⊢ ⟨INIT C ′ (Cs, True)x unit, (h′, l ′, sh′′)⟩ ⇒ ⟨e1, s1⟩

P ⊢ ⟨RI (C, e);Cs x e ′, s⟩ ⇒ ⟨e1, s1⟩

RInitFail:
P ⊢ ⟨e, s⟩ ⇒ ⟨throw a, (h′, l ′, sh′)⟩

sh′ C = Some(sfs, i) sh′′ = sh′(C 7→ (sfs, Error))
P ⊢ ⟨RI(D, throw a);Cs x e, (h′, l ′, sh′′)⟩ ⇒ ⟨e1, s1⟩

P ⊢ ⟨RI(C, e);D#Cs x e ′, s⟩ ⇒ ⟨e1, s1⟩

RInitFailFinal:
P ⊢ ⟨e, s⟩ ⇒ ⟨throw a, (h′, l ′, sh′)⟩

sh′ C = Some(sfs, i) sh′′ = sh′(C 7→ (sfs, Error))

P ⊢ ⟨RI(C, e);Nil x e ′, s⟩ ⇒ ⟨throw a, (h′, l ′, sh′)⟩

Figure 8. big-step rules for RI

big-step, the expression on hold is evaluated and the result
returned. Similarly, in small-step control is returned to the
expression on hold, e ′. It is confirmed (for type safety rea-
sons) that the held-over expression (e ′) does not contain any
initialization-related subexpressions (INIT, RI, or a call to
the method clinit). Further, the indicator boolean is set to
true - as long as e ′ is one of the expressions described as trig-
gering class initialization in Section 4 that could trigger C’s
initialization. This check will pass if the initialization expres-
sion was originally introduced by another of the small-step
rules. These restrictions are here in order to facilitate type
safety and equivalence in behavior between the big- and
small-step semantics, as we will describe further in Section
7.2.

The first rule for RI, RInit, describes the non-error case:
the expression e contained by RI evaluates to a value. Since
this means C’s initialization method has returned without
error, C’s initialization state is set to Done and the result is
passed back to INIT along with the stack of classes still to

be initialized. INIT’s boolean is set to True. The class-being-
initialized (C ′) is set as the last class in the combined list
C#Cs .

The other two rules describe what happens when e evalu-
ates to an uncaught exception. In both cases,C’s initialization
state is set to Error. The first, RInitFail, handles the case
when the list of classes left to be initialized is non-empty: the
exception is passed down to the next class on the list, with
the rest of the list still on hold. The second, RInitFailFinal,
handles the case when the class list is finally depleted: the RI,
including its expression on hold, are thrown away entirely,
and the thrown exception is returned.

6.2.2 JVM Level
At the JVM level, the initialization procedure is controlled
by an initialization call status flag ics added to each frame.
Instead of exec_instr, the execution function exec calls a
new helper function exec_step which uses the flag ics to
determine the next step of execution. The flag’s type has
four constructors:

• CallingC Cs is a signal to exec to perform the initial-
ization procedure on C , where Cs is the list of classes
already collected during all step 3s so far (withC being
the most recent)

• Called Cs indicates that the classes Cs are ready to
have their initialization methods run (in order), as per
step 4; if Cs is empty, the procedure is complete

• ThrowingCs a is a signal to exec to process the throw-
ing of error a to the classes Cs as per the exception
case of step 3

• No_ics is for when none of the above apply; i.e., there
is no current initialization procedure

To begin this initialization procedure, when an instruction
triggers the procedure for class C , it sets the current frame’s
flag to Calling C [] to begin the procedure, indicating that
C is being initialized, and no other classes have been col-
lected yet. At a high level, when an initialization procedure
is triggered by an instruction, it will result in the collection
of a list of superclasses to be initialized inside a Calling flag.
When this list is completed, the flag becomes Called over
the list, and the initialization methods for the classes on the
list will be run in order until the list is empty or an error is
thrown. If an uncaught exception is thrown by any of the
initialization methods, the flag is set to Throwing over the
remaining list and the thrown error. The remaining classes in
the list are set to an erroneous initialization state (in order),
then the exception is thrown from the original position of
the initialization procedure call.

The above is achieved by then function exec_step behav-
ing differently based on the current frame’s ics . exec_step’s
definition is given in Figure 9, and its behavior can be sum-
marized as follows:

215

CPP ’19, January 14–15, 2019, Cascais, Portugal Susannah Mansky and Elsa L. Gunter

"exec_step (Calling C' Cs) ...
= exec_Calling C' Cs P h stk loc C M pc frs sh" |
"exec_step (Called (C'#Cs)) ...
= (None, h, init_frame P C'#

(stk,loc,C,M,pc,Called Cs)#frs, sh)" |
"exec_step (Throwing (C'#Cs) a) ...
= (None, h, (stk,loc,C,M,pc,Throwing Cs a)#frs,

sh(C' |-> fst(the(sh C')), Error))" |
"exec_step (Throwing [] a) ...
= (Some a, h, (stk,loc,C,M,pc,No_ics)#frs, sh)" |
"exec_step ics ...
= exec_instr (instrs_of P C M ! pc) P h stk loc

C M pc ics frs sh"

Figure 9. Helper function for JVM-level single step execu-
tion (... indicates the omission of the remaining arguments:
P, h, stk, loc, C, M, pc, frs, and sh)

• Calling C Cs: calls helper function exec_Calling,
described below

• Called C#Cs : changes ics to Called Cs and places an
initialization frame for C on top of the frame stack

• Throwing C#Cs a: sets C’s initialization flag to Error
and changes ics to Throwing Cs a

• Throwing [] a: changes ics to No_ics and throws a
• Otherwise (No_ics or Called []), calls the current in-
struction; in the latter case, this instruction will know
from this flag that it just called and completed the
appropriate initialization procedure

The behavior of exec_Calling called on C is determined
by the initialization status of C .
exec_Calling C Cs first checks that C has a static object

in the static heap: if it does not, sblank is called to create
this object, and the initialization flag remains unchanged to
signal to exec to call this function again.
If C has a static object, then its associated initialization

state is checked. In the cases of Done and Processing, C
does not need to be initialized, so no initialization frame is
created; the given arguments are returned as is.
In the case of Error, ics is set to Throwing Cs over the

appropriate error in order to start the process of passing it
down through the initialization procedure stack.
In the case of Prepared, C’s initialization procedure is

allowed to proceed to its next steps.C’s initialization state is
set to Processing (step 2). IfC is Object, ics is set to Called
C#Cs , to start the process of running the initialization meth-
ods of the classes collected. If it is not, then ics is modified to
be Calling D C#Cs , where D isC’s direct superclass, signal-
ing to exec to call exec_Calling on this class.C is collected
into the list so that its initialization method will be run once
D’s initialization procedure completes.

RedSFAccNone:
¬(∃b t .P ⊢ C has F ,b : t in D)
P ⊢ ⟨C •s F {D}, (h, l , sh),b⟩ →

⟨THROW NoSuchFieldError, s, False⟩

RedSFAccNonStatic:
P ⊢ C has F , NonStatic : t in D

P ⊢ ⟨C •s F {D}, (h, l , sh),b⟩ → ⟨THROW ICCError, s, False⟩

where ICCError = IncompatibleClassChangeError

SFAccInitDoneRed:
P ⊢ C has F , Static : t in D sh D = Some(sfs, Done)

P ⊢ ⟨C •s F {D}, (h, l , sh), False⟩ →
⟨C •s F {D}, (h, l , sh), True⟩

SFAccInitRed:
P ⊢ C has F , Static : t in D
�sfs. sh D = Some(sfs, Done)

P ⊢ ⟨C •s F {D}, (h, l , sh), False⟩ →
⟨INIT D ([D], False)x C •s F {D}, (h, l , sh), False⟩

RedSFAcc:
P ⊢ C has F , Static : t in D

sh D = Some(sfs, i) sfs F = Some v

P ⊢ ⟨C •s F {D}, (h, l , sh), True⟩ → ⟨Val v, (h, l , sh), False⟩

Figure 10. small-step semantics for SFAcc expression

6.3 Semantics for New Instructions
Now that we have defined the semantics of initialization, we
can give semantics to the JVM instructions that deal directly
with static fields and methods.

6.3.1 Getstatic.
In Figure 10, we present the Java-level small-step rules defin-
ing the behavior of the SFAcc expression. Compare with
FAcc as defined in Figure 2.
The first two rules are the error cases. Note that the pre-

conditions for these cases do not overlap, and that these
errors are checked against in all of the remaining rules.

The next two cases perform the initialization check, given
that the field exists and is static. The initialization check is
performed onD, the class defining the referenced field. In the
first, the initialization check passes, so the indicator boolean
is set to True. In the second, initialization is required, so the
SFAcc expression is put on hold inside of an INIT expression
set to initialize D.
The final case occurs when the boolean indicating all

checks through initialization have been completed is True;
note that this will occur as a result of one of the previous

216

Dynamic Class Initialization Semantics: A Jinja Extension CPP ’19, January 14–15, 2019, Cascais, Portugal

SFAccInit:
P ⊢ C has F , Static : t in D
�sfs. sh D = Some(sfs, Done)

P ⊢ ⟨INIT D ([D], False)x unit, (h, l , sh)⟩ ⇒
⟨Val v ′, (h′, l ′, sh′)⟩

sh′ D = Some(sfs, i) sfs F = Some v

P ⊢ ⟨C •s F {D}, (h, l , sh)⟩ ⇒ ⟨Val v, (h′, l ′, sh′)⟩

SFAccInitThrow:
P ⊢ C has F , Static : t in D
�sfs. sh D = Some(sfs, Done)

P ⊢ ⟨INIT D ([D], False)xunit, (h, l , sh)⟩ ⇒ ⟨throw a, s ′⟩

P ⊢ ⟨C •s F {D}, (h, l , sh)⟩ ⇒ ⟨throw a, s ′⟩

Figure 11. Rule examples for big-step semantics for SFAcc
expression

two rules: the original initialization check passed, or initial-
ization was performed and returned without error. The indi-
cator boolean is also set back to False, as the “just checked”
promise was only made to this particular expression.4
The big-step rules for SFAcc are similar. Other than the

lack of an indicator boolean, the main difference is that there
are two rules for when the initialization check fails, given in
Figure 11. They branch on whether INIT returns a value or
an exception. Since the INIT expression returns back to the
expression initially calling it (in this case, SFAcc), it is created
with unit as the expression on hold. If INIT returns a value,
the rest of the operation completes immediately (without
another initialization check).

In Figure 12, we present the new case of exec_instrwrit-
ten for the getstatic instruction. In the style of Jinja, the
instruction is written as Getstatic with arguments as de-
scribed in section 3. Compare with the old definition given
in Figure 3.
The cases here are the same as at the Java level: first,

exec_instr checks that the field exists and is static. If either
check fails, the exception is set accordingly and returned
without further changed or checks.

If the field exists and is static, then the initialization status
flag is checked: if it is Called, then initialization has already
been called and returned without error, so the lookup into
the static heap is completed and the value of the field is
placed on the top of the stack. Note that in this way, Called
is akin to the indicator boolean used in the Java-level small-
step semantics, and that this case is the parallel of the final
SFAcc case given in Figure 10.

If the initialization status flag is not Called, then an initial-
ization check is performed. If the check passes then lookup

4Since Jinja’s small-step semantics is written deterministically, with only
one subexpression being rewritten at a time, no other subexpression will
get the chance to misuse this promise.

"exec_instr
(Getstatic C F D) P h stk loc C0 M0 pc ics frs sh
= (let (D',b,t) = field P D F;

xp' = if ~(exists t b. P |- C has F,b:t in D)
then Some(sys_xcpt NoSuchFieldError)
else case b of

NonStatic => Some(sys_xcpt ICCError)
| Static => None

in (case (xp', ics, sh D') of
(Some a, _) =>
(xp',h,(stk,loc,C0,M0,pc,ics)#frs,sh)

| (_, Called Cs, _) =>
let (sfs, i) = the(sh D');

v = the(sfs F)
in (xp', h,
(v#stk,loc,C0,M0,pc+1,No_ics)#frs,sh)

| (_, _, Some (sfs, Done)) =>
let v = the (sfs F)
in (xp', h,

(v#stk,loc,C0,M0,pc+1,ics)#frs,sh)
| _ =>
(xp',h,
(stk,loc,C0,M0,pc,Calling D' [])#frs,sh)

))"

where ICCError = IncompatibleClassChangeError

Figure 12. Semantics for getstatic instruction

is completed as in the previous case. Otherwise, the initial-
ization status flag is set to Calling D ′, signaling to the exec
function to perform initialization on D ′ (the class where the
field is defined). These cases parallel the initialization check
rules at the Java level, except that the first completes the
lookup immediately instead of taking the extra step to set
the indicator.

6.3.2 Putstatic and Invokestatic

The Java-level small-step rules for SFAss consist of seven
cases: five are the same as the cases for SFAcc. The other two
cases handle the contained subexpression: the first reduces
the subexpression; the second handles this subexpression
reducing to an uncaught exception. Both of these cases and
the failed-initialization-check case are given in Figure 13.
Note that the subexpression is fully reduced before the error
and initialization checks are performed.
The rules for SCall consist of the same seven cases as

SFAss.
The are six big-step rules each for SFAss and SCall: the

same five as for SFAcc, plus a case to handle their respective
subexpressions reducing to an uncaught exception.

The JVM-level rules for the putstatic and invokestatic
instructions are written with the same cases as getstatic.

217

CPP ’19, January 14–15, 2019, Cascais, Portugal Susannah Mansky and Elsa L. Gunter

SFAssRed:
P ⊢ ⟨e, s,b⟩ → ⟨e ′, s ′,b ′⟩

P ⊢ ⟨C •s F {D} := e, s,b⟩ → ⟨C •s F {D} := e ′, s ′,b ′⟩

SFAssThrow:

P ⊢ ⟨C •s F {D} := (throw e), s,b⟩ → ⟨throw e, s,b⟩

SFAssInitRed:
P ⊢ C has F , Static : t in D
�sfs. sh D = Some(sfs, Done)

P ⊢ ⟨C •s F {D} := (Val v), (h, l , sh), False⟩ →
⟨INIT D ([D], False)x C •s F {D} := (Val v),

(h, l , sh), False⟩

Figure 13. Rule examples for SFAss

6.4 Updated Rules
Besides the addition of static instructions and the initial-
ization procedure, some of the existing instructions must
also have their semantics altered in the presence of these
changes.

6.4.1 Return

The JVM-level return instruction (which has no Java-level
expression equivalent) had to be updated to perform initial-
ization post-processing for normally-returning class initial-
ization methods. When the initialization frame for a class
C (i.e., a frame with current method clinit and current class
C) performs a return instruction, C’s initialization state is
set to Done. Furthermore, unlike in the case of a regular re-
turn, the frame’s method was not invoked directly by the
frame below it, so this lower frame is not changed in any
way. (When a regular frame returns, the arguments passed
to that instruction would be removed from the stack and the
program counter would be incremented at this time.)

6.4.2 New

The new expression and instruction must be modified to call
the initialization procedure, since it is one of the triggering
instructions. In the original Java-level small-step semantics,
recall from Figure 2 that there were two cases: the case where
the heap had space, and the case where it did not. In Figure
14, the first two rules are these, except they now require the
indicator boolean to be True (since initialization is checked
before heap space is). The other two rules are the initializa-
tion check rules: one where it passes, and the other where it
fails and the initialization procedure is begun on C .
The cases for the updated JVM-level new are the same as

at the Java level; like with SFAcc, the initialization status flag
of the frame is checked for Called.

RedNew:
new_Addr h = Some a

P ⊢ C has_fields FDTs h′ = h(a 7→ blank P C)

P ⊢ ⟨new C, (h, l , sh), True⟩ → ⟨addr a, (h′, l , sh), False⟩

RedNewFail:
new_Addr h = None

P ⊢ ⟨new C, (h, l , sh), True⟩ →
⟨THROW OutOfMemory, (h, l , sh), False⟩

NewInitDoneRed:
sh C = Some(sfs, Done)

P ⊢ ⟨new C, (h, l , sh), False⟩ → ⟨new C, (h, l , sh), True⟩

NewInitRed:
�sfs. sh C = Some(sfs, Done)

P ⊢ ⟨new C, (h, l , sh), False⟩ →
⟨INIT C ([C], False)x new C, (h, l , sh), False⟩

Figure 14. Modified Java-level small-step rules for new

6.4.3 Getfield, Putfield, and Invoke.
The instructions getfield, putfield, and invoke, and their
Java-level expression equivalents are also affected by the
changes; the new static flag must be checked before the
instruction is performed. This introduces a minor change to
the existing rules, plus a new rule for each that handles the
case when the field or method is marked as static.

7 Java-Level Type Safety and Semantic
Equivalence

7.1 Type Safety
Part of the Java level of the Jinja framework is a collection
of proofs leading to a proof that the small-step semantics is
type safe: that starting with a well-typed expression guaran-
tees that execution will never get stuck, and the end result
it correctly typed. We extended these proofs to the updated
semantics. Previously, type safety relied on starting with
a well-typed expression in a well-formed program with a
“conforming” state: the heap had to have type-correct values
for every field of every object it contained, and the local vari-
ables had to have types that matched how they were used in
well-typing the expression. Updating the type safety proofs
required modifying heap conformance to only require type-
correct values for nonstatic fields. Additionally, it required
defining a few more such conformance properties (where
an initialization expression is one of INIT, RI, and a static
method call to class initialization method clinit):

• static heap conformance (shconf; written P ,h ⊢s sh
√
):

akin to heap conformance; true if every prepared static

218

Dynamic Class Initialization Semantics: A Jinja Extension CPP ’19, January 14–15, 2019, Cascais, Portugal

object in sh has a type-correct value for all of its class-
defined static fields.

• expression initialization conformance (iconf P sh e):
true if e’s currently computing subexpression s is the
only initialization subexpression, if any, and s is in a
valid state in relation to sh

• indicator boolean conformance (bconf; written P , sh ⊢b
(e,b)

√
): where b is the small-step indicator boolean;

requires that if b is True, then the currently evaluating
subexpression is allowed to have called initialization
on some classC whose initialization state in sh is either
Done or Processing.

Each of these properties is preserved under reasonable con-
ditions.

Small-step TypeSafety required shconf, iconf, and bconf
of the initial state. The equivalence of the big- and small-step
semantics explained in section 7.2 means that big-step is also
type safe.

7.2 Equivalence of Big-Step and Small-Step
The Jinja framework also included a proof of the equivalence
of the Java-level big- and small-step semantics. Extending
this result to the updated semantics required a large amount
of theory related to initialization expressions especially. Also,
due to the addition of initialization and the slight difference
between the states used by big- and small-step, the statement
of this proof required some additional hypotheses: Small-step
simulates big-step if the initial state is iconf, the starting
indicator boolean is bconf, and the ending indicator boolean
is False. Big-step simulates small-step if the initial state is
iconf and bconf.5 These conditions are necessary because
invalid initialization expressions do not have the same behav-
ior in small-step and big-step, and of course the small-step
indicator boolean is meant to preserve context that must be
present in order for behavior to be the same.

8 Compilation
Part of the contribution of Jinja was a compiler from the Java-
level syntax to the JVM-level syntax, complete with a proof
of correctness showing that the JVM code would simulate
the Java code. As part of our work, we extended this compiler
to include the new static instructions, and updated the proof
of correctness to show that the JVM semantics continues to
simulate the Java semantics.

8.1 Compiler from J to J1
Jinja does not compile immediately from the Java level (J)
to JVM; instead, top-level code is first compiled into the
intermediate language J1. J and J1 are nearly identical: the
syntax of J1 is the same as J, except that local variable names
are numbers instead of strings. Then while in J the local state

5Extending back one small step only requires bconf, but iconf is necessary
for bconf preservation, which is needed when extending to multiple steps.

is a partial function from strings to values, in J1 it is a list of
values, referred to by index. The compilation function from
J to J1 thus replaces variable names with the numbers in a
fashion that maintains this relationship between variables
and their values. As none of the expressions we added add
or remove any variables to or from scope, extending this
compilation to include our new syntax is straightforward.
The compilation of methods does require a small change

to reflect that nonstatic methods include the this pointer in
their list of arguments, whereas static methods do not.

Since J and J1 have nearly identical semantics, extending
these was straightforward.
Note that J1 handles local variables in the same way as

JVM byte code does. By performing this change first, the
compilation to JVM is made much more straightforward.

8.2 Compiler from J1 to JVM
J1 and JVM are naturally more dissimilar than J and J1, but
compilation from one to the other is nearly as straightfor-
ward: expressions are compiled into lists of instructions in
a fairly intuitive manner. For the most part, the subexpres-
sions’ compilations come first (in the order of operations),
followed by the instruction corresponding to the overall ex-
pression. Some of the more complex expressions that branch
require some use of the goto instruction, and some pushes
and pops are required to maintain the stack, but the static
instructions we have added are compiled in much the same
way as their nonstatic counterparts. The runtime-only ini-
tialization expressions INIT and RI compile to empty lists:
as these expressions are only introduced during execution,
and are never inside the bodies of methods, they do not need
to be compiled. Furthermore, they do not have JVM-level
instruction counterparts to be compiled into.

8.3 Behavioral Correctness
The updates to the proof of the correctness of the compi-
lation from J to J1 follow fairly directly from the existing
proof. As there are no behavioral changes between the new
and updated rules between J and J1, these updates followed
generally the same format as the existing proof.

The proof of the correctness for the J1 to JVM compilation
required much larger changes. The original inductive hy-
pothesis needed to be updated to accommodate the behavior
of the added initialization expressions, in addition to adding
a few new requirements to the old expressions.
Our updated inductive hypothesis is quite complicated,

but the changes amount to this: the frames that simulate
the behavior of initialization expressions have a different
structure than those for all other expressions. They require
the ics to be set appropriately, and possibly for the addition of
an initialization frame. Further, running these frames results
in a change to the ics rather than to the value stack. Finally,
the conditions for these expressions depend on the ics and
the formulation of the expression rather than on the current

219

CPP ’19, January 14–15, 2019, Cascais, Portugal Susannah Mansky and Elsa L. Gunter

instruction.We therefore had to define a multi-case inductive
hypothesis, dependent on the type of expression.

Ultimately, wewere able to show that awell-formedmethod
body that can evaluate in J1 evaluates in the same way in
Jinja’s JVM (in a frame marked with No_ics). The resulting
theory file is nearly three times as long as the original, a re-
flection of both the addition of new expression types, and the
fact that the modified inductive hypothesis required some
extra lemmas to help existing cases work as before.

8.4 Compiler Type Preservation
In addition to extending the compiler and its proof of behav-
ioral correctness, we extended the proof that the compiler
from J to JVM preserves well-typedness. As initialization
expressions get compiled away, static instructions were the
main addition. This was therefore a largely straightforward
extension.

9 Reflections
This work is the product of a great deal of effort and refine-
ment. Dynamic class initialization being both interruptive
and involving an external-to-code, multi-step procedure re-
sulted in many iterations between models and proofs before
reaching the approach presented above. Some large changes
to proof statements were also required - most notably, the
overhaul of the inductive hypothesis for the correctness of
compilation. Even removing the time spent iterating the
model, updating the proofs was the product of many months.
The resulting proof statements, however, have proven to be
robust enough that model modifications within the extension
only take a day or two to propagate.

Overall, the extended definition files tend to be about 1.5
to two times the length of the original files, and the proof files
in the development tend to be about two to three times the
length of the original files. The latter especially is a reflection
of the pervasive nature of the changes made, and the amount
of proof effort required to support them.

10 Related Work
Many semantics have been written for Java over the years.
We choose to highlight here a couple of these that covered
an especially large number of features.
The formal executable semantics of Java given using the

Typol logical framework by Attali, Caromel, and Russo [At-
tali et al. 1998] includes dynamic linking, and claims to cover
a large set of features, but they are unfortunately described
in a system that seems to no longer be available. Even if it
were, it did not include any JVM component.

K-Java [Bogdanas and Roşu 2015] is an impressive and
largely complete executable semantics for Java 1.4, but the
authors have chosen to consider dynamic class initialization
solely a JVM feature. It also has no JVM semantics, which
we need for our motivating work. Finally, the K framework

does not support the ability to reason about algorithms over
programs in the way we need.

ASM-Java [Stärk et al. 2012] presents an executable seman-
tics for both Java and JVM using Abstract State Machines
(ASMs) that includes dynamic class loading. Their system
includes an executable compiler and a way to test code. Un-
fortunately, none of this is developed inside of or attached
to a theorem prover such as Isabelle; these semantics exist
to assist programmers rather than for verification purposes.
As far as we are aware, Jinja and JinjaThreads [Lochbihler
2007], written in Isabelle, are the only other unified semantic
model that includes both.
Atkey’s CoqJVM [Atkey 2008] is an executable specifi-

cation of JVM in Coq that includes static instructions and
dynamically loads classes into a class pool, but does not
perform actual class initialization.

Bertelsen [Bertelsen 1997] gives a semantics for Java byte
code, in the form of functions and semantic rules, which
represents a large subset of the JVM as specified in 1996,
including statics and class initialization. This work was a
thorough investigation that unearthed some of the corner
cases of and errors in the JVM specification. However, it does
not appear to have any supporting theory, nor to have been
written up in any tool to be used for proofs. It also does not
have a supporting model of Java or of its translation into byte
code. Belblidia and Debbabi [Belblidia and Debbabi 2007]
likewise gives a semantics that includes static instructions
and class initialization, but do not include any theory support
or related proofs.

M6 [Liu and Moore 2003] is a nearly complete executable
model of JVM in ACL2 by Liu and Moore that can be used
to run and derive properties of Java programs. Their class
initialization is also invoked dynamically and performed
small-step style, over multiple steps of computation. How-
ever, there is no associated Java semantics.

11 Conclusion and Future Work
In this paper, we presented an extension of the Jinja Java and
JVM semantics to include static instructions and dynamic
class initialization. We described the initialization procedure
and the instructions that call it. We updated the rules of
existing expressions and instructions to reflect the addition
of static flags and initialization calls. We further extended
the Java-level proofs of type safety and big- and small-step
equivalence to hold on the updated semantics, including up-
dating well-typing definitions and adding new conformance
properties to reflect new requirements. Finally, we extended
the compiler from the Java level to the JVM level and updated
its proofs of correctness.

This updated semantics can be used to reason about Java
and JVM programs with statics and dynamic class initializa-
tion. In the future, we intend to use it to prove the correctness
of the class-collecting algorithm that motivated our work.

220

Dynamic Class Initialization Semantics: A Jinja Extension CPP ’19, January 14–15, 2019, Cascais, Portugal

The semantics presented here could be added upon further to
support other Java features such as interfaces, assertions, and
threads. The last of these could be achieved by combining the
work done here with Lochbihler’s JinjaThreads [Lochbihler
2007], now that the structure and requirements of this addi-
tion are better understood. As many of the proofs we have
updated and created are inductive and use the Isar proof
style, making them fairly modular, most additions that did
not change the overall structures (such as the state) would
not require a great deal of overhaul. We have left updating
the JVM-level type safety proofs and byte code verifier as
future work.

Acknowledgments
This material is based upon work supported in part by the
uder Grants CCF-1439957 and CCF 13-18191. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the NSF. We would like to thank
Milos Gligoric and Darko Marinov for providing the moti-
vating problem and for their insight into the importance of
initialization timing, and those who gave us feedback on this
work and paper along the way. We are also grateful to the
reviewers for their time, suggestions, and comments.

References
Robert Atkey. 2008. CoqJVM: An Executable Specification of the Java Virtual

Machine Using Dependent Types. In Proceedings of the 2007 International

Conference on Types for Proofs and Programs (TYPES’07). Springer-Verlag,
Berlin, Heidelberg, 18–32. http://dl.acm.org/citation.cfm?id=1786134.
1786136

Isabelle Attali, Denis Caromel, and Marjorie Russo. 1998. A formal exe-
cutable semantics for Java.

Nadia Belblidia and Mourad Debbabi. 2007. A Dynamic Operational Se-
mantics for JVML. Journal of Object Technology 6, 3 (2007), 71–100.
https://doi.org/10.5381/jot.2007.6.3.a2

Peter Bertelsen. 1997. Semantics of Java byte code. (1997).
Denis Bogdanas and Grigore Roşu. 2015. K-Java: a complete semantics of

Java. In ACM SIGPLAN Notices, Vol. 50. ACM, 445–456.
Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Light-

weight test selection. In Proceedings of the 37th International Conference
on Software Engineering-Volume 2. IEEE Press, 713–716.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2015.
The Java Language Specification: Java SE 8 Edition. https://docs.oracle.
com/javase/specs/jls/se8/html/index.html

Gerwin Klein and Tobias Nipkow. 2006. A Machine-checked Model for a
Java-like Language, Virtual Machine, and Compiler. ACM Trans. Program.
Lang. Syst. 28, 4 (July 2006), 619–695. https://doi.org/10.1145/1146809.
1146811

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The Java
Virtual Machine Specification: Java SE 8 Edition. https://docs.oracle.
com/javase/specs/jvms/se8/html/index.html

Hanbing Liu and J Strother Moore. 2003. Executable JVM model for analyti-
cal reasoning: A study. In Proceedings of the 2003 workshop on Interpreters,
Virtual Machines and Emulators. ACM, 15–23.

Andreas Lochbihler. 2007. Jinja with threads. The Archive of Formal Proofs.
http://afp. sf. net/entries/JinjaThreads. shtml (2007).

Robert F Stärk, Joachim Schmid, and Egon Börger. 2012. Java and the Java
virtual machine: definition, verification, validation. Springer Science &
Business Media.

221

http://dl.acm.org/citation.cfm?id=1786134.1786136
http://dl.acm.org/citation.cfm?id=1786134.1786136
https://doi.org/10.5381/jot.2007.6.3.a2
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/1146809.1146811
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html

	Abstract
	1 Introduction
	2 Jinja
	2.1 Java Level
	2.2 JVM Level
	2.3 Extending Jinja

	3 Static Instructions
	4 Dynamic Class Initialization
	4.1 The Initialization Procedure

	5 Impact on the Formal Semantics
	6 Semantic Extensions
	6.1 Updated Structure
	6.2 Semantics of the Initialization Procedure
	6.3 Semantics for New Instructions
	6.4 Updated Rules

	7 Java-Level Type Safety and Semantic Equivalence
	7.1 Type Safety
	7.2 Equivalence of Big-Step and Small-Step

	8 Compilation
	8.1 Compiler from J to J1
	8.2 Compiler from J1 to JVM
	8.3 Behavioral Correctness
	8.4 Compiler Type Preservation

	9 Reflections
	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments
	References

