
The Space-Efficient Core of Vadalog

GERALD BERGER, TU Wien, Austria

GEORG GOTTLOB, University of Oxford, UK and TU Wien, Austria

ANDREAS PIERIS, University of Edinburgh, UK and University of Cyprus, Cyprus

EMANUEL SALLINGER, University of Oxford, UK and TU Wien, Austria

Vadalog is a system for performing complex reasoning tasks such as those required in advanced knowledge

graphs. The logical core of the underlying Vadalog language is the warded fragment of tuple-generating

dependencies (TGDs). This formalism ensures tractable reasoning in data complexity, while a recent analysis

focusing on a practical implementation led to the reasoning algorithm around which the Vadalog system is

built. A fundamental question that has emerged in the context of Vadalog is whether we can limit the recursion

allowed by wardedness in order to obtain a formalism that provides a convenient syntax for expressing useful

recursive statements, and at the same time achieves space-efficiency. After analyzing several real-life examples

of warded sets of TGDs provided by our industrial partners, as well as recent benchmarks, we observed that

recursion is often used in a restricted way: the body of a TGD contains at most one atom whose predicate is

mutually recursive with a predicate in the head. We show that this type of recursion, known as piece-wise

linear in the Datalog literature, is the answer to our main question. We further show that piece-wise linear

recursion alone, without the wardedness condition, is not enough as it leads to undecidability. We also study

the relative expressiveness of the query languages based on (piece-wise linear) warded sets of TGDs. Finally,

we give preliminary experimental evidence for the practical effect of piece-wise linearity on Vadalog.

ACM Reference Format:
Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2022. The Space-Efficient Core of

Vadalog. ACM Trans. Datab. Syst. 1, 1 (March 2022), 46 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
In recent times, thousands of companies world-wide wish to manage their own knowledge graphs

(KGs), and are looking for adequate knowledge graph management systems (KGMS). The term

knowledge graph originally only referred to Google’s Knowledge Graph, i.e., “a knowledge base used

by Google and its services to enhance its search engine’s results with information gathered from a

variety of sources.
1
” In the meantime, several other large companies have constructed their own

knowledge graphs, andmanymore companies would like to maintain a private corporate knowledge

graph incorporating large amounts of data in form of database facts, both from corporate and public

sources, as well as rule-based knowledge. Such a corporate knowledge graph is expected to contain

relevant business knowledge, for example, about customers, products, prices, and competitors,

rather than general knowledge from Wikipedia and similar sources. It should be managed by a

KGMS, that is, a knowledge base management system that performs complex rule-based reasoning

1
https://en.wikipedia.org/wiki/Knowledge_Graph

Authors’ addresses: Gerald Berger, TU Wien, Austria, georg.gottlob@cs.ox.ac.uk; Georg Gottlob, University of Oxford, UK,

TU Wien, Austria, georg.gottlob@cs.ox.ac.uk; Andreas Pieris, University of Edinburgh, UK, University of Cyprus, Cyprus,

apieris@inf.ed.ac.uk; Emanuel Sallinger, University of Oxford, UK, TU Wien, Austria, emanuel.sallinger@cs.ox.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2022/3-ART $15.00

https://doi.org/0000001.0000001

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

2 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

tasks over very large amounts of data and, in addition, provides methods and tools for data analytics

and machine learning [8].

1.1 The Vadalog System
Vadalog is a system for performing complex reasoning tasks such as those required in advanced

knowledge graphs [9]. It is Oxford’s contribution to the VADA research project,
2
a joint effort of the

universities of Oxford, Manchester, and Edinburgh, as well as around 20 industrial partners such as

Facebook, BP, and the NHS (UK national health system). One of the most fundamental reasoning

tasks performed by Vadalog is ontological query answering: given a database D, an ontology Σ
(which is essentially a set of logical assertions that allow us to derive new intensional knowledge

fromD), and a query q(x̄) (typically a conjunctive query), the goal is to compute the certain answers

to q w.r.t. the knowledge base consisting of D and Σ, i.e., the tuples of constants c̄ such that, for

every relational instance I ⊇ D that satisfies Σ, I satisfies the Boolean query q(c̄) obtained after

instantiating x̄ with c̄ . Due to Vadalog’s ability to perform ontological query answering, it is

currently used as the core deductive database component of the overall Vadalog KGMS, as well as

at various industrial partners including the finance, security, and media intelligence industries.

The logical core of the underlying Vadalog language is a rule-based formalism known as

warded Datalog∃ [18], which is a member of the Datalog
±
family of knowledge representation

languages [15]. Warded Datalog
∃
generalizes Datalog with existential quantification in rule heads,

and at the same time applies a restriction on how certain “dangerous” variables can be used;

details are given in Section 3. Such a restriction is needed as basic reasoning tasks, e.g., ontolog-

ical query answering, under arbitrary Datalog
∃
rules become undecidable; see, e.g., [7, 14]. Let

us clarify that Datalog
∃
rules are essentially tuple-generating dependencies (TGDs) of the form

∀x̄∀ȳ(φ(x̄, ȳ) → ∃z̄ ψ (x̄, z̄)), where φ (the body) andψ (the head) are conjunctions of atoms. There-

fore, knowledge representation and reasoning should be seen as a modern application of TGDs,

which have been introduced decades ago as a unifying framework for database integrity constraints.

The key properties of warded Datalog
∃
, which led to its adoption as the logical core on top of

which the Vadalog language is built, can be summarized as follows:

(1) Recursion over KGs. It is able to express full recursion and joins, needed to express complex

reasoning tasks over KGs. Moreover, navigational capabilities, empowered by recursion, are

vital for graph-based structures.

(2) Ontological Reasoning over KGs. After adding a very mild and easy to handle negation, the

language is able to express SPARQL reasoning under the OWL 2 QL entailment regime. Recall

that SPARQL is the standard language for querying the Semantic Web,
3
while OWL 2 QL

is a prominent profile of the OWL 2 Web Ontology Language, the standard formalism for

modeling Semantic Web ontologies.
4

(3) Low Complexity. Reasoning, in particular, ontological query answering, is tractable (in fact,

polynomial time) in data complexity, which is a minimal requirement for allowing scalability

over large volumes of data.

Warded Datalog
∃
turned out to be powerful enough for expressing all the tasks given by our

industrial partners, while a recent analysis of it focusing on a practical implementation led to the

reasoning algorithm around which the Vadalog system is built [9].

2
http://vada.org.uk/

3
http://www.w3.org/TR/rdf-sparql-query

4
https://www.w3.org/TR/owl2-overview/

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 3

1.2 Research Challenges
With the aim of isolating more refined formalisms, which will lead to yet more efficient reasoning

algorithms, the following fundamental question has emerged in the context of Vadalog:

Can we limit the recursion allowed by wardedness in order to obtain a formalism that provides a
convenient syntax for expressing useful statements, importantly, most of the scenarios provided by our
partners, and at the same time achieves space-efficiency, in particular, NLogSpace data complexity?

Let us stress that NLogSpace data complexity is the best that we can hope for since navigational

capabilities are vital for graph-based structures, and already graph reachability is NLogSpace-

hard. It is known that NLogSpace is contained in the class NC2 of highly parallelizable problems.

This means that reasoning in the more refined formalism for which we are aiming is principally

parallelizable, unlike warded Datalog
∃
, which is PTime-complete and intrinsically sequential. Our

ultimate goal is to exploit this in the future for the parallel execution of reasoning tasks in both multi-

core settings and in the map-reduce model. In fact, we are currently in the process of implementing

a multi-core implementation for the refined formalism proposed by the present work.

Extensive benchmark results are available for the Vadalog system, based on a variety of synthetic

and industrial scenarios, including the following:

- ChaseBench [10], a benchmark that targets data exchange and query answering problems.

- iBench, a data exchange benchmark developed at the University of Toronto [4].

- iWarded, a benchmark specifically targeted at warded sets of TGDs.

- A benchmark based on DBpedia, and a number of other synthetic and industrial scenarios [9].

Note that all the above benchmarks consist of warded sets of TGDs. In fact, a good part of them

are not warded by chance, i.e., they contain joins among “harmful” variables, which is one of the

distinctive features of wardedness [9]. In the conference paper [11], on which the present work

is based, after analyzing the above benchmarks, it has been observed that recursion is often used

in a restricted way. Approximately 70% of the TGD-sets use recursion as follows: the body of a

TGD contains at most one atom whose predicate is mutually recursive with a predicate in the head.

Actually, approximately 55% of the TGD-sets directly use the above type of recursion, while 15%

can be transformed into warded sets of TGDs that use recursion as above. This relies on a standard

elimination procedure of unnecessary non-linear recursion. For example,

∀x∀y(E(x,y) → T (x,y)) ∀x∀y∀z(T (x,y) ∧T (y, z) → T (x, z)),

which compute the transitive closure of E using non-linear recursion, can be rewritten as

∀x∀y(E(x,y) → T (x,y)) ∀x∀y∀z(E(x,y) ∧T (y, z) → T (x, z)),

that uses linear recursion. Interestingly, the type of recursion discussed above has been already

studied in the context of Datalog, and is known as piece-wise linear; see, e.g., [1]. It is a refinement

of the well-known linear recursion [23, 24], already mentioned in the above example, which allows

only one intensional predicate (i.e., a predicate that occurs in the head of at least one rule) to appear

in the body, while all the other predicates are extensional (i.e., predicates that are not intensional).

Based on this key observation, the following research questions have immediately emerged:

(1) Does warded Datalog
∃
with piece-wise linear recursion achieve space-efficiency for query

answering?
5

(2) Is the combination of wardedness and piece-wise linearity justified? That is, can we achieve

the same space efficiency with piece-wise linear Datalog
∃
without the wardedness condition?

5
The idea of combining wardedness with piece-wise linearity has been already mentioned in the invited paper [8], while

the obtained formalism is called strongly warded.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

4 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

(3) What is the expressiveness of the query language based on warded Datalog
∃
with piece-wise

linear recursion relative to prominent languages such as Datalog?

The above questions have been already posed and studied in the conference paper [11] with the

aim of obtaining new insights towards more efficient reasoning algorithms, in particular, towards

parallel execution of reasoning tasks. In fact, the goal of [11] was to analyze piece-wise linearity,

and provide definitive answers to the above questions. The present work extends and improves [11]

in several ways; more details are given below.

1.3 Summary of Contributions
Our main results can be summarized as follows:

(1) In Section 4 we show that ontological query answering under warded Datalog
∃
with piece-

wise linear recursion is NLogSpace-complete in data complexity, and PSpace-complete in

combined complexity, which provides a definitive answer to our first question. This is a

rather involved result that relies on a novel notion of resolution-based proof tree, which

is of independent interest. In particular, we show that ontological query answering under

warded Datalog
∃
with piece-wise linear recursion boils down to the problem of checking

whether a proof tree that enjoys certain properties exists, which in turn can be done via

a space-bounded non-deterministic algorithm. Interestingly, our machinery allows us to

re-establish the complexity of ontological query answering under warded Datalog
∃
via an

algorithm that is significantly simpler than the one employed in [18]. Our algorithm is

essentially the non-determinisitc algorithm for piece-wise linear warded Datalog
∃
with the

crucial difference that it employs alternation.

(2) To our surprise, ontological query answering under piece-wise linear Datalog
∃
, without the

wardedness condition, is undecidable. This result, which is shown in Section 5 via a reduction

from the unbounded tiling problem, provides a definitive answer to our second question: the

combination of wardedness and piece-wise linearity is indeed justified.

(3) In Section 6 we investigate the relative expressive power of the query language based on

warded Datalog
∃
with piece-wise linear recursion, which consists of all the queries of the

form Q = (Σ,q), where Σ is a warded set of TGDs with piece-wise linear recursion, and q
is a conjunctive query, while the evaluation of Q over a database D is precisely the certain

answers to q w.r.t. D and Σ. By exploiting our novel notion of proof tree, we show that it is

equally expressive to piece-wise linear Datalog. The same approach allows us to elucidate

the relative expressiveness of the query language based on warded Datalog
∃
(with arbitrary

recursion), showing that it is equally expressive to Datalog. We also adopt the more refined

notion of program expressive power, introduced in [2], which aims at the decoupling of the

set of TGDs and the actual conjunctive query, and show that the query language based on

warded Datalog
∃
(with piece-wise linear recursion) is strictly more expressive than Datalog

(with piece-wise linear recursion). This exposes one of the advantages of value invention

that is available in Datalog
∃
-based languages, but not in plain Datalog.

(4) Finally, in Section 7 we provide initial evidence for the practical effect of piece-wise linearity

on the Vadalog system, which has been originally designed for warded Datalog
∃
. In particular,

we give preliminary experimental evidence for the effect of piece-wise linearity on the

subsystem of Vadalog that is responsible for termination control, a crucial component that is

needed due to the interaction of existential quantifiers and recursion.

As said above, this work is an extended and revised version of the conference paper [11]. Apart

from giving the full proofs for all the results stated in [11], in addition, we include the following:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 5

- A new alternating algorithm that allows to re-establish the complexity of ontological query

answering under warded Datalog
∃
in a transparent way.

- A discussion on the key model-theoretic property, known as unbounded ground-connection

property, that distinguishes (piece-wise linear) warded Datalog
∃
from existing formalisms.

- New query rewriting algorithms that allow us to rewrite (piece-wise linear) warded Datalog
∃

queries into plain (piece-wise linear) Datalog queries.

- A preliminary experimental evaluation that provides evidence for the practical effect of

piece-wise linearity on the Vadalog system.

2 PRELIMINARIES
Basics. We consider the disjoint countably infinite sets C, N, and V of constants, (labeled) nulls,
and variables, respectively. The elements of (C ∪ N ∪ V) are called terms. An atom is an expression

of the form R(t̄), where R is an n-ary predicate, and t̄ is an n-tuple of terms. We write var(α) for
the set of variables in an atom α ; this notation extends to sets of atoms. A fact is an atom that

contains only constants. A substitution from a set of terms T to a set of terms T ′ is a function

h : T → T ′. The restriction of h to a subset S ofT , denoted h |S , is the substitution {t 7→ h(t) | t ∈ S}.
A homomorphism from a set of atoms A to a set of atoms B is a substitution h from the set of

terms in A to the set of terms in B such that h is the identity on C, and R(t1, . . . , tn) ∈ A implies

h(R(t1, . . . , tn)) = R(h(t1), . . . ,h(tn)) ∈ B. We write h(A) for the set of atoms {h(α) | α ∈ A}. For
brevity, we may write [n] for the set {1, . . . ,n}, where n > 0.

Relational Databases. A schema S is a finite set of relation symbols (or predicates), each having

an associated arity. We write R/n to denote that R has arity n ≥ 0. A position R[i] in S, where
R/n ∈ S and i ∈ [n], identifies the i-th argument of R. An instance over S is a (possibly infinite) set

of atoms over S that contain constants and nulls, while a database over S is a finite set of facts over
S. The active domain of an instance I , denoted dom(I), is the set of all terms occurring in I .

Conjunctive Queries. A conjunctive query (CQ) over S is a first-order formula of the form

q(x̄) B ∃ȳ
(
R1(z̄1) ∧ · · · ∧ Rn(z̄n)

)
,

where each Ri (z̄i), for i ∈ [n], is an atom without nulls over S, each variable mentioned in the

z̄i ’s appears either in x̄ or ȳ, and x̄ are the output variables of q. For convenience, we adopt the
rule-based syntax of CQs, i.e., a CQ as the one above will be written as the rule

Q(x̄) ← R1(z̄1), . . . ,Rn(z̄n),

where Q is a predicate used only in the head of CQs. Let atoms(q) = {R1(z̄1), . . . ,Rn(z̄n)}. The
evaluation of q(x̄) over an instance I , denoted q(I), is the set of all tuples h(x̄) of constants, where h
is a homomorphism from atoms(q) to I .

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ is a sentence

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ (x̄, z̄)) ,

where x̄, ȳ, z̄ are tuples of variables of V, and ϕ,ψ are conjunctions of atoms without constants

and nulls. For brevity, we write σ as ϕ(x̄, ȳ) → ∃z̄ ψ (x̄, z̄), and use comma instead of ∧ for joining

atoms. We refer to ϕ andψ as the body and head of σ , denoted body(σ) and head(σ), respectively.
The frontier of the TGD σ , denoted front(σ), is the set of variables that appear both in the body and

the head of σ . We also write var∃(σ) for the existentially quantified variables of σ . The schema of a

set Σ of TGDs, denoted sch(Σ), is the set of predicates in Σ. An instance I satisfies a TGD σ as the

one above, written I |= σ , if the following holds: whenever there exists a homomorphism h such

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

6 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

that h(ϕ(x̄, ȳ)) ⊆ I , then there exists h′ ⊇ h |x̄ such that h′(ψ (x̄, z̄)) ⊆ I .6 The instance I satisfies a
set Σ of TGDs, written I |= Σ, if I |= σ for each σ ∈ Σ.

Query Answering under TGDs. The main reasoning task under TGD-based languages is con-
junctive query answering. Given a database D and a set Σ of TGDs, amodel of D and Σ is an instance

I such that I ⊇ D and I |= Σ. Letmods(D, Σ) be the set of all models of D and Σ. The certain answers
to a CQ q w.r.t. D and Σ is defined as the set tuples

cert(q,D, Σ) B
⋂

I ∈mods(D ,Σ)

q(I).

Our main task is to compute the certain answers to a CQ w.r.t. a database and a set of TGDs from

a certain class C of TGDs; concrete classes of TGDs are discussed below. As is customary when

studying the complexity of this problem, we focus on its decision version:

PROBLEM : CQAns(C)
INPUT : A database D, a set Σ ∈ C of TGDs, a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ | .
QUESTION : Is it the case that c̄ ∈ cert(q,D, Σ)?

This general formulation refers to the combined complexity of the problem. However, we are also

interested in the data complexity, which measures the complexity of the problem assuming that the

set of TGDs Σ ∈ C and the CQ q are fixed, i.e., the complexity of the following problem:

PROBLEM : CQAns(Σ,q(x̄))
INPUT : A database D, and a tuple c̄ ∈ dom(D) |x̄ | .
QUESTION : Is it the case that c̄ ∈ cert(q,D, Σ)?

We adopt the usual convention and when we talk about the data complexity of CQAns(C) (i.e., the
class of problems CQAns(Σ,q(x̄)), where Σ is a set of TGDs from C and q a CQ), we say that it is

complete for a complexity class C if, for each set Σ ∈ C and CQ q, the problem CQAns(Σ,q(x̄)) is
in C , and there exists a set of TGDs Σ ∈ C and a CQ q such that CQAns(Σ,q(x̄)) is C-hard.

The Chase Procedure. A useful algorithmic tool for tackling the above problem is the well-known

chase procedure; see, e.g., [14, 16, 19, 22]. We start by defining a single chase step. Consider a set Σ of

TGDs and an instance I . A trigger for Σ on I is a pair (σ ,h), where σ ∈ Σ and h is a homomorphism

from body(σ) to I . An application of (σ ,h) to I returns the instance J = I ∪ {h′(ψ (x̄, z̄))}, where
h′ ⊇ hfront(σ) is such that (i) for each existentially quantified variable z of σ , h′(z) ∈ N \ dom(I),
i.e., h′(z) is a “fresh” null not occurring in I , and (ii) for each pair (z,w) of distinct existentially
quantified variables of σ , h′(z) , h′(w). Such a single chase step is denoted I ⟨σ ,h⟩J .

The main idea of the chase is, starting from a database D, to exhaustively apply triggers for the

given set Σ of TGDs on the instance constructed so far. Formally, a chase sequence for D under Σ is

a (possibly infinite) sequence of instances δ = I0, I1, I2, . . ., with I0 = D, such that

(1) for each i ≥ 0, there exists a trigger (σ ,h) for Σ on Ii such that Ii ⟨σ ,h⟩Ii+1, i.e., Ii+1 is obtained

via an application of a trigger to Ii ,
(2) for each i ≥ 0 and j > i , assuming that Ii ⟨σi ,hi ⟩Ii+1 and Ij ⟨σj ,hj ⟩Ij+1, the following holds:

σi = σj implies hi , hj , i.e., we cannot use a trigger that has been already applied, and

(3) for each i ≥ 0, and for every trigger (σ ,h) for Σ on Ii , there exists j ≥ i such that Ij ⟨σ ,h⟩Ij+1;

this is known as the fairness condition, which guarantees that all the triggers will be applied.

6
By abuse of notation, we may treat a tuple of variables as a set of variables, and a conjunction of atoms as a set of atoms.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 7

The result of δ is defined as the instance

⋃
i≥0

Ii , which always exists. It is easy to verify that

there are several chase sequences for D under Σ depending on the order in which we apply the

TGDs. Nevertheless, the fact that we consider the oblivious version of the chase, i.e., we blindly

apply a trigger without checking whether the head is already satisfied, together with the fairness

condition, allow us to show that different chase sequences for D under Σ lead to the same result (up

to isomorphism). Hence, we can refer to the result of the chase for D under Σ, denoted chase(D, Σ).
The following is a classical result that collects some useful properties of the chase:

Proposition 2.1. Consider a database D, and a set Σ of TGDs. The following hold:
(1) chase(D, Σ) ∈ mods(D, Σ).
(2) For every I ∈ mods(D, Σ), there exists a homomorphism from chase(D, Σ) to I .

3 THE LOGICAL CORE OF VADALOG
A crucial component of the Vadalog system is its reasoning engine, which in turn is built around

the Vadalog language, a general-purpose formalism for knowledge representation and reasoning.

The logical core of this language is the well-behaved class of warded sets of TGDs [3, 18].

3.1 An Intuitive Description
Wardedness applies a syntactic restriction on how certain “dangerous” variables of a set of TGDs

are used. These are body variables that can be unified with a null during the chase, and that are

also propagated to the head. For example, given the TGDs

P(x) → ∃z R(x, z) and R(x,y) → P(y)

the variable y in the body of the second TGD is dangerous. Indeed, once the chase applies the

first TGD, an atom of the form R(_,⊥) is generated, where ⊥ is a null value, and then the second

TGD is triggered with the variable y being unified with ⊥ that is propagated to the obtained atom

P(⊥). It has been observed in the TGD literature that the liberal use of dangerous variables leads to

a prohibitively high computational complexity of the main reasoning tasks, in particular of CQ

answering [14]. The main goal of wardedness is to limit the use of dangerous variables with the

aim of taming the way that null values are propagated during the execution of the chase procedure.

This is achieved by posing the following two conditions:

(1) the dangerous variables should appear together in a single body atom α , called a ward, and

(2) the atom α can share only harmless variables with the rest of the body, that is, variables that

unify only with constants.

We proceed to formalize the above description.

3.2 The Formal Definition
We first need some auxiliary notions. The set of positions of a schema S, denoted pos(S), is defined
as {R[i] | R/n ∈ S, with n ≥ 1, and i ∈ [n]}. Given a set Σ of TGDs, we write pos(Σ) instead of

pos(sch(Σ)). The set of affected positions of sch(Σ), denoted aff(Σ), is inductively defined as follows:

- if there exists σ ∈ Σ and a variable x ∈ var∃(σ) at position π , then π ∈ aff(Σ), and
- if there exists σ ∈ Σ and a variable x ∈ front(σ) occurring in the body of σ only at positions

of aff(Σ), and x appears in the head of σ at position π , then π ∈ aff(Σ).

Let nonaff(Σ) = pos(Σ) \ aff(Σ). We can now classify the variables in the body of a TGD into

harmless, harmful, and dangerous. Fix a TGD σ ∈ Σ and a variable x in body(σ):

- x is harmless if at least one occurrence of it appears in body(σ) at a position of nonaff(Σ),
- x is harmful if it is not harmless, and

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

8 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

- x is dangerous if it is harmful and belongs to front(σ).
We are now ready to formally introduce wardedness.

Definition 3.1 (Wardedness). A set Σ of TGDs iswarded if, for each σ ∈ Σ, there are no dangerous
variables in body(σ), or there exists an atom α ∈ body(σ), called a ward, such that:

(1) all the dangerous variables in body(σ) occur in α , and
(2) each variable of var(α) ∩ var(body(σ) \ {α }) is harmless.

We writeWARD for the class of all finite warded sets of TGDs.

Let us clarify that warded sets of TGDs form a subclass of a highly expressive class of TGDs

known in the literature as weakly-frontier-guarded sets of TGDs [6]. In fact, the only difference

between those two classes is the second condition given in Definition 3.1. In other words, if we

drop the second condition in the definition of wardeness, then we get the class of weakly-frontier-

guarded sets of TGDs. However, as shown in [5], query answering under weakly-frontier-guarded

sets of TGDs is prohibitively complex, namely ExpTime-complete in data complexity, whereas,

as recently shown in [3, 18], query answering under warded sets of TGDs is tractable in data

complexity. In fact, as thoroughly discussed in [3], wardedness forms a “nearly” maximal tractable

fragment of weakly-frontier-guarded sets of TGDs.

Proposition 3.2. CQAns(WARD) is ExpTime-complete in combined complexity, and PTime-
complete in data complexity.

Let us clarify that [3, 18] deal only with the data complexity of the problem CQAns(WARD).
However, the same algorithm provides an ExpTime upper bound in combined complexity. The

lower bounds are inherited from Datalog since a set of Datalog rules (seen as TGDs) is warded.

3.3 Why is Wardedness Useful?
One of the distinctive features of wardedness, which is crucial for the purposes of the Vadalog

system, is the fact that it can express every SPARQL query under the OWL 2 QL direct semantics

entailment regime, which is inherited from the OWL 2 direct semantics entailment regime; for

details, see [3, 18, 21]. Recall that SPARQL is the standard language for querying the Semantic Web,
7

while OWL 2 QL is a prominent profile of OWL 2.
8
We give a very simple example of a warded

set of TGDs, which is extracted from the set of TGDs that encodes the OWL 2 direct semantics

entailment regime for OWL 2 QL. Actually, for the sake of readability, we give a simplified version

of this set, while the proper definition can be found in [3].

Example 3.3. An OWL 2 QL ontology can be stored in a database using atoms of the form

Restriction(c,p) stating that the class c is a restriction of the property p, SubClass(c, c ′) stating that
c is a subclass of c ′, and Inverse(p,p ′) stating that p is the inverse property of p ′. We can then

compute all the logical inferences of the given ontology using TGDs as the ones below:

Type(x,y), SubClass(y, z) → Type(x, z)

Type(x,y), Restriction(y, z) → ∃w Triple(x, z,w)

Triple(x,y, z), Inverse(y,w) → Triple(z,w, x)

Triple(x,y, z), Restriction(w,y) → Type(x,w).

The first TGD transfers the class type, i.e., if a is of type b and b is a subclass of c , then a is also of

type c . Moreover, the second TGD states that if a is of type b and b is the restriction of the property

7
http://www.w3.org/TR/rdf-sparql-query

8
https://www.w3.org/TR/owl2-overview/

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 9

p, then a is related to some c via the property p, which is encoded by the atom Triple(a,p, c).
Analogously, the last two TGDs encode the usual meaning of inverses and the effect of restrictions

on types. It is easy to verify that the above set of TGDs is warded, where the underlined atoms

are the wards. A variable in an atom with predicate Restriction, SubClass, or Inverse, is trivially

harmless. The frontier variables that appear at Type[1], Triple[1], or Triple[3], are dangerous, and

the underlined atoms are acting as wards.

Although there are several tractable fragments of weakly-frontier-guarded sets of TGDs other

than warded sets of TGDs (e.g., frontier-guarded TGDs [6]), it turned out that these are not powerful

enough for expressing every SPARQL query under the OWL 2 QL direct semantics entailment

regime, or even the simple set of TGDs given in Example 3.3 [3]. The proof of this result relies on a

key model-theoretic property that demonstrates the difference between wardedness and the other

tractable classes of weakly-frontier-guarded sets of TGDs that can be found in the literature. We

proceed to recall this property, which, of course, should be preserved when we are going to limit

the recursion allowed by wardedness towards the space-efficient core of Vadalog.

Roughly speaking, a class C of TGDs has the so-called unbounded ground-connection property

if it allows us to connect in the chase, via a fixed set of TGDs, an invented null value with an

unbounded number of constants occurring in the input database. Given an instance I , the ground
connection of a null ⊥ ∈ (dom(I) ∩ N) in I , denoted gc(⊥, I), is defined as the set of constants

{c ∈ C | there exists R(t1, . . . , tn) ∈ I such that {c,⊥} ⊆ {t1, . . . , tn}},

i.e., all the constants that jointly appear with ⊥ in an atom of I . For a set Σ of TGDs, and a family

of databases (Dn)n>0, we define the function

mgc(n) =


max⊥∈dom(chase(Dn ,Σ))∩N {|gc(⊥, chase(Dn, Σ))|} if (dom(chase(Dn, Σ)) ∩ N) , ∅,

0 otherwise.

A class C of TGDs has the unbounded ground-connection property (UGCP) if there exists a set of

TGDs Σ ∈ C, and a family of databases (Dn)n>0, such that mgc(n) < O(1).
By exploiting the warded set of TGDs given in Example 3.3, we can show that WARD enjoys the

UGCP, a result that is implicit in [3]. Consider the family of databases (Dn)n>0, where

Dn = {Inverse(p,p−), Restriction(cp,p), Restriction(c−p ,p
−),Type(a, c0), SubClass(c0, cp)

SubClass(c−p , c1), SubClass(c1, c2), SubClass(c2, c3), . . . , SubClass(cn−1, cn)}.

It is easy to verify that the instance chase(Dn, Σ), where Σ is the set of TGDs given in Example 3.3,

contains (among others) the atoms

Type(⊥, c1),Type(⊥, c2), . . . ,Type(⊥, cn),

where ⊥ is a null. Therefore, the ground connection of ⊥ in chase(Dn, Σ) contains the constants
c1, . . . , cn . Thus, mgc(n) < O(1), which in turn implies the desired result:

Proposition 3.4. WARD has the unbounded ground-connection property.

4 LIMITING RECURSION
We now focus on our main research question: can we limit the recursion allowed by wardedness

in order to obtain a formalism that provides a convenient syntax for expressing useful recursive

statements, and at the same time achieves space-efficiency? The above question has been extensively

studied in the 1980s for Datalog programs, with linear Datalog being a key fragment that achieves a

good balance between expressivity and complexity; see, e.g., [23, 24]. A Datalog program Σ is linear

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

10 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

if, for each rule in Σ, its body contains at most one atom that uses an intensional predicate, i.e., a

predicate that appears in the head of at least one rule of Σ. In other words, linear Datalog allows

only for linear recursion, which is able to express many real-life recursive queries. However, for

our purposes, linear recursion does not provide the convenient syntax that we are aiming at. After

analyzing several real-life examples of warded sets of TGDs, provided by our industrial partners,

we observed that the employed recursion goes beyond linear recursion. On the other hand, most of

the examples coming from our industrial partners use recursion in a restrictive way: each TGD

has at most one body atom whose predicate is mutually recursive with a predicate occurring in

the head of the TGD. Interestingly, this more liberal version of linear recursion has been already

investigated in the context of Datalog, and it is known as piece-wise linear; see, e.g., [1]. Does this
type of recursion lead to the space-efficient fragment of warded sets of TGDs that we are looking

for? The rest of this section is devoted to providing an affirmative answer to this question.

4.1 Piece-Wise Linearity
Let us start by formally defining the class of piece-wise linear sets of TGDs. To this end, we need

to define when two predicates are mutually recursive, which in turn relies on the well-known

notion of the predicate graph. The predicate graph of a set Σ of TGDs, denoted pg(Σ), is a directed
graph (V , E), where V = sch(Σ), and there exists an edge from a predicate P to a predicate R, i.e.,
(P,R) ∈ E, iff there exists a TGD σ ∈ Σ such that P occurs in body(σ) and R occurs in head(σ).
Two predicates P,R ∈ sch(Σ) are mutually recursive (w.r.t. Σ) if there exists a cycle in pg(Σ) that
contains both P and R (i.e., R is reachable from P , and vice versa).

Definition 4.1 (Piece-Wise Linearity). A set Σ of TGDs is piece-wise linear if, for each TGD

σ ∈ Σ, there exists at most one atom in body(σ) whose predicate is mutually recursive with a

predicate in head(σ). We write PWL for the class of all finite piece-wise linear sets of TGDs.

The main result of this section follows:

Theorem 4.2. CQAns(WARD∩PWL) is PSpace-complete in combined complexity, and NLogSpace-
complete in data complexity.

The lower bounds are inherited from linear Datalog. The difficult task is to establish the upper

bounds. This relies on a novel notion of proof tree that is of independent interest. As we shall see,

our notion of proof tree leads to space-bounded algorithms that allow us to show the upper bounds

in Theorem 4.2, and also re-establish in a transparent way the upper bounds in Proposition 3.2.

Moreover, in Section 6, we are going to use our novel notion of proof tree for studying the relative

expressive power of the query languages based on (piece-wise linear) warded sets of TGDs.

Before we proceed with the notion of proof tree, let us stress that piece-wise linearity preserves

the unbounded ground-connection property discussed in the previous section. In fact, this is

shown in exactly the same way as Proposition 3.4, by relying on the warded set of TGDs given

in Example 3.3, which is also piece-wise linear. This essentially tells us that even if we restrict

wardedness by allowing only piece-wise linear recursion, the obtained class is able to express useful

statements, for example, encoding the OWL 2 QL direct semantics entailment regime, that are

provably not expressible by existing tractable fragments of weakly-frontier-guarded sets of TGDs.

Proposition 4.3. WARD ∩ PWL has the unbounded ground-connection property.

4.2 Query Answering via Proof Trees
It is known that given a CQ q and a set Σ of TGDs, we can unfold q using the TGDs of Σ into an

infinite union of CQs qΣ such that, for every database D, cert(q,D, Σ) = qΣ(D); see, e.g., [17, 20]. Let

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 11

us clarify that in our context, an unfolding, which is essentially a resolution step, is more complex

than in the context of Datalog due to the existentially quantified variables in the head of TGDs. The

intention underlying our notion of proof tree is to encode in a tree the sequence of CQs, generated

during the unfolding of q with Σ, that leads to some CQ q′ of qΣ. In particular, each intermediate CQ,

as well as q′, is carefully decomposed into smaller subqueries that form the nodes of the tree with q
being the root, and q′ being the CQ obtained after merging the leaves. As we shall see, if we focus

on well-behaved classes of TGDs such as (piece-wise linear) warded sets of TGDs, we can establish

upper bounds on the size of those subqueries, which in turn allow us to devise space-bounded

algorithms for query answering. In what follows, we define the notion of proof tree (Definition 4.8),

and establish its correspondence with query answering (Theorem 4.9). To this end, we need to

introduce the main building blocks of a proof tree: chunk-based resolution (Definition 4.4), a query

decomposition technique (Definition 4.6), and the notion of specialization for CQs (Definition 4.7).

Chunk-based Resolution. Let A and B be non-empty sets of atoms that mention only constants

and variables. The sets A and B unify if there is a substitution γ , which is the identity on C, called
unifier for A and B, such that γ (A) = γ (B). A most general unifier (MGU) for A and B is a unifier for

A and B, denoted γA,B , such that, for each unifier γ for A and B, γ = γ ′ ◦γA,B for some substitution

γ ′. It is well-known that if two sets of atoms unify, then there is always a MGU, which is unique

(modulo variable renaming). Given a CQq(x̄) and a set of atoms S ⊆ atoms(q), we say that a variable
y ∈ var(S) is shared, if y ∈ x̄ or y ∈ var(atoms(q) \ S). A chunk unifier of q with a TGD σ (where

q and σ do not share variables) is a triple (S1, S2,γ), where ∅ ⊂ S1 ⊆ atoms(q), ∅ ⊂ S2 ⊆ head(σ),
and γ is a unifier for S1 and S2 such that, for each x ∈ var(S2) ∩ var∃(σ),

(1) γ (x) < C, i.e., γ (x) is not constant, and
(2) for every variable y different from x , γ (x) = γ (y) implies y occurs in S1 and is not shared.

The chunk unifier (S1, S2,γ) is most general (MGCU) if γ is an MGU for S1 and S2. Notice that the

variables of var∃(σ) occurring in S2 unify (via γ) only with non-shared variables of S1. This ensures

that S1 is a “chunk” of q that can be resolved as a whole via σ using γ .9 Consider, for example,

q = Q(x) ← R(x,y), S(y) and σ = P(x ′) → ∃y ′ R(x ′,y ′), S(y ′).

It should be clear that R(x,y), S(y) is a “chunk” of q that can be resolved with σ using γ = {x 7→
x ′,y 7→ y ′, x ′ 7→ x ′,y ′ 7→ y ′}; in fact, using the MGCU (atoms(q), head(σ),γ). On the other hand,

the atom R(x,y) alone should not be considered as a “chunk” of q that can be resolved with σ using

γ , even though γ is a unifier for {R(x,y)} and {R(x ′,y ′)}. Such a resolution step would be unsound

since the shared variable y in R(x,y) is lost due to its unification with the existentially quantified

variable y ′. Thus, the triple ({R(x,y)}, {R(x ′,y ′)},γ) should not be a valid chunk unifier of q with

σ , which is guaranteed by the additional conditions on γ in the definition of chunk unifier.

Definition 4.4 (Chunk-based Resolution). Let q(x̄) be a CQ and σ a TGD. A σ -resolvent of q is

a CQ q′(γ (x̄)) with atoms(q′) = γ ((atoms(q) \ S1) ∪ body(σ)) for a MGCU (S1, S2,γ) of q with σ .

As discussed above, the purpose of a proof tree is to encode a finite branch of the unfolding of a

CQ q with a set Σ of TGDs, which is obtained by applying chunk-based resolution. Such a branch

is a sequence q0, . . . ,qn of CQs, where q = q0, and, for each i ∈ [n], qi is a σ -resolvent of qi−1 for

some σ ∈ Σ. Here is a simple example, which will serve as a running example in the rest of the

section, that illustrates the notion of unfolding.

9
A similar notion known as piece unifier has been defined in [20]. We adopted the term chunk unifier in order to avoid

confusion with the term piece-wise linear.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

12 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

Example 4.5. Consider the set Σ of TGDs consisting of

R(x) → ∃yT (y, x) T (x,y), S(y, z) → T (x, z) T (x,y), P(y) → G()

and the CQ that simply asks whether G() is entailed, i.e., the CQ

Q ← G().

Since the unfolding of q with Σ should give the correct answer for every input database, and thus,

for databases of the form {R(cn−1), S(cn−1, cn−2), . . . , S(c2, c1), P(c1)}, for some n > 1, one of its

branches should be q = q0,q1, . . . ,qn , where

q1 = Q ← T (x,y1), P(y1)

obtained by resolving q0 using the third TGD,

qi = Q ← T (x,yi), S(yi ,yi−1), . . . , S(y2,y1), P(y1),

for i ∈ {2, . . . ,n − 1}, obtained by resolving qi−1 using the second TGD, and finally

qn = Q ← R(yn−1), S(yn−1,yn−2), . . . , S(y2,y1), P(y1)

obtained by resolving qn−1 using the first TGD.

At this point, onemay think that the proof tree that encodes the branchq0, . . . ,qn of the unfolding
of q with Σ is the finite labeled path v0, . . . ,vn , where each vi is labeled by qi . However, another
crucial goal of such a proof tree, which is not achieved via the naive path encoding, is to split each

resolvent qi , for i > 0, into smaller subqueries q1

i , . . . ,q
ni
i , which are essentially the children of qi ,

in such a way that they can be processed independently by resolution. The crux of this encoding is

that it provides us with a mechanism for keeping the CQs that must be processed by resolution

small. It should be clear from Example 4.5 that by following the naive path encoding, without

splitting the resolvents into smaller subqueries, we may get CQs of unbounded size. This brings us

to the notion of query decomposition.

Query Decomposition. The key question here is how a CQ q can be decomposed into subqueries

that can be processed independently. The subtlety is that, after splitting q, occurrences of the same

variable may be separated into different subqueries. Therefore, we need a way to ensure that a

variable in q, which appears in different subqueries after the splitting, is indeed treated as the same

variable, i.e., it has the same meaning. We deal with this issue by restricting the set of variables in q
of which occurrences can be separated during the splitting step. In particular, we can only separate

occurrences of an output variable. This relies on the convention that output variables correspond

to fixed constant values of C, and thus their name is “frozen” and never renamed by subsequent

resolution steps. Hence, we can separate occurrences of an output variable into different subqueries,

i.e., different branches of the proof tree, without losing the semantic connection between them.

Summing up, the main idea underlying query decomposition is to split the CQ at hand into smaller

queries that keep together all the occurrences of a non-output variable, but with the freedom of

separating occurrences of an output variable. The formal definition follows.

Definition 4.6 (Query Decomposition). Given a CQ q(x̄), a decomposition of q is a set of CQs

{q1(ȳ1), . . . ,qn(ȳn)}, where n ≥ 1 and

⋃
i ∈[n] atoms(qi) = atoms(q), such that, for each i ∈ [n]:

(1) ȳi is the restriction of x̄ on the variables in qi , and
(2) for every α, β ∈ atoms(q), if α ∈ atoms(qi) and var(α) ∩ var(β) ⊈ x̄ , then β ∈ atoms(qi).

An example that stresses the usefulness of query decomposition combined with the notion of

query specialization is given below.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 13

Q ←� G()

Q ←� T(x,y1), P(y1)

Q(y1) ←� T(x,y1), P(y1)

Q(y1) ←� T(x,y1) Q(y1) ←� P(y1)

Q(yi-1) ←� T(x,yi-1)
Q(yi-1) ←� T(x,yi), S(yi,yi-1)
Q(yi-1,yi) ←� T(x,yi), S(yi,yi-1)

Q(yi) ←� T(x,yi) Q(yi-1,yi) ←� S(yi,yi-1)

Q(yn-2) ←� T(x,yn-2)
Q(yn-2) ←� T(x,yn-1), S(yn-1,yn-2)

Q(yn-2,yn-1) ←� T(x,yn-1), S(yn-1,yn-2)
Q(yn-1) ←� T(x,yn-1) Q(yn-2,yn-1) ←� S(yn-1,yn-2)
Q(yn-1) ←� R(yn-1)

Fig. 1. Proof tree that encodes the branch Q = q0, . . . ,qn of the unfolding of q with Σ from Example 4.5.

Query Specialization. From the above discussion, one expects that a proof tree of a CQ q w.r.t. a

set Σ of TGDs can be constructed by starting from q, which is the root, and applying two steps:

resolution and decomposition. However, this is not enough for our purposes as we may run into

the following problem: some of the subqueries will mistakenly remain large since we have no way

to realize that a non-output variable corresponds to a fixed constant value, which in turn allows us

to “freeze” its name and separate different occurrences of it during the decomposition step. This is

illustrated by Example 4.5. Observe that the size of the CQs {qi }i>0 grows arbitrarily, while our

query decomposition has no effect on them since they are Boolean queries, i.e., queries without

output variables, and thus, we cannot split them into smaller subqueries. This issue can be solved

via an intermediate step between resolution and decomposition, the so-called specialization step.

A specialization of a CQ is obtained by converting some of the non-output variables into output

variables, while keeping their name, or taking the name of an existing output variable.

Definition 4.7 (Query Specialization). Let q(x̄) be a CQ with atoms(q) = {α1, . . . ,αn}. A spe-
cialization of q is a CQ Q(x̄, ȳ) ← ρz̄ (α1, . . . ,αn), where ȳ, z̄ are (possibly empty) disjoint tuples of

non-output variables of q, and ρz̄ is a substitution from z̄ to x̄ ∪ ȳ.

Consider, for example, the CQ q1 from Example 4.5

Q ← T (x,y1), P(y1)

obtained by resolving q = q0 using the third TGD. The query decomposition cannot split this query

into smaller subqueries since the variable y1
is a non-output variable, and thus, all its occurrences

should be kept together. We can consider the following specialization of q1

Q(y1) ← T (x,y1), P(y1),

which converts y1
into an output variable, and now by query decomposition we can split it into

Q(y1) ← T (x,y1) Q(y1) ← P(y1).

Proof Trees. We are now ready to introduce our new notion of proof tree. We first explain the

high-level idea by exploiting our running example. Consider the set Σ of TGDs and the CQ q from

Example 4.5. The branch q0, . . . ,qn of the unfolding of q with Σ given in Example 4.5 is encoded

via a proof tree of the form

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

14 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

where eachTi , for i ∈ [n− 1], is a rooted tree with only two leaf nodes. The actual trees are depicted

in Figure 1; the left one is T1, the middle one is Ti for i ∈ {2, . . . ,n − 2}, while the right one is Tn−1.

For each i ∈ [n − 1], the child of the root of Ti is obtained via resolution, then we specialize it by

converting the variable yi into an output variable, and then we decompose the specialized CQ into

two subqueries. InTn−1, we also apply an additional resolution step in order to obtain the leaf node

Q(yn−1) ← R(yn−1). The underlined CQs are the subqueries that correspond to qn of the unfolding.

Indeed, the conjunction of the atoms occurring in the underlined CQs is precisely the CQ qn .
We proceed to give the formal definition. Given a partition π = {S1, . . . , Sm} of a set of variables,

we write eqπ for the substitution that maps the variables of Si to the same variable xi , where xi is
a distinguished element of Si . We should not forget the convention that output variables cannot

be renamed, and thus, a resolution step should use a MGCU that preserves the output variables.

In particular, given a CQ q and a TGD σ , a σ -resolvent of q is called IDO if the underlying MGCU

uses a substitution that is the identity on the output variables of q (hence the name IDO). Finally,

given a TGD σ and some object o (e.g., o can be the node of a tree, or an integer number), we write

σo for the TGD obtained by renaming each variable x in σ into a new variable xo not occurring in

σ . This is a simple mechanism that allows us to uniformly rename the variables of a TGD in order

to avoid undesirable clatter among variables during a resolution step.

Definition 4.8 (Proof Tree). Let q(x̄) be a CQ with atoms(q) = {α1, . . . ,αn}, and Σ a set of TGDs.

A proof tree of q w.r.t. Σ is a triple P = (T , λ, π), whereT = (V , E) is a finite rooted tree, λ a labeling

function that assigns a CQ to each node of T , and π a partition of x̄ , such that, for each v ∈ V :

(1) If v is the root node of T , then λ(v) is the CQ Q(eqπ (x̄)) ← eqπ (α1, . . . ,αn).
(2) If v has only one child u, then:
(a) there exists σ ∈ Σ such that λ(u) is an IDO σv -resolvent of λ(v), or
(b) λ(u) is a specialization of λ(v).

(3) If v has the children u1, . . . ,uk for k > 1, then {λ(u1), . . . , λ(uk)} is a decomposition of λ(v).

Assuming that v1, . . . ,vm are the leaf nodes of T , the CQ induced by P is defined as

Q(eqπ (x̄)) ← α1, . . . ,αℓ,

where {α1, . . . ,αℓ} =
⋃

i ∈[m] atoms(λ(vi)).

Note that the purpose of the partition π is to indicate that some output variables correspond to the

same constant value – this is why variables in the same set of π are unified via the substitution eqπ .
This unification step is crucial in order to safely use, in subsequent resolution steps, substitutions

that are the identity on the output variables. If we omit this initial unification step, we may lose

important resolution steps, and thus being incomplete for query answering purposes.

The main result of this section, which exposes the connection between proof trees and CQ

answering, follows. By abuse of notation, we write P for the CQ induced by P.

Theorem 4.9. Consider a database D, a set Σ of TGDs, a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ | . The
following are equivalent:
(1) c̄ ∈ cert(q,D, Σ).
(2) There is a proof tree P of q w.r.t. Σ such that c̄ ∈ P(D).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 15

The proof of the above result, which can be found in the appendix, relies on the soundness and

completeness of chunk-based resolution. Given a set Σ of TGDs and a CQ q(x̄), by exhaustively

applying chunk-based resolution, we can construct a (possibly infinite) union of CQs qΣ such

that, for every database D, cert(q,D, Σ) = qΣ(D). In other words, given a tuple c̄ ∈ dom(D) |x̄ | ,
c̄ ∈ cert(q,D, Σ) iff there exists a CQ q′(x̄) in qΣ such that c̄ ∈ q′(D). We can then show that the

latter statement is equivalent to the existence of a proof tree P of q w.r.t. Σ such that c̄ ∈ P(D).

4.3 Well-behaved Proof Trees
Theorem 4.9 states that checking whether a tuple c̄ is a certain answer boils down to deciding

whether there exists a proof tree P such that c̄ is an answer to the CQ induced by P over the

given database. Of course, in general, the latter is an undecidable problem. However, if we focus on

(piece-wise linear) warded sets of TGDs, it suffices to check for the existence of a well-behaved

proof tree with certain syntactic properties, which in turn allows us to devise a decision procedure.

We proceed to make this statement more precise.

For clarity, we focus on single-head TGDs, i.e., TGDs with only one atom in the head, since we

can always normalize a warded set of TGDs into single-head TGDs, while the certain answers are

preserved. This relies on the following simple transformation. Given a TGD σ of the form

ϕ(x̄, ȳ) → ∃z̄ R1(x̄1, z̄1), . . . ,Rn(x̄n, z̄n),

where x̄i ⊆ x̄ and z̄i ⊆ z̄ for each i ∈ [n], let S(σ) be the set of single-head TGDs consisting of

ϕ(x̄, ȳ) → ∃z̄ Auxσ (x̄, z̄)

Auxσ (x̄, z̄) → R1(x̄1, z̄1)

...

Auxσ (x̄, z̄) → Rn(x̄n, z̄n).

We then define Nsh(Σ), that is, the normalization of Σ into single-head TGDs, as the set

⋃
σ ∈Σ S(σ).

The next easy lemma collects some useful facts about the normalization procedure Nsh(·):

Lemma 4.10. Consider a set Σ of TGDs. The following hold:
(1) Nsh(Σ) can be computed in polynomial time in the size of Σ.
(2) For C ∈ {WARD ∩ PWL,WARD}, Σ ∈ C implies Nsh(Σ) ∈ C.
(3) Given a database D, and a CQ q(x̄), cert(q,D, Σ) = cert(q,D,Nsh(Σ)).10

Piece-wise Linear Warded Sets of TGDs. For piece-wise linear warded sets of TGDs, we can

strengthen Theorem 4.9 by focussing on proof trees that enjoy two syntactic properties:

(1) they have a path-like structure, and

(2) the size of the CQs that label their nodes is bounded by a polynomial.

The first property is formalized via linear proof trees. Let P = (T , λ, π), where T = (V , E), be a
proof tree of a CQ q w.r.t. a set Σ of TGDs. We call P linear if, for each node v ∈ V , there exists at

most one node u ∈ V such that (v,u) ∈ E and u is not a leaf inT , i.e., v has at most one child that is

not a leaf. For example, the proof tree given above, which consists of the trees depicted in Figure 1,

is linear. The second property relies on the notion of node-width of P defined as

nwd(P) B max

v ∈V
{|λ(v)|},

that is, the size of the largest CQ that labels a node of T .

10
We can assume that the auxiliary predicates introduced during the normalization of Σ do not occur in D or q.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

16 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

Before we strengthen Theorem 4.9, let us define the polynomial that will allow us to bound

the node-width of the linear proof trees that we need to consider. This polynomial relies on the

notion of predicate level. Consider a set Σ of TGDs. For a predicate P ∈ sch(Σ), we write rec(P)
for the set of predicates of sch(Σ) that are mutually recursive to P according to pg(Σ) = (V , E). Let
ℓΣ : sch(Σ) → N be the unique function that satisfies

ℓΣ(P) =


1 if {R | (R, P) ∈ E and R < rec(P)} = ∅,

max{ℓΣ(R) | (R, P) ∈ E and R < rec(P)} + 1 otherwise,

with ℓΣ(P) being the level of P w.r.t. Σ, for each P ∈ sch(Σ). It is easy to verify that the function

ℓΣ exists and is unique. Roughly speaking, for each weakly connected component C of pg(Σ),
assuming that C1, . . . ,Ck is the (unique) topological sort of the strongly connected components of

C , ℓΣ assigns the integer i ∈ [k] to each node of Ci . We define the polynomial

fWARD∩PWL(q, Σ) B (|q | + 1) ·max

P ∈sch(Σ)
{ℓΣ(P)} ·max

σ ∈Σ
{|body(σ)|} .

To simplify our technical proofs even further, apart from assuming single-head TGDs (which

can be done due to Lemma 4.10), we also assume, w.l.o.g., that the level of a predicate in the body

of a TGD σ is ℓ or ℓ − 1, where ℓ is the level of the predicate of the single-head of σ , i.e., we assume

sets of TGDs in level-wise normal form. This relies on the following transformation. Consider a set

of single-head TGDs Σ ∈ PWL, and a TGD σ ∈ Σ of the form

R1(x̄1), . . . ,Rn(x̄n) → ∃z̄ P(x̄, z̄),

where x̄ ⊆ x̄1 ∪ · · · ∪ x̄n . If, for every i ∈ [n], 0 ≤ ℓΣ(P) − ℓΣ(Ri) ≤ 1, then we define LΣ(σ) as σ , i.e.,
σ is already in level-wise normal form (w.r.t. Σ). Assume now that 1 ≤ i1 < · · · < im ≤ n are such

that kj = ℓΣ(P) − ℓΣ(Ri j) > 1, for j ∈ [m], namely the level-wise normal form is violated due to the

body-predicates Ri1, . . . ,Rim . We define LΣ(σ) as the set of the following TGDs: for each j ∈ [m],

Ri j (x̄i j) → Rσ ,1i j (x̄i j)

Rσ ,1i j (x̄i j) → Rσ ,2i j (x̄i j)

...

R
σ ,kj−1

i j (x̄i j) → R
σ ,kj
i j (x̄i j),

and the TGD

δ (R1)(x̄1) . . . , δ (Rn)(x̄n) → ∃z̄ P(x̄, z̄),

where, for each i ∈ [n],

δ (Ri) =


R
σ ,kj
i if i = i j for some j ∈ [m],

Ri otherwise.

We finally define Nlw(Σ), i.e., the normalization of Σ into level-wise normal form, as the set of TGDs⋃
σ ∈Σ LΣ(σ). It is not difficult ot verify that Nlw(Σ) is indeed in level-wise normal form. The next

easy lemma collects some useful facts about the normalization procedure Nlw(·):

Lemma 4.11. Consider a set of single-head TGDs Σ ∈ WARD ∩ PWL. The following hold:
(1) Nlw(Σ) can be computed in polynomial time in the size of Σ.
(2) Nlw(Σ) is a set of single-head TGDs in WARD ∩ PWL.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 17

(3) Given a database D, and a CQ q(x̄), cert(q,D, Σ) = cert(q,D,Nlw(Σ)).11

We are now ready to strengthen Theorem 4.9; a proof-sketch is given below, while the full proof

can be found in the appendix.

Theorem 4.12. Consider a database D, a set Σ ∈ WARD ∩ PWL of TGDs, a CQ q(x̄), and a tuple
c̄ ∈ dom(D) |x̄ | . With Σ′ = Nlw(Nsh(Σ)), the following are equivalent:

(1) c̄ ∈ cert(q,D, Σ).
(2) There is a linear proof tree P of q w.r.t. Σ′ with nwd(P) ≤ fWARD∩PWL(q, Σ

′) such that c̄ ∈ P(D).

Warded sets of TGDs. Now, in the case of arbitrary (not necessarily piece-wise linear) warded sets

of TGDs, we cannot focus only on linear proof trees. Nevertheless, we can still bound the node-width

of the proof trees that we need to consider by the following polynomial, which, unsurprisingly,

does not rely anymore on the notion of predicate level:

fWARD(q, Σ) B 2 ·max

{
|q |,max

σ ∈Σ
{|body(σ)|}

}
.

Theorem 4.9 can be strengthened as follows; a proof-sketch is given below, while the full proof can

be found in the appendix..

Theorem 4.13. Consider a database D, a set Σ ∈ WARD of TGDs, a CQ q(x̄), and a tuple c̄ ∈
dom(D) |x̄ | . With Σ′ = Nsh(Σ), the following are equivalent:
(1) c̄ ∈ cert(q,D, Σ).
(2) There exists a proof tree P of q w.r.t. Σ′ with nwd(P) ≤ fWARD(q, Σ

′) such that c̄ ∈ P(D).

A Proof Sketch. Let us now provide some details on how Theorems 4.12 and 4.13 are shown, while

the full proofs are deferred to the appendix. For both theorems, (2) implies (1) readily follows from

Theorem 4.9. The non-trivial task is to show the other direction. The main ingredients of the proof

can be intuitively described as follows:

- We first introduce the auxiliary notion of chase tree, which can be understood as a concrete

instantiation of a proof tree. It serves as an intermediate structure between proof trees and

chase sequences, which allows us to use the chase as our underlying technical tool. Note that

the notions of linearity and node-width can be naturally defined for chase trees.

- We then show that, if the given tuple of constants c̄ is a certain answer to the given CQ q
w.r.t. the given database D and (piece-wise linear) warded set Σ of TGDs,

12
then there is a

(linear) chase tree for the image of q in chase(D, Σ), which exists due to Proposition 2.1, such

that its node-width respects the bounds given above (see Lemmas 4.15 and 4.16).

- We finally show that the existence of a (linear) chase tree for the homomorphic image of q in

chase(D, Σ) with node-width at mostm implies the existence of a (linear) proof tree P of q
w.r.t. Σ with node-width at mostm such that c̄ ∈ P(D) (see Lemma 4.17).

Let us make the above description a bit more precise, while the missing details can be found in

the appendix. In order to introduce the notion of chase tree, we first need to recall the notion of

chase graph, then introduce the notion of unraveling of the chase graph, and finally introduce the

notions of unfolding and decomposition for sets of atoms in the unraveling of the chase graph.

Fix a chase sequence δ = (Ii)i≥0 for a databaseD under a set Σ of TGDs with Ii ⟨σi ,hi ⟩Ii+1, i.e., Ii+1

is obtained by applying the trigger (σi ,hi) to Ii . The chase graph for D and Σ (w.r.t. δ) is a directed
edge-labeled graph GD ,Σ = (V , E, λ), with λ being the labeling function, where V = chase(D, Σ),
11
We can assume that the auxiliary predicates introduced during the level-wise normalization of Σ do not occur in D or q.

12
For brevity, we assume here that the given (piece-wise linear) warded set Σ of TGDs is already in the proper normal form.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

18 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

and an edge (α, β) labeled with (σk ,hk) belongs to E iff α ∈ hk (body(σk)) and β ∈ Ik+1 \ Ik , for
some k ≥ 0. In simple words, α has an edge to β if β is derived using α , and, in addition, β is new

in the sense that it has not been derived before. Notice that GD ,Σ
has no directed cycles. It is clear

that GD ,Σ
depends on δ , but we can assume a fixed sequence δ since, as discussed in Section 2,

every chase sequence leads to the same result (up to isomorphism).

We now discuss the notion of unraveling of the chase graph; we keep this discussion informal,

while the details are deferred to the appendix. For a set Θ ⊆ chase(D, Σ), the unraveling of GD ,Σ

around Θ is a directed node- and edge-labeled forest G
D ,Σ
Θ that has a tree for each α ∈ Θ whose

branches are essentially backward-paths in GD ,Σ
from α to a database atom. Intuitively, G

D ,Σ
Θ is

a forest-like reorganization of the atoms of chase(D, Σ) that are needed to derive Θ. Due to its

forest-like shape, it may contain multiple copies of atoms of chase(D, Σ). The edges between nodes

are labeled by pairs (σ ,h) just like in GD ,Σ
, while the nodes are labeled by atoms and, importantly,

the atoms along the paths in GD ,Σ
may be duplicated and labeled nulls are given new names. We

writeU (GD ,Σ,Θ) for the set of all atoms that appear as node labels in G
D ,Σ
Θ , and succσ ,h(v) for the

set of children of a node v of G
D ,Σ
Θ whose incoming edge is labeled with (σ ,h). It is important to

say that there exists a homomorphism hΘ that maps Θ toU (GD ,Σ,Θ).
Let us now introduce the notions of unfolding and decomposition. For sets Γ, Γ′ ⊆ U (GD ,Σ,Θ),

we say that Γ′ is an unfolding of Γ if there are α ∈ Γ and β1, . . . , βk ∈ U (G
D ,Σ,Θ) such that

(1) succσ ,h(v) = {β1, . . . , βk }, for some σ ∈ Σ and h, and some node v of G
D ,Σ
Θ labeled with α ,

(2) for every null that occurs in α , either it does not appear in Γ\{α }, or it appears in {β1, . . . , βk },
(3) Γ′ = (Γ \ {α }) ∪ {β1, . . . , βk }.

Let Γ ⊆ U (GD ,Σ,Θ) be a non-empty set. A decomposition of Γ is a set {Γ1, . . . , Γn}, for n ≥ 1, of

non-empty subsets of Γ such that (i) Γ =
⋃

i ∈[n] Γi , and (ii) i , j implies that Γi and Γj do not share

a labeled null. We can now define the key notion of chase tree:

Definition 4.14 (Chase Tree). Consider a database D, a set Σ of TGDs, a set Θ ⊆ chase(D, Σ), and
a finite set Γ ⊆ U (GD ,Σ,Θ). A chase tree for Γ (w.r.t. G

D ,Σ
Θ) is a pair C = (T , λ), where T = (V , E) is

a finite rooted tree, and λ a labeling function that assigns a subset ofU (GD ,Σ,Θ) to each node of T ,
such that, for each v ∈ V , the following hold:

(1) If v is the root node of T , then λ(v) = Γ.
(2) If v has only one child u, λ(u) is an unfolding of λ(v).
(3) If v has children u1, . . . ,uk for k > 1, then {λ(u1), . . . , λ(uk)} is a decomposition of λ(v).
(4) If v is a leaf node, then λ(v) ⊆ D.

The node-width of C is defined as nwd(C) B maxv ∈V {|λ(v)|}. Moreover, we say that C is linear if,
for each v ∈ V , there exists at most one u ∈ V such that (v,u) ∈ E and u is not a leaf.

We can now state our auxiliary technical lemmas. The first one states that in the case of piece-

wise linear warded sets of TGDs, we can always find a linear chase tree for a finite set of atoms in

the unravelling such that its node-width respects the desired bound.

Lemma 4.15. Consider a database D, and a set Σ ∈ WARD∩PWL of single-head TGDs in level-wise
normal form. Let Θ ⊆ chase(D, Σ) and Γ ⊆ U (GD ,Σ,Θ). There exists a linear chase tree C for Γ such
that nwd(C) ≤ fWARD∩PWL(Γ, Σ).

The next lemma states an analogous result for arbitrary warded sets of TGDs.

Lemma 4.16. Consider a databaseD, and a set Σ ∈ WARD of single-head TGDs. LetΘ ⊆ chase(D, Σ)
and Γ ⊆ U (GD ,Σ,Θ). There exists a chase tree C for Γ such that nwd(C) ≤ fWARD(Γ, Σ).

The next technical lemma exposes the connection between chase trees and proof trees:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 19

Algorithm 1: Non-deterministic algorithm for CQAns(WARD ∩ PWL)

Input: A database D, a set of TGDs Σ ∈ WARD ∩ PWL, a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ |

Output: Accept if c̄ ∈ cert(q,D, Σ); otherwise, Reject

Σ := Nlw(Nsh(Σ))
p := Q ← α1, . . . ,αn with atoms(q(c̄)) = {α1, . . . ,αn }
repeat

if atoms(p) ⊆ D then
Accept

guess op ∈ {r, d, s}
if op = r then

guess a TGD σ ∈ Σ
if mgcu(p,σ) = ∅ then

Reject
else

guessU ∈ mgcu(p,σ)
if |p[σ ,U]| > fWARD∩PWL(q, Σ) then

Reject
else

p′ := p[σ ,U]

if op = d then
p′ := p[−D]

if op = s then
guess V ⊆ var(p) and γ : V → dom(D)
p′ := γ (p)

p := p′

until False;

Lemma 4.17. Consider a database D and a set Σ of TGDs. Let Θ ⊆ chase(D, Σ), q(x̄) be a CQ, and c̄
be a tuple of constants such that h(atoms(q)) ⊆ U (GD ,Σ,Θ) and h(x̄) = c̄ , for some homomorphism h.
If there exists a (linear) chase tree C for h(atoms(q)) with nwd(C) ≤ m, then there exists a (linear)
proof tree P for q w.r.t. Σ such that nwd(P) ≤ m and c̄ ∈ P(D).

We can now show the direction (1) implies (2) of Theorem 4.12 – the same for Theorem 4.13 can be

shown analogously by using Lemma 4.16 instead of Lemma 4.15. Consider a databaseD, a set of TGDs
Σ ∈ WARD ∩ PWL, a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ | . Assume that c̄ ∈ cert(q,D, Σ), which in

turn implies that c̄ ∈ cert(q,D, Σ′)with Σ′ = Nlw(Nsh(Σ)). We need to show that there exists a linear

proof tree P of q w.r.t. Σ′ with nwd(P) ≤ fWARD∩PWL(q, Σ
′) such that c̄ ∈ P(D). By hypothesis and

Proposition 2.1, there is a homomorphism h such that h(atoms(q)) ⊆ chase(D, Σ′) and h(x̄) = c̄ . Let
Θq be the set h(atoms(q)). Recall that there is a homomorphism hΘq that maps Θq toU (GD ,Σ′,Θq).

Thus, h′ = hΘq ◦ h is such that h′(atoms(q)) ⊆ U (GD ,Σ′,Θq) and h
′(x̄) = c̄ . By Lemma 4.15, there

exists a chase tree C for h′(atoms(q)) with nwd(C) ≤ fWARD∩PWL(h
′(atoms(q)), Σ). By Lemma 4.17,

we get that there exists a linear proof tree P of q w.r.t Σ with

nwd(P) ≤ fWARD∩PWL(h
′(atoms(q)), Σ′) ≤ fWARD∩PWL(q, Σ

′)

such that c̄ ∈ P(D), and the claim follows.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

20 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

4.4 Complexity Analysis
We now have all the tools for showing that CQ answering under piece-wise linear warded sets of

TGDs is in PSpace in combined complexity, and in NLogSpace in data complexity, and also for

re-establishing the complexity of warded sets of TGDs (see Proposition 3.2) in a more transparent

and elegant way than the approach followed in [3, 18].

Piece-wise Linear Warded Sets of TGDs. Given a database D, a set Σ ∈ WARD∩ PWL of TGDs,

a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ | , by Theorem 4.12, our problem boils down to checking

whether there exists a linear proof tree P of q w.r.t. Σ′, where Σ′ = Nlw(Nsh(Σ)), with nwd(P) ≤
fWARD∩PWL(q, Σ

′) such that c̄ ∈ P(D). This can be easily checked via a space-bounded algorithm

that is trying to build such a proof tree in a level-by-level fashion. Essentially, the algorithm builds

the i-th level from the (i − 1)-th level of the proof tree by non-deterministically applying the

operations introduced above, i.e., resolution, decomposition and specialization.

The algorithm is depicted in Algorithm 1. Here is a semi-formal description of it. The first step is

to normalize Σ into a set of single-head TGDs in level-wise normal form, and also store in p the

Boolean CQ obtained after instantiating the output variables of q with c̄ . The rest of the algorithm is

an iterative procedure that non-deterministically constructs p ′ (the i-th level) from p (the (i − 1)-th

level) until it reaches a level that is a subset of the database D. Notice that p and p ′ always hold one
CQ since at each level of a linear proof tree only one node has a child, while all the other nodes

are leaves, which essentially means that their atoms appear in the database D. At each iteration,

the algorithm constructs p ′ from p by applying one of the main operations underlying proof trees,

namely resolution (r), decomposition (d), or specialization (s):

Resolution. It guesses a TGD σ ∈ Σ. If the setmgcu(p,σ), i.e., the set of all MGCUs of p with σ , is
empty, then rejects; otherwise, it guesses U ∈ mgcu(p,σ). If the size of the σ -resolvent of p
obtained viaU , denoted p[σ ,U], exceeds the bound provided by Theorem 4.12, then it rejects;

otherwise, it assigns p[σ ,U] to p ′. Recall that during a resolution step we need to rename

variables in order to avoid undesirable clutter. However, we cannot blindly use new variables

at each step since this will explode the space used by the algorithm. Instead, we should reuse

variables that have been lost due to their unification with an existentially quantified variable.

We only need polynomially many variables, while this polynomial depends only on q and Σ.

Decomposition. It deletes from p the atoms that occur in D, and it assigns the obtained CQ p[−D]
to p ′. Notice that p[−D] may be empty in case atoms(p) ⊆ D. Essentially, the algorithm

decomposes p in such a way that the subquery of p consisting of atoms(p) ∩ D forms a child

of p that is a leaf, while the subquery consisting of atoms(p) \ D is the non-leaf child.

Specialization. It assigns to p ′ a specialized version of p, where some variables are instantiated

by constants of dom(D). The convention that output variables correspond to constants is

implemented by directly instantiating them with actual constants from dom(D).

After constructing p ′, the algorithm assigns it to p, and this ends one iteration. The first step of

the next iteration is to check whether atoms(p) ⊆ D, in which case a linear proof tree P such that

c̄ ∈ P(D) has been found, and the algorithm accepts; otherwise, it proceeds further.

It is easy to see that the algorithm uses polynomial space in general. Moreover, in case the set of

TGDs and the CQ are fixed, the algorithm uses logarithmic space, which is the space needed for

representing constantly many elements of dom(D); each element of dom(D) can be represented

using logaritmically many bits. The desired upper bounds claimed in Theorem 4.2 follow.

Warded Sets of TGDs. The non-deterministic algorithm discussed above cannot be directly used

for warded sets of TGDs since it is not enough to search for a linear proof tree as in the case of

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 21

Algorithm 2: Alternating algorithm for CQAns(WARD)

Input: A database D, a set of TGDs Σ ∈ WARD, a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ |

Output: Accept if c̄ ∈ cert(q,D, Σ); otherwise, Reject

Σ := Nsh(Σ)
p := Q ← α1, . . . ,αn with atoms(q(c̄)) = {α1, . . . ,αn }
repeat

if atoms(p) ⊆ D then
Accept

guess op ∈ {r, d, s}
if op = r then

guess a TGD σ ∈ Σ
if mgcu(p,σ) = ∅ then

Reject
else

guessU ∈ mgcu(p,σ)
if |p[σ ,U]| > fWARD then

Reject
else

P := {p[σ ,U]}

if op = d then
guess a decomposition P of p

if op = s then
guess V ⊆ var(p) and γ : V → dom(D)
P := {γ (p)}

universally select every CQ p ∈ P
until False;

piece-wise linear warded sets of TGDs. However, by Theorem 4.13, we can search for a proof tree

that has bounded node-width. This allows us to devise a space-bounded algorithm, which is similar

in spirit to Algorithm 1, with the crucial difference that it constructs in a level-by-level fashion the

branches of the proof tree in parallel universal computations using alternation. This algorithm is

shown in Algorithm 2. The key difference compared to Algorithm 1 is that each iteration constructs

a set of CQs P , instead of one CQ p ′, and at the end each CQ of P is universally selected. Since

this alternating algorithm uses polynomial space in general, and logarithmic space when the set of

TGDs and the CQ are fixed, we immediately get an ExpTime upper bound in combined, and a PTime

upper bound in data complexity. This confirms Proposition 3.2 established in [3, 18]. However, our

new algorithm is significantly simpler than the one employed in [3, 18], while Theorem 4.13 reveals

the main property of warded sets of TGDs that leads to the desirable complexity upper bounds.

5 A JUSTIFIED COMBINATION
It is interesting to observe that the class of piece-wise linear warded sets of TGDs generalizes the

class of intensionally linear sets of TGDs, denoted IL, where each TGD has at most one body atom

whose predicate is intensional. Therefore, Theorem 4.2 immediately implies that CQAns(IL) is
PSpace-complete in combined complexity, and NLogSpace-complete in data complexity. Notice

that IL generalizes linear Datalog, which is also PSpace-complete in combined complexity, and

NLogSpace-complete in data complexity. Therefore, we can extend linear Datalog by allowing

existentially quantified variables in rule heads, which essentially leads to IL, without affecting
the complexity of query answering. At this point, one may be tempted to think that the same

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

22 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

holds for piece-wise linear Datalog, i.e., we can extend it with existentially quantified variables

in rule heads, which leads to PWL, without affecting the complexity of query answering, that is,

PSpace-complete in combined, and NLogSpace-complete in data complexity. However, if this is

the case, then wardedness becomes redundant since the formalism that we are looking for is the

class of piece-wise linear sets of TGDs, without the wardedness condition. It turns out that this is

not the case. To our surprise, CQAns(PWL) is undecidable even in data complexity:

Theorem 5.1. There exists a set Σ ∈ PWL and a CQ q such that CQAns(Σ,q) is undecidable.

The rest of this section is devoted to showing the above result. To this end, we exploit a well-

known undecidable tiling problem [13]. A tiling system is a tuple T = (T , L,R,H ,V ,a,b), where
T is a finite set of tiles, L,R ⊆ T are special sets of left and right border tiles, respectively, with

L ∩ R = ∅, H ,V ⊆ T 2
are the horizontal and vertical constraints, and a,b are distinguished tiles

of T called the start and the finish tile, respectively. A tiling for T is a function f : [n] × [m] → T ,
for some n,m > 0, such that f (1, 1) = a, f (1,m) = b, f (1, i) ∈ L and f (n, i) ∈ R, for every i ∈ [m],
and f respects the horizontal and vertical constraints. In other words, (i) the first and the last rows

of a tiling for T start with a and b, respectively, (ii) the leftmost and rightmost columns contain

only tiles from L and R, respectively, (iii) for every two consecutive tiles t, t ′ in a row, i.e., t occurs
on the left of t ′, it holds that (t, t ′) ∈ H , and (iv) for every two consecutive tiles t, t ′ in a column,

i.e., t occurs on top of t ′, it holds that (t, t ′) ∈ V . We reduce from the UnboundedTiling problem,

that is, given a tiling system T, decide whether there is a tiling for T. More precisely, the goal is to

show that there exists a set of TGDs Σ ∈ PWL, and a Boolean CQ q, such that the following holds:

given a tiling system T = (T , L,R,H ,V ,a,b), we can construct in polynomial time a database DT
such that T has a tiling iff () ∈ cert(q,DT, Σ), where () denotes the empty tuple.

The Database DT. It simply stores the tiling system T:

{Tile(t) | t ∈ T } ∪ {Left(t) | t ∈ L} ∪ {Right(t) | t ∈ R}

∪ {H (t, t ′) | (t, t ′) ∈ H } ∪ {V (t, t ′) | (t, t ′) ∈ V }

∪ {Start(a), Finish(b)}.

The Set of TGDs Σ. It is responsible for generating all the candidate tilings for T, i.e., tilings
without the condition f (1,m) = b, of arbitrary width and depth. Whether there exists a candidate

tiling for T that satisfies the condition f (1,m) = b will be checked by the CQ q. The set Σ essentially

implements the following idea: construct rows of size ℓ from rows of size ℓ−1, for ℓ > 1, that respect

the horizontal constraints, and then construct all the candidate tilings by combining compatible

rows, i.e., rows that respect the vertical constraints. A row r is encoded as an atom Row(p, c, s, e),
where p is the id of the row from which r has been obtained, i.e., the previous one, c is the id of r ,
i.e., the current one, s is the starting tile of r , and e is the ending tile of r . We write Row(c, c, s, s)
for rows consisting of a single tile, which do not have a previous row (hence the id of the previous

row coincides with the id of the current row), and the starting tile is the same as the ending tile.

The following two TGDs construct all the rows that respect the horizontal constraints:

Tile(x) → ∃z Row(z, z, x, x),

Row(_, x,y, z),H (z,w) → ∃u Row(x,u,y,w).

Similarly to Prolog, we write “_” for a “don’t-care” variable that occurs only once in the TGD. The

next set of TGDs constructs all the pairs of compatible rows, i.e., pairs of rows (r1, r2) such that we

can place r2 below r1 without violating the vertical constraints. This is done inductively as follows:

Row(x, x,y,y), Row(x ′, x ′,y ′,y ′),V (y,y ′) → Comp(x, x ′),

Row(x,y, _, z), Row(x ′,y ′, _, z ′),Comp(x, x ′),V (z, z ′) → Comp(y,y ′).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 23

We finally compute all the candidate tilings, together with their bottom-left tile, using the TGDs:

Row(_, x,y, z), Start(y), Right(z) → CTiling(x,y),

CTiling(x, _), Row(_,y, z,w),Comp(x,y), Left(z), Right(w) → CTiling(y, z).

This concludes the definition of Σ.

The Boolean CQ q. Recall that q is responsible for checking whether there exists a candidate tiling

such that its bottom-left tile is b. This can be easily done via the query

Q ← CTiling(x,y), Finish(y).

It is easy to verify the following lemma, which immediately implies Theorem 5.1.

Lemma 5.2. It hold that:
(1) DT can be constructed in polynomial time in the size of T.
(2) Σ ∈ PWL.
(3) There exists a tiling for T iff () ∈ cert(q,DT, Σ).

6 EXPRESSIVE POWER
A class of TGDs naturally gives rise to a declarative database query language. More precisely,

we consider queries of the form (Σ,q), where Σ is a set of TGDs, and q a CQ over sch(Σ).13 The
extensional (database) schema of Σ, denoted edb(Σ), is the set of extensional predicates of sch(Σ),
i.e., the predicates that do not occur in the head of a TGD of Σ. The intensional schema of Σ, denoted
idb(Σ), is the set of intensional predicates of Σ, that is, sch(Σ) \ edb(Σ). Given a query Q = (Σ,q)
and a database D over edb(Σ), the evaluation of Q over D, denoted Q(D), is defined as cert(q,D, Σ).
We write (C,CQ) for the query language consisting of all the queries (Σ,q), where Σ ∈ C, and q is

a CQ. The evaluation problem for (C,CQ), dubbed Eval(C,CQ), is defined as expected:

PROBLEM : Eval(C,CQ)
INPUT : A query Q = (Σ,q(x̄)) from (C,CQ), a database D over edb(Σ),

and a tuple c̄ ∈ dom(D) |x̄ | .
QUESTION : Is it the case that c̄ ∈ Q(D)?

This general formulation refers to the combined complexity of the problem. We can also refer to its

data complexity, which measures the complexity of the problem assuming that the queryQ is fixed.

It should be clear that the complexity of Eval(C,CQ) when C =WARD ∩ PWL and C =WARD is

immediately inherited from Theorem 4.2 and Proposition 3.2, respectively.

Theorem 6.1. The following statements hold:
(1) Eval(WARD∩PWL,CQ) is PSpace-complete in combined complexity, and NLogSpace-complete

in data complexity.
(2) Eval(WARD,CQ) is ExpTime-complete in combined complexity, and PTime-complete in data

complexity.

Themain goal of this section is to understand the relative expressive power of (WARD∩PWL,CQ)
and (WARD,CQ). To this end, we are going to adopt two different notions of expressive power:

the classical one, which we call combined expressive power since it considers the set of TGDs and

the CQ as one composite query, and the program expressive power, which aims at the decoupling

of the set of TGDs from the actual CQ. We start with the combined expressive power.

13
Such queries are also known in the literature as ontology-mediated queries [12].

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

24 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

6.1 Combined Expressive Power
Consider a query Q = (Σ,q), where Σ is a set of TGDs and q(x̄) a CQ over sch(Σ). The expressive
power of Q , denoted ep(Q), is the set of pairs (D, c̄), where D is a database over edb(Σ), and c̄ is
a tuple from dom(D) |x̄ | such that c̄ ∈ Q(D). The combined expressive power of a query language

(C,CQ), where C is a class of TGDs, is defined as the set of database-tuple pairs

cep(C,CQ) = {ep(Q) | Q ∈ (C,CQ)}.

Given two query languages Q1,Q2, we say that Q2 is more expressive (w.r.t. the combined expressive
power) than Q1, written Q1 ≤cep Q2, if cep(Q1) ⊆ cep(Q2). We say that Q1 and Q2 are equally
expressive (w.r.t. the combined expressive power), written Q1 =cep Q2, if Q1 ≤cep Q2 and Q2 ≤cep Q1.

It is easy to show that Q1 =cep Q2 is equivalent to saying that every query of Q1 can be equivalently

rewritten as a query of Q2, and vice versa. We write Q1 ⪯ Q2 if, for every Q = (Σ,q) ∈ Q1, there

exists Q ′ = (Σ′,q′) ∈ Q2 such that, for every D over edb(Σ), Q(D) = Q ′(D).

Lemma 6.2. Consider two query languages Q1 and Q2. It holds that Q1 ≤cep Q2 iff Q1 ⪯ Q2.

Proof. Consider a query Q = (Σ,q) ∈ Q1. By hypothesis, cep(Q1) ⊆ cep(Q2), which in turn

implies that ep(Q) ∈ cep(Q2). Hence, there is a query Q
′ = (Σ′,q′) ∈ Q2 such that ep(Q) = ep(Q ′).

Thus, for every database D over edb(Σ), Q(D) = Q ′(D), which implies that Q1 ⪯ Q2. Conversely,

consider a set of database-tuple pairs ep(Q) ∈ cep(Q1), where Q ∈ Q1. By hypothesis, Q1 ⪯ Q2,

which in turn implies that there is a query Q ′ = (Σ′,q′) ∈ Q2 such that, for every database D over

edb(Σ), Q(D) = Q ′(D). Therefore, ep(Q) = ep(Q ′), which implies that ep(Q) ∈ cep(Q2).

We are now ready to state the main result of this section, which reveals the expressiveness

of (WARD ∩ PWL,CQ) and (WARD,CQ) relative to Datalog. Let us clarify that a Datalog query

is actually a pair (Σ,q), where Σ is a Datalog program, or a set of single-head full TGDs, that is,
single-head TGDs without existentially quantified variables – we write FULL1 for this class – and

q a CQ over sch(Σ). In other words, piece-wise linear Datalog, denoted PWL-DATALOG, is the
language (FULL1 ∩ PWL,CQ), while Datalog, denoted DATALOG, is the language (FULL1,CQ),
and thus we can refer to their combined expressive power. In what follows, PWL-DATALOG and

(FULL1 ∩ PWL,CQ) (resp., DATALOG and (FULL1,CQ)) are used interchangeably.

Theorem 6.3. The following statements hold:
(1) PWL-DATALOG =cep (WARD ∩ PWL,CQ).
(2) DATALOG =cep (WARD,CQ).

It is easy to verify that FULL1∩PWL ⊆ WARD∩PWL, which implies that (FULL1∩PWL,CQ) ⪯
(WARD∩PWL,CQ). Analogously, FULL1 ⊆ WARD, and thus (FULL1,CQ) ⪯ (WARD,CQ). There-
fore, by Lemma 6.2, PWL-DATALOG ≤cep (WARD ∩ PWL,CQ) and DATALOG ≤cep (WARD,CQ).
To conclude the proof of Theorem 6.3, Lemma 6.2 tells us that it suffices to show the next result.

Lemma 6.4. The following statements hold:
(1) (WARD ∩ PWL,CQ) ⪯ PWL-DATALOG.
(2) (WARD,CQ) ⪯ DATALOG.

The key underlying Lemma 6.4 is that we can convert a (linear) proof tree P of a CQ q(x̄) w.r.t. a
set Σ of TGDs into a (piece-wise linear) Datalog query QP = (ΣP,qP(x̄)) such that, for every

database D over edb(Σ), P(D) = QP(D). This, together with the fact that for (piece-wise linear)

warded sets of TGDs it suffices to consider proof trees of bounded node-width, allow us to effectively

rewrite every query Q ∈ (WARD ∩ PWL,CQ) (resp., Q ∈ (WARD,CQ)) into an equivalent query

that falls in PWL-DATALOG (resp., DATALOG). We first explain how a (linear) proof tree can be

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 25

converted into a (piece-wise linear) Datalog query. We then present the algorithms, which have the

above transformation as their building block, that rewrite a query Q ∈ (WARD ∩ PWL,CQ) (resp.,
Q ∈ (WARD,CQ)) into an equivalent query Q ′ ∈ PWL-DATALOG (resp., Q ′ ∈ DATALOG).

From Proof Trees to Datalog. Consider a proof tree P of a CQ q(x̄) w.r.t. a set Σ of TGDs. A

node of P, together with its children, is converted into a single-head full TGD that is added to (an

initially empty) set ΣP . Assume that the node v has the children u1, . . . ,uk in P, where v is labeled

by p0(x̄0) and, for i ∈ [k], ui is labeled by the CQ pi (x̄i) with x̄0 ⊆ x̄i . We add to ΣP the full TGD

C[p1](x̄1), . . . ,C[pk](x̄k) → C[p0](x̄0),

where C[pi] is a new predicate, not occurring in sch(Σ), that corresponds to the CQ pi , while [pi]
refers to the canonical representative of pi . The intention underlying such a canonical representative

is the following: if pi and pj are the same up to variable renaming, then [pi] = [pj]. Note that there
are several different ways to define the canonical representative of a CQ p, for example, by applying

a canonical renaming that always rewrites CQs that are the same up to variable renaming into the

same CQ. Here we simply assume a fixed mechanism that computes the canonical representative

[p] of a CQ p. We also add to ΣP a full TGD

R(y1, . . . ,ym) → C[pR](y1, . . . ,ym)

for eachm-ary predicate R ∈ edb(Σ), where pR (y1, . . . ,ym) is the atomic query

Q(y1, . . . ,ym) ← R(y1, . . . ,ym).

This concludes the definition of ΣP . Observe that since in P we may have several node labels (i.e.,

CQs) that are the same up to variable renaming, the set ΣP is, in general, recursive. Furthermore, if

P is linear, then the employed recursion is piece-wise linear, i.e., ΣP ∈ FULL1 ∩ PWL. We finally

define QP as the query (ΣP,qP(x̄)), where qP(x̄) is the atomic query

Q(x̄) ← C[q](x̄).

Here is a simple example that illustrates the above construction.

Example 6.5. Consider the set Σ of TGDs given in Example 4.5, which we repeat here:

R(x) → ∃yT (y, x) T (x,y), S(y, z) → T (x, z) T (x,y), P(y) → G().

Consider also the CQ that simply asks whether G() is entailed, i.e., the CQ

Q ← G(),

which has also been considered in Example 4.5. Let P be the proof tree of q w.r.t. Σ that encodes the

branch q0, . . . ,qn of the unfolding of q with Σ for n = 4. In other words, P is the tree consisting of

the treesT1,Tn−2 andTn−1 depicted in Figure 1. According to the above construction, P is converted

into the following set ΣP of single-head full TGDs; note that we do not keep the TGDs that are

already present (up to variable renaming). For brevity, we adopt the following naming convention:

pi , j is the CQ that labels the j-th node (from left-to-right) of the i-th level of P. If the i-th level has

only one node, we simply write pi . With this naming convention, the root is labeled with p0, its

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

26 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

child with p1, etc. The set of full TGDs ΣP obtained from P consists of:

C[p1] → C[p0]()

C[p2](y
1) → C[p1]()

C[p3,1](y
1),C[p3,2](y

1) → C[p2](y
1)

C[p4](y
1) → C[p3,1](y

1)

C[p5](y
1,y2) → C[p4](y

1)

C[p3,1](y
2),C[p6,2](y

1,y2) → C[p5](y
1,y2)

C[p10](y
3) → C[p3,1](y

3)

P(y1) → C[p3,2](y
1)

S(y2,y1) → C[p6,2](y
1,y2)

R(y3) → C[p10](y
3).

Finally, the desired Datalog query QP is defined as (ΣP,Q ← C[p0]()).

It is not difficult to verify that the following holds – it actually follows by construction – which

forms the building block of the rewriting algorithms that come next:

Lemma 6.6. Consider a proof tree P of a CQ q(x̄) w.r.t. a set Σ TGDs. Then:
(1) QP ∈ DATALOG; furthermore, if P is linear, then QP ∈ PWL-DATALOG.
(2) For every database D over edb(Σ), P(D) = QP(D).

TheRewriting Algorithm forWARD∩PWL. By exploiting the construction described above, and
in particular Lemma 6.6, we can now rewrite every queryQ = (Σ,q) ∈ (WARD∩PWL,CQ) into an
equivalent query Q ′ = (Σ′,q′) that falls in PWL-DATALOG. The idea is essentially to convert each

linear proof tree P of q w.r.t. Σ such that nwd(P) ≤ fWARD∩PWL(q, Σ) (by Theorem 4.12, it suffices to

consider only linear proof trees of node-width at most fWARD∩PWL(q, Σ)) into the piece-wise linear

Datalog queryQP , and then take the union of all those queries. This is done via Algorithm 3, which

we now describe. After converting the given set of TGDs into a set of single-head TGDs in level-wise

normal form, we then perform an initialization step. The variable ctr is counting the number of

resolution steps, which will then be used to rename the variables occurring in TGDs in order to

avoid undesirable clutter during resolution. The set pending is collecting the CQs (i.e., nodes of

proof trees) that are waiting to be processed by the current iteration of the algorithm (see the outer

for-loop inside the repeat-until loop). The set new is collecting the new nodes that are generated

during the current iteration, which will be then processed by the subsequent iteration. Finally, the

set explored is collecting all the nodes that have been already processed, which allows us to identify

whether a generated node is really new. The algorithm first computes all the possible root nodesp(ȳ)
of proof trees by considering all the possible partitions π of x̄ , and then generates the output TGDs

C[p](ȳ) → Ans(ȳ) that are added to Σ′; recall that [p] is the canonical representation of p. Then, the
algorithm exhaustively applies resolution steps, specialization steps, and decomposition steps, until

there are no pending nodes, while at each step the corresponding TGD is constructed and added to

Σ′. Notice that during a resolution step only MGCUs that use a substitution that is the identity on

the output variables of the CQ under consideration are considered; those MGCUs are collected in

the setmgcuido(·, ·). Notice also that during the actual resolution step via an MGCUU , the algorithm

first renames the variables of the TGD σ under consideration by exploiting the current value of ctr ;
this is indicated by the notation p[σctr,Uctr]. Let us also stress that during the decomposition steps

only intensional-extensional decompositions are considered, that is, decompositions where at most

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 27

Algorithm 3: The rewriting algorithm forWARD ∩ PWL

Input: A query Q = (Σ,q(x̄)) ∈ (WARD ∩ PWL,CQ)
Output: A query Q ′ = (Σ′,q′(x̄)) ∈ (FULL1 ∩ PWL,CQ)

Σ := Nlw(Nsh(Σ))
ctr := 0; Σ′ := ∅; pending := ∅; new := ∅; explored := ∅

foreach partition π of x̄ do
p(ȳ) := Q(eqπ (x̄)) ← eqπ (α1, . . . ,αn) with atoms(q) = {α1, . . . ,αn }
Σ′ := Σ′ ∪

{
C[p](ȳ) → Ans(ȳ)

}
pending := pending ∪ {p}

repeat
foreach p(ȳ) ∈ pending do

/* resolution steps */

foreach σ ∈ Σ do
foreachU ∈ mgcuido(p,σ) do

ctr := ctr + 1

p′ := p[σctr ,Uctr]

if |p′ | ≤ fWARD∩PWL(q, Σ) then
Σ′ := Σ′ ∪

{
C[p′](ȳ) → C[p](ȳ)

}
if there is no p′′ ∈ explored such that [p′] = [p′′] then

new := new ∪ {p′}

/* specialization steps */

foreach specialization p′(z̄) of p(ȳ) do
Σ′ := Σ′ ∪

{
C[p′](z̄) → C[p](ȳ)

}
if there is no p′′ ∈ explored such that [p′] = [p′′] then

new := new ∪ {p′}

/* decomposition steps */

foreach extensional-intensional decomposition {p1(z̄1), . . . ,pk (z̄k)} of p(ȳ) do
Σ′ := Σ′ ∪

{
C[p1](z̄1), . . . ,C[pk](z̄k) → C[p](ȳ)

}
foreach p′ ∈ {p1, . . . ,pk } do

if there is no p′′ ∈ explored such that [p′] = [p′′] then
new := new ∪ {p′}

explored := explored ∪ {p}
pending := new; new := ∅

until pending = ∅;
foreachm-ary predicate R ∈ edb(Σ) do

pR (ȳ) := Q(y1, . . . ,ym) ← R(y1, . . . ,ym)
Σ′ := Σ′ ∪

{
R(ȳ) → C[pR](ȳ)

}
q′(x̄) := Q(x1, . . . , xn) ← Ans(x1, . . . , xn)
Q ′ := (Σ′,q′(x̄))
return Q ′

one CQ mentions intensional predicates of Σ; this ensures that only linear proof trees are explored.

If there are no pending CQs, which means that all the possible linear proof trees of q w.r.t. Σ with

node-width at most fWARD∩PWL(q, Σ) have been converted into single-head full TGDs, the algorithm

proceeds to generate the input TGDs that will be triggered by the given database; these are the

TGDs of the form R(ȳ) → C[pR](ȳ) for R ∈ edb(Σ). Finally, the desired query Q ′ = (Σ′,q′(x̄)) is

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

28 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

generated. The next technical lemma shows that Algorithm 3 effectively rewrites a query from

(WARD ∩ PWL,CQ) into a query from PWL-DATALOG.

Lemma 6.7. Consider a query Q = (Σ,q(x̄)) ∈ (WARD ∩ PWL,CQ), and let Q ′ = (Σ′,q′) be the
output of Algorithm 3 on input Q . The following hold:
(1) Σ′ is finite and falls in FULL1 ∩ PWL; hence, Q ′ ∈ PWL-DATALOG.
(2) For every database D over edb(Σ), Q(D) = Q ′(D).

Proof. Concerning item (1), it follows by construction, since we explore only linear proof trees

that is guaranteed by the fact that only intensional-extensional decompositions are considered,

that Σ′ is a piece-wise linear set of single-head full TGDs. The fact that Σ′ is finite follows from
the fact that only the canonical representation of the CQs that label the nodes of a linear proof

tree of q w.r.t. Σ are considered, while the number of atoms occurring in those CQs is bounded by

fWARD∩PWL(q, Σ). In other words, only finitely many (in fact, exponentially many) CQs are actually

explored during the execution of the algorithm, which in turn implies the finiteness of Σ′.
Concerning item (2), assume first that c̄ ∈ Q(D) for some tuple c̄ ∈ dom(D) |x̄ | . By Theorem 4.12,

there exists a linear proof treeP ofqw.r.t. Σwith nwd(P) ≤ fWARD∩PWL(q, Σ) such that c̄ ∈ P(D). By
construction and Lemma 6.6, there exists a set ΣP ⊆ Σ′ such thatP(D) = QP(D)withQP = (ΣP,q

′).

Therefore, c̄ ∈ QP(D), which implies that c̄ ∈ Q ′(D). Conversely, assume that c̄ ∈ Q ′(D). By
construction, there exists a set ΣP ⊆ Σ′ such that ΣP is obtained after converting a linear proof tree

P of q w.r.t. Σ with nwd(P) ≤ fWARD∩PWL(q, Σ) into full TGDs, and c̄ ∈ QP(D) with QP = (ΣP,q
′).

By Lemma 6.6, we get that c̄ ∈ P(D). Therefore, by Theorem 4.12, we conclude that c̄ ∈ Q(D).

Item (1) of Lemma 6.4 is an immediate consequence of Lemma 6.7.

The Rewriting Algorithm forWARD. The rewriting of a query Q = (Σ,q) ∈ (WARD,CQ) into
an equivalent query Q ′ = (Σ′,q′) that falls in DATALOG is done in a similar way as for piece-wise

linear warded sets of TGDs, i.e., we convert each proof tree (not necessarily linear) P of q w.r.t. Σ
such that nwd(P) ≤ fWARD(q, Σ) (by Theorem 4.13, it suffices to consider only proof trees of

node-width at most fWARD(q, Σ)) into the Datalog query QP , and then take the union of all those

queries. This is done via an adapted version of Algorithm 3; here are the only differences:

(1) The given set Σ of TGDs is converted into single-head normal form, but not into level-wise

normal form, i.e., the first line is replaced by Σ := Nsh(Σ).
(2) The node-width of the explored proof trees is at most fWARD(q, Σ), i.e., the condition of the first

if-statement in the for-loop that performs resolution steps is replaced by |p ′ | ≤ fWARD(q, Σ).
(3) Proof trees that are not linear are also explored, i.e., the for-loop that performs decomposition

steps considers all the decompositions (not only the extensional-intensional ones) of p(ȳ).

Having the above adapted version of Algorithm 3 in place, we immediately get a result for queries

from (WARD,CQ) analogous to Lemma 6.7, which in turn implies item (2) of Lemma 6.4.

6.2 Program Expressive Power
The expressive power of a set Σ of TGDs, denoted ep(Σ), is the set of triples (D,q(x̄), c̄), where D is a

database over edb(Σ), q(x̄) is a CQ over sch(Σ), and c̄ ∈ dom(D) |x̄ | , such that c̄ ∈ cert(q,D, Σ). The
program expressive power of a query language (C,CQ), where C is a class of TGDs, is defined as

pep(C,CQ) = {ep(Σ) | Σ ∈ C}.

Given two query languages Q1,Q2, we say that Q2 is more expressive (w.r.t. program expressive
power) than Q1, written Q1 ≤pep Q2, if pep(Q1) ⊆ pep(Q2). Moreover, we say that Q2 is strictly
more expressive (w.r.t. the program expressive power) than Q2, written Q1 <pep Q2, if Q1 ≤pep Q2 and

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 29

Q2 ≰pep Q1. It is easy to show a lemma analogous to Lemma 6.2, which reveals the essence of the

program expressive power. For brevity, given two classes of TGDs C1 and C2, we write C1 ⪯ C2 if,

for every Σ ∈ C1, there exists Σ
′ ∈ C2 such that, for every D over edb(Σ), and CQ q over sch(Σ),

Q(D) = Q ′(D), where Q = (Σ,q) and Q ′ = (Σ′,q).

Lemma 6.8. For two query languages Q1 = (C1,CQ) and Q2 = (C2,CQ), Q1 ≤pep Q2 iff C1 ⪯ C2.

We are now ready to study the expressiveness (w.r.t. the program expressive power) of (WARD∩
PWL,CQ) and (WARD,CQ) relative to Datalog. In particular:

Theorem 6.9. The following statements hold:
(1) PWL-DATALOG <pep (WARD ∩ PWL,CQ).
(2) DATALOG <pep (WARD,CQ).

Proof. We proceed to show (1); the second statement is shown in the same way. First, observe

that PWL-DATALOG ≤pep (WARD∩PWL,CQ) since, by definition, FULL1∩PWL ⊆ WARD∩PWL,
and thus FULL1 ∩ PWL ⪯ WARD ∩ PWL; the claim follows by Lemma 6.8. It remains to show

that (WARD ∩ PWL,CQ) ≰pep PWL-DATALOG. By Lemma 6.8, this boils down to showing that

WARD ∩ PWL ⪯̸ FULL1 ∩ PWL. By contradiction, assume the opposite. Consider the set of TGDs

Σ = {P(x) → ∃y R(x,y)}, which is clearly in WARD ∩ PWL, the database D = {P(c)}, and the CQs

q1 = Q ← R(x,y) and q2 = Q ← R(x,y), P(y).

By hypothesis, there is a set of TGDs Σ′ ∈ FULL1 ∩ PWL such that Q1(D) = Q ′
1
(D) and Q2(D) =

Q ′
2
(D), where Qi = (Σ,qi) and Q ′i = (Σ

′,qi), for i ∈ {1, 2}. Clearly, Q1(D) , ∅ and Q2(D) = ∅,
which implies that Q ′

1
(D) , ∅ and Q ′

2
(D) = ∅. Observe now that Q ′

1
(D) , ∅ implies Q ′

2
(D) , ∅.

Indeed, if Q ′
1
(D) , ∅, then necessarily there exists an atom of the form R(c, c) in chase(D, Σ′) since

dom(chase(D, Σ′)) = dom(D); the latter holds due to the fact that Σ′ is constant-free and does not

use existentially quantified variables. Therefore, due to the atoms P(c) and R(c, c) in chase(D, Σ′),
Q ′

2
(D) , ∅. But this contradicts the fact that Q ′

2
(D) = ∅, and the claim follows.

7 THE PRACTICAL EFFECT OF PIECE-WISE LINEARITY ON VADALOG
After studying in depth the theoretical aspects of piece-wise linearity, we now proceed to give

preliminary experimental evidence for its practical effect on the Vadalog system, which has been

originally designed for warded sets of TGDs. But let us first give a brief description of the Vadalog

system, which will then allow us to give a relatively self-contained overview for what follows. The

interested reader can find additional technical details concerning the Vadalog system in [9], but all

the required information for understanding the rest of the section will be presented here.

7.1 The Vadalog System: A Brief Description
Our analysis on how piece-wise linearity affects the performance of the Vadalog system heavily

relies on how piece-wise linearity affects the way that existential quantifiers interact with recursion.

A crucial issue when combining existential quantification and recursion in any TGD language

is that of non-termination. In the Vadalog system, a separate subsystem has been designed that

is responsible for termination control. To understand the effect that piece-wise linearity has on

Vadalog and this subsystem, we first have to describe how the system executes warded (non

necessarily piece-wise linear) sets of TGDs in general.

Reasoning Query Plan. Unlike many rule-based reasoners, and similar to many database systems,

the Vadalog system translates a set of TGDs into a pipeline-style network of operators, called the

reasoning query plan. An abstract example of such a plan is shown in Figure 2. We first focus on

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

30 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

Fig. 2. Reasoning query plan.

the circular nodes representing the nodes of our reasoning query plan. At the top of the figure

are the input nodes (shown in orange, horizontally shaded). An input node represents a relation,

coming from a traditional relational database, an RDF store, or any other data source able to expose

a stream of relational data. At the bottom we have an output node (shown in grey, vertically-dashed

shaded); note that, in general, there may be more than one output node. Such output nodes represent

relations the user wishes to consume as output. All the other nodes represent TGDs in their original

form, or as the result of the optimizer of the system rewriting them. As in typical query plans, an

edge indicates the output of one node being the input of another node.

Termination Control. As said above, in the Vadalog system, a separate subsystem has been de-

signed that is responsible for termination control. In particular, termination strategies are associated

with some of the nodes in a reasoning query plan. These strategies are indicated by a “hand” symbol

in Figure 2. Considering the right-most node in the figure with a termination strategy, we see that

this node is also recursive, which is indicated via the looping edge. In such a case, namely TGDs

that are also part of a recursion, termination strategies ensure that the computation terminates,

which is generally not the case. Furthermore, termination strategies try to terminate the execution

as early as possible by exploiting the wardedness condition while ensuring correctness (i.e., not

losing any output tuples, or producing incorrect tuples). In other words, termination strategies are

also responsible for pruning tuples that are unnecessary for the output to be produced.

For the purpose of termination control, the system builds some guide termination structures:

the linear forest, the warded forest, and the lifted linear forest; for details see [9]. Although those

termination structures are central on how the Vadalog system works, for our purposes here it

suffices to know that they exist, and drop tuples (i.e., block execution) at certain points. Let us

remark again that adding or removing a termination strategy to a node only affects the termination

behaviour, but not the correctness of the system, which is guaranteed by construction.

Modes of Termination Control. In Figure 2, the only potential source for non-termination is the

right-most node marked with the “hand” symbol (i.e., an attached termination strategy) that also

has a loop attached to it. It should be clear that removing the termination strategy from the other

two nodes will not affect termination since the node with the actual cycle still has a termination

strategy attached to it. Yet, it is always possible to statically determine which of the termination

strategies can be omitted, and which must remain. We call the setting of the Vadalog engine with

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 31

termination strategies attached to all nodes representing TGDs (i.e., not input and output nodes)

the standard termination strategy. The one with all the termination strategies removed, apart

from those that are really needed to ensure termination, is called the pruned termination strategy.

Let us stress, however, that this is actually a trade-off, i.e., using a termination strategy requires

time (including creating and querying the data structures of the termination strategies) while it

potentially also saves time (by dropping tuples not really needed in the computation).

7.2 Experimental Scenario
For our experiment, we are going to consider a scenario from Section 6.3 of [9] built on top of

DBpedia. The general setup of this scenario is on companies, company control and key persons

stored in DBpedia. The scenario considers the Company entity in DBpedia mapped to facts of the

form Company(c). The control relation is populated by the dbo:parentCompany relationship in

DBpedia mapped to facts of the form Control(c,d), that is, c controls d if c is the parent company of

d . The key persons relation is populated by the dbo:keyPerson relationship in DBpedia mapped to

facts of the form KeyPerson(c,p) if p is a key person of company c . DBpedia contains information

about approximately 67K companies and approximately 1.5M persons.

The scenario is on persons with significant control (PSCs), which are all persons of a company

who directly or indirectly have significant control of a company. Every company has at least one

PSC, either one provided by the data (as key persons) or an unknown person. Based on those PSCs,

the strong links between companies are companies that share a certain number N of persons of

significant control. We are going to consider the computationally hardest of the tasks considered

in [9], namely the one where the goal is to compute all such strong links, and we are going to set

N = 1 in order to produce the highest number of such strong links. Let us clarify though that the

scenario in [9] allows for a broader variation (allowing a variable parameter N for strong links,

computing the actual weight, i.e., the number of PSCs a strong link is based on, etc.), but also uses

advanced Vadalog features that go beyond TGDs.

KeyPerson(x,u) → SignificantCtrl(x, x,u) (1)

Company(x) → ∃u SignificantCtrl(x, x,u) (2)

Control(x,y) → ∃u SignificantCtrl(x,y,u) (3)

Control(x,y), SignificantCtrl(y, z,u) → SignificantCtrl(x, z,u) (4)

Control(x,y), SignificantCtrl(x, x,u) → SignificantCtrl(y,y,u) (5)

SignificantCtrl(_, x,u), SignificantCtrl(_,y,u) → StrongLink(x,y) (6)

Fig. 3. The piece-wise linear warded set of TGDs ΣPWL.

The piece-wise linear warded set of TGDs ΣPWL expressing the above scenario is given in Figure 3.

It uses one main recursive relation into which all relevant information is loaded, and from which all

relevant information is extracted. The meaning of the main recursive relation SignificantCtrl(x,y,u)
is that company x controls company y, and that company y has person of significant control u.
The TGDs (1)-(3) are responsible for loading the source data into the main relation. TGD (4) is

responsible for transitively closing company control (the first two arguments of SignificantCtrl).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

32 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

TGD (5) is responsible for propagating persons of significant control (the last two arguments of

SignificantCtrl). Finally, TGD (6) extracts the relevant information, i.e., all strong links.

KeyPerson(x,u) → SignificantCtrl(x, x,u)

Company(x) → ∃u SignificantCtrl(x, x,u)

Control(x,y) → ∃u SignificantCtrl(x,y,u)

SignificantCtrl(x,y,v), SignificantCtrl(y, z,u) → SignificantCtrl(x, z,u)

SignificantCtrl(x,y,v), SignificantCtrl(x, x,u) → SignificantCtrl(y,y,u)

SignificantCtrl(v, x,u), SignificantCtrl(w,y,u) → StrongLink(x,y)

Fig. 4. The warded set of TGDs ΣWARD.

With the aim of investigating the effect of piece-wise linearity on the Vadalog system, we are

also considering the (non-piece-wise linear) warded set of TGDs ΣWARD, depicted in Figure 4, which

is an equivalent variant of ΣPWL, obtained from ΣPWL by simply replacing the atom Control(x,y)
in TGDs (4) and (5) with the atom SignificantCtrl(x,y,v).

7.3 Experimental Evaluation and Discussion
In our experiment, to see the effect of piece-wise linearity on the interaction between recursion

and existential quantification (the two key ingredients for non-termination), we will consider the

scenario described above. For the test set, we are going to use the same setting as in [9], that is, a

constant set of 1.5 million persons and 1K, 10K, 25K, 50K and 67K companies. We note that the

complexity of the computation is not rooted in the far larger set of 1.5 million persons, but the

interconnections of the companies. DBpedia contains 67K such companies, and the smaller subsets

have been obtained by random sampling. The experiment has been performed on a machine with

Fig. 5. PWL vs. non-PWL. Plotted are times in seconds vertically and the number of companies horizontally.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 33

an Intel Core i7-8650U CPU on Oracle JDK 14 on top of a Windows 10 version 1909 host. The JVM

was allocated a maximum of 6GB of memory.

In Figure 5 we see the performance of the Vadalog system in seconds plotted on the vertical axis,

and the number of companies plotted on the horizontal axis. The four series represent:

- the piece-wise linear set of TGDs ΣPWL with standard termination strategy (std PWL),

- the piece-wise linear set of TGDs ΣPWL with pruned termination strategy (pru PWL),

- the warded set of TGDs ΣWARD with standard termination strategy (std non-PWL), and

- the warded set of TGDs ΣWARD with pruned termination strategy (pru non-PWL).

The experiment was executed with a timeout of 600s (10 minutes). There are three entries hitting this

timeout, the (std non-PWL) configurationwith 67K companies, and the (pru non-PWL) configuration

with 50K and 67K companies.

Discussion. We first observe that the Vadalog system performs better with the set of TGDs ΣPWL
as input. Furthermore, we see that for ΣPWL the pruned termination strategy (i.e., the one removing

termination strategies from nodes where this can be done) has a slight positive effect compared to

the standard termination strategy. This is what we usually expect, as the overhead of unnecessary

termination strategy nodes is typically higher than the performance gained by the tuples dropped

by them. Interestingly, this trend reverts when we consider as input the warded set of TGDs

ΣWARD. Indeed, the performance of the pruned termination strategy is much worse. The reason

for this, which reveals the usefulness of piece-wise linear recursion, is that non-piece-wise-linear

recursion generates duplicates. The standard termination strategy, having termination strategy

nodes wherever possible, will prune those unnecessary tuples as early as possible. The pruned

termination strategy will save this effort, and thus gain minimal performance, but will incur a huge

performance penalty by having to process all those unnecessary duplicate tuples.

8 CONCLUSIONS AND FUTUREWORK
We have seen that restricting the recursion allowed by wardedness to piece-wise linear recursion

leads to a formalism that provides a convenient syntax for expressing useful recursive statements,

and at the same time achieves space-efficiency, in particular, NLogSpace data complexity.

Although the theoretical aspects of piece-wise linearity (i.e., complexity and expressive power) are

rather well-understood, the practical side of this line of research is still at a very preliminary stage.

We have provided initial experimental evidence for the practical effect of piece-wise linearity on

the Vadalog system, and, in particular, on the subsystem that is responsible for termination control,

but this is only a glimpse. Our long-term plan is to properly implement and experimentally evaluate

piece-wise linearity as part of the Vadalog system. In fact, an optimized parallel implementation is

currently under development. This relies on the fact that reasoning under piece-wise linear warded

sets of TGDs is principally parallelizable, since NLogSpace is contained in the class NC2 of highly

parallelizable problems, unlike warded sets of TGDs for which reasoning is PTime-hard, and thus

difficult to parallelize effectively. We are also planning to extend the benchmark suite iWarded for

warded sets of TGDs to cover also piece-wise linear warded sets of TGDs in more detail. This will

be crucial for the experimental evaluation of the parallel implementation mentioned above.

REFERENCES
[1] Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. 2003. Linearisability on datalog programs. Theor. Comput.

Sci. 308, 1-3 (2003), 199–226.
[2] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2014. Expressive languages for querying the semantic web. In

PODS. 14–26.
[3] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2018. Expressive Languages for Querying the Semantic Web.

ACM Trans. Database Syst. 43, 3 (2018), 13:1–13:45.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

34 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

[4] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The iBench Integration Metadata Generator.

PVLDB 9, 3 (2015), 108–119.

[5] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo. 2011. Walking the Complexity

Lines for Generalized Guarded Existential Rules. In IJCAI. 712–717.
[6] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011. On rules with existential variables:

Walking the decidability line. Artif. Intell. 175, 9-10 (2011), 1620–1654.
[7] Catriel Beeri and Moshe Y. Vardi. 1981. The Implication Problem for Data Dependencies. In ICALP. 73–85.
[8] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2017. Swift Logic for Big Data and Knowledge

Graphs. In IJCAI. 2–10.
[9] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog System: Datalog-based Reasoning for

Knowledge Graphs. PVLDB 11, 9 (2018), 975–987.

[10] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti, Donatello Santoro, and

Efthymia Tsamoura. 2017. Benchmarking the Chase. In PODS. 37–52.
[11] Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. 2019. The Space-Efficient Core of Vadalog. In

PODS. 270–284.
[12] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. 2014. Ontology-Based Data Access: A Study

through Disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst. 39, 4 (2014), 33:1–33:44.
[13] Peter Van Emde Boas. 1997. The Convenience of Tilings. In Complexity, Logic, and Recursion Theory. 331–363.
[14] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase: Query Answering under Expressive

Relational Constraints. J. Artif. Intell. Res. 48 (2013), 115–174.
[15] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas Pieris. 2010. Datalog+/-: A Family of

Logical Knowledge Representation and Query Languages for New Applications. In LICS. 228–242.
[16] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data exchange: semantics and query

answering. Theor. Comput. Sci. 336, 1 (2005), 89–124.
[17] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and Optimization for Ontological Databases.

ACM Trans. Database Syst. 39, 3 (2014), 25:1–25:46.
[18] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL Entailment Regime: Rules to the Rescue.

In IJCAI. 2999–3007.
[19] David S. Johnson and Anthony C. Klug. 1984. Testing Containment of Conjunctive Queries under Functional and

Inclusion Dependencies. J. Comput. Syst. Sci. 28, 1 (1984), 167–189.
[20] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo. 2015. Sound, complete and minimal

UCQ-rewriting for existential rules. Semantic Web 6, 5 (2015), 451–475.
[21] RomanKontchakov,Martin Rezk,Mariano Rodriguez-Muro, Guohui Xiao, andMichael Zakharyaschev. 2014. Answering

SPARQL Queries over Databases under OWL 2 QL Entailment Regime. In ISWC. 552–567.
[22] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Implications of Data Dependencies. ACM

Trans. Database Syst. 4, 4 (1979), 455–469.
[23] Jeffrey F. Naughton. 1986. Data Independent Recursion in Deductive Databases. In PODS. 267–279.
[24] Jeffrey F. Naughton and Yehoshua Sagiv. 1987. A Decidable Class of Bounded Recursions. In PODS. 227–236.

A PROOF OF THEOREM 4.9
Recall that a branch of the unfolding of q with Σ is a sequence of CQs (qi)i ∈{0, ...,n } , where q = q0,

while, for each i ∈ [n], qi is a σ -resolvent of qi−1 for some σ ∈ Σ. It is not difficult to verify that the

following statements are equivalent:

- There is a proof tree P of q w.r.t. Σ such that c̄ ∈ P(D).
- There is a branch (qi)i ∈{0, ...,n } , for n ≥ 0, of the unfolding of q with Σ such that c̄ ∈ qn(D).

Thus, to establish Theorem 4.9, it suffices to show that the following statements are equivalent:

(1) c̄ ∈ cert(q,D, Σ).
(2) There is a branch (qi)i ∈{0, ...,n } , for n ≥ 0, of the unfolding of q with Σ such that c̄ ∈ qn(D).

A.1 Proof of (1) ⇒ (2)
We first establish the following auxiliary lemma:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 35

Lemma A.1. Consider a CQ q(x̄), and a prefix (Ii)i ∈{0, ...,m } , wherem ≥ 0, of a chase sequence for
D under Σ with Ii ⟨σi ,hi ⟩Ii+1, for each i ∈ {0, . . . ,m − 1}, such that c̄ ∈ q(Im). Then, there exists a
sequence (qi)i ∈{0, ...,m } of CQs such that the following hold:

- q0 = q,
- qi = qi−1 or qi is a σm−i -resolvent of qi−1, for each i ∈ {1, . . . ,m}, and
- c̄ ∈ qi (Im−i), for each i ∈ {0, . . . ,m}.

Proof. We proceed by induction on the length of the chase sequence.

Base Case. The statement holds trivially since c̄ ∈ q(I0). In other words, the desired sequence of

CQs consists only of q.

Induction Step. Assume that there is a prefix (Ii)i ∈{0, ...,m+1} of a chase sequence for D under Σ with

Ii ⟨σi ,hi ⟩Ii+1 for each i ∈ {0, . . . ,m} such that c̄ ∈ q(Im+1). Clearly, there exists a homomorphism µ
such that µ(atoms(q)) ⊆ Im+1 and µ(x̄) = c̄ . Let H = h′m(head(σm)), where h

′
m is an extension of

hm that maps the existentially quantified variables of σm to fresh nulls. It is clear that H ⊆ Im+1.

We proceed by considering the following two cases:

Case 1. Assume that H ∩ µ(atoms(q)) = ∅. This implies that c̄ ∈ q(Im). Therefore, by induction

hypothesis, there exists a sequence of CQs (q′i)i ∈{0, ...,m } , where q
′
0
= q, that enjoys the

desired properties. Thus, the claim follows due to the the sequence of CQs q,q,q′
1
, . . . ,q′m .

Case 2. The interesting case is when H ∩ µ(atoms(q)) , ∅. Let S ⊆ atoms(q) such that µ(S) ⊆ H ,

while H ∩ µ(atoms(q) \ S) = ∅. In other words, S is the maximal subset of atoms(q) that
is mapped to H via µ. Let S ′ ⊆ head(σm) such that h′m(S

′) = µ(S). It is easy to verify that

(S, S ′,γ), where γ = h′m ∪ µ, is a chunk unifier of q with σm ; we assume, w.l.o.g., that σm
and q do not share variables, and thus, γ is a well-defined substitution. Indeed, for every

x ∈ var(S ′) ∩ var∃(σm), γ (x) is not a constant since, by construction, h′m(x) is a null, and
γ (x) = γ (y) implies that y occurs in S and is not shared. By contradiction, assume that y is

shared, which means that it occurs in atoms(q) \ S . Observe that, by definition of the set S ,
µ(atoms(q) \ S) ⊆ Im , and thus, µ(y) = γ (y) is a null occurring in Im , which is a contradiction

since µ(y) has been invented inH , which means that it occurs only in Im+1 \ Im . Since (S, S ′,γ)
is a chunk unifier of q with σm , there exists a most general one (S, S ′, γ̂). We define q̂ in such

a way that atoms(q̂) = γ̂ ((atoms(q) \S) ∪ body(σm)) i.e., as a σm-resolvent of q, while its free
variables are γ̂ (x̄). We can show that c̄ ∈ q̂(Im), i.e., there exists a homomorphism λ such that

λ(atoms(q̂)) ⊆ Im and λ(γ̂ (x̄)) = c̄ . By definition of the MGU, γ = θ ◦ γ̂ for some substitution

θ . It is clear that θ maps atoms(q̂) to Im since γ (body(σm)) ⊆ Im and γ (atoms(q) \ S) ⊆ Im .
Moreover, θ (γ̂ (x̄)) = γ (x̄) = c̄ . Thus, c̄ ∈ q̂(Im) as claimed above. By induction hypothesis,

there exists a sequence of CQs (q′i)i ∈{0, ...,m } , where q
′
0
= q̂, that enjoys the desired properties.

Thus, the claim follows due to the the sequence of CQs q, q̂,q′
1
, . . . ,q′m .

This completes the proof of Lemma A.1.

We can now complete the proof of the statement (1) ⇒ (2). By hypothesis, c̄ ∈ cert(q,D, Σ).
Thus, by Proposition 2.1, there exists a prefix (Ii)i ∈{0, ...,m } , where m ≥ 0, such that c̄ ∈ q(Im).
By Lemma A.1, there exists a sequence of CQs (qi)i ∈{0, ...,m } , where q0 = q, qi is either qi−1 or

a σ -resolvent of qi−1, where σ ∈ Σ, for each i ∈ {1, . . . ,m}, and c̄ ∈ qm(D). However, strictly
speaking, (qi)i ∈{0, ...,m } is not a branch of the unfolding of q with Σ due to the fact that some CQs

are repeated. Indeed, there are indices i ∈ {1, . . . ,m} such that qi is not a resolvent of qi−1 but the

same CQ qi−1. We can easily convert (qi)i ∈{0, ...,m } into a proper branch of the unfolding of q with

Σ of length n ≤ m by simply removing the repeated CQs from the sequence (qi)i ∈{0, ...,m } .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

36 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

A.2 Proof of (2) ⇒ (1)
We first establish the following auxiliary lemma:

Lemma A.2. Consider a branch (qi)i ∈{0, ...,n } , for n ≥ 0, of the unfolding of q with Σ. For every
i ∈ {0, . . . ,n}, c̄ ∈ cert(qi ,D, Σ) implies c̄ ∈ cert(q,D, Σ).

Proof. We proceed by induction on i ≥ 0.

Base Case. Clearly, c̄ ∈ cert(q0,D, Σ) implies c̄ ∈ cert(q,D, Σ) holds trivially since q0 = q.

Induction Step. Suppose now that c̄ ∈ cert(qi ,D, Σ), for i > 0. To show that c̄ ∈ cert(q,D, Σ), by
induction hypothesis, it suffices to show that c̄ ∈ cert(qi−1,D, Σ). By Proposition 2.1, the latter boils

down to showing that there exists a homomorphism λ that maps atoms(qi−1) to chase(D, Σ) and
λ(x̄i−1) = c̄ , where x̄i−1 are the output variables of qi−1.

Since, by hypothesis, c̄ ∈ cert(qi ,D, Σ), we conclude that there exists a homomorphismh such that
h(atoms(qi)) ⊆ chase(D, Σ) and h(x̄i) = c̄ with x̄i being the output variables of qi . Recall that qi is a
σ -resolvent of qi−1 for some σ ∈ Σ, i.e., qi is such that atoms(qi) = γ ((atoms(qi−1) \ S) ∪ body(σ)),
while its free variables are γ (x̄i−1), for a MGCU (S, S ′,γ) of qi−1 with σ . Let µ = h ◦ γ . Observe that
µ(body(σ)) ⊆ chase(D, Σ). Thus, µ ′(head(σ)) ⊆ chase(D, Σ), where µ ′ ⊇ µ maps each existentially

quantified variable of σ to a fresh null. We define the substitution

h′ = h ∪ {γ (z) 7→ µ ′(z)}z∈var(S ′)∩var∃(σ)

We proceed to show that

(1) h′ is a well-defined substitution.

(2) The homomorphism λ such that λ(atoms(qi−1)) ⊆ chase(D, Σ) and λ(x̄i−1) = c̄ is h
′ ◦ γ .

To show that h′ is a well-defined substitution, it suffices to show that, for each z ∈ var(S ′) ∩
var∃(σ), γ (z) is not a constant, and γ (z) does not occur in the domain of h. By contradiction, assume

that γ (z) is either a constant, or is in the domain of h. It is easy to verify that in this case there

exists z ∈ var(S ′) ∩ var∃(σ) such that γ (z) is a constant, or γ (z) = γ (y) for a variable y that is in S ′,
or in S but shared. This contradicts the fact that (S, S ′,γ) is a chunk unifier.

We proceed to show that the desired homomorphism λ is h′ ◦ γ . Clearly, h′(γ (atoms(qi−1) \

S)) ⊆ chase(D, Σ). Moreover, h′(γ (S)) = h′(γ (S ′)) = µ ′(S ′) ⊆ chase(D, Σ) since S ′ ⊆ head(σ) and
µ ′(head(σ)) ⊆ chase(D, Σ). Finally, since γ (x̄i−1) = x̄i and h(x̄i) = c̄ , we get that h′(γ (x̄i−1)) = c̄ ,
and the claim follows. This completes the proof of Lemma A.2.

We can now show that (2) ⇒ (1). By hypothesis, there exists a branch (qi)i ∈{0, ...,n } , for some

n ≥ 0, of the unfolding of q with Σ such that c̄ ∈ qn(D). Therefore, c̄ ∈ cert(qn,D, Σ) due to the

monotonicity of CQs. By Lemma A.2 we get that c̄ ∈ cert(q,D, Σ), and the claim follows.

B PROOF OF LEMMA 4.15, LEMMA 4.16 AND LEMMA 4.17
Before giving the proofs of the auxiliary lemmas underlying the main Theorems 4.12 and 4.13, we

first need to properly define the notion of unravelling of the chase graph, which has been only

informally discussed in the main body of the paper.

B.1 Unraveling the Chase Graph
Consider a database D and a set Σ of TGDs, and let GD ,Σ = (V , E, µ) be the chase graph for D and

Σ; recall that the notion of chase graph has been already defined in the main body of the paper.

The unraveling of GD ,Σ around v , with v ∈ V ,
14
is the directed tree G

D ,Σ
v = (Vv , Ev), where

14
Recall that the nodes of GD ,Σ

are actually atoms from chase(D , Σ).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 37

- Vv is the set of all finite sequences v̄ = v1v2 · · ·vn of nodes from V such that v1 = v and

(vi+1,vi) ∈ E (we may also write vi+1Evi) for all i ∈ [n − 1]; we write last(v̄) for vn .
- For v̄ = v1 · · ·vn and w̄ = v1 · · ·vnvn+1 we have that v̄Evw̄ iff vn+1Evn .

Given a set Θ ⊆ V of nodes, the unraveling of GD ,Σ around Θ is the directed node- and edge-labeled

forest G
D ,Σ
Θ = (VΘ, EΘ, µΘ), where VΘ =

⋃
v ∈ΘVv and EΘ =

⋃
v ∈Θ Ev . Before giving the definition

of the labeling function µΘ, we need to introduce some auxiliary notions.

A pseudo path in G
D ,Σ
Θ is a sequence of nodes v̄1, . . . , v̄n from VΘ such that, for each i ∈ [n − 1],

v̄iEΘv̄i+1 or v̄i+1EΘv̄i or |v̄i | = |v̄i+1 | = 1.

In other words, a pseudo path in G
D ,Σ
Θ is a path in G

D ,Σ
Θ where we consider the root nodes of the

forest to be connected. Note that there is a unique shortest pseudo path between any two nodes

of G
D ,Σ
Θ . Let v̄ and w̄ be nodes from G

D ,Σ
Θ . If v̄ and w̄ lie in the same tree component T , then we

denote by gca(v̄, w̄) the singleton set consisting of the greatest common ancestor of v̄ and w̄ in T .

If, on the other hand, v̄ and w̄ are in different tree components, then gca(v̄, w̄) = ∅. Given a term t ,

we say that v̄ and w̄ are t-connected in GD ,Σ
Θ if one of the following holds:

(1) t is a constant, and t occurs in last(v̄) and in last(w̄).
(2) t occurs in last(ū) for every ū < gca(v̄, w̄) that lies on the unique shortest pseudo path

between v̄ and w̄ in G
D ,Σ
Θ .

Clearly, this relation defines an equivalence relation among the nodes of G
D ,Σ
Θ . We write [v̄]t for

the respective equivalence class of v̄ ∈ VΘ.
15
Moreover, if a is a constant, then, since [v̄]a = [w̄]a

for any v̄, w̄ ∈ VΘ, we identify the class [v̄]a simply with a. For [v̄]t with t being a labeled null, we

call [v̄]t a labeled null as well. We are now ready to define the labeling function µΘ. Consider a
node v̄ ∈ VΘ, and assume that last(v̄) = R(t1, . . . , tk). Then, we define

µΘ(v̄) = R([v̄]t1
, . . . , [v̄]tk).

Moreover, if v̄EΘw̄ and µ(last(v̄), last(w̄)) = (σ ,h), we define

µΘ(v̄, w̄) = (σ ,h
∗),

where, for a variable x in body(σ), h∗(x) = [v̄]h(x).
We write U (GD ,Σ,Θ) for the instance

⋃
v̄ ∈VΘ

µΘ(v̄). Notice that, since we identify [v̄]a with a,

when a is a constant this means that R(a1, . . . ,an) ∈ U (GD ,Σ,Θ) for every fact R(a1, . . . ,an) ∈
GD ,Σ ↾ Θ with the latter being the set of all atoms that lie on some path in GD ,Σ

that leads from

a database atom to some atom of Θ. Given a node v̄ of G
D ,Σ
Θ , we denote by succσ ,h(v̄) the set of

labels of all children of v̄ whose edge from v̄ is labeled by (σ ,h). Accordingly, we write succ(v̄)
for the set of all labels of children of v̄ . When using this notation, we assume that the particular

unraveling we are referring to is clear from context. We write α1, . . . ,αk ⇒σ ,h β if there is a node v̄

of G
D ,Σ
Θ such that µΘ(v̄) = β and succσ ,h(v̄) = {α1, . . . ,αk }. Accordingly, we write α1, . . . ,αk ⇒ β

if there is a σ ∈ Σ and some h such that α1, . . . ,αk ⇒σ ,h β . The next technical lemma follows by

the definitions of the equivalence classes [v]t and the labeling function µΘ.

Lemma B.1. Consider a node v̄ of GD ,Σ
Θ with succσ ,h(v̄) = {β1, . . . , βk } for some σ ∈ Σ and h.

Then, if some labeled null occurs in βi , it either occurs also in µΘ(v̄), or it does not occur in the label of
any node of GD ,Σ

Θ that is not a descendant of v̄ .

Note that there is an obvious homomorphism hΘ from Θ to U (GD ,Σ,Θ): for each t ∈ dom(Θ),
hΘ(t) = [v̄0]t , where v̄0 is any of the root nodes. It is clear that hΘ is well-defined since [v̄0]t = [w̄0]t

15
Formally, we define [v̄]t = {(ū , t) | ū is t -connected to v̄ } to ensure that [v̄]t = [w̄]t ′ only if t = t ′.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

38 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

for all root nodes v̄0, w̄0 of G
D ,Σ
Θ , and all terms t ∈ dom(Θ). The mapping hΘ is indeed a homomor-

phism since, for α = R(t1, . . . , tn) ∈ Θ, hΘ(R(t1, . . . , tn)) = R([α]t1
, . . . , [α]tn) ∈ U (G

D ,Σ,Θ).

Blocking, Depth and Rank. Consider an atom α ∈ U (GD ,Σ,Θ), and suppose that β1, . . . , βk ⇒ α .
For a set Γ ⊆ U (GD ,Σ,Θ), we say that the application of β1, . . . , βk ⇒ α is blocked in Γ if there is

a labeled null occurring in α that occurs in Γ \ {α }, but that does not occur in any of β1, . . . , βk .

Given a node v̄ of G
D ,Σ
Θ , the depth of v̄ , denoted dp(v̄), is defined inductively as follows:

dp(v̄) = max

{
dp(ū) | ū is a child node of v̄ in G

D ,Σ
Θ

}
+ 1.

For an atom α ∈ U (GD ,Σ,Θ), we define the depth of α as

dp(α) = min {dp(v̄) | µΘ(v̄) = α } .

Observe that dp(α) = 1 iff α labels only leaf nodes in G
D ,Σ
Θ . For a set of atoms Γ ⊆ U (GD ,Σ,Θ), let

dp(Γ) = max {dp(α) | α ∈ Γ}. Finally, the rank of v̄ , denoted rk(v̄), is defined as

rk(v̄) =


1 if v̄ is a leaf node in G

D ,Σ
Θ ,∑

ū ∈succ(v̄) rk(ū) otherwise.

For an atom α ∈ U (GD ,Σ,Θ), we define the rank of α as

rk(α) = min {rk(v) | µΘ(v) = α } .

For a set of atoms Γ ⊆ U (GD ,Σ,Θ), let rk(Γ) =
∑

α ∈Γ rk(α). Intuitively, the rank of an atommeasures

how many database facts are used to derive that atom.

Both the depth and rank will be used as induction parameters in the subsequent proofs. We

remark that those parameters are, of course, always defined relative to a particular unraveling of

GD ,Σ
. The concrete unravelingU of GD ,Σ

that they refer to will always be clear from context, and

thus, we do not need an additional notation to make the connection withU explicit.

B.2 Proof of Lemma 4.15
Let us first recall the statement:

Consider a database D, and a set Σ ∈ WARD ∩ PWL of single-head TGDs in level-wise normal
form. Let Θ ⊆ chase(D, Σ) and Γ ⊆ U (GD ,Σ,Θ). There exists a linear chase tree C for Γ such that
nwd(C) ≤ fWARD∩PWL(Γ, Σ).

Recall that for a predicate P ∈ sch(Σ), we write ℓΣ(P) for the level of P w.r.t. Σ. We also write

ℓΣ(α) for the level of the predicate of α . In what follows, for brevity, we omit the subindex Σ, i.e.,
we simply write ℓ(·) instead of ℓΣ(·). We also write ℓ(Σ) for max{ℓΣ(P) | P ∈ sch(Σ)}, and we write

b for max{|body(σ)| | σ ∈ Σ}. Before we proceed with the proof of Lemma 4.15, let us introduce

some additional technical notions that will be useful for the proof.

Conflict-free Atoms. The stratification of Σ is a partition {S1, . . . ,Sℓ(Σ)} of sch(Σ) such that, for

each P ∈ sch(Σ), we have that P ∈ Sk iff ℓΣ(P) = k . Let {Γ[S1], . . . , Γ[Sℓ(Σ)]}be the unique partition
of Γ such that, for every α ∈ Γ, we have that α ∈ Γ[Sk] iff ℓ(α) = k . The join graph of Γ is the

undirected edge-labeled graph J(Γ) whose set of nodes is Γ, and that has an edge between two

distinc atoms α and β labeled with terms t1, . . . , tk iff t1, . . . , tk are all the terms occurring in both

α and β . We say that an atom α ∈ Γ[Si] is conflict-free (in Γ) if there is no atom β ∈
⋃

j>i Γ[Sj]
such that there is a path from α to β in J(Γ) that has an occurrence of a null in each of its edge

labels – we shall call such a path conflicting. Hence, an atom that only has constants as arguments

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 39

is trivially conflict-free. Notice also that Γ trivially has conflict-free atoms, namely those that are

among Γ[Sr], where r is the largest number such that Γ[Sr] is non-empty.

Size Measures. We define the value

lΓ = min {k | k ∈ [ℓ(Σ)] and Γ[Sk] contains an atom that is conflict-free} .

Let

aΓ
1
, . . . ,aΓℓ(Σ) and nΓ

1
, . . . ,nΓℓ(Σ)

be sequences of integers such that aΓi = |Γ[Si]| and n
Γ
i is the number of atoms from Γ[Si] that are

not conflict-free. We finally define the value

mΓ =

ℓ(Σ)∑
i=1

b ·max

{
aΓi , 1 + n

Γ
i
}
.

We are now ready to give the proof of Lemma 4.15.

The Proof. Our goal is to show that there exists a linear chase tree C for Γ (w.r.t. G
D ,Σ
Θ) whose

node-width is bounded bymΓ . This suffices to prove the claim sincemΓ ≤ fWARD∩PWL(Γ, Σ). The
proof is by induction on the rank of Γ, i.e., the value rk(Γ).

Base Case. Suppose first that rk(Γ) = 1. The level depth of Γ is defined as

ldp(Γ) = max

{
dp(α) | α ∈ Γ[SlΓ] and α is conflict-free

}
.

We perform an auxiliary induction on ldp(Γ) in order to prove our claim:

- Suppose first that ldp(Γ) = 1. Since rk(Γ) = 1, this means that actually Γ = {α } for some fact

α ∈ D. A linear chase tree for Γ of node-width at mostmΓ ≥ |Γ | is simply the tree with a

single root node whose label is Γ.
- Suppose now that rk(Γ) = 1 and ldp(Γ) = n + 1. This means that Γ = {α } for some atom

α such that β ⇒ α for some atom β with dp(β) = n. Note that the application of β ⇒ α
is trivially not blocked. We let Γ′ = {β}, and we observe that ldp(Γ) = n. By induction

hypothesis, there is a linear chase tree C′ for Γ′ whose node-width is bounded bymΓ′ . Let C

be the linear chase tree whose root v0 is labeled with Γ such that v0 has a single child labeled

with Γ′. It is easy to check thatmΓ =mΓ′ = b. Therefore, C is a linear chase tree for Γ whose

node-width is bounded bymΓ , as needed.

Induction Step. Suppose now that rk(Γ) = m + 1. A reduction sequence for Γ is a finite sequence

Γ0, Γ1, . . . , Γk ,Ξ of sets of atoms that satisfy the following conditions:

(1) Γ0 = Γ,
(2) mΓ0

≥ mΓ1
≥ · · · ≥ mΓk ,

(3) each Γi+1 is an unfolding of Γi , where i ∈ {0, . . . ,k − 2},

(4) rk(Γk) ≤ m, and

(5) Ξ = Γk−1 ∩ D and Γk = Γk−1 \ Ξ; thus, {Γk ,Ξ} is a decomposition of Γk−1.

We proceed to show that there is a reduction sequence for Γ, which in turn will allow us to easily

complete the induction step, and thus, the proof of Lemma 4.15.

Lemma B.2. There exists a reduction sequence for Γ.

Proof. We shall also perform a subsidiary induction on ldp(Γ) to show that, for every n ≥ 1, if

ldp(Γ) = n, then there exists a reduction sequence for Γ.

Suppose first that ldp(Γ) = 1

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

40 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

In this case, Γ contains at least one fact from D. Let {α1, . . . ,αk } = Γ ∩ D. We form the reduction

sequence π = Γ, Γ′, {α1, . . . ,αk }, where Γ
′ = Γ \ {α1, . . . ,αk }. Notice that rk(Γ′) ≤ m. In order to

prove that π is indeed a reduction sequence for Γ, it remains to show thatmΓ′ ≤ mΓ . Observe that

mΓ −mΓ′ =

ℓ(Σ)∑
i=1

b ·max

{
aΓi , 1 + n

Γ
i
}
−

ℓ(Σ)∑
i=1

b ·max

{
aΓ
′

i , 1 + n
Γ′

i

}

= b ·max

{
aΓlΓ , 1 + n

Γ
lΓ

}
︸ ︷︷ ︸
=aΓ

lΓ
since k ≥ 1

− b ·max

{
aΓ
′

lΓ︸︷︷︸
=aΓ

lΓ
−k

,

= 1+nΓ
lΓ︷ ︸︸ ︷

1 + nΓ
′

lΓ

}
.

If aΓlΓ − k ≥ 1 + nΓlΓ , then we obtain that

mΓ −mΓ′ = baΓlΓ − b(a
Γ
lΓ − k) = bk > 0,

and if aΓlΓ − k < 1 + nΓlΓ , then we obtain that

mΓ −mΓ′ = baΓlΓ − b(1 + n
Γ
lΓ) ≥ 0, since 1 + nΓlΓ ≤ aΓlΓ .

Therefore, in both cases we have thatmΓ′ ≤ mΓ , as needed.

Suppose now that ldp(Γ) = n + 1

Assume that α1, . . . ,αk enumerates the conflict-free atoms from Γ[SlΓ] of maximal depth (i.e., n+1).

For i ∈ [k], let βi ,1, . . . , βi ,ki be atoms such that the application of βi ,1, . . . , βi ,ki ⇒ αi is not blocked
in Γ; those atoms exist since each αi is conflict-free in Γ and of maximal depth. Let σi and hi be such
that βi ,1, . . . , βi ,ki ⇒σi ,hi αi . Let Γ0 = Γ and Γi = (Γi−1 \ {αi }) ∪ {βi ,1, . . . , βi ,ki }, for each i ∈ [k].

Claim 1. For each i ∈ [k], either lΓi = lΓi−1
or lΓi = lΓi−1

− 1.

Proof. Let us first remark that, since Σ is in level-wise normal form, we get that ℓ(βi , j) ∈
{ℓ(αi), ℓ(αi) − 1} for each j ∈ [ki]. We proceed by case analysis.

Suppose first that αi has no labeled nulls as arguments. In this case, all the nulls occurring

in βi ,1, . . . , βi ,ki must be new in the sense that they do not appear in Γi−1 (see Lemma B.1).

Therefore, at least one of βi ,1, . . . , βi ,ki must be conflict-free in Γi , and hence lΓi = lΓi−1
or

lΓi = lΓi−1
− 1, since Σ is in level-wise normal form, as needed.

Suppose now that αi has labeled nulls as arguments. Since Σ is warded, σi has at most one

atom in its body (the ward) that shares nulls with αi . Assuming that σi has no ward in its

body, then all the nulls that appear in αi are not present in βi ,1, . . . , βi ,ki (Lemma B.1) and,

moreover, all the nulls that appear in βi ,1, . . . , βi ,ki do not occur in Γi−1. Hence, at least one

of βi ,1, . . . , βi ,ki must be conflict-free in Γi , which implies that lΓi = lΓi−1
or lΓi = lΓi−1

− 1.

Suppose now that βi , j is the ward among βi ,1, . . . , βi ,ki . If ki ≥ 2, then the claim is immediate

since the atoms from {βi ,1, . . . , βi ,ki } \ {βi , j } are all conflict-free in Γi due to the fact that their
nulls do not appear in Γi−1 by Lemma B.1. Suppose now that ki = 1. Then, βi , j is conflict-free
in Γi or not. In the former case, we immediately obtain lΓi ≤ lΓi−1

, and thus lΓi = lΓi−1
or

lΓi = lΓi−1
− 1 since Σ is in level-wise normal form. In the latter case, βi , j is connected to some

atom γ ∈
⋃

r>ℓ(βi , j) Γi [Sr] in the join graph of Γi−1 via a path that is conflicting. Notice again

that all the nulls that occur in βi , j are either only contained in βi , j or they also appear in

αi (see Lemma B.1). Hence, there is also a conflicting path in J(Γi−1) that connects αi and γ .
Since αi was assumed to be conflict-free in Γi−1, it follows that γ ∈ Γi−1[S1]∪ · · · ∪ Γi−1[Sℓ(α)].

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 41

Moreover, this entails that γ is conflict-free in Γi−1. Now, γ must also be conflict-free in Γi
since all the nulls present in Γi that do not occur in Γi−1 must be solely contained in βi , j . Thus,
lΓi ≤ lΓi−1

, and hence lΓi = lΓi−1
or lΓi = lΓi−1

− 1 since Σ is in level-wise normal form.

This completes the proof of Claim 1.

The next three technical claims establish some useful properties when lΓi = lΓi−1
or lΓi = lΓi−1

− 1,

for i ∈ [k] (which we know from Claim 1 that are the only possible cases), which in turn will allow

us to establish Claim 5 that is crucial for completing the proof of Lemma B.2.

Claim 2. Assume that lΓi = lΓi−1
− 1, and that there is an atom βi , j that is not conflict-free in Γi .

Then, there is an atom γ ∈ Γi [SlΓi−1

] that is conflict free in Γi .

Proof. Observe that ℓ(βi , j) = lΓi since all the nulls in βi , j either are also in αi , or are fresh.

Hence, if we had ℓ(βi , j) = lΓi−1
= lΓi + 1, then α would not be conflict-free as well. Now, since βi , j is

not conflict-free, it follows that βi , j is connected via a conflicting path to some γ ∈
⋃

r>ℓ(βi , j) Γi [Sr].
It is easy to see that, in fact, we must have ℓ(γ) = ℓ(βi , j) + 1 = lΓi−1

. Therefore, βi , j shares a null
with γ , and thus γ shares a null with αi . Hence, γ must be conflict-free since αi is.

Claim 3. Assume that lΓi = lΓi−1
= 1. Then, ki = 1.

Proof. Since ldp(αi) = n + 1 ≥ 2, ℓ(αi) = 1 only if αi is derived by a sequence of atoms that

have the same predicate as αi . Hence, necessarily ki = 1 since Σ is piece-wise linear.

Claim 4. Assume that l = lΓi = lΓi−1
> 1. Then, |Γi [Sl] \ Γi−1[Sl−1]| ≤ 1, i.e., aΓil−1

− aΓi−1

l−1
≤ 1.

Proof. Towards a contradiction, assume that aΓil−1
−aΓi−1

l−1
> 1, i.e., at least two of the βi ,1, . . . , βi ,ki

have level l − 1. Since lΓi = lΓi−1
, this means that they are actually not conflict-free, and thus they

share a null with αi . But this contradicts the fact that Σ is warded, which in turn implies that at

most one of the atoms βi ,1, . . . , βi ,ki can share nulls with the atom αi .

We are now ready, by exploiting Claims 2, 3 and 4, to show the following key claim.

Claim 5. For each i ∈ [k], it holds thatmΓi ≤ mΓi−1
.

Proof. For the sake of readability, let l = lΓi−1
, l ′ = lΓi , Γ = Γi−1 and Γ′ = Γi . We proceed by

considering the cases l ′ = l and l ′ = l − 1, which, by Claim 1, are the only valid cases.

Case 1: Suppose that l ′ = l . We proceed by considering the following subcases:

Subcase 1.1: Suppose first that l = l ′ = 1. Then,

mΓ −mΓ′ = b ·max

{
aΓ

1
, 1 + nΓ

1

}
− b ·max

{
aΓ
′

1
, 1 + nΓ

′

1

}
= baΓ

1
− baΓ

′

1

= baΓ
1
− b(aΓ

1
+ ki − 1)

= 0 (since ki = 1 by Claim 3).

Hence,mΓ′ =mΓ .

Subcase 1.2: Suppose that l > 1. Then, one can verify that

mΓ −mΓ′ = b ·max

{
aΓl , 1 + n

Γ
l

}
+ b ·max

{
aΓl−1
, 1 + nΓl−1

}
−b ·max

{
aΓ
′

l , 1 + n
Γ′

l

}
− b ·max

{
aΓ
′

l−1
, 1 + nΓ

′

l−1

}
.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

42 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

By Claim 4, we know that aΓ
′

l−1
≤ aΓl−1

+ 1. In case aΓ
′

l−1
= aΓl−1

, we get thatmΓ −mΓ′ ≥ 0 by

observing that aΓl = aΓ
′

l . Assume now that aΓ
′

l−1
= aΓl−1

+ 1, and also observe that we must

have nΓ
′

l−1
= aΓ

′

l−1
and aΓl−1

= nΓl−1
since, by assumption, Γ and Γ′ do not have any conflict-free

atoms of level l − 1. Moreover, notice that nΓ
′

l = n
Γ
l . From the above, we obtain that

mΓ −mΓ′ = b ·max

{
aΓ
′

l + ki , 1 + n
Γ′

l

}
+ b ·max

{
aΓ
′

l−1
− 1,aΓ

′

l−1

}
−b ·max

{
aΓ
′

l , 1 + n
Γ′

l

}
︸ ︷︷ ︸
=aΓ′

l by Claim 2

− b ·max

{
aΓ
′

l−1
, 1 + aΓ

′

l−1

}
= b(aΓ

′

l + ki) + b · a
Γ′

l−1
− b(aΓ

′

l−1
− 1) − b · aΓ

′

l

= b(ki − 1)

≥ 0.

This proves the claim for the case l = l ′ > 1.

Case 2: Suppose that l ′ = l − 1 . Observe that

mΓ −mΓ′ =

ℓ(Σ)∑
i=1

b ·max

{
aΓi , 1 + n

Γ
i
}
−

ℓ(Σ)∑
i=1

b ·max

{
aΓ
′

i , 1 + n
Γ′

i

}
= b ·max

{
aΓl ′, 1 + n

Γ
l ′
}
− b ·max

{
aΓ
′

l ′ , 1 + n
Γ′

l ′

}
+b ·max

{
aΓl , 1 + n

Γ
l

}︸ ︷︷ ︸
=aΓ

l by assumption

− b ·max

{
aΓ
′

l , 1 + n
Γ′

l

}
≥ b ·max

{
aΓl ′, 1 + n

Γ
l ′
}
− b ·max{aΓ

′

l ′ , 1 + n
Γ′

l ′ },

where the last inequality holds since aΓ
′

l ≤ aΓl by piece-wise linearity, and thus

max

{
aΓ
′

l , 1 + n
Γ′

l

}
= max

{
aΓ
′

l , 1 + n
Γ
l

}
≤ aΓl .

By construction of Γ′, we know that aΓl ′ = nΓl ′ and aΓ
′

l ′ ≤ aΓl ′ + ki ≤ aΓl ′ + b. We proceed by

considering the following subcases:

Subcase 2.1: Suppose that max{aΓ
′

l ′ , 1 + n
Γ′

l ′ } = aΓ
′

l ′ . Then,

mΓ −mΓ′ = b(1 + nΓl ′) − b · a
Γ′

l ′ ≥ 0

since aΓ
′

l ′ ≤ aΓl ′ + b and nΓl ′ = aΓl ′ .

Subcase 2.2: Suppose that max

{
aΓ
′

l ′ , 1 + n
Γ′

l ′
}
= 1 + nΓ

′

l ′ . The fact that 1 + nΓ
′

l ′ ≥ aΓ
′

l ′ entails that

the number of conflict-free atoms in Γ′[Sl ′] is at most 1. Since l ′ = l − 1, it must actually be

the case that the number of conflict-free atoms in Γ′[Sl ′] is exactly one, i.e., aΓ
′

l ′ − n
Γ′

l ′ = 1.

Therefore, we must have nΓ
′

l ′ = n
Γ
l ′ . Hence, we obtain that

mΓ −mΓ′ = b(1 + nΓl ′) − b(1 + n
Γ′

l ′) = 0,

which proves thatmΓ =mΓ′ .

This completes the proof of Claim 5.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 43

Let us now complete the proof of Lemma B.2. By construction, ldp(Γk) ≤ n. Hence, by induction

hypothesis, there is a reduction sequence π ′ = Γ0,k , Γ1,k , . . . , Γk ′,k ,Ξ for Γk such that Γ0,k = Γk ,
rk(Γk ′,k) ≤ m, andmΓ

0,k ≥ mΓ
1,k ≥ · · · ≥ mΓk′,k . We define the sequence

π = Γ0, Γ1, . . . , Γk , Γ1,k , . . . , Γk ′,k ,Ξ,

and recall that Γ0 = Γ. Claim 5 yieldsmΓ =mΓ0
≥ mΓ1

≥ · · · ≥ mΓk . Hence, it follows that

mΓ = mΓ0
≥ mΓ1

≥ · · · ≥ mΓk ≥ mΓ
1,k ≥ · · · ≥ mΓk′,k .

Therefore, π is a reduction sequence for Γ. This concludes the induction step of our subsidiary

induction on ldp(Γ), and thus the proof of Lemma B.2.

We can now easily conclude the induction step for the induction on rk(Γ) as follows. We know

by Lemma B.2 that there is a reduction sequence Γ0, Γ1, . . . , Γk ,Ξ for Γ such that

(1) Γ0 = Γ,
(2) mΓ0

≥ mΓ1
≥ · · · ≥ mΓk ,

(3) each Γi+1 is an unfolding of Γi , where i ∈ {0, . . . ,k − 2},

(4) rk(Γk) ≤ m, and

(5) Ξ = Γk−1 ∩ D and Γk = Γk−1 \ Ξ.

Since rk(Γk) ≤ m, by induction hypothesis, there exists a linear chase tree C′ for Γk whose node-

width is bounded bymΓk . Let C be the linear chase tree for Γ constructed as follows. The root v0

of C is labeled Γ, and there are nodes v1, . . . ,vk ,v
′
k such that (i) for each i ∈ {0, . . . ,k − 1}, vi is

labeled with Γi , (ii) vi+1 is the only child of vi , for each i ∈ {0, . . . ,k − 2}, while (iii) vk−1 has two

children, namely vk and v ′k , where the former is labeled with Γk , and the latter is labeled with Ξ.
We declare that C′ is a subtree of C that is rooted in vk . Then, C is a linear chase tree for Γ whose

node-width is bounded bymΓ . This concludes the induction step, and thus the proof of Lemma 4.15.

B.3 Proof of Lemma 4.16
Let us first recall the statement:

Consider a database D, and a set Σ ∈ WARD of single-head TGDs. Let Θ ⊆ chase(D, Σ) and Γ ⊆
U (GD ,Σ,Θ). There exists a chase tree C for Γ such that nwd(C) ≤ fWARD(Γ, Σ).

LetmΓ = fWARD(Γ, Σ). The proof is by induction on dp(Γ).

Base Case. Assume first that dp(Γ) = 1. Then, Γ must consist of a set of facts {α1, . . . ,αk } ⊆ D, and
thus a trivial chase tree for Γ is the tree that has its root labeled with Γ. The node-width of that

tree is trivially at mostmΓ , as needed.

Induction Step. Suppose now that dp(Γ) = n + 1. We perform a subsidiary induction on the number

of atoms in Γ that have depth n + 1.

- Suppose first that there is exactly one atom α ∈ Γ that has depth n + 1. Let β1, . . . , βk be

such that succσ ,h(α) = {β1, . . . , βk } for some σ ∈ Σ and some homomorphism h, and such

that the application of β1, . . . , βk ⇒σ ,h α is not blocked in Γ; it is easy to see that such an

application is not blocked since α is of maximal depth. Since Σ is warded, there is at most

one ward βi such that all the nulls contained in α are also present in βi . Moreover, βi does
not share any other nulls with any of the βj , for j , i . In case such a ward βi exists, we set
Γ′ = (Γ \ {α }) ∪ {βi } and Γ′′ = {β1, . . . , βi−1, βi+1, . . . , βk }. Otherwise, we set Γ

′ = Γ \ {α }
and Γ′′ = {β1, . . . , βk }. In both cases, we see that {Γ′, Γ′′} is a decomposition of Γ since the

nulls that do not appear in α , yet that appear in some atom among β1, . . . , βk , are all fresh by

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

44 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

Lemma B.1. Moreover, we know that there are no nulls that are present in α , yet not in any

of the β1, . . . , βk , since the application of β1, . . . , βk ⇒σ ,h α is not blocked in Γ.
Notice that we have dp(Γ′) ≤ n and dp(Γ′′) ≤ n. Hence, by induction hypothesis, there are

chase trees C′ and C′′ for Γ′ and Γ′′, respectively. We build a chase tree C for Γ by labeling

its root v0 with Γ, and declaring that v0 has one child v1 whose label is Γ
′ ∪ Γ′′. Furthermore,

v1 has two children, v ′ and v ′′, that are labeled with Γ′ and Γ′′, respectively. Notice that
mΓ′ ≤ mΓ and thatmΓ′′ ≤ mΓ . Moreover, |Γ′ ∪ Γ′′ | ≤ |Γ | + max{|body(σ)| | σ ∈ Σ} ≤ mΓ .

Thus, C is a chase tree for Γ with the desired bound on the node-width.

- The induction step of the subsidiary induction is performed similarly to the base case, and

thus the details are omitted.

This complete the proof of Lemma 4.16.

B.4 Proof of Lemma 4.17
Let us first recall the statement:

Consider a database D and a set Σ of TGDs. Let Θ ⊆ chase(D, Σ), q(x̄) be a CQ, and c̄ be a tuple of
constants such that h(atoms(q)) ⊆ U (GD ,Σ,Θ) and h(x̄) = c̄ , for some homomorphism h. If there
exists a (linear) chase tree C for h(atoms(q)) with nwd(C) ≤ m, then there exists a (linear) proof tree
P for q w.r.t. Σ such that nwd(P) ≤ m and c̄ ∈ P(D).

For a sequence of variables ȳ of var(q), let ∼h,ȳ be the equivalence relation defined by

yi ∼h,ȳ yj ⇐⇒ h(yi) = h(yj).

Let πh,ȳ be the partition of the variables ȳ given by the set of equivalence classes of ∼h,ȳ . We

proceed to show that there exists a (linear) proof tree P = (·, ·, πh,x̄) of q(x̄)w.r.t. Σ, i.e., the partition
of the output variables of q is πh,x̄ , with nwd(P) ≤ m and c̄ ∈ P(D). The proof is by induction on

the depth of C (i.e., the longest among all paths that lead from the root to a leaf). In what follows,

we assume that atoms(q) = {α1, . . . ,αs }, and x̄ = x1, . . . , xn .

Base Case. Suppose first that the depth of C is 1, i.e., C consists of a single node v0 whose label is

h(atoms(q)). Then, the proof tree P that consists of a single node labeled with

Q(eqπh,x̄ (x̄)) ← eqπh,x̄ (α1, . . . ,αs),

is clearly a proof tree for q(x̄) w.r.t. Σ such that c̄ ∈ P(D).

Induction Step. Suppose now that the depth of C is larger than one such that nwd(C) ≤ m. We

proceed by case analysis.

Case 1. Assume that the children of the root v0 of C, whose label is h(atoms(q)), result from a

decomposition step. Let us concentrate on the case where v0 has exactly two children v1

and v2 that are labeled by Θ1 and Θ2, respectively; the case with more than two children

is treated analogously. Clearly, {Θ1,Θ2} must be a decomposition of h(atoms(q)) such that

h(atoms(q)) = Θ1 ∪ Θ2, and Θ1 and Θ2 do not share any labeled null. Let C1 and C2 be the

subtrees rooted at v1 and v2, respectively, and note that nwd(C1) ≤ m and nwd(C2) ≤ m.

Moreover, let ȳ = y1, . . . ,yk be the variables from var(q) \ {x1, . . . , xn} such that h(yi)
is a constant, and yi occurs in atoms α and β of q(x̄), but neither h({α, β}) ⊆ Θ1, nor

h({α, β}) ⊆ Θ2 holds. Let P be the proof tree whose root v0 is labeled with

Q(eqπh,x̄ (x̄)) ← eqπh,x̄ (α1, . . . ,αs), (1)

and that has exactly one child v ′ whose label is

Q(eqπh,x̄ ,ȳ (x̄, ȳ)) ← eqπh,x̄ ,ȳ (α1, . . . ,αs). (2)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

The Space-Efficient Core of Vadalog 45

It is easy to check that (2) results from a specialization step from (1). Now, let βi1, . . . , βil be the
atoms from eqπh,x̄ ,ȳ (α1, . . . ,αs) whose image under h is in Θ1, and βj1, . . . , βjr those atoms

whose image underh is inΘ2. Let z̄ be the restriction of eqπh,x̄ ,ȳ (x̄, ȳ) to var({βi1, . . . , βil }), and
let w̄ be the restriction of eqπh,x̄ ,ȳ (x̄, ȳ) to var({βj1, . . . , βjr }). Let v1 and v2 be children of v ′

in P labeled byQ(z̄) ← βi1, . . . , βil andQ(w̄) ← βj1, . . . , βjr , respectively. These two queries
result from a decomposition step on (2). Since h({βi1, . . . , βil }) = Θ1 and h({βj1, . . . , βjr }) =
Θ2, by induction hypothesis, there are proof trees P1 = (·, ·, πh,z̄) and P2 = (·, ·, πh,w̄) such
that nwd(P1) ≤ m and nwd(P2) ≤ m. Furthermore, h(z̄) ∈ P1(D) and h(w̄) ∈ P2(D). Notice
that, by construction, eqπh,z̄ (z̄) = z̄ and eqπh,w̄ (w̄) = w̄ . Moreover, ∃v̄ (qP1

(z̄)∧qP2
(w̄)) ≡ qP ,

where v̄ is the sequence of variables that appear in the head of (2), but not in the head of (1);

we write qP′ for the CQ induced by a proof tree P ′. Hence, c̄ ∈ qP(D), which in turn implies

that P is the proof tree of q(x̄) w.r.t. Σ that we are looking for.

Case 2. Suppose now that the root v0 of C has exactly one child v ′ that is labeled with Θ′, which
results from h(atoms(q)) by unfolding. Let σ ∈ Σ, h0, β1, . . . , βk , and α ∈ h(atoms(q)) be such
that β1, . . . , βk ⇒σ ,h0

α , and Θ′ = (h(atoms(q)) \ {α }) ∪ {β1, . . . , βk }. Thus, σ is of the form

Rβ1
(x̄1), . . . ,Rβk (x̄k) → ∃wi1, . . . ,wil Rα (w1, . . . ,wr),

for some predicates Rβ1
, . . . ,Rβk ,Rα . Also, q(x̄) contains an atom Rα (t1, . . . , tr) such that

h(pα (t1, . . . , tr)) = α = h0(pα (w1, . . . ,wr))

(t1, . . . , tr are terms each of which is either a variable or a constant). Now, let σv0
be a copy

of σ , where every variable occurrence x is renamed to xv0
. Let h′ be the homomorphism such

that h′(xv0
) = h0(x). Moreover, let eqπh,x̄ (t1, . . . , tr) = s1, . . . , sr . Note that {t1, . . . , tr } ⊆

{s1, . . . , sr }, and observe that h(Rα (s1, . . . , sr)) = α = h′(Rα (w1,v0
, . . . ,wr ,v0

)). Let γ be a

substitution such that, for each i, j ∈ [r],

γ (zi) = γ (w j ,v0
) = vt ⇐⇒ t = h(zi) = h

′(w j ,v0
),

where thevt are newly chosen variable names (for the other variables that are not mentioned,

γ is simply the identity). In particular, γ (xi) = γ (x j) iff xi ∼h,x̄ x j , for all output variables xi
and x j of q(x̄) that are among {s1, . . . , sr }. Let γ0 be an MGU such that γ = η ◦ γ0 for some

substitution η. Notice that if xi and x j are output variables of q(x̄) among {s1, . . . , sr }, then
γ0(xi) = γ0(x j) implies xi ∼h,x̄ x j . On the other hand, with x̂1, . . . , x̂n = eqπh,x̄ (x1, . . . , xn), if

xi ∼h,x̄ x j , then there is exactly one v ∈ {x̂1, . . . , x̂n} such that h(v) = h(xi) = h(x j). Thus, γ0

is bijective when restricted to the (representatives of the) equivalence classes of ∼h,x̄ , and we

can henceforth assume w.l.o.g. that γ0(x̂i) = x̂i for each i ∈ [n].
Let P = (·, ·, πh,x̄) whose root v0 is labeled with

Q(x̂1, . . . , x̂n) ← eqπh,x̄ (α1, . . . ,αs). (3)

We introduce a new node v ′ in P that is a child of v0 and whose label is

Q(x̂1, . . . , x̂n) ← γ0(A), (4)

where

A = (eqπh,x̄ ({α1, . . . ,αs }) \ {Rα (s1, . . . , sr)}) ∪ {Rβ1
(x̄1,v0

), . . . ,Rβk (x̄k ,v0
)}.

It is clear that (4) is a σv0
-resolvent of (3). Notice, in particular, that the variables occurring in

eqπh,x̄ (α1, . . . ,αs), and unify with some existential variable from the head of σv0
, cannot be

shared since the application of β1, . . . , βk ⇒σ ,h0
α is not blocked in h(atoms(q)). Moreover,

the resolvent must be IDO since γ0 is the identity on {x̂1, . . . , x̂n}.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

46 Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

Let us write q′(x̂1, . . . , x̂n) for the CQ (4). Let h′′ be the homomorphism that extends h so

that h′′ maps q′ to Θ′ and h′′(x̂1, . . . , x̂n) = c̄ , which exists by construction. The subtree of C

that is rooted at v ′, called C′, has smaller depth than C. Hence, by induction hypothesis, it

follows that there is a proof tree P ′ = (·, ·, πh′′,x̂1, ...,x̂n) of q
′
w.r.t. Σ such that nwd(P ′) ≤ m,

and c̄ ∈ P ′(D). We can thus simply declare that P ′ becomes a subtree of P rooted at the

node v ′ of P. Then, P = (·, ·, πh,x̄) is a proof tree for q(x̄) w.r.t. Σ, and for which it holds that

nwd(P) ≤ m. Moreover, we have that c̄ ∈ P(D) since P and P ′ have the same leaf nodes.

Let us finally remark that the constructions performed in the above two cases yield a linear proof

tree P whenever C is linear. This completes the proof of Lemma 4.17.

Received ; revised ; accepted

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: March 2022.

	Abstract
	1 Introduction
	1.1 The Vadalog System
	1.2 Research Challenges
	1.3 Summary of Contributions

	2 Preliminaries
	3 The Logical Core of VADALOG
	3.1 An Intuitive Description
	3.2 The Formal Definition
	3.3 Why is Wardedness Useful?

	4 Limiting Recursion
	4.1 Piece-Wise Linearity
	4.2 Query Answering via Proof Trees
	4.3 Well-behaved Proof Trees
	4.4 Complexity Analysis

	5 A Justified Combination
	6 Expressive Power
	6.1 Combined Expressive Power
	6.2 Program Expressive Power

	7 The Practical Effect of Piece-wise Linearity on Vadalog
	7.1 The Vadalog System: A Brief Description
	7.2 Experimental Scenario
	7.3 Experimental Evaluation and Discussion

	8 Conclusions and Future Work
	References
	A Proof of Theorem 4.9
	A.1 Proof of (1) (2)
	A.2 Proof of (2) (1)

	B Proof of Lemma 4.15, Lemma 4.16 and Lemma 4.17
	B.1 Unraveling the Chase Graph
	B.2 Proof of Lemma 4.15
	B.3 Proof of Lemma 4.16
	B.4 Proof of Lemma 4.17

