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Abstract
Non-volatile memory (NVM) promises persistent main mem-
ory that remains correct despite loss of power. Since caches
are expected to remain volatile, concurrent algorithms must
be redesigned to ensure a consistent state after a system
crash, and to continue the execution upon recovery.

We give the first general construction to make any concur-
rent program persistent, and show that the persistent version
is guaranteed to have at most a constant factor blow-up in
both steps and contention. We also provide an optimized
transformation for normalized lock-free data structures. We
experimentally evaluate our transformation by comparing it
to a persistent transactional memory, as well as a hand-tuned
persistent algorithm. We show that our transformation’s per-
formance is reasonable given its generality.

CCS Concepts • Theory of computation → Concur-
rency; • Hardware→ Emerging technologies.
1 Introduction
Non-Volatile Memory (NVM) is making its way into modern
architectures, and is expected to replace DRAM for main
memory, promising persistence under loss of power. This
persistence introduces the possibility of recovering the data
structure frommain memory after a system failure. However,
it also introduces potential for inconsistencies, since caches
will likely remain volatile, losing their contents upon a crash.

A natural question is whether we can find general mecha-
nisms to port algorithms for current machines over to the
new persistent setting. Work on achieving general solutions
for persistence has taken two different approaches. Blelloch
et al. [3] persistent a program by dividing it into continguous
chunkc of code called capsules. The stack frame and program
counter are persisted between every pair of capsules. Upon
a crash, the most recently persisted information is read, and
the program continues from the beginning of the last cap-
sule. Blelloch et al. use capsules to make general race-free
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parallel programs persistent, but leave the problem of per-
sisting concurrent programs largely unaddressed. Attiya et
al. [1] present algorithms for basic concurrent primitives that
satisfy NRL, a correctness condition that allows persistent
objects to be safely nested. They leave open the question of
how to use these primitives for general persistent programs.

Results.We present a general simulation that takes any
concurrent algorithm that uses Read, Write and CAS opera-
tions on shared memory, and makes it persistent. Further-
more, we show an optimized simulation for a large class of
lock-free data structures called normalized algorithms [7].
Our simulation provides detectability; the results of each
operation can be recovered after a crash [5]. It combines
insights from capsules and persistent concurrent primitives.
We show our simulation is an efficient simulator of con-

current programs; roughly, a simulator transforms any con-
current program into another such that every instruction is
replaced with a simulation with the same effect. We say the
computation delay of a simulator is the maximum number of
steps taken to simulate any instruction. The recovery delay
of a simulator is the max number of steps it takes to correctly
restart a computation from the place where it failed.
Theorem 1.1. A p processor shared-memory machine with
reads, writes and CAS instructions can be simulated with con-
stant computation and recovery delay on a p processor faulty
persistent memory machine.

We test our simulations by applying them to the lock-free
MichaelScott (MS) queue [6], and comparing their perfor-
mance with Romulus [4] (transactional memory framework)
and with LogQueue [5] (a hand-tuned detectable queue).
We do not expect general constructions to match the perfor-
mance of specialized implementations. Indeed, the LogQueue
outperforms our transformations, but only by about a factor
of 1.55x on 8 threads; our most optimized simulation even
outperforms the LogQueue on lower thread counts.
In this short paper, we can only highlight the main ideas

and results. More details can be found in the full paper [2].

2 Using Capsules in Concurrent Code
Each process p can access an unbounded non-volatile shared
memory (NVM) with Read, Write and CAS instructions, as
well as a small private volatile memory, accessed with stan-
dard RAM instructions. p may crash at any time. Upon a
crash, the contents of p’s private memory are lost, but the
persistent memory remains unchanged. p can persist the
contents of its volatile memory by writing them into NVM.
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We create checkpoints by breaking code into capsules;
after a crash, the execution continues from the last capsule’s
beginning. This means that some instructions inside a cap-
sule may be repeated after a crash. To build correct capsules,
we must to determine if a modification of a variable can be
safely repeated. To handle this, we replace each CAS with a
recoverable CAS [1], a primitive which ensures that if a CAS
by process p has successfully changed its target, this fact
will be made known to p even if a crash occurs. We wrap
each recoverable CAS with a mechanism that only repeats it
after a crash if its recovery mechanism indicates it has not
been executed. In the full version, we show a variant of the
recoverable CAS algorithm that has constant recovery time.

3 Constant-Delay Simulation
To create a persistent program from a concurrent one, we
can put each instruction in its own capsule (after convert-
ing CASes into recoverable CASes). We call this our simple
simulation. Intuitively, our simple simulation perserves the
structure of the original algorithm. We formalize this with
the notion of a k-computation-delay simulation.

Definition 3.1. A concurrent algorithmA is ak-computation-
delay simulation of another concurrent algorithm A′ if A fol-
lows the same steps as A′, but replaces each base object O ′ of
A′ with an implementation of O ′ that takes at most k steps.

In the full paper, we extend k-computation-delay simu-
lations to k-contention-delay simulations, which ensure at
most a k-factor blow-up in the contention experienced by
each instruction. We also discuss k-recovery delay, meaning
that upon a crash, the program takes at most k steps before
it can continue from where it left off. We show that our sim-
ple simulation achieves both constant contention delay and
constant recovery delay, leading to Theorem 1.1.

In practice, capsules can be expensive, so we want as few
of them as possible. We can improve upon our simple simu-
lation by defining CAS-Write-Read capsules, which contain
one CAS or Write followed by any number of reads. In the
full version, we show that such capsules are safe to repeat.

4 Normalized Simulation
Timnat and Petrank [7] defined normalized data structures.
The idea is that the definition captures a large class of lock-
free algorithms that all have a similar structure, allowing us
to reason about many algorithms at once.

At a high level, every operation of a normalized algorithm
can be split into three parts: CAS Generator, CAS Executor,
andWrap-Up. In the full paper, we show that such algorithms
allow us to further reduce the number of capsules we use;
one capsule can contain both the CAS generator and the
Wrap-Up. The CAS executor needs to have its own capsule,
in which all CASes are made recoverable. Recoverability is
not required of the CAS operations in the generator and
wrap-up parts, unless they access the same object as a CAS

in the executor. We also show a further optimized version
for normalized data structures, that has the same number of
capsule boundaries, but makes them more lightweight.

5 Experiments
We measure the overhead of our general (CAS-Write-Read)
and normalized simulations by applying them to the MS
queue [6], and compare against Romulus [4] and LogQueue [5].
We test on a machine with a shared cache that gets automati-
cally flushed, so to test our algorithms we add flushes to them
to ensure safety. The results are depicted in Figure 1. Our nor-
malized simulations perform better than Romulus, but our
general simulation is slower than RomulusLR for more than
6 threads. We found that NormalizedO2 performs better than
the LogQueue by 1.29x on 1-2 threads and Log queue is bet-
ter by up to 1.52x on 3-8 threads. We believe this is because
NormalizedO2 performs less overall operations compared to
Log queue, however, in some places, NormalizedO2 performs
more work in between a read and its corresponding CAS.
Given that the LogQueue was hand-tuned, the performance
of the general normalized transformation is impressive.

Figure 1. Comparing our transformed queues with manual flushes
to prior work.
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