
Supervisor Recommendation Tool for Computer Science
Projects

Gintare Zemaityte
School of Computer Science, University of St Andrews

St Andrews, Scotland, UK
gz25@st-andrews.ac.uk

Kasim Terzić∗
School of Computer Science, University of St Andrews

St Andrews, Scotland, UK
kt54@st-andrews.ac.uk

ABSTRACT
In most Computer Science programmes, students are required to
undertake an individual project under the guidance of a supervisor
during their studies. With increasing student numbers, matching
students to suitable supervisors is becoming an increasing challenge.
This paper presents a software tool which assists Computer Science
students in identifying the most suitable supervisor for their final
year project. It does this by matching a list of keywords or a project
proposal provided by the students to a list of keywords which were
automatically extracted from freely available data for each potential
supervisor. The tool was evaluated using both manual and user
testing, with generally positive results and user feedback. 83% of
respondents agree that the current implementation of the tool is
accurate, with 67% saying it would be a useful tool to have when
looking for a supervisor. The tool is currently being adapted for
wider use in the School.

CCS CONCEPTS
• Applied computing → Education; • Information systems
→ Information retrieval;

ACM Reference Format:
Gintare Zemaityte and Kasim Terzić. 2019. Supervisor Recommendation
Tool for Computer Science Projects. In Computing Education Practice (CEP
’19), January 9, 2019, Durham, United Kingdom. ACM, New York, NY, USA,
Article 39, 4 pages. https://doi.org/10.1145/3294016.3294030

1 INTRODUCTION
All undergraduate and taught postgraduate programmes in the
School of Computer Science at the University of St Andrews re-
quire completion of an individual project under the guidance of a
member of staff. At the moment, there are about 40 staff members
who can supervise projects, and about 100 undergraduate projects,
and 100 MSc dissertations completed every year. In order to match
students to supervisors, we have a project blog on which supervi-
sors advertise available projects, and students are encouraged to
contact supervisors directly, or propose their own projects.

∗This is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CEP ’19, January 9, 2019, Durham, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6631-1/19/01. . . $15.00
https://doi.org/10.1145/3294016.3294030

Currently there are over 200 project topics advertised on the blog,
which means that it can take a long time for students to find suitable
supervisors and interesting projects. Most of our MSc students are
only with us for a little over a semester by the time they start
looking for dissertation supervisors, so they do not have a complete
overview of the research background of every staff member, so they
tend to concentrate on the subset of staff who have taught them
during the semester.

The tool presented in this paper provides students with a shortlist
of suitable supervisors based on a list of keywords.

2 RELATEDWORK
We are not aware of existing algorithms for the particular prob-
lem of supervisor application though we suspect that various ap-
proaches have been implemented in different departments around
the country. There is, however, a wealth of of relevant literature
on matching in the context of publish-subscribe systems, expertise
retrieval, and matching conference papers to reviewers.

The main principle of publish/subscribe systems is matching
events to subscriptions. The matches are more relevant when they
are conditioned on particular attributes and value ranges. An ex-
ample would be a classified ad subscription which generated alerts
for all new listings for all items of type “car” with a price attribute
lower than “£10000” [2, 6]. The complexity of matching large num-
ber of events to subscriptions is addressed by using trees [2] various
indexing approaches [13] and optimised database queries [3]. Al-
though our problem deals with smaller quantities of data, we make
use of tree-based structures to speed up the search in our work.

Matching quality can be improved by introducing semantic sim-
ilarity [11], such as incorporating ontologies [1] and qualifiers for
exact and inexact predicate matches [12]. For example, Paolucci
et al. employ a hierarchical ontology and flexible matches exhibit-
ing a degree of similarity [10]. In our work, we apply these ideas
by looking for semantically similar keywords using the WordNet
ontology.

While not phrased explicitly as a matching problem, expertise
search and discovery is relevant because it attempts to identify a list
of people who are knowledgeable about a given topic. A study by
Balog et al. used a corpus of heterogeneous publicly available data
from their own academic institution to determine the probability
of a given academic being an expert in an identified topic area [5].
Using keyword frequency for this task is a common approach [8],
and although recent work has produced more complex Bayesian
models [4, 9], the simpler metric term frequency-inverse document
frequency (TF-IDF) used by Balog et al. have proven useful [5]. In
our work, we use TF-IDF for ranking suggested supervisors.

https://doi.org/10.1145/3294016.3294030
https://doi.org/10.1145/3294016.3294030

CEP ’19, January 9, 2019, Durham, United Kingdom G. Zemaityte and K. Terzić

Figure 1: The keyword extraction process.

Finally, we note the increasing use of tools such as the Toronto
Paper Matching System [7], but it requires a manually self-assessed
list of topics for each potential reviewers, which increases the work
when setting up the system for a new conference.

3 AUTOMATED MATCHING TOOL
3.1 Automated Data Gathering and Profile

Generation
We begin by scraping publicly available sources and extracting use-
ful text and keywords from them. It is accepted that a researcher’s
body of work is a good indicator of their expertise and interest
areas [7], so the sources we use include:

• existing projects advertised on our project blog,
• existing webpages, including the list of potential PhD super-
visors, which come with keywords,

• our online student handbook which includes descriptions of
our taught modules and the associated teaching staff,

• abstracts from staff papers, available from University pages.
The scraping process stores the relevant text in a directory structure
which is then processed by the RAKE algorithm [?] to automatically
extract keywords.

The entire process takes about 20 minutes and is automated so
it can be repeated often to take new publications into account. The
result is a keyword database which related keywords to academics,
and which can be used in the matching process. The current data-
base contains about 6000 key terms. Since it has been noted that
manually curating a list of keywords and keeping it up-to-date is
a tedious process [4], the ability to automatically update our data-
base (e.g. when new staff members join the school) is an important
feature.

3.2 Ranking
In order to rank supervisors, we calculate the TF-IDF (term frequency-
inverse document frequency) measure:

TF-IDF = TF × IDF,where (1)

TF =
occurrences of a term in the document

all words in the document
, and

IDF = log
(

all documents
documents containing the term

)
.

Prior to calculating the scores, we normalise the words by split-
ting multi-phrase terms into single words and stemming the words
using the Porter stemmer available in the NLTK library. The term
frequency for each stemmed word for each researcher is calculated
in relation to the rest of the terms associated with that researcher.

For the inverse document frequency, the total list of documents
is equal to the number of entries in the dictionary, and the search
requires checking which other researchers are associated with the
same word. We store the final TF-IDF score in a dictionary structure
for each term for every researcher in the database. Precalculating
and storing these values means that any subsequent lookup will be
fast.

3.3 Matching algorithm
Our matching algorithm accepts a list of keywords and tries to
match each of them to a list of supervisors in turn. The algorithmwe
employ is a simplified version of the semantic matching algorithm
proposed by Paolucci et al. [10]. We start with an empty list of
matches and then, for each keyword in turn, search a hash-based
dictionary comprising 6000 keywords for matches. Each of these
keywords is associated with a list of supervisors. We then look
up each supervisor in a second hash-based dictionary structure
in order to find the TF-IDF measure for this keyword/supervisor
combination. This is then used to rank the proposals.

We apply several heuristics to filter out undesired results. This
includes matching only whole words for keywords shorter than
three characters (i.e. a search for “AI” would not return keywords
“aim” or “contain”), and matching parts of words only if they start a
word (so searching for “data” will return matches for “database”). If
a keyword is not found, we obtain a list of ynonyms using NLTK’s
WordNet corpus, and look for those. If there are still no matches,
the algorithm splits multi-word keywords into single words and
looks for those. So if there are no matches for “data intensive com-
putation”, the algorithm would look for “data”, “intensive” and
“computation”.

Supervisor Recommendation Tool for Computer Science Projects CEP ’19, January 9, 2019, Durham, United Kingdom

Figure 2: The matching process.

3.4 Matching based on written proposals
In addition to searching by a list of keywords, the tool also allows
a student to upload a short proposal and match it to existing su-
pervisor. In this case, the RAKE algorithm will first extract a list of
keywords from the proposal, and then match them to supervisors
as described above.

4 EVALUATION
Our prototype was implemented in Python, using NLTK and the
existing implementation of the RAKE algorithm. There is a rudi-
mentary GUI for entering keywords and displaying the results in
order to test the tool with actual users.

4.1 User study
We conducted a small study on 12 MSc student volunteers from the
department, all of whom were currently writing their dissertation.
They were asked to attempt to attempt to find a supervisor for their
current MSc dissertation, and to complete a survey afterwards.

The feedback was generally positive. Ten out of twelve people
found the tool accurate and eight out of nine found it useful (see
Fig. 3). With seven out of twelve users, the tool recommended their
current supervisor, which is promising, but shows potential for
improvement. However, ten out of twelve people reported that the
tool recommended a suitable supervisor they did not originally
consider (see Fig. 4).

The two users who did not find the tool accurate did not engage
much with the tool and only tested a very small number of key-
words. However, this indicates that the tool requires a certain num-
ber of descriptive keywords, which could pose a limit to adoption.
This can lead to problems with new topics such as “blockchain” and
“ethereum”. Since there are no experts on this topic in the school,
the tool will fail to recommend a supervisor, although some staff
members may be able to supervise such a dissertation.

4.2 Manual testing
The traditional way to find suitable supervisors is to ask the project
coordinator (in this case, the second author). In addition to the user
study, we tested the tool by trying all the keywords found on our
project blog and school pages and verifying that the recommenda-
tions made by the tool are sensible.

Figure 3: 10 out of 12 users in our study found the tool accu-
rate. 8 out of 9 found it useful.

We also tested the tool by uploading a number of project propos-
als and looking for potential supervisors. To evaluate this, we down-
loaded 32 existing project proposals which were hidden (and thus
not found by the scraping process). These hidden project proposals
correspond to past projects which were successfully completed
and are no longer advertised to students. In each of these cases,
we tested whether our tool would recommend the supervisor who
originally wrote the proposal. Fig. 5 shows the results. Although our
tool extracted the keywords from the uploaded proposal automati-
cally, our tool successfully recommended the original author in 50%
of the cases. In most cases, at least one of the suggested supervisors
was a suitable choice for supervising the proposed project. While
there is obviously still room for improvement, the ability of the tool
to process natural text and suggest suitable supervisors is already
promising.

CEP ’19, January 9, 2019, Durham, United Kingdom G. Zemaityte and K. Terzić

Figure 4: 83% of the users in our study found that the tool rec-
ommended a suitable supervisor they would not have other-
wise considered.

Figure 5: We tested our tool by uploading 32 project pro-
posals which correspond to old, completed projects from
previous years and automatically extracting desired key-
words from the text of the proposal. In 50% of the cases, the
tool suggested the original supervisor. Even when we only
matched based on the first 10 extracted keywords, it sug-
gested the original author in 17% of the cases.

5 CONCLUSION
We have presented a new tool for suggesting project supervisors
in a higher education setting. With the exception of the manual
selection of data sources, it is almost completely automatic and
easy to keep updated. Initial evaluation indicates that users find
it accurate and useful, although it fails when used with very rare
keywords.

In our school, we currently assign two batches of 100 students
to project supervisors each year. Even small improvements to the
process could save students and staff a lot of stress and time, and
matching students to suitable supervisors early could help with

student satisfaction and learning outcomes. The tool we have de-
scribed in this paper is not ideal, but initial evaluation suggests that
it could be useful for improving the allocation process.

5.1 Further Work
We are planning to adapt the existing code to provide a RESTful
API which can serve a list of suggested supervisors. This can be
integrated with our existing school webpages as an online tool
for searching for supervisors. This would provide links to existing
projects by suggested supervisors so students can focus on a subset
of relevant projects without having to read all project proposals.
We believe that this would make it interesting to other departments
around the country.

REFERENCES
[1] W. Abramowicz, E. Bukowska, J. Dzikowski, A. Filipowska, and M. Kaczmarek.

2011. Semantically Enabled Experts Finding System âĂŞ Ontologies, Reasoning
Approach and Web Interface Design. In East-European Conference on Advances in
Databases and Information Systems. 157–166.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. 1999.
Matching Events in a Content-based Subscription System. In ACM Symposium on
Principles of Distributed Computing. 53–61. https://doi.org/10.1145/301308.301326

[3] G. Ashayer, H. K. Y. Leung, and H. A. Jacobsen. 2002. Predicate Matching and
Subscription Matching in Publish/Subscribe Systems. In International Conference
on Distributed Computing Systems Workshops. https://doi.org/10.1109/ICDCSW.
2002.1030823

[4] K. Balog, L. Azzopardi, and M. de Rijke. 2009. A Language Modeling Framework
for Expert Finding. Information Processing & Management 45, 1 (2009), 1–19.
https://doi.org/10.1016/j.ipm.2008.06.003

[5] K. Balog and M. de Rijke. 2007. Finding Similar Experts. In International ACM
SIGIR Conference on Research and Development in Information Retrieval. 821–822.
https://doi.org/10.1145/1277741.1277926

[6] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. 1999. Efficient Multicast Protocol for Content-Based Publish-Subscribe
Systems. In IEEE International Conference on Distributed Computing Systems.
262–272. https://doi.org/10.1109/ICDCS.1999.776528

[7] L. Charlin and R. S. Zemel. 2013. The Toronto Paper Matching System: An auto-
mated paper-reviewer assignment system. In ICML Workshop on Peer Reviewing
and Publishing Models.

[8] N. Craswell, D. Hawking, A. Vercoustre, and P. Wilkins. 2001. P@NOPTIC Expert:
Searching for Experts not just for Documents. In AusWeb 2001. 21–25.

[9] H. Fang and C. Zhai. 2007. Probabilistic Models for Expert Finding. In European
Conference on Information Retrieval Research. 418–430. https://doi.org/10.1007/
978-3-540-71496-5_38

[10] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. 2002. Semantic Matching
of Web Services Capabilities. In International Semantic Web Conference (ISWC).
333âĂŞ347. https://doi.org/10.1007/3-540-48005-6_26

[11] M. Petrovic, I. Burcea, and H. A. Jacobsen. 2003. S-ToPSS: Semantic Toronto
Publish/Subscribe System. In International Conference on Very Large Data Bases,
Vol. 29. 1101–1104.

[12] K. Sycara, M. Klusch, and S. Widoff. 1999. Dynamic Service Matchmaking Among
Agents in Open Information Environments. ACM SIGMOD Record 28, 1 (1999),
47–53. https://doi.org/10.1145/309844.30989

[13] T. W. Yan and H. Garcia-Molina. 1999. The SIFT Information Dissemination
System. ACM Transactions on Database Systems 24, 4 (1999), 529–565. https:
//doi.org/10.1145/331983.331992

Received Oct 10 2018; accepted Nov 9 2018

https://doi.org/10.1145/301308.301326
https://doi.org/10.1109/ICDCSW.2002.1030823
https://doi.org/10.1109/ICDCSW.2002.1030823
https://doi.org/10.1016/j.ipm.2008.06.003
https://doi.org/10.1145/1277741.1277926
https://doi.org/10.1109/ICDCS.1999.776528
https://doi.org/10.1007/978-3-540-71496-5_38
https://doi.org/10.1007/978-3-540-71496-5_38
https://doi.org/10.1007/3-540-48005-6_26
https://doi.org/10.1145/309844.30989
https://doi.org/10.1145/331983.331992
https://doi.org/10.1145/331983.331992

	Abstract
	1 Introduction
	2 Related Work
	3 Automated matching tool
	3.1 Automated Data Gathering and Profile Generation
	3.2 Ranking
	3.3 Matching algorithm
	3.4 Matching based on written proposals

	4 Evaluation
	4.1 User study
	4.2 Manual testing

	5 Conclusion
	5.1 Further Work

	References

