
PREPRINT OF PIWEK ET AL. (2019) TO APPEAR IN PROCEEDINGS OF THE THIRD CONFERENCE ON COMPUTING

EDUCATION PRACTICE, DURHAM, January 9, 2019.

Learning to program: from problems to code

Paul Piwek, Michel Wermelinger, Robin Laney and Richard Walker
School of Computing and Communications

The Open University

Milton Keynes, UK

{paul.piwek, michel.wermelinger, robin.laney, r.c.walker}@open.ac.uk

ABSTRACT

This paper introduces the approach to teaching problem-solving

and text-based programming that has been adopted in a large,

post-18, undergraduate, key introductory module (L4 FHEQ) on

Computing and Information Technology at the Open University

(UK). We describe how students are equipped with programming,

but foremost problem-solving skills. Key ingredients of the

approach are interleaving of skills, explicit worked examples of

decomposition, formulation of algorithms (with the help of

patterns for recurring problems) and translation to code.

Preliminary results are encouraging: students’ average course

work scores increase as they progress through the course.

CCS CONCEPTS

Education • Distance Learning • E-Learning

KEYWORDS

Problem solving, Python, programming, patterns, algorithms,

problem decomposition

1 Introduction

Learning to program, especially in a text-based programming

language, is often viewed as difficult by students [1, 2], and

consequently students can easily lose motivation. Also, mastery of

the constructs of a programming language does not automatically

translate into the ability to solve new programming problems [3].

These difficulties are compounded when programming is learned

in a distance or blended learning context. This paper describes

how text-based programming is introduced as part of problem

solving in TM112 ‘Introduction to computing and information

technology 2’, a large key introductory distance learning module

at the Open University (UK). We describe both the approach and

preliminary results with the first cohort (April – September 2018).

Our Faculty offers several qualifications in Computing and

Information Technology. Most of the pathways that lead to these

qualifications start with our key introductory modules, TM111

and TM112.

Both are 30 credit, post-18, undergraduate modules at Level 4

FHEQ (Scottish Level 7). The modules serve several purposes:

equip students with study skills for their further studies, introduce

a range of Computing and IT topics and prepare students for

problem solving and programming in subsequent modules.

Both modules are taught over 21 weeks (approximately 14

hours of student workload per week). The number of students per

cohort exceeds 1500. Student backgrounds vary from no prior

computing experience to professionals who need a qualification.

Students study in groups of about 20, under the guidance of a

tutor who provides online and face-to-face tuition, and feedback

through marking of course work. There are module-wide and tutor

group-based online discussion forums for peer-to-peer support.

Students are advised to study TM112 immediately following

completion of TM111. TM111 introduces basic study skills,

employability and personal development planning, computing and

information technologies and programming in a visual

programming language (a variant of MIT’s Scratch [4]). TM112

builds on the skills from TM111. At the core of TM112 are the

three themes shown in Table 1.

Table 1: Descriptions of the TM112 Themes

Theme Description

Essential

information

technologies

This theme introduces you to information

technologies, including basic computer

architecture, the cloud and mobile

computing. At the same time, you’ll work

to improve your numerical skills.

Problem

solving with Python

This theme helps you develop your

problem-solving skills as you get familiar

with the Python programming language,

analyse real-world data and carry out

programming projects.

Information

technologies

in the wild

This theme allows you to practise your

communication and analytical skills as

you explore the profound legal, social,

ethical and security challenges posed by

information technologies.

Computing Education Practice, January 2019, Durham, UK

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

CEP '19, January 9, 2019, Durham, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6631-1/19/01...$15.00

https://doi.org/10.1145/3294016.3294024

mailto:Permissions@acm.org
https://doi.org/10.1145/3294016.3294024

Computing Education Practice, January 2019, Durham, UK P. Piwek et al.

Each theme covers specific topics and allows students to

practise a range of skills. Though each theme addresses several

skills, as shown in Table 1, there is one core skill that each theme

focuses on.

The three themes are interleaved, rather than delivered in

succession, to allow each of the skills to bed in over a longer

period, cf. [5]. This was deemed important especially for the

problem solving/programming skills. It also means that the skills

can be assessed (with feedback for learning) at more than one

point during the course.

The problem solving with Python theme is delivered over 6

weeks as follows:

• Week 2: Introduction to problem solving in Python:

Sequence, selection, variables, lists and (nested) iteration,

mostly demonstrated using the Python Turtles library.

• Week 4: Patterns, algorithms and programs 1: Formula

problems, case analysis (and Booleans), testing and

documentation, pattern for generating a sequence.

• Week 7: Patterns, algorithms and programs 2: Generating

lists, reduce (count and aggregate), search (finding a

value/the best value), combining patterns.

• Week 9: Organising your Python code and data:

Introduction to Python functions (and automated testing of

functions with assert) and Python objects and names.

• Week 10: Diving into Data: worked example of analysis,

with Python, of Office for National Statistics (ONS) health

and wellbeing data.

• Week 15: My Python project: worked example implementing

a flashcard program that makes use of the module’s

electronic glossary. This week also introduces Python

dictionaries, interactive loops and the random library.

These 6 weeks (~84 study hours) constitute about 35% of the

entire module content, with the remaining 15 weeks dedicated to

the other two themes and separate assessment weeks. Each week

is supported by one chapter in a collection of three printed books

(developed specifically for this module) and online study and

programming activities. This is complemented with online

automatically marked formative quizzes - including CodeRunner

[6] quiz questions for coding questions.

From October 2017, the two 30-credit modules TM111 and

TM112 replaced the 60-credit module TU100. TU100 made use

of another variant of MIT’s Scratch in combination with a

physical sensor board. However, the absence of text-based

programming at L4 FHEQ was cause for concern, especially with

several students struggling with text-based programming at L5.

Additionally, the focus in TU100 was on the programming

constructs and student experimentation, with little explicit

guidance on problem solving techniques and heuristics. To

prepare students better for problem solving and programming at

L5 (both in Java and Python) TU100 was divided in two: TM111

using a visual language to ease students into programming with

engaging games-oriented programming tasks and TM112 using

Python and focusing on problem solving and worked examples

with real-world data.

2 From problems to code via patterns

Robins et al. observe that “A major recommendation to emerge

from the literature is that instruction should focus not only on the

learning of new language features, but also on the combination

and use of those features, especially the underlying issue of basic

program design.” [3] On TU100, “many students were reportedly

daunted by the sophisticated programs they were presented with

(which they were asked to modify) and tutors felt it would be

better to ask students to build up their own program from a

simpler base, in a more stepwise fashion.” [2]

The use of programming and design patterns is well grounded

in cognitive theories in how knowledge is constructed and

organized and how people become experts in problem solving.

Muller et al. [7] introduced 30 programming patterns and showed

that they improve the students’ ability to correctly solve

programming problems. Some of their patterns are specific, e.g.

“extreme value computation”, or very small, e.g. “traverse

successive elements”. Our patterns are more generic and

correspond to complete sub-problems, e.g. “find best value”. This

reduces the students’ cognitive load as there are fewer patterns to

learn.

2.1 Decomposition, patterns, algorithms and code

To help students construct programs in response to problem

statements, TM112 is packed with worked examples and activities

that guide students from a problem statement to code. We begin

with the following simple workflow:

Figure 1: Simple workflow for the problem-solving process

© The Open University

Imagine we want to draw the letter L with the Python turtle.

We can decompose this problem as follows:

Our first line uses the chevron (‘>’ symbol), which shows that

the first line is a heading: ‘> Draw L’ tells us what we want to do.

It describes the problem we are solving. The next four lines are a

decomposition of the heading line above. These four lines achieve

the task set out in the heading.

And this can be translated into Python code:

P. Piwek et al. Computing Education Practice, January 2019, Durham, UK

Subsequently, for problems with subproblems, the workflow

is extended as shown next.

Figure 2: Full workflow for the problem-solving process

© The Open University

The rationale is that the most difficult part is problem solving,

not coding, but fortunately there are recurring problem types with

boilerplate solution templates. The process thus becomes:

1. Recognise the type of problem.

2. Get the corresponding solution pattern.

3. Instantiate the pattern to get an algorithm for the

problem at hand.

4. Translate (largely ‘automatically’) the algorithm to

code.

In UK schools, computational thinking is taught as comprising

decomposition, abstraction, generalization (patterns), algorithmic

thinking and evaluation [8]. The process above starts with the

decomposition step, but instead of asking students to do the hard

step of abstraction, we do it for them, providing the patterns that

they need to match to the problem at hand, to remove a potential

stumbling block towards obtaining a solution. Overall, TM112

students are introduced to 14 distinct patterns for common

problem types, including generating, searching, and filtering lists.

The patterns help students realise how problem types are

related. For example, filtering a list is a search that retrieves all

items satisfying some condition, and the solution pattern is a

special case of the list transformation pattern with the identity

transformation. Patterns also make it clearer that variables play

particular roles, e.g. the container (a list), the iterator (each item

processed), the accumulator (the resulting item or list and its

intermediate values). Patterns are a thinking scaffold that guides

algorithm development: students are forced to think how to

initialise and update variables to instantiate a given pattern.

We describe patterns and algorithms in plain English, with

variables in italics and numbered lists of steps, not pseudo-code.

In a L5 module that uses a form of pseudo-code we observed that

for some students, pseudo-code is a barrier: they perceive it as yet

another language to learn and fret over its syntax. We thus use

plain English, albeit in a formulaic way (see examples below) but

without drawing attention to it. The formatting conventions

followed in English (starting itemized lists with a colon and

indenting them) map directly to Python, easing the translation of

the English algorithm to code.

Consider the problem of computing the volume of a brick,

given its width, length and height. We perform an initial

decomposition into the follow subproblems:

Both sub-problems are of the same form, so there is only one

problem type to identify. We refer to these type of problem as

‘formula problems’. They are solved by the following pattern:

Note that the pattern is not an algorithm, it is a template that

needs to be ‘filled in’ (with the variables and values to be used for

the problem at hand) to become an algorithm. Via several

intermediate steps (not shown here), the pattern is instantiated to

the following algorithm.

Computing Education Practice, January 2019, Durham, UK P. Piwek et al.

Note that we keep the headings of the sub-problems to help

structure the algorithm.

Finally, the algorithm is translated into code, rather

mechanically. The sub-problem headings become comments.

Further examples of patterns are available online [10].

2.2 Worked examples

The final two weeks consist of extended worked

examples/activities. Student learning is known to benefit from

worked examples, see e.g. [9]. According to [1], students learn

programming best when given assignments that inspire.

Assignments need to connect with student interests, see also [9].

In these two weeks students apply their problem-solving skills in

extended realistic scenarios chosen to capture their imagination.

They apply the problem-solving strategies and patterns they have

learned to authentic problems and meet some further strategies.

They are also encouraged to take a reflective approach and to

begin the habit of keeping a journal as they work on problems.

3 Assessment and Module Evaluation

Apart from the formative assessment with quizzes, TM112 has

three summative assignments, each equivalent to about 10 hours

of student workload. Each assignment consists of several

questions, with only some of these specifically about problem

solving and programming, as follows:

Assignment 1 Question 3: Turtles, problem decomposition,

nested iteration. Question 5: Inputs and outputs, admissible

values, tests, borderline values, patterns, algorithms and code.

Assignment 2 Question 3: Admissible inputs and outputs, writing

tests, decomposition into subproblems, identifying problem types

and patterns, writing code. Question 5: Python objects,

decomposition, algorithm, code with a Python function. Question

6: Data analysis using Python functions that are provided.

Assignment 3 Question 3: Flashcard programming project

extension. Amending an algorithm for a function. Write Python

code with amended function, testing and documentation of code,

use of a notebook to track progress (synoptic).

The mean of scores on the programming questions progresses

from Assignment 1 (at 71.1%) to Assignment 2 (at 75%) and

Assignment 3 (at 88.6%).

In terms of overall marks, those studying TM112 as part of an

Open Degree (where students are free to choose the modules they

study) or as stand-alone module not linked to any qualification

perform better than Computing students, but those studying

TM112 as part of a Computing with a second subject qualification

perform slightly worse (~5% lower pass rate than Computing-only

students). This suggests that the material is appropriate both for

Computing and non-Computing students.

4 Conclusion and further work

The progressively increasing mean programming scores are

encouraging in that they are consistent with the intentions behind

the design of the summative assessment: to help students develop

skills in lightweight Assignments 1 and 2 (contributing 15% and

35% of overall module score, respectively), so they are prepared

for the more synoptic application of these skills in Assignment 3

(weighted at 50% of the module score; additionally there is a 30%

threshold on Assignment 3). The first cohort has just finished the

course and as such we don't yet have the students’ end-of-course

survey data, but we will analyse it soon. Eventually, we would

like to do follow-up studies with students that have progressed to

L5, to determine to what extent they have benefitted from the

approach.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Institute of Coding,

and thank the anonymous reviewers for their comments.

REFERENCES
[1] Jenkins, T. (2002). ‘On the Difficulty of Learning to Program’, Proc 3rd

Annual HEA Conference for the ICS Learning and Teaching Support Network,

pp. 1-8.

[2] Chetwynd, F. and C. Dobbyn (2014). ‘Transforming retention and progression

in a new Level 1 course’, eSTEeM project Final report, The Open University,

Milton Keynes.

[3] Robins, A., Rountree, J. and Rountree, N. (2003). ‘Learning and Teaching

Programming: A Review and Discussion’, Computer Science Education, 13(2),

pp.137-172.

[4] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,

Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., and Y.

Kafai. (2009). ‘Scratch: programming for all’, Commun. ACM, 52(11)

(November 2009), 60-67. DOI: https://doi.org/10.1145/1592761.1592779

[5] Brown, P.C., Roediger III, H.L. and M.A. McDaniel (2014). Make it stick: The

science of successful learning. Harvard University Press, Cambridge,

Massachusetts.

[6] Lobb, R. and J. Harlow (2016). ‘Coderunner: A Tool for Assessing Computer

Programming Skills’. ACM Inroads, 7(1).

[7] Muller, O., Haberman, B., Ginat, D. (2007). ‘Pattern-oriented instruction and its

influence on problem decomposition and solution construction’. Proc. ITiCSE,

pp. 151-155, ACM.

[8] Czismadia, A. et al. (2015), Computational thinking: A guide for teachers.

Computing at Schools, part of BCS.

[9] Merrill, M. D. (2002). ‘First principles of instruction’. Educational Technology

Research and Development, 50(3), 43-59.

[10] Wermelinger, M. (2018). ‘From problems to programs’. Available at:

https://community.computingatschool.org.uk/resources/5691

https://doi.org/10.1145/1592761.1592779
https://community.computingatschool.org.uk/resources/5691

