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Abstract

Graph analytics frameworks, typically based on Vertex-centric
or Edge-centric paradigms suffer from poor cache utilization,
irregular memory accesses, heavy use of synchronization
primitives or theoretical inefficiency, that deteriorate over-
all performance and scalability. In this paper, we generalize
the partition-centric PageRank computation approach [1] to
develop a novel Graph Processing Over Partitions (GPOP)
framework that enables cache-efficient, work-efficient and
scalable implementations of several graph algorithms. For
large graphs, we observe that GPOP is upto 19% and 6.1x
faster than Ligra and GraphMat, respectively.

1 Introduction

Shared-memory platforms are a popular choice for graph
analysis as they offer significantly lower communication
overhead compared to distributed systems. However, Graph
computations are characterized by large communication vol-
ume and irregular access patterns that make it challenging to
efficiently utilize the resources even on a single machine. The
conventional push-pull vertex-centric processing [3] gener-
ates fine grained random accesses that decrease the utility
of wide memory buses and deterministic caching features of
new architectures. Contrarily, approaches targeting locality
and streaming accesses require traversing all vertices/edges
of the graph and are not work-efficient for algorithms with
dynamic active vertex sets, such as BFS and Nibble algorithm.

To this purpose, we develop the Graph Processing over Par-
titions (GPOP) framework that comprehensively targets the
issues of cache, memory communication and work-efficiency.
The major contributions of our work are as follows:

1. We propose the GPOP framework with novel optimiza-
tions that (a) improves cache performance, (b) achieves
high DRAM bandwidth, (c) minimizes the use of syn-
chronization primitives and, (d) guarantees work effi-
ciency of a given algorithm.

2. GPOP provides an easy to program set of APIs allowing
selective continuity in frontiers across iterations. This
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functionality is essential for many algorithms such as
Nibble, Heat Kernel PageRank etc., but is not supported
intrinsically by the current frameworks.

2 Graph Processing Over Partitions

GPOP divides the vertex set into cacheable disjoint partitions
and implements each iteration of an algorithm in 2 phases:

1. Inter-partition communication (Scatter) — send vertex
data to other partitions in the form of messages. A mes-
sage also contains adjacency information enlisting the
destination vertices who would consume the vertex’s data.

2. Intra-partition updates (Gather) — process received mes-
sages to update state or value of vertices in the partition.

GPOP ensures high temporal locality by reusing partition’s
vertex data which is designed to fit in private cache of a
core. At the same time, it also enjoys high spatial locality
of message reads and writes by storing them in consecutive
locations in per-partition memory spaces called bins. Since
GPOP parallelizes computation over partitions, we create
at least 4t partitions (where t is the number of threads) to
ensure good load balance with dynamic scheduling.

Apart from generality, GPOP also ensures theoretical work-

efficiency of processing an iteration. This is unlike PageRank
computation in [1] which requires traversing all edges of
the graph in every iteration. GPOP chooses between the fol-
lowing two scatter modes based on an analytical model that
evaluates the tradeoff in work done per active edge versus
maximizing main memory performance:
Source-centric (SC) mode: When the number of active
edges are small, messages are only generated from active
vertices. 1) Messages from a given vertex are generated be-
fore processing the next vertex. 2) Successive messages to
any partition q from active vertices in partition p are written
to contiguous addresses in the bin corresponding to p — gq.
This enables efficient data packing in the cache lines.

SC mode is optimal in terms of work done. However, a
thread will switch partitions (bins) being written into hurting
the sustained memory bandwidth and overall performance.
Partition-centric (PC) mode: All vertices in the partition
are scattered. To ensure communication-efficiency, all mes-
sages destined to a given partition are generated consecu-
tively and written to contiguous memory locations, without
being interleaved with messages to any other partition. In
this mode, the order of message generation always stays the
same and adjacency information written once can be reused
across multiple iterations to reduce communication volume.
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Figure 1. Comparison of Execution time (normalized with GPOP
runtime) for various Graph algorithms

The Gather phase enjoys high temporal locality by caching
vertex data to be updated and sequential memory bandwidth
by reading messages in a bin consecutively. Moreover, during
both the phases, any given partition is exclusively processed
by one thread which enables atomic and lock-free communi-
cation and computation.

In particular, GPOP achieves sequential access bandwidth
for processing partitions with large number of active edges
while slightly increasing the work. However, the analytical
models and internal data structures of GPOP ensure that in all
cases, work done is always within a constant (predetermined)
factor of the number of active edges of a partition.

Finally, GPOP is designed with programmability in mind.
It abstracts away underlying parallelism and programming
model details from the user. GPOP’s unique and easy to
program APIs enable selective continuity of active frontier
across iterations, which is required by many graph algo-
rithms (such as Nibble algorithm for personalized PageRank).
For a detailed description of GPOP’s system optimizations
and programming interface, we refer the readers to [2].

3 Evaluation

We conduct experiments on a dual-socket Broadwell server
with two 18-core processors and 256 KB L2 cache per core.
We evaluate the performance of GPOP using 4 algorithms
on large graphs (upto 2.6B edges): PageRank, BFS, Label
Propagation and parallel Nibble algorithm.

Figure 1 compares the execution time of GPOP against
two most popular frameworks - Ligra [3] and GraphMat [4].
To explore the overall benefit of dual communication modes
in GPOP (section 2), we also measure the runtime with only
SC mode scatter (GPOP_SC).

GPOP consistently outperforms GraphMat for all the al-
gorithms by 2 X —6.1x speedup. Except BFS, GPOP executes
all other algorithms faster than Ligra achieving upto 19X
speedup for PageRank. The speedup is more substantial for
large graphs such as Friendster where the cache and memory
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bandwidth optimizations of GPOP become extremely cru-
cial for performance. For PageRank and Label Propagation,
GPOP is also 1.8 x —3.4x faster than GPOP_SC.

In case of BFS, direction optimization in Ligra enables
early termination of adjacency list iterators, reducing the
number of edges traversed. GPOP and GraphMat do not sup-
port pull direction processing and traverse all active edges.
However, GPOP is still 0.61x—0.95X as fast as Ligra. For com-
parison, we also show that BFS in Ligra without direction
optimization (Ligra_Push) is upto 3.1x slower than GPOP.

In parallel Nibble, the algorithm explores very few ver-
tices in local neighborhood of the seed set. The frontiers are
also small and GPOP is unable to utilize the PC mode for
high memory performance. Consequently, both GPOP and
GPOP_SC provide similar performance for Nibble algorithm.

Scalability: We evaluate the scalability of GPOP using PageR-
ank and BFS on synthetic graphs with size ranging from
{rmatZZ, |E| = 64M} to {rmat27, |E| = 2048M}. GPOP demon-
strates good scalability for BFS, achieving upto 17.9% speedup
over single thread. In case of PageRank, GPOP achieves upto
10.5% speedup with 36 threads and scales poorly after 16
threads. This is because PageRank always uses PC mode scat-
ter and nearly saturates the bandwidth with = 20 threads.
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Figure 2. Strong scaling of GPOP for PageRank and BFS

4 Conclusion

In this paper, we presented the GPOP framework for cache
and memory efficient graph processing. We experimentally
demonstrated the scalability of GPOP and its performance
benefits over Ligra and GraphMat frameworks.
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