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ABSTRACT

When generating tests for graphical user interfaces, one central

problem is to identify how individual UI elements can be interacted

with—clicking, long- or right-clicking, swiping, dragging, typing,

or more. We present an approach based on reinforcement learn-
ing that automatically learns which interactions can be used for

which elements, and uses this information to guide test generation.

We model the problem as an instance of the multi-armed bandit
problem (MAB problem) from probability theory, and show how its

traditional solutions work on test generation, with and without re-

lying on previous knowledge. The resulting guidance yields higher

coverage. In our evaluation, our approach shows improvements

in statement coverage between 18% (when not using any previous

knowledge) and 20% (when reusing previously generated models).

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Dynamic analysis; • Human-centered computing →

Graphical user interfaces; Smartphones;
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1 INTRODUCTION

To explore the functionality of a mobile app (including its errors),

automated test generators systematically identify and interact with

its user interface elements. One key challenge is to synthesize inputs

which effectively and efficiently cover app behavior. This is a non-

trivial problem, as a test generator not only has to infer the set of

user interface elements, it also has to infer which interactions are

possible with each element.
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Figure 1:Map screen from the activity tracking appAAT app.

The UI elements can be interacted with in different ways:

Whereas the iconswould react to clicking on them, thewhite

information box (“tourismcampsite”) must be swiped from

bottom to top to have new UI elements at the bottom of the

text scroll in.

As an example, consider Figure 1, showing a screenshot of the

Android AAT activity tracking app. Already for humans, interact-

ing with this screen can be quite a challenge—what exactly do

the individual icons do? The text area in the white information

box (“tourismcampsite”) is scrollable; swiping on it scrolls the text,

eventually revealing buttons at the bottom which open up further

functionality. A test generator without prior knowledge may click

on random parts of the screen, but randomly generating a series of

swipes is unlikely to scroll the entire text.

Recent research attempts to emulate such knowledge for test

generators by gathering knowledge from other apps and trans-

ferring this knowledge to new apps. Static techniques [10] mine

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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associations between UI elements and their interactions from the

most common applications, and can learn, for instance, that “but-

ton” UI Elements typically accept “click” interactions. Dynamic
techniques [21] learn these actions from dynamic executions, and

again apply a pre-approximated probability distributionmined from

several apps.

Both these approaches, however, are strongly biased towards

the distribution originally mined. They work well if the app under

test is similar to those used to train the model, but fail if it is

dissimilar. Consider the the “tourismcampsite” widget to be swiped

in Figure 1—a “layout” object:

• If the model is trained from apps that do not associate a swipe
event with layout objects, test generators using the model

would not swipe it, missing UI elements at the bottom.

• If the model was trained to swipe on layout elements, the

test generator would also needlessly swipe on the top and

right menu layouts, even if they do not react to swipes.

What is needed is a technique that automatically adapts the
model to the app at hand, using a pre-conceived notion of likely
interactions, while gradually including less likely actions if the likely
actions do not succeed.

To this end, we approach test generation as an instance of the

multi-(or N-) armed bandit problem [20] (MAB problem). In this

probability theory problem, a finite set of resources (actions) has

to be distributed among competing alternatives (UI elements) to

increase its reward (test quality). We use reinforcement learning
to address test generation from this perspective and to systemati-

cally and gradually adjust our test generation strategy towards the

application under test.

The remainder of the paper is organized as follows. After dis-

cussing the background (Section 2), we make the following contri-

butions:

(1) We introduce test generation as an instance of the MAB
problem (Section 3), formulating two strategies for reinforce-

ment learning without prior knowledge. To the best of our

knowledge, this is the first time the MAB problem is used as

a model for test generation.

(2) We show how to enhance our reinforcement learning models

with statically trained models from previous research to show

how to integrate pre-approximated probability distributions

(Section 4). To the best of our knowledge, this is the first

time a reinforcement learning approach is not only used in

test generation to train a model, but also to gradually adapt

the model to the application under test.

(3) We evaluate both strategies (Section 5), and show that

• Reinforcement learning can be used to more effec-

tively test apps.Compared to a statically gathered crowd-

model, the average coverage increases by more than 18%.

• Reinforcement learningwithout a priori knowledge

outperformed thosewith a priori knowledge.The dif-

ference in coverage is up to 8%. This shows the advantage

of the MAB problem approach over pre-mined models.

• Adding reinforcement learning to a staticallymined

model improved coverage. In our experiments, the addi-

tion of reinforcement learning to a statically mined model

lead to 20% coverage improvement.

After discussing limitations and threats to validity, we close with

conclusion and future work.

2 BACKGROUND

Android apps are event driven, all interaction between the app

and the world happens through events. To test an Android app

is to generate a sequence of events, such as touching or swiping

on different locations. It is not possible to, without a modified OS

version or support from static analysis, be certain that an event will

trigger any action in the app. This creates a major challenge for

most testing strategies, as many visible UI elements are passive, i.e.,

used only for layout and appearance.

Borges et al. [10] addressed this issue by gathering static mo-

dels from a set of apps and reusing this knowledge on new apps.

The authors’ goal was to emulate how humans can transfer knowl-

edge they have of previous apps, while testing new ones. Their

static model predicted how likely was for each UI element on a

UI to trigger an event. While their experiments showed up to 43%

improvement over state-of-the-art test generators, it still yields a

major limitation: not all behaviors can be captured statically. In

addition, the effectiveness of their approach was tightly associated

to how similar the behavior of the app under test is to their test set.

Our premise is that users learn not only how to test apps and

reuse this knowledge when interacting with a new app. But instead

that they actively adapt their behavior while testing a new app, that
is, they learn how to interact with an app while using it.

We approach test generation as an instance of the MAB prob-
lem [24]. This probability theory problem is illustrated as follows:

given a set of competing slot machines (also known as one-armed

bandits) to play, a player must decide which one to pull. Each ma-

chine has a different probability of generating a reward and the

player has no information about these probabilities. After each play,

the player must decide if it will continue playing the same machine

or change to another one. After pulling an arm, it receives a reward

based on the machine’s probability distribution. By iteratively play-

ing one machine at a time and observing the associated reward, the

player can focus on the most rewarding machines, albeit with no

knowledge about the actual probability distributions.

A MAB problem is formally equivalent to a one-state Markov

decision process [8]. It can be defined as a tuple (A,R) where A is

a set of N ∈ N+ possible actions, one for each arm, and R (r |a) an
unknown probability distribution of rewards. At each time step t
the agent selects an action at ∈ A and the environment generates a

reward rt ∼ R (·,a). The agent’s goal is to maximize the cumulative

reward

∑T
t=1 rt . If the reward of the MAB problem is either 1 or 0,

it is called a binary multi-armed bandit or Bernoulli (multi-armed)
bandit [9].

TheMAB problem has been addressedwith reinforcement learning
techniques, such as ϵ-greedy [31] and Thompson sampling [28], with
good results [13, 29].

The ϵ-Greedy strategy, illustrated in Figure 2, considers a pre-

defined threshold ϵ – in the interval (0, 1) – to determine if it will

explore new elements or exploit its current knowledge. For each
action, this approach has a probability ϵ of randomly pulling an

arm (exploration) and a probability of 1 − ϵ of pulling the arm with

the highest potential reward (exploitation).
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Figure 2: Overview of the ϵ-Greedy approach.

Thompson Sampling—also known as posterior sampling or prob-

ability matching [26]—selects an arm by randomly sampling an

estimate from each arm’s posterior distribution and selecting the

arm with the best sample. For Bernoulli bandits, i.e., those with

a binary reward, this posterior distribution is a beta-distribution

(B) with parameters α and β . It starts with an independent prior

belief over each arm’s mean reward (α = 1 and β = 1, as B (1, 1) is
uniform distribution on (0, 1)), as illustrated in Figure 3a.

It then pulls an arm and updates the distribution parameters

according to the reward. If the pull was successful (r = 1), alpha is

increased by 1, and if it was not successful (r = 0), β is increased by

1. The distribution becomes more concentrated as α + β grows, as

illustrated in Figure 3b and Figure 3c. The arms with higher mean

rewards have a higher probability of their estimate being the best

one, and therefore are played more frequently (exploitation). Arms

with a low mean reward, however, are not removed, but they are

selected with a smaller frequency (exploration).

3 TESTINGWITH REINFORCEMENT

LEARNING

To test an app, a test generator is presentedwith UI states containing

multiple elements (widgets). It must choose not only which widget

to interact with but also which type of interaction to perform. Each

type of interaction on each UI element has its own probability of

improving testing. Our goal is to dynamically learn how to interact

with an app, that is, not only to identify which UI elements should

be triggered, but also which kind of interaction should be used,

thus reducing the number of ineffective actions performed.

We model this problem as an instance of the MAB problem, in

which the test generator action (resource) has to be allocated be-

tween widgets and action types (competing alternatives) to improve

the tested behavior (reward). Based on our model we implement

two traditional reinforcement learning strategies to address it: ϵ-
Greedy and Thompson Sampling.

3.1 Model definition

The MAB problem is constituted of three major components: arms,
probabilities and reward.

Arms. The standard MAB problem definition supports only one

type of action per arm. For test generation we need multiple types

of actions per arm, with independent probability distributions. We,

thus, model each competing arm as a pair (w,a) ,where w is a

widget and a is an action type supported by the test generator. We

denote as A the set of all interaction types supported by the test

generator and as state S the set of UI elements available on the app

screen at a specific time. To pull an arm is equivalent to perform

the action a specified in the (w,a) pair on the widgetw .

Probabilities. Based on our arm definition we denote the probabil-

ity of each action triggering an app response as P (a |w ) = p, where
p is the probability of the widget w reacting to the action a. To
consider an independent probability for each individual UI element

in the app would not allow knowledge to be transferred between

UI elements, as the result of each action would be valid for a single

widget. We, thus cluster widgets into classes C (w ) and assign the

probability to these classes instead of to individual widgets, that is,

P (a |w ) ≡ P (a |C (w )).
Based on the work from [10] we defined the widget classes as

tuples C (w ) = (tw ,pw , c1w , c2w ). Where tw is its class type, pw is

its parents class type and c1w and c2w are the class type of its first

and second children.

Reward.We determine our reward r as either 1 or 0, according
to visual changes in the app.

r =



1, if app’s UI changed after executing a

0, otherwise

We consider actions which trigger a visual change in the app as

effective and those that do not as ineffective. Thus, while maximizing

the overall reward, we aim to minimize the number of ineffective

actions.

We opted to measure visual changes on the app UI to determine

the action effectiveness to not restrict our approach to any specific

apps or environment. We therefore consider an action effective if
the screens before and after performing the action are different.

Our heuristic relies on design principles [16] which dictate that

there should always be a visual notification to the user after a reac-

tion in the app. While this is an approximation, as an action could,

for example, start a process in the background without notifying

the user; actions which do not trigger UI changes are frequently

classified as possible misbehaviors [25].

3.2 ϵ-Greedy Strategy

We modeled the ϵ-Greedy approach according to Algorithm 1.

We first initialize the current (wins) and total (trials) counters and
probabilities for all classes C and action types A (line 2-5). Since

our algorithm starts with no previous app knowledge, we initialize

all wins and trials with 0. Until all resources are used, we obtain

the expected reward of all elements on the app’s current screen

(state) and draw a random number (lines 6-8) to decide whether

we select a random widget (line 9) or select the one which has the

highest reward probability, given the current knowledge
1
(line 11).

We then perform the action a on the widgetw , obtain a reward r
(line 13) and use this reward to update the counters (trials, wins)
and the probability for the class (line 14-16). The counters wins

1
If two or more widgets have the same probability, we randomly select one.
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Figure 3: Three B-distributions changing over time

Algorithm 1 ϵ-Greedy approach. Before each action it selects

between acquiring new knowledge (exploring) or exploiting the

best widget-action on the screen, based on its current knowledge

(exploitation)

Input: ϵ ∈ (0, 1)
1: function ϵ-Greedy
2: for (a, c ) ∃ A ·C do

3: wins(a,c ) , trials(a,c ) ← knowledge-base(a, c)

4: P (a |C (w )) ←
wins(a,C (w )

trials(a,C (w )

5: end for

6: while stop criteria not met do

7: S = (w, P (a |w )) ∀w in the current screen

8: if random() > ϵ then
9: e ← random w ∈ S
10: else

11: e ← max (P (a |w )), (w, P (a |w )) ∈ S
12: end if

13: r ← e .w .perform(e .a)
14: wins(a,C (w )) ← wins +r
15: trials(a,C (w )) ← trials +1

16: P (a |C (w )) ←
wins(a,C (w )

trials(a,C (w )

17: end while

18: end function

and trials for each action type and class represent our accumulated

knowledge.

3.3 Thompson Sampling

Our Thompson sampling approach, shown in Algorithm 2, starts

analogously to the ϵ-Greedy one, by initializing the (wins) and
total (trials) counters and probabilities for all classes C and action

types A (line 2-5). In contrast to the ϵ-Greedy approach, however,
the probability is a B distribution, based on the wins and trials.

Until all resources are used, we sample the probability distribu-

tion for all elements on the app’s current screen (state) and select

the best sample, that is, the one with highest value (lines 6-9). We

then perform the action a on the widgetw , obtain a reward r (line
10) and use this reward to update the counters (trials ,wins) and the
probability distribution for the class (line 11-13). The counters wins
and trials for each action type and class are used to recalibrate our

probabilities after performing each action and the β distributions

encodes the accumulated knowledge.

4 REINFORCEMENT LEARNINGWITH

PREVIOUS KNOWLEDGE

When users interact with an app, they not only learn while us-

ing it but also reuse their previous knowledge about how to use

apps. Similarly, our techniques support the use of a priori knowl-

edge alongside reinforcement learning. In addition, reinforcement

learning can be used alongside previously existing approaches, to

enhance previously gathered models with information about the

app under test.

Algorithm 2 Thompson Sampling based approach for test genera-

tion. For all UI elements on the screen, a sample is taken from a B
distribution and the UI element with best sample is selected

1: function thompson-sampling

2: for (a, c ) ∃ A ·C do

3: wins(a,c ) , trials(a,c ) ← knowledge-base(a, c)
4: P (a |C (w )) ← B (1+wins(a,c ) , 1+trials(a,c )−wins(a,c ) )
5: end for

6: while stop criteria not met do

7: S ← BC (a |w )∀w in the current screen

8: L ← sample(s ) | ∀ s ∃ S
9: e ← max (L)
10: r ← e .w .perform(e .a)
11: wins(a,C (w )) ← wins +r
12: trials(a,C (w )) ← trials +1
13: P (a |C (w )) ← B (1+winsC (w ) , 1+trialsC (w )−winsC (w ) )
14: end while

15: end function

4.1 Previous Knowledge With reinforcement

learning

Our reinforcement learning techniques support the reuse of pre-

vious knowledge through the knowledge-base function (Line 3) in

Algorithm 1 and Algorithm 2.

We modeled the use of a priori data according to Algorithm 3.

We obtain the probability values for the action and class (line 2)

from the a priori knowledge. We then initialize the number of wins

with the value obtained from the previous knowledge, weighted

by ψ , and the number of trials as ψ . Higher ψ values give more
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Algorithm 3 Knowledge-base function to reuse a priori knowledge

alongside our ϵ-Greedy and Thompson sampling approaches

1: function knowledge-base(action, class)

2: p ← probability(action, class )
3: wins← p ×ψ
4: trials← ψ
5: return wins, trials
6: end function

weight to the previous knowledge and make the newly acquired

knowledge to have a smaller initial effect.

4.2 Integrating Reinforcement Learning to

Statically Gathered Models

The principles of reinforcement learning can be applied to other test

generation strategies for a more effective testing. To illustrate the

benefits of using reinforcement learning on different test generation

approaches we propose an extension to the crowd-based dynamic
exploration [10]. We extend the authors original approach with our

reinforcement learning model so that the test generator can adapt

to cases in which the original model was not so effective.

Our extended algorithm is shown in Algorithm 4. We first ini-

tialize our trials and wins for all classes C and action types A (lines

2-7) with the values from the original crowd-based model. We then

execute the exploration until a stop condition is met (Line 8). To

generate each interaction, we trigger the original stochastic se-

lect algorithm replacing the crowd-model for our extended version

(Line 10).

We then perform the action a on the widget w and obtain a

reward r (Line 11) and update the trials andwins counters and the

class probability, according to the action result (Lines 12–14). In

this algorithm the wins and trials counters of each action type and

class allow the crowd-based model to be adjusted according to the

app behavior.

5 EVALUATION

We present a set of experiments to gather empirical evidence of the

benefits of using reinforcement learning to test Android apps. In

particular, we aim to answer the following research questions:

RQ1. Can reinforcement learning be used to more effectively test

apps?

RQ2. Is knowledge learned from the app under test more beneficial

to testing than static models from other apps?

RQ3. Can reinforcement learning be used to enhance static mod-

els?

We implemented our approach as plugins for DroidMate-2 [11],

an open-source Android test input generator that can be used out of

the box on Android devices running versions 6.0 to 8.0 without app

source code, root privileges or OS modifications. We used its native

instrumentation mechanism to obtain the statement coverage of

each app during testing and we use this coverage to measure the

exploration quality as code coverage has been shown to be a good

predictor for a test suite quality [18].

Algorithm 4 Fitness Proportionate Selection with reinforcement

learning. Starting from the widget class probabilities from the

crowd-based model and dynamically tuning these values according

to the behavior of the app under testing.

Input: n > 0

1: function

fitness-proportionate-selection-with-reinforcement

learning

2: for (a, c ) ∃ A ·C do

3: p ← crowd-based-model(action, class )
4: wins← p ×ψ
5: trials← ψ

6: P (a |C (w )) ←
wins(a,C (w )

trials(a,C (w )

7: end for

8: while stop criteria not met do

9: S = (w, P (a |w )) ∀w in the current screen

10: e ← originalStochasticSelectAlgorithm(S , P )
11: r ← e .w .perform(e .a)
12: wins(a,C (w )) ← wins +r
13: trials(a,C (w )) ← trials +1

14: P (a |C (w )) ←
wins(a,C (w )

trials(a,C (w )

15: end while

16: end function

In our experiments, we extended the original set of capabilities

from DroidMate-2. In its original version DroidMate-2 only per-

forms clicks and long clicks to trigger app behavior. We extended

it to include four swipe events: swipe up, down, left and right, for

scrollable widgets – according to their Android properties.

In our experimentswe reused the set of benchmark apps from [10],

shown in Table 1. We obtained the same app versions used in the

original experiments from theGoogle Play Store2, the official market

for Android apps, and from F-droid3, an open-source repository of

Android apps. Compared to the original works, we excluded the

apps Alogblog, Jamendo, DroidWeight, Tomdroid and SyncMyPix

as they either no longer work on newer versions of Android or

were unavailable for download.

5.1 RQ1 – Reinforcement Learning

By guiding test generation towards more effective UI elements,

previous research [10] showed that it was possible to achieve better

tests. In this experiment we want to gather empirical evidence that

it is unnecessary to collect data a priori, but that it is possible to

learn how to use an app effectively while doing so.

With this goal we compared our implementations of the ϵ-greedy
and Thompson Sampling strategies (henceforth ϵ-Greedy and

Thompson) against Borges et al.’s crowd-based approach (hence-

forth Baseline). We compared only against this implementation

as it has been shown in previous research [10, 11] to outperform

DroidBot [22], Monkey [3] and the original DroidMate on this

same dataset.

2
https://play.google.com/store/apps

3
https://f-droid.org

4
This app crashed when being evaluated with Backstage.

https://play.google.com/store/apps
https://f-droid.org
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Table 1: Set of evaluation benchmark apps

App Source Downloads Category #Stmts Widgets Events

KeePassDroid (2.0.6.4) F-Droid - Security 43 169 0

Munch (0.44) F-Droid - Internet 8084 387 0

BART Runner (2.2.6) F-Droid - Navigation 8125 170 5

2048 (2.06) F-Droid - Games 168 3 1

Pizza Cost (1.05-9)
4

F-Droid - Money 1240 N/A N/A

Mirrored (0.2.9) F-Droid - Internet 2475 29 0

Easy xkcd (5.3.9) F-Droid - Internet 13768 265 6

Dialer2 (2.90) F-Droid - Phone & SMS 2005 55 19

PasswordMaker (1.1.11) F-Droid - Security 4378 177 30

World Weather (1.2.4) Play Store 1k-5k Weather 4116 205 0

Der Die Das (16.04.2016) Play Store 500k-1M Learning 3225 69 0

wikiHow (2.7.3) Play Store 1M-5M Books & Reference 3703 183 7

We explored each of the 12 apps from our test dataset 10 times

on Google Pixel 2 XL devices running Android 8.1 (API 27) and

we obtained the average coverage from these tests. We opted for

10 runs per app to mitigate the noise caused by the semi-random

search and app non-determinism. In each run we programmed the

test generator to trigger 1000 actions, including an app restart after

every 100 actions to increase the probability of exploring different

app branches.

Parameter calibration. The ϵ-Greedy approach requires a value

for ϵ to be determined. This value is used to determine the strategy

exploration/exploitation rate and has a huge impact on its behavior.

Before our experiment we performed a small-scale experiment

to determine its value. We randomly selected 5 apps from the test

dataset and explored them 4 times for each of the following ϵ values:
0.05, 0.1, 0.2, and 0.3. Based on the coverage variation shown in

Figure 4, we opted for ϵ = 0.3.

Results. The results of this experiment are shown in Figure 5.

ϵ-Greedy performed better than the Baseline; achieving ≈18%

more coverage on average. Thompson outperformed both strategies,

achieving ≈24% more coverage than the Baseline and 6% more

than ϵ-Greedy.

ϵ-Greedy and Thompson strategies led to an average coverage
increase of 18% and 24%, respectively, when compared to a

statically gathered crowd-model.

5.2 RQ2 – Reinforcement Learning with A

Priori Knowledge

Our previous experiment showed that reinforcement learning ap-

proaches can guide test generation towards more effective UI ele-

ments, leading to a better test coverage. In this experiment we want

to gather empirical evidence that information gathered through

reinforcement learning is more beneficial to the test result than the

information gathered statically and reapplied.

0.2

0.4

0.6
%

 C
ov

er
ag

e

ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3

Figure 4: Results for the parameter tuning experiments for

selecting ϵ

With this goal we compared our implementations of the ϵ-greedy
and Thompson sampling strategies, started with a priori knowledge

(henceforth ϵ-Greedy+K and Thompson+K ) against their counter-
parts with no starting knowledge. Similarly to RQ1, we explored

each app from our test dataset 10 times – to mitigate noise – on

Google Pixel 2 XL devices running Android 8.1 and we obtained the

average coverage from these tests. In each run we configured the

test generator to trigger 1000 actions, including an app restart after

every 100 actions to increase the probability of exploring different

app branches. We used the UI interaction model mined and trained

by [10] as a priori knowledge, since it is representative of app be-

havior and, similar to our approach, can be used on any arbitrary

app.
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Figure 5: Comparison of statement coverage between Base-

line, ϵ-Greedy, and Thompson

Parameter Calibration. To use a priori knowledge alongside our

reinforcement learning approaches it is necessary to define a weight

ψ for the model. Higher values ofψ reduce the reinforcement learn-

ing effect and increase the relevance of initial knowledge, smaller

values give a higher significance to knowledge gained through re-

inforcement learning. To determine a value for ψ , we randomly

selected 5 apps from the test dataset and explored them 4 times,

using Thompson+K , for each of the followingψ values: 10, 20, 50,

and 100. Based on coverage obtained by these tests, as shown in

Figure 6, we opted forψ = 20.
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Figure 6: Results for the parameter tuning experiments for

selectingψ

Results. The results of our comparison between ϵ-Greedy, ϵ-
Greedy+K , Thompson and Thompson+K are shown in Figure 7.

Both ϵ-Greedy+K and Thompson+K achieved a lower average

coverage than their counterparts without a priori knowledge—4%

and 8% respectively. This indicates that the knowledge obtained

during the testing is more valuable than the knowledge from the

model. A priori knowledge, however, prevented bad random seeds

from achieving specially bad results during testing, increasing the

minimum overall coverage achieved.
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Figure 7: Comparison of coverage between ϵ-Greedy, ϵ-
Greedy+K , Thompson and Thompson+K .

Reinforcement learning without a priori knowledge
outperformed those with a priori knowledge by up to 8%,

indicating that reinforcement learning data is more beneficial
to testing than statically gathered data.

5.3 RQ3 – Extending Static Models with

reinforcement learning

Our previous experiment indicated that the knowledge gathered

by reinforcement learning while testing an app is more relevant

to the test quality than a priori knowledge. In this experiment we

gather empirical evidence that other test generation approaches

can benefit from the use of reinforcement learning.

For this experiment we extended the Baseline algorithm, allow-

ing it to adjust its knowledge through reinforcement learning while

testing an app. We denote this extension as Baseline+K . Similarly

to the previous experiments, we explored each app from our test

dataset 10 times—to mitigate noise—on Google Pixel 2 XL devices

running Android 8.1 and we obtained the average coverage from

these tests. In each run we programmed the test generator to trigger

1000 actions, including an app restart after every 100 actions to

increase the probability of exploring different app branches.

Results. The results of our comparison between Baseline and

Baseline+K are shown in Figure 8. Baseline+K performed signif-

icantly better than the Baseline– with a 20% coverage increase.

These results also indicate that knowledge obtained during the test-

ing is more valuable than the a priori knowledge from the model;
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as the Baseline does not obtain knowledge from the app under

test during testing, but Baseline+K does.

Figure 8: Comparison of coverage between Baseline and

Baseline+K

The addition of reinforcement learning to a statically mined
model lead to 20% coverage improvement.

6 LIMITATIONS AND THREATS TO VALIDITY

Our approach and experimental evaluation has limitations and

threats to validity. Regarding external validity, we cannot ensure

that our results generalize to all apps and testing tools, due to the

size of our dataset. To mitigate this threat, our benchmark apps

were taken from previous research, which sampled from a variety of

sources, commercial (Google Play Store) and open-source (F-Droid);

and from a variety of different categories. We used Android due to

its popularity, but the concepts presented in this paper also apply

to other platforms or domains (e.g. iOS and web applications). For

further confidence in external validity more evaluations on other

tools and platforms are necessary.

Regarding construct validity, our approach is implemented on

top of DroidMate-2 and, thus, inherits its limitations. Apps which

cannot be run on DroidMate-2 cannot be run on our approach.

Our model and strategy are, however, generic and could be adapted

for any other tool. An additional construct limitation is the use of

random testing. Our approach comprises prioritizing test inputs,

instead of randomly interacting with them. It does not, however,

analyze the semantics of a UI to input meaningful values on input

fields or to perform tasks in a human-like way. Therefore, our ap-

proaches’ maximum coverage is limited by the inherent limitations

of random exploration strategies. Our ϵ-Greedy and Thompson

approaches, however, could be applied alongside any systematic or

model-based testing tool to assist them into prioritizing between

two equally good options, which is now done at random. Finally, to

exploit a priori knowledge we used the UI interaction model mined

and trained by [10], thus, this data suffers from the same threats

to construct validity as theirs: the extracted information for the UI

interaction models is incomplete because of inherent limitations

of static analysis and the actual tool, Backstage [4], used to mine

them. Our approaches, however, do not require a priori knowledge.

Regarding internal validity, we only instrumented Java byte code

to measure the coverage and therefore not measured the coverage

of other parts of the app code, such as web content and native

code. While there is a strong correlation between the ability to find

faults and the code coverage of a test suite, the use of a curated

repository of bugs could provide more accurate results regarding

the effectiveness of the techniques.

Finally, the measurement of effective actions (UI change) is a

heuristic based on design guidelines and usability principles. If an

app does not follow these principles, the heuristic may not hold.

7 RELATEDWORK

Automated test generation in mobile apps is an active research field.

Test input generation strategies are commonly classified into three

categories [15] random, model-based, and explorative strategies.

7.1 Random Strategies

Random strategies generate inputs at random to explore app’s be-

havior. There are many tools implementing this kind of strategy;

often used to test the robustness of apps.

Monkey. The most frequently used tool implementing random

testing is Monkey5, Google’s automated random testing tool

which is a part of the Android software development kit. It

generates user events such as clicks, touches, or gestures,

using a basic random strategy, and system-level events. It

is often used to stress-test applications and can generate

reports if the app under test crashes or receives non-handled

exceptions.

Dynodroid. Another tool isDynodroid [23]. It also applies random
testing, but in a slightly more efficient way than Monkey by

taking the context into account when selecting an input. It

can also generate system events. To do so, it requires instru-

menting the Android framework. It checks which system

events are relevant for the app under test by monitoring

when the app registers listeners within the Android frame-

work.

DroidMate [19] is a fully automatic GUI execution generator. It

works on devices and emulators out of the box, with no root

access or modifications to the OS and can be easily extended,

being the tool used as a base for our experiments.

7.2 Model-Based Strategies

Another category of exploration strategies are model-based strate-

gies. Model-based strategies extract and use a model of the app

under test to systematically generate inputs.

DroidBot. One tool implementing this kind of strategy is DroidBot
[22]. It uses different methods to dynamically construct a

state transition model on-the-fly and consume it to generate

test inputs. It works without instrumentation and can there-

fore be used to examine malware, because malicious apps

5
https://developer.android.com/studio/test/monkey.html
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often check their own signature before triggering malicious

behaviors. Users can also integrate their own strategies and

use it as a framework.

MobiGUITAR [2] is a tool that dynamically generates a model of

an app during exploration, based on the run-time state of

GUI widgets.

SwiftHand [14] learns a model of the app during testing, con-

sumes this model to generate inputs and uses the execution

of these to refine the model. Its key feature is that it avoids

restarting the app, which is significantly more expensive

than executing a sequence of inputs. It only generates touch

and scroll events, no system events.

Stoat [27] is a tool that uses dynamic and static analysis to reverse-

engineer a stochastic model of the app’s GUI. During testing,

it also randomly injects system events to further enhance the

testing effectiveness. It is effective for discovering unique

crashes.

ORBIT [33] also uses a model-based strategy. It uses a grey-box

approach for extracting a model of an app. First, it uses

static analysis to extract the set of events supported by the

app’s GUI. Then, it reverse-engineers a model of the app by

systematically exercising these events.

A3E Targeted [5] is one more model-based tool. It uses a static

data flow analysis on the app byte code, to construct an ac-

tivity transition graph, that captures legal transitions among

activities (app screens), and then explores the graph sys-

tematically. It directs the exploration to cover all activities -

especially activities that would be difficult to reach during

normal use.

Our approach is a model-based strategy, which generates an on-

the-fly model. In contrast to the aforementioned model-based tools,

our approach does not create a state transition model for the app

under test, but is targeted at determining how to effectively interact

with the app.

7.3 Explorative Strategies

The third main category of exploration strategies are explorative
strategies.

AndroidRipper. One tool implementing this kind of strategy is

AndroidRipper [1]. It uses a user-interface driven ripper to
systematically traverse the app’s user interface.

IntelliDroid. Likewise, IntelliDroid [32] is a tool that attempts to

trigger specific behaviors. It can be configured to produce

inputs specific to a dynamic analysis tool, for dynamic mal-

ware analysis, and it can determine the precise order these

inputs must be injected.

CuriousDroid [12] can decompose application user interfaces on-

the-fly, creating a context-based model that is tailored to the

current user layout. It can be used for dynamic sandboxes,

which is a widespread approach for detecting malicious ap-

plications.

A3E Depth-First [5] is a tool that uses the same activity transi-

tion graphs as A3E Targeted. It explores activities and GUI

elements in a depth-first manner. It traverses the app in a

slower, but more systematic way than A3E Targeted.

7.4 Reinforcement Learning Strategies

Likewise, the usage of reinforcement learning techniques for auto-

mated test generation has been investigated by research.

GUI testing with reinforcement learning. Bauersfeld et al. sho-
wed that reinforcement learning can be used for automated

GUI (robustness) testing [6, 7]. As an reinforcement learning

algorithm they used Q-learning [30], a popular model-free

reinforcement learning technique.

Action selection. Esparcia et al. also used Q-learning as a meta-

heuristic for action selection in their testing tool and showed

that the superiority of action selection by Q-learning can

only be achieved through an adequate choice of parameters

[17].

Offline Q-learning. Koroglu et al. used Q-learning for Android

GUI testing to achieve activity coverage and to detect crashes

[21]. They used offline Q-learning—split into a learning phase
and a testing phase: During the learning phase their approach

learns an abstract model from multiple apps and then uses

the gained knowledge (Q-matrix) as a model to predict which

actions might lead to new activity functionality or a crash.

Their approach uses a reinforcement learning technique,

but is closer to the crowd-based exploration by Borges et
al. [10] than to our approach, as both learn static models.

Our approach gains and applies knowledge during testing,

generating a model which is specific to the app under test.

8 CONCLUSION AND FUTUREWORK

Further use case scenarios might include saving the knowledge

obtained during exploration in a refined model. Because of the fine

adjustments of the model, their effects are more visible over time,

thus, we expect that, each new test can lead to a more efficient one.

The refined model could test new versions of the same app. This

would allow for “continuous learning and testing”. It would also be

possible to transfer refined models between different apps.

This work is the first approach to combine crowd-based model

with reinforcement learning exploration strategies and does not by

any means cover the complete field. There is still a lot of room for

improvements and future work:

Coverage as a reward. Instead of using the effectiveness of an

action as a binary reward, one could use coverage as a re-
ward, thus leading towards actions which explore more code

locations.

Automated parameter calibration. Our preliminary experime-

nts also showed that the values for ϵ and ψ significantly

affect the exploration effectiveness and coverage. Our val-

ues were, however, selected based on a manually performed

optimization. More adequate parameter values can be found

through an automated multivariate optimization experiment.
Learning Rate. One could also introduce a learning rate α to our

approach:

trials(a,C (w )) ← α × trials + 1 (1)

wins(a,C (w )) ← α × wins + r (2)

The learning rate adjust whether the algorithm should for-

get previous results quicker (α < 1) and have a downward

pressure toward ignorance, or whether the algorithm should
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act more risky (α > 1) and be more resistant to changing

environments.

REPRODUCIBILITY

To facilitate replication and extension, all our work is available as

open source. The replication package is available at:

https://drive.google.com/open?id=

1Gmq6owfTkf5a3DMqsiTP9OLsyQ2P4ILC
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