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Abstract

Massively parallel join algorithms have received much attention in recent years, while most
prior work has focused on worst-optimal algorithms. However, the worst-case optimality of these
join algorithms relies on hard instances having very large output sizes, which rarely appear in
practice. A stronger notion of optimality is output-optimal, which requires an algorithm to
be optimal within the class of all instances sharing the same input and output size. An even
stronger optimality is instance-optimal, i.e., the algorithm is optimal on every single instance,
but this may not always be achievable.

In the traditional RAM model of computation, the classical Yannakakis algorithm is instance-
optimal on any acyclic join. But in the massively parallel computation (MPC) model, the
situation becomes much more complicated. We first show that for the class of r-hierarchical
joins, instance-optimality can still be achieved in the MPC model. Then, we give a new MPC

algorithm for an arbitrary acyclic join with load O( IN
p +

√
IN·OUT

p ), where IN,OUT are the input
and output sizes of the join, and p is the number of servers in the MPC model. This improves

the MPC version of the Yannakakis algorithm by an O(
√

OUT
IN ) factor. Furthermore, we show

that this is output-optimal when OUT = O(p · IN), for every acyclic but non-r-hierarchical join.
Finally, we give the first output-sensitive lower bound for the triangle join in the MPC model,
showing that it is inherently more difficult than acyclic joins.

1 Introduction

A (natural) join is defined as a hypergraph Q = (V, E), where the vertices V = {x1, . . . , xn} model
the attributes and the hyperedges E = {e1, . . . , em} ⊆ 2V model the relations. Let dom(x) be the
domain of attribute x ∈ V. An instance of Q is a set of relations R = {R(e) : e ∈ E}, where R(e) is
a set of tuples, where each tuple is an assignment that assigns a value from dom(x) to x for every
x ∈ e. We use IN =

∑
e∈E |R(e)| to denote the size of R. The join results of Q on R, denoted

as Q(R), consist of all combinations of tuples, one from each R(e), such that they share common
values on their common attributes. Let OUT = |Q(R)| be the output size. We study the data
complexity of join algorithms, i.e., we assume that the query size, namely n and m, are constants.
In this paper, we focus on acyclic joins, i.e., when the hypergraph Q is acyclic (formal definition
given later).

1.1 The model of computation

The problem gets much more interesting in the parallel setting. In this paper, we consider the mas-
sively parallel computation (MPC) model [2, 3, 7, 8, 22, 24, 26], which has become the standard
model of computation for studying massively parallel algorithms, especially for join algorithms.

In the MPC model, data is initially distributed evenly over p servers with each server holding
IN/p tuples. Computation proceeds in rounds. In each round, each server first sends messages to
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other servers, receives messages from other servers, and then does some local computation. The
complexity of the algorithm is measured by the number of rounds and the load, denoted as L,
which is the maximum message size received by any server in any round. A linear load L = O( IN

p )

is the ideal case (since the initial load is already IN
p ), while if L = O(IN), all problems can be

solved trivially in one round by simply sending all data to one server. Initial efforts were mostly
spent on what can be done in a single round of computation [3, 26, 7, 8, 24, 26], but recently,
more interest has been given to multi-round (but still a constant) algorithms [2, 22, 24], since new
main memory based systems, such as Spark and Flink, have much lower overhead per round than
previous generations like Hadoop.

The MPC model can be considered as a simplified version of the BSP model [32], but it
has enjoyed more popularity in recent years. This is mostly because the BSP model takes too
many measures into consideration, such as communication costs, local computation time, memory
consumption, etc. The MPC model unifies all these costs with one parameter L, which makes the
model much simpler. Meanwhile, although L is defined as the maximum incoming message size
of a server, it is also closely related with the local computation time and memory consumption,
which are both increasing functions of L. Thus, L serves as a good surrogate of these other cost
measures. This is also why the MPC model does not limit the outgoing message size of a server,
which is less relevant to other costs.

All our algorithms work under the mild assumption IN ≥ p1+ε where ε > 0 is any small constant.
This assumption clearly holds on any reasonable values of IN and p in practice; theoretically, this
is the minimum requirement for the model to be able to compute some almost trivial functions,
like the “or” of IN bits, in O(1) rounds. Our lower bounds hold under IN ≥ pc for some constant
c, which may depend on the particular lower bound construction.

We confine ourselves to tuple-based join algorithms, i.e., the tuples are atomic elements that
must be processed and communicated in their entirety. The only way to create a tuple is by making
a copy, from either the original tuple or one of its copies. We say that an MPC algorithm computes
the join Q on instance R if the following is achieved: For any join result (t1, . . . , tm) ∈ Q(R) where
ti ∈ R(ei), i = 1, . . . ,m, these m tuples (or their copies) must all be present on the same server
at some point. Then the server will call a zero-cost function emit(t1, . . . , tm) to report the join
result. Note that since we only consider constant-round algorithms, whether a server is allowed to
keep the tuples it has received from previous rounds is irrelevant: if not, it can just keep sending
all these tuples to itself over the rounds, increasing the load by a constant factor. All known join
algorithms in the MPC model are tuple-based and obey these requirements. Our lower bounds
are combinatorial in nature: we only count the number of tuples that must be communicated in
order to emit all join results, while all other information can be communicated for free. The upper
bounds include all messages, with a tuple and an integer of O(log IN) bits both counted as 1 unit
of communication.

1.2 Instance and output optimality

In worst-case analysis, the entire space of instances is divided into classes by the input size IN,
and the running time is measured on the worst instance in each class. For many important com-
putational problems, this is too coarse-grained and cannot accurately characterize the performance
of the algorithm. For the join problem, no algorithm can do better than O(IN1/ρ) time in the
worst case, where ρ is the fractional edge cover number of the hypergraph Q [33, 29]. This bound
drastically overestimates the running time on most typical instances.

A more refined approach is parameterized analysis, which further subdivides the instance space
into smaller classes by introducing more parameters that supposedly better characterize the dif-
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ficulty of each class. For the join problem, the output size OUT is a commonly used parameter,
and each class of instances share the same input and output size. Let R(IN,OUT) be the class of
instances with input size IN and output size OUT. Then the load of an MPC algorithm A is thus
a function of both IN and OUT, defined as

LA(IN,OUT) = max
R∈R(IN,OUT)

LA(R),

where LA(R) denotes the load of A on R. Algorithm A is output-optimal if

LA(IN,OUT) = O(LA′(IN,OUT)),

for every algorithm A′.
Further subdividing the instance space leads to more refined analyses. In extreme case when

each class contains just one instance, we obtain instance-optimal algorithms. More precisely, an
algorithm A is instance-optimal if

LA(R) = O(LA′(R)),

for every instanceR and every algorithm A′. Note that by definition, an instance-optimal algorithm
must be output-optimal, and an output-optimal algorithm must be worst-case optimal, but the
reserve direction may not be true.

In the traditional RAM model of computation, the classical Yannakakis algorithm [34] can
compute any acyclic join in time O(IN+OUT), which is both output-optimal and instance-optimal,
because on any instance R, any algorithm has to at least spend Ω(IN) time to read all the inputs1

and Ω(OUT) time to enumerate the outputs. Thus, the two notions of optimality coincide (but
both are stronger than worst-case optimality). Fundamentally, this is because the difficulty of
any instance R is precisely characterized by its input size and output size, and all instances in
R(IN,OUT) have exactly the same complexity O(IN + OUT).

1.3 Join algorithms in the MPC model

The situation becomes much more interesting in the MPC model. First, it has been observed that
the Yannakakis algorithm can be easily implemented in the MPC model with a load of O( IN

p + OUT
p )

[2]2, but this is not optimal. In particular, it is known that the binary join R1(A,B) on R2(B,C)

can be computed with load O( IN
p +

√
OUT
p ) [8, 18]. This is optimal by the following simple lower

bound argument: Each server can only produce O(L2) join results in a constant number of rounds
with the load limited to L, so all the p servers can produce at most O(p · L2) join results. Thus,

producing OUT join results needs at least a load of L = Ω(
√

OUT
p ). Meanwhile, since L ≥ IN/p

by definition, the O( IN
p +

√
OUT
p ) bound is optimal. Note that this argument can be applied on a

per-instance basis, which means that the load complexity of any instance is still precisely captured

by IN and OUT, and O( IN
p +

√
OUT
p ) is both an instance-optimal and output-optimal bound.

1To formally prove this claim, one will have to be more careful with the family of algorithms under consideration.
In particular, if OUT = 0, then the algorithm may not have to do anything. One possible approach is to ask the
algorithm to produce a certificate in addition to the join results [28]. We will not digress to this direction since this
paper is only concerned about MPC algorithms.

2The bound stated in [2] is actually O( (IN+OUT)2

p
), because they used a sub-optimal binary join algorithm as the

subroutine. Replacing it with the optimal binary join algorithm in [8, 18] yields the claimed bound, as observed in
[25].
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However, when the join involves three relations, the situation becomes subtler, and we start
to see a separation between the two notions of optimality, meaning that the load complexity of
an instance may not depend only on IN and OUT. Let us start with the simplest 3-relation join
R1(A) on R2(B) on R3(C), i.e., computing the Cartesian product of 3 sets of tuples. Consider a
particular class R(IN,OUT) when OUT = IN2. Suppose the 3 relations have sizes N1, N2, N3,
respectively. Then R(IN,OUT) consists of all instances with N1 + N2 + N3 = IN and N1N2N3 =
OUT = IN2. Consider the following two instances: (1) N1 = N2 = Θ(

√
IN), N3 = Θ(IN), applying

the same argument above except that each server now can produce O(L3) join results, i.e., p ·L3 =
Ω(OUT), we have L = Ω((OUT

p )1/3); (2) if N1 = 1, N2 = N3 = Θ(IN), then the problem boils down

to computing the Cartesian product of two sets, which has a lower bound of L = Ω((OUT
p )1/2).

The reason why instance (2) has a higher lower bound than instance (1) is that it has a higher
skew, which causes more difficulty for the MPC model. Note that this phenomenon does not exist
in the RAM model, in which both instances (in fact all instances in R(IN,OUT)) have the same
complexity of O(IN + OUT). Fundamentally, this is because the MPC model is all about locality:
An MPC algorithm should strive to bring all related tuples to one server so as to produce as many
join results as possible, while a higher skew reduces locality.

We can extend this argument to computing the Cartesian product of m sets of sizes N1, . . . , Nm.
Any algorithm computing the full Cartesian product obviously must also compute the Cartesian
product of any subset of the n sets, thus the load must be at least

LCartesian(p,R) := max
S⊆{1,...,m}

(∏
i∈S Ni

p

) 1
|S|
. (1)

It has been shown that the HyperCube algorithm [3] incurs a load of LCartesian(p,R) · logO(1) p on
any instance R [8]. Thus, it can be considered as an instance-optimal algorithm for computing
Cartesian products, with an optimality ratio of logO(1) p.

The binary join and Cartesian products are the simplest joins. Then the obvious question is,
do instance-optimal algorithms exist for larger classes of joins? If not, how about output-optimal
algorithms? These are the main questions we wish to address in this paper.

1.4 Classification of acyclic joins

Before describing our results, we first define some sub-classes of acyclic joins.

Acyclic joins [9]. We use the common notion of acyclicity, which is also known as α-acyclicity.
A join Q = (V, E) is acyclic if there exists an undirected tree T whose nodes are in one-to-one
correspondence with the edges in E such that for any vertex v ∈ V, all nodes containing v form a
connected subtree. Such a tree T is called the join tree of Q. Note that the join tree may not be
unique for a given Q.

Hierarchical joins [12]. A join Q = (V, E) is hierarchical if for every pair of vertices x, y, there is
Ex ⊆ Ey, or Ey ⊆ Ex, or Ex ∩ Ey = ∅, where Ex = {e ∈ E : x ∈ e} is the set of hyperedges containing
attribute x. Thus, all attributes can be organized into a forest, such that x is a descendant of y
iff Ex ⊆ Ey. Hierarchical joins have been enjoyed nice properties in probabilistic databases [12, 13]
and query answering under updates [10], but their role in the MPC model has not been studied so
far.

r-hierarchical joins. We consider a slightly larger class of hierarchical joins. A reduce procedure
on a hypergraph (V, E) is to remove an edge e ∈ E if there exists another edge e′ ∈ E such that
e ⊆ e′. We can repeatedly apply the reduce procedure until no more edge can be reduced, and the
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Joins
Instance-optimal1 Output-optimal

one-round multi-round one-round multi-round

tall-flat
Lins-opt · logO(1) p

Θ (Lins-opt)
-r-hierarchical

[8]
w/o dangling tuples

r-hierarchical
ω (Lins-opt)

ω
(

IN+OUT
p

) -
w/ dangling tuples

[26]
acyclic

ω (Lins-opt)
Θ
(

IN
p +

√
IN·OUT
p

)
LB for OUT ≤ O(p · IN).

triangle Ω̃
(

min
{

IN+OUT
p , IN

p2/3

})
1. We use Lins-opt as short for IN

p + Linstance(p,R).

Table 1: Summary of results.

resulting hypergraph is said to be reduced. A join is r-hierarchical if its reduced join hypergraph
is hierarchical. A hierarchical join must be r-hierarchical, but not vice versa. For example, the
join R1(A) on R2(A,B) on R3(B) is r-hierarchical but not hierarchical. On the other hand, an
r-hierarchical join must be acyclic.

Tall-flat joins [26]. A joinQ = (V, E) is tall-flat if one can order the attributes as x1, x2, · · · , xh, y1,
y2, · · · , yl such that (1) Ex1 ⊇ Ex2 ⊇ · · · ⊇ Exh ; (2) Exh ⊇ Eyj for j = 1, 2, · · · , l; and (3) |Eyj | = 1
for j = 1, 2, · · · , l. Obviously, a tall-flat join must be hierarchical.

The relationships of these joins are illustrated in Figure 1.

tall-flat

hierarchical

r-hierarchical

acyclic

Figure 1: Relationships of joins.

1.5 Our results

This paper gives an almost complete characterization of acyclic joins with respect to instance-
optimality and output-optimality in the MPC model. Our results are summarized in Table 1, and
we explain them below in more detail.

Instance-optimality. First, we extend the Cartesian product lower bound (1) to a general join
Q = (V, E). For any subset of relations S ⊆ E , define

Q(R, S) := (one∈S R(e)) nQ(R),

i.e., the join results of relations in S that are part of a full join result. Clearly, any algorithm
computing Q(R) must implicitly also compute Q(R, S) for every S. Because each join result in
Q(R, S) consists of |S| tuples, one from each relation in S, a server can emit at most O(L|S|)
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join results of Q(R, S), so we must have p · L|S| = Ω(|Q(R, S|). Thus, we obtain the following
per-instance lower bound on the load:

Linstance(p,R) := max
S⊆E

(
|Q(R, S)|

p

) 1
|S|
. (2)

The BinHC algorithm [8] is a generalization of the HyperCube algorithm to general joins. The
load of the BinHC algorithm is parameterized by the degrees of all subsets of attribute values (more
detail given in Section 3). Beame et al. [8] show that BinHC is optimal (up to polylog factors)
within the class of instances sharing the same degrees, among all one-round MPC algorithms. In this
paper, we strengthen this result by giving a new analysis of the BinHC algorithm, showing that it is
actually instance-optimal (up to polylog factors) for (1) all tall-flat joins, and (2) all r-hierarchical
joins provided that the instance does not contain dangling tuples (a dangling tuple is one that does
not appear in the join results). Furthermore, because the per-instance lower bound (2) also holds
for multi-round algorithms, these instance-optimality results extend to multi-round algorithms as
well. For r-hierarchical joins with dangling tuples, one-round algorithms cannot achieve O( IN

p +

Linstance(p,R)) load, but we can remove the dangling tuples in O(1) rounds with O( IN
p ) load [34],

and then run then BinHC algorithm. This gives a multi-round, ( IN
p +Linstance(p,R)) logO(1) p-load

algorithm, where the O(1) exponent depends on the query size, and is at least m, the number of
relations. Then we give a new multi-round algorithm for r-hierarchical joins with load O( IN

p +

Linstance(p,R)), i.e., improving the instance-optimality ratio from logO(1) p to O(1).
The instance-optimal load O( IN

p +Linstance(p,R)) is not achievable beyond r-hierarchical joins3.
More precisely, we show that for every acyclic join that is not r-hierarchical, there is an instance
R with Linstance(p,R) = O( IN

p ) but any multi-round algorithm must incur a load of4 Ω̃( IN
p1/2

) on R.

This is actually a corollary following our output-sensitive lower bound, which is described next.

Output-optimality. One-round algorithms have severe limitations with respect to OUT: As
shown in [26], any non-tall-flat joins must incur load ω( IN

p + OUT
p ) if only one round is allowed. On

the other hand, as mentioned, the classical Yannakakis algorithm is a multi-round MPC algorithm
that works for all acyclic joins and has a load of O( IN

p + OUT
p ) [2, 25]. Thus, our focus will be

on multi-round algorithms and see if this result can be improved. An instance-optimal algorithm
must also be output-optimal, so we have automatically obtained output-optimal algorithms for

r-hierarchical joins. In fact, we show that Linstance(p,R) = O( IN
p +

√
OUT
p ) for all r-hierarchical

joins, so this is already an asymptotic improvement over the Yannakakis algorithm. But the more
important question is, how about acyclic joins that are not r-hierarchical?

Our main output-optimal result is a new MPC algorithm for acyclic joins achieving a load

of O( IN
p +

√
IN·OUT
p ), which is an O(

√
OUT

IN )-factor improvement from the Yannakakis algorithm.

Interestingly enough, we observe that while the join order does not change the running time of the
Yannakakis algorithm by more than a constant factor in the RAM model, it does have asymptotic
consequences in the MPC model. However, there are instances on which no join order is good, in
which case we recursively decompose the join into multiple parts, and choose a good join order for
each part. The number of parts is exponential in the query size but constant in terms of data size.
To achieve this result, we first give a simple algorithm on the line-3 join R1(A,B) on R2(B,C) on
R3(C,D) (Section 4), and then extend it to arbitrary acyclic joins (Section 5).

3But instance-optimal algorithms are still possible, if some higher per-instance lower bound can be derived.
4The Õ and Ω̃ notation suppresses polylog factors.
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We also give a matching lower bound (up to a log factor), thereby establishing the output-
optimality of the algorithm. However, the lower bound only holds when OUT = O(p · IN). This

restriction on OUT is actually inherent, because the O( IN
p +

√
IN·OUT
p ) bound cannot be optimal

for all values of OUT. When OUT is large enough, a worst-case optimal algorithm will take over.
For example, on the line-3 join, the worst-case optimal algorithm, which has load O( IN√

p) [24, 19],

becomes better when OUT > p · IN. Our lower bound actually indicates that the O( IN√
p) bound is

output-optimal (though it does not depend on OUT) for all OUT > p · IN. Thus, we now have a
complete understanding of the line-3 join with respect to output-optimality. For more complicated
joins, their worst-case optimal algorithms have a higher load, and the output-optimality for OUT
values in the middle is still unclear.

Next, we extend these results to join-aggregate (including join-project) queries that are free-
connex (formal definition given in Section 6). More precisely, we give an MPC algorithm with
linear load that removes all the non-output attributes of the query, converting it into an acyclic
join. Then we apply our instance-optimal or output-optimal algorithm on the resulting acyclic join.

Finally in Section 7, we turn to the triangle join R1(B,C) on R2(A,C) on R3(A,B), which is
the simplest cyclic join, and give the first output-sensitive lower bound Ω̃(min{ IN

p + OUT
p ,

IN
p2/3
}) in the MPC model. Previously, only a worst-case bound of Ω( IN

p2/3
) is known [24, 30] and

that construction uses an instance with the maximum possible output size OUT = IN3/2. Note
that the second term in the lower bound is smaller as long as OUT = Ω(IN · p1/3), which means
that under this parameter range, the Õ( IN

p2/3
)-load algorithm [24] is not only worst-case optimal

but also output-optimal. For OUT = o(IN · p1/3), the lower bound becomes Ω̃( IN
p + OUT

p ) while we
do not have a matching upper bound yet (some explanation on why this is difficult is given below).
But at least, this shows a separation from acyclic joins, i.e., cyclic joins are harder than acyclic

ones by at least a factor of Ω̃(
√

OUT
IN ).

1.6 Other related results

Most existing work on join algorithms in the MPC model has focused on the worst case. Here, the
goal is to achieve a load of O( IN

p1/ρ
), where ρ is the fractional edge cover number of the hypergraph

Q. So far, this bound has been achieved on Berge-acyclic joins5 [19], joins where each relation has
two attributes (i.e., Q is an ordinary graph) [22], and LW joins [24]6. Whether this bound can be
achieved for arbitrary joins, or even just α-acyclic joins, is still open. Assuming this is achievable,
our output-sensitive algorithm is still better when OUT = O(p2−2/ρ · IN).

Joglekar et al. [20] described a multi-round MPC algorithm for arbitrary joins, whose load
complexity depends on IN,OUT, as well as the degrees of the values. However, the load of their
algorithm is at least Ω( IN

p + OUT
p ), i.e., no better than the Yannakakis algorithm on acyclic joins.

In the RAM model, output-sensitive join algorithms have been extensively studied. The running
time of most algorithms is in form of O(INw + OUT), where w is certain notion of width of the
hypergraph Q [15, 17, 27, 23]. However, it is not clear if this is optimal. Even for the triangle
join, it is not known what the output-optimal bound is. For the triangle join, any notion of width
has w ≥ 1.5, thus these algorithms are no better than the worst-case optimal algorithm, which
has running time O(IN1.5). Recently, an improved triangle algorithm has been developed with a
running time of O(IN1.408 + IN1.222OUT0.186) [11], which is better than the worst-case optimal
algorithm when OUT < IN1.495. On the lower bound side, it is known that when OUT ≥ IN,

5A sub-class of α-acyclic joins.
6The LW join algorithm presented in [24] has a mistake, but it can be fixed, although non-trivially.
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at least Ω(IN4/3−o(1)) time is needed, assuming the 3SUM conjecture [31]. Thus, output-optimal
algorithms for cyclic joins still remain a wide open problem.

2 MPC Primitives

Assume IN > p1+ε where ε > 0 is any small constant. We first introduce the following primitives
in the MPC model, all of which can be computed with linear load O( IN

p ) in O(1) rounds.

Multi-numbering [18]: Given IN (key, value) pairs, for each key, assigns consecutive numbers
1, 2, 3, . . . to all the pairs with the same key.

Sum-by-key [18]: Given IN (key, value) pairs, compute the sum of values for each key, where the
sum is defined by any associative operator.

Multi-search [18]: Given N1 elements x1, x2, · · · , xN1 as set X and N2 elements y1, y2, · · · , yN2

as set Y , where all elements are drawn from an ordered domain. Set IN = N1 + N2. For each xi,
find its predecessor in Y , i.e., the largest element in Y but smaller than xi.

Semi-Join: Given two relations R1 and R2 with a common attribute x, the semijoin R1 n R2

returns all the tuples in R1 whose value on x matches that of at least one tuple in R2. This can be
reduced to a multi-search problem: For each t ∈ R1, if its predecessor on the x attribute in R2 is
the same as that of t , then it is in the semijoin.

Note that we can remove all dangling tuples in an acyclic-join [34] by a constant number of
semi-joins, so it can be done in O(1) rounds with linear load.

Parallel-packing: Given IN numbers x1, x2, · · · , xIN where 0 < xi ≤ 1 for i = 1, 2, · · · , IN, group
them into m sets Y1, Y2, · · · , Ym such that

∑
i∈Yj xi ≤ 1 for all j, and

∑
i∈Yj xi ≥

1
2 for all but one

j. Initially, the IN numbers are distributed arbitrarily across all servers, and the algorithm should
produce all pairs (i, j) if i ∈ Yj when done. Note that m ≤ 1 + 2

∑
i xi.

We are not aware of an explicit reference on this primitive, but it can be solved quite easily.
Assume the input data is distributed across p servers. We ask each server i to first perform grouping
on its local data. It is obvious that the condition above can be satisfied. The server then reports
two numbers: gi, the number of groups with sum between 1/2 and 1, and hi, the sum of remaining
group with sum smaller than 1/2. Note that gi and hi can be 0. Next, we run the BSP algorithm
for prefix-sums [14] on the gi’s. After that, we can assign consecutive group id’s to each of the gi
groups on each server i. For the remaining p partial groups whose sums are hi with 0 < hi < 1/2,
we recursively run the algorithm, using group id’s starting from

∑
i gi + 1. After the recursion

returns, for each partial group hi that has been assigned to group j, we assign every element in
hi to group j. The problem size reduces by a factor of IN/p after each round, so the number of
rounds is O(logIN/p IN) = O(1).

Server allocation [18]: Assume each tuple has a subproblem id j, which identifies the subproblem
it belongs to (the j’s do not have to be consecutive), and p(j), which is the number of servers
allocated to subproblem j. The goal is to attach to each tuple a range [p1(j), p2(j)], such that the
ranges of different subproblems are disjoint and maxj p2(j) ≤

∑
j p(j). Thus, each tuple t knows

which servers have been allocated to the subproblem to which t belongs.

Computing the output size OUT of an acyclic join: This primitive is a special case of our
join-aggregate algorithm, which will be described in Section 6.
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3 r-Hierarchical Joins

Recall that in a hierarchical join, all attributes can be organized into a forest, such that x is
a descendant of y if and only if Ex ⊆ Ey. Each e ∈ E corresponds to a node x in the forest,
such that e contains precisely x and all its ancestors. A subclass of hierarchical joins are tall-flat
joins. For a tall-flat join, this attribute forest takes the form of a special tree, which consists of a
single “stem” plus a number of leaves at the bottom. For example, Q1 = R1(x1) on R2(x1, x2) on
R3(x1, x2, x3) on R4(x1, x2, x3, x4) on R5(x1, x2, x3, x5) on R6(x1, x2, x3, x6) is a tall-flat join; Q2 =
R1(x1, x2) on R2(x1, x3, x4) on R3(x1, x3, x5) is a hierarchical join (but not tall-flat). Their attribute
forests (actually, trees for these two cases) are shown in Figure 2.

x1

x2

x3

x5 x6x4

x1

x2 x3

x4 x5

Figure 2: Examples of tall-flat and hierarchical join.

In this section, we study r-hierarchical joins. A join is r-hierarchical if its reduced join is
hierarchical. For example, Q2 on R4(x3, x5) on R5(x5) is an r-hierarchical join (but not hierarchical).
After an r-hierarchical join is reduced, its hyperedges must correspond to the leaves of the attribute
forest.

3.1 BinHC algorithm revisited

We mentioned above that the HyperCube algorithm [3] is an instance-optimal algorithm for comput-
ing Cartesian products. The BinHC algorithm [8] is a generalization of the HyperCube algorithm
to general joins. For a join Q, denote the residual query by removing attributes x ⊆ V as Qx.
Let u be any fractional edge packing of Qx that saturates the attributes x, i.e.,

∑
e:x∈e u(e) ≥ 1

for every x ∈ x, and
∑

e:x∈e u(e) ≤ 1 for every x ∈ V − x. Assuming knowing all degree infor-
mation in advance, this algorithm computes Q on instance R in a single round with a load of
Õ( IN

p + LBinHC(p,R)), where

LBinHC(p,R) := max
x,u

(∑
a∈dom(x)

∏
e∈E |σx=aR(e)|u(e)

p

) 1∑
e∈E u(e)

Here we define 00 = 0. Note that for any e ⊆ x, |σx=aR(e)| is either 0 or 1, so we can just set
u(e) = 0 for each such e in the definition above.

Theorem 1. On any tall-flat join and any instance R, LBinHC(p,R) = O (Linstance(p,R)).

Proof. Below, we write L := Linstance(p,R) to avoid notational clutter. For an attribute set x and
a fractional edge packing u of Qx, define

p(x,u) =
∑

a∈dom(x)

∏
e∈E

(
|σx=aR(e)|

L

)u(e)

.

To show LBinHC(p,R) = O(L), it suffices to show that p(x,u) = O(p) for all x and u.
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Recall that in a tall-flat join, all attributes can be ordered as x1, x2, · · · , xh, y1, y2, · · · , yl such
that (1) Ex1 ⊇ Ex2 ⊇ · · · ⊇ Exh ; (2) Exh ⊇ Eyj for j = 1, 2, · · · , l; (3) |Eyj | = 1 for j = 1, 2, · · · , l.
Consider an attribute set x ⊆ V under the following two cases.

Case (1): {x1, x2, · · · , xh} ⊆ x. Consider any edge packing u ofQx that saturates x (in this case,
we actually only need the fact u(e) ≤ 1 for all e). As observed, we can eliminate any assignment
a ∈ dom(x) if there exists an edge e ∈ E such that σx=aR(e) = ∅, so it suffices to consider the
remaining assignments a∗ ∈ dom(x) such that

∏
e∈E |σx=a∗R(e)| > 0. Then, we can bound p(x,u)

as

p(x,u) ≤
∑
a∗

∏
e∈E

(
|σx=a∗R(e)|

L
+ 1

)u(e)

≤
∑
a∗

∏
e∈E

(
|σx=a∗R(e)|

L
+ 1

)
=
∑
a∗

∑
S⊆E

1

L|S|

∏
e∈S
|σx=a∗R(e)|

=
∑
S⊆E

1

L|S|

∑
a∗

∏
e∈S
|σx=a∗R(e)|

=
∑
S⊆E

|Q(R, S)|
L|S|

= O(p).

Case (2): There exists an xi /∈ x. Let i be the smallest such i. Let u be any edge packing
of Qx. In particular, we have

∑
e:xi∈e u(e) ≤ 1. As observed earlier, we can set u(e) = 0 for any

e ⊆ {x1, . . . , xi−1} ⊆ x, so it suffices to consider the remaining edges. Due to the tall-flat property,
all these edges contain xi. Thus,

p(x,u) ≤
∑

a

∏
e:xi∈e

(
|σx=aR(e)|

L

)u(e)

≤
∏
e:xi∈e

(∑
a

|σx=aR(e)|
L

)u(e)

(Hölder’s inequality)

≤
∏
e:xi∈e

(
|R(e)|
L

)u(e)

≤
(

IN

L

)∑
e:xi∈e

u(e)

≤ IN

L
≤ p.

Combining the two cases, the theorem is proved.

Theorem 2. On any r-hierarchical join Q and instance R without dangling tuples, LBinHC(p,R) =
O (Linstance(p,R)).

Proof. Let T be the forest of attributes corresponding to Q. Consider an arbitrary attribute set
x. We say that a root-to-leaf path in T , which corresponds to some e ∈ E , is stuck at the highest
attribute on the path that is not included in x. In this way, all edges inQ can be divided into disjoint
groups E1, E2, · · · Eh, such that edges in one group share the common stuck attribute. Consider any
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fractional edge packing u, we must have
∑

e∈Ei u(e) ≤ 1 for each Ei due to the packing constraint
at the common stuck attribute of Ei. Then, we can bound p(x,u) as

p(x,u) ≤
∑

a

∏
i∈{1,2,··· ,h}

∑
e∈Ei

(
|σx=aR(e)|

L

)∑
e∈Ei

u(e)

≤
∑

a

∏
i∈{1,2,··· ,h}

∑
e∈Ei

(
|σx=aR(e)|

L
+ 1

)

=
∑

a

∏
i∈{1,2,··· ,h}

∑
e∈Ei

|σx=aR(e)|
L

+ |Ei|


≤
∑

a

|E||E|
∑

S:|S∩Ei|≤1,i=1,...,h

∏
e∈S |σx=aR(e)|

L|S|

=|E||E|
∑

S:|S∩Ei|≤1,i=1,...,h

∑
a

∏
e∈S |σx=aR(e)|
L|S|

≤|E||E|
∑

S:|S∩Ei|≤1,i=1,...,h

|Q(R,S)|
L|S|

= O(p).

The last inequality needs some explanation: Any such S includes at most one edge from each Ei.
Thus, if two edges in S share any common attribute, that attribute must be in x (otherwise they
must belong to the same Ei). Thus, for any a, all tuples in σx=aR(e), e ∈ S join with each other,
so we have ∑

a

∏
e∈S
|σx=aR(e)| = | one∈S R(e)|.

Furthermore, since there are no dangling tuples, every join result in one∈S R(e) must be part of a
full join result, so | one∈S R(e)| ≤ |Q(R,S)|.

Note that since Linstance(p,R) is a per-instance lower bound even for multi-round algorithms,
this means that the BinHC algorithm is instance-optimal even among all multi-round algorithms, up
to polylogarithmic factors. This result also incorporates the instance-optimality of the HyperCube
algorithm on Cartesian products, which are special r-hierarchical joins without dangling tuples.

Remark. Koutris and Suciu [26] show that non-tall-flat joins cannot be done with load Õ( IN
p +

OUT
p ) by one-round algorithms. This does not contradict Theorem 2 since their lower bound

construction uses dangling tuples. Our result implies that the key barrier for one-round algorithms
is actually the dangling tuples. If they do not exist, one-round algorithms can go beyond tall-flat
joins and solve r-hierarchical joins instance-optimally, up to polylog factors. On the other hand,
once O(1) rounds are allowed, dangling tuples become irrelevant, since they can be removed with
linear load and O(1) rounds.

3.2 An instance-optimal algorithm

We have shown that the BinHC algorithm is an instance-optimal algorithm for r-hierarchical joins,
but it has an instance-optimality ratio of logO(1) p, where the O(1) exponent depends on the query
size, and is at least m, the number of relations. In this section, we improve the optimality ratio to
O(1), i.e., achieving a load of O( IN

p + Linstance(p,R)). Our algorithm uses O(1) rounds, but note
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that BinHC also needs O(1) rounds to remove the dangling tuples if they exist. Furthermore, our
algorithm is deterministic while BinHC is randomized.

As a preprocessing step, we remove all dangling tuples. Then we reduce the join hypergraph,
since if e ⊆ e′, R(e) will not affect the final join results after dangling tuples are removed7. Thus,
we are left with a hierarchical join Q on an instance R with no dangling tuples.

Let T be the attribute forest ofQ. Recall that after the join is reduced, each relation corresponds
to a leaf of T , whose attributes are precisely the leaf’s ancestors in T . Our algorithm is recursive.
We will show that the load of this algorithm is O( IN

p + Linstance(p,R)) for any hierarchical join
Q on any instance R. To simplify notation, we will not derive the exact constant in the big-Oh,
which depends (exponentially) on the recursion depth. Since the recursion depth is proportional to
(actually, twice) the height of T , which is a constant, this is not a concern. Similarly, the number
of servers employed by the algorithm will be O(p), where the hidden constant may also depend on
the recursion depth.

The base case is when Q has just one relation. In this case the algorithm just emits all tuples
in the relation, achieving the bound O( IN

p + Linstance(p,R)) trivially.
For a general hierarchical join Q and an instance R, we proceed as follows. We first compute

Linstance(p,R): We use p servers to compute | one∈S R(e)| for each S ⊆ E (recall that computing
the output size of an acyclic join is an MPC primitive). This requires O(p) servers with load
O( IN

p ). Note that Q(R, S) =one∈S R(e) when there is no dangling tuples in R, so we can compute

Linstance(p,R) as defined in (2). Setting L = IN
p +Linstance(p,R), we will show below how to compute

the join with O(p) servers and load O(L).
Let k be the number of trees in T . We handle the following two cases using different recursive

strategies:

Case (1): k = 1. In this case, T is a tree. Suppose the root attribute of T is x, which is
included in all the relations. Consider every a ∈ dom(x), and let Ra = {σx=aR(e) : e ∈ E}. It
suffices to compute the residual query Qx on each Ra, but all the Qx(Ra)’s have to be computed
in parallel, using O(p) servers in total. Thus, the key is to allocate servers to these residual queries
appropriately so as to ensure a uniform load of O(L). To do so, we first compute INa, the input
size of Ra, for all a ∈ dom(x). Since INa =

∑
e∈E |σx=aR(e)|, and each tuple belongs to exactly

one Ra, this is a sum-by-key problem, i.e., each tuple t with πxt = a has key a and weight 1. Note
that IN =

∑
a INa.

An instance Ra is heavy if INa > L and light otherwise. We handle heavy and light instances
in different ways.

Case (1.1): Light instances. We use the parallel-packing primitive to put the light instances
into O( IN

L ) = O(p) groups with each group having total input size O(L). Then we simply use one
server to solve the instances in each group. The load of each server is O(L).

Case (1.2): Heavy instances. By definition, there are at most IN
L = O(p) heavy instances.

For each heavy instance Ra, we allocate pa = dp · INa
IN e servers to compute in parallel the join

size |Qx(Ra, S)| for all a ∈ dom(x) and all S ⊆ E . This uses O(p) servers, and the load is
O(maxa

INa
pa

) = O( IN
p ). Next, for each heavy instance Ra, we allocate

pa = max
S⊆E

|Qx(Ra, S)|
L|S|

7Strictly speaking, this violates the tuple-based requirement that when emitting a join result, all the participating
tuples must be present. This can be easily fixed. Before removing R(e), we attach each tuple t ∈ R(e) to all tuples
in R(e′) that join with t. This can be done by the multi-search primitive with linear load.
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servers and compute Qx(Ra) recursively in parallel. The number of servers used is∑
a

pa ≤
∑
a

∑
S⊆E

|Qx(Ra, S)|
L|S|

=
∑
S⊆E

|Q(R, S)|
L|S|

= O(p).

By the induction hypothesis, computing Qx(Ra) with pa servers has a load of (the big-Oh of)

INa

pa
+ Linstance(pa,Ra) =

INa

pa
+ max

S⊆E

(
|Qx(Ra, S)|

pa

) 1
|S|
. (3)

We bound each term of (3): For a heavy instance Ra, there must exist at least one e ∈ E such that
|σx=aR(e)| ≥ 1

|E| · INa. Furthermore, since there are no dangling tuples, every tuple in σx=aR(e)

must be part of a join result of Qx(Ra), so |σx=aR(e)| = |Qx(Ra, {e})|. Taking S = {e}, we have

pa ≥
1

L
· |Qx(Ra, {e})| =

1

L
· |σx=aR(e)| ≥ INa

|E| · L
,

so INa
pa

= O(L). The second term of (3) is also bounded by L simply by the definition of pa.

Case (2): k > 1. In this case, the join becomes a Cartesian product Q1(R1)×· · ·×Qk(Rk), where
each Qi(Ri) is a join under Case (1). One would attempt to first compute each Qi(Ri) recursively,
and then compute the Cartesian product, but this would not yield instance-optimality. Just consider
an instance with |Q1(R1)| = 1 and |Q2(R2)| = p · IN, where Q2(R2) = R1(A,B) on R2(B,C) with
|dom(B)| = 1, |R1| = IN, |R2| = p. On this instance, we have Linstance(p,R) = max( IN

p ,
√

IN), but
if we took a two-step approach, merely storing the intermediate result Q2(R2) would incur a load of
Ω(IN). This means that we have to interleave the two steps so as to avoid storing the intermediate
results Qi(Ri) explicitly.

We arrange servers into a p1×p2×· · ·×pk hypercube, where the dimensions p1, p2, · · · , pk will be
determined later. We identify each server with coordinates (c1, c2, · · · , ck), where ci ∈ [pi]. For every
combination c1, . . . , ci−1, ci+1, . . . , ck, the pi servers with coordinates (c1, · · · , ci−1, ∗, ci+1, · · · , ck)
form a group to compute Qi(Ri) (using the algorithm under Case (1)). Yes, each Qi(Ri) is
computed p1 · · · pi−1pi+1 · · · pk times, which seems to be a lot of redundancy. However, as we shall
see, there will be no redundancy in terms of the final join results, and it is exactly due to this
redundancy that we avoid the shuffling of the intermediate result and achieve an optimal load.
Consider a particular server (c1, . . . , ck). It participates in k groups, one for each Qi(Ri), i =
1, . . . , k. For each Qi(Ri), it emits a subset of its join results, denoted Qi(Ri, c1 . . . , ck). Then the
server emits the Cartesian product Q1(R1, c1 . . . , ck)× · · · × Qk(Rk, c1 . . . , ck). Note that for each
group of servers computing Qi(Ri), the pi servers in the group emit Qi(Ri) with no redundancy,
so there is no redundancy in emitting the Cartesian product.

It remains to show how to set p1, . . . , pk so that p1 · · · pk = O(p) and each server has a load of
O(L). To do so, we first compute INi, the input size of Ri, in the same way as in Case (1). An
instance Ri is heavy if INi > L and light otherwise. For each heavy instance Ri, we use p servers to
compute | one∈S Ri(e)| = |Qi(Ri, S)| for all S ⊆ Ei, where Ei is the set of edges in Qi. This requires
O(p) servers with load O( IN

p ). Then if Ri is light, we set pi = 1; otherwise set

pi = max
S⊆Ei

⌈
|Qi(Ri, S)|

L|S|

⌉
.

Let I = {i | Ri is heavy}. The number of servers used is∏
i∈I

pi ≤
∏
i∈I

∑
S⊆Ei

(
|Qi(Ri, Si)|

L|S|
+ 1) ≤

∑
S⊆

⋃
i∈I Ei

|Q(R, S)|
L|S|

= O(p).
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Finally, consider the load of each server, which serves to compute each Qi(Ri) with a group of
pi servers. For a light Ri, pi = 1 and it imposes a load of O(L). For a heavy Ri, by the induction
hypothesis, the load is (the big-Oh of)

INi

pi
+ Linstance(pi,Ri) =

INi

pi
+ max

S⊆Ei

(
|Qi(Ri, S)|

pi

) 1
|S|
.

This can be bounded by O(L) using the same argument as Case (1.2). Summing over all i = 1, . . . , k
increases the load by just a k = O(1) factor.

The induction proof thus completes and we obtain the following result.

Theorem 3. On any r-hierarchical join query Q and any instance R, there is an algorithm com-
puting Q(R) in O(1) rounds with load O( IN

p + Linstance(p,R)).

Since an instance-optimal algorithm is also output-optimal, we also obtain an output-optimal
algorithm for r-hierarchical joins. In fact, we can derive a closed-form formula of the output-optimal
bound, i.e., we bound

max
R∈R(IN,OUT)

Linstance(p,R)

as a function of IN and OUT. First, observe that Linstance(p,R) only depends to the reduced
instance of R, so we can assume that R contains no dangling tuples. Then, we can rewrite
maxR∈R(IN,OUT) Linstance(p,R) as

max
R∈R(IN,OUT)

Linstance(p,R) = max
R∈R(IN,OUT)

max
S⊆E

(
|Q(R, S)|

p
)

1
|S|

= max
R∈R(IN,OUT)

max
S⊆E

(
| one∈S R(e)|

p
)

1
|S|

= max
S⊆E

max
R∈R(IN,OUT)

(
| one∈S R(e)|

p
)

1
|S|

Consider a specific subset S ⊆ E and an arbitrary instance R ∈ R(IN,OUT). One trivial upper
bound for | one∈S R(e)| is OUT. The other bound is IN|S| when the join degenerates to a Cartesian
product. With these observations, we can bound the quantity above as:

max
S⊆E

max
R∈R(IN,OUT)

(
| one∈S R(e)|

p
)

1
|S| = max

k∈[n]
max

S⊆E:|S|=k
max

R∈R(IN,OUT)
(
| one∈S R(e)|

p
)

1
|S|

≤max
k∈[n]

min{ IN

p
1
k

, (
OUT

p
)
1
k } = max{ IN

p
1

k∗−1

, (
OUT

p
)

1
k∗ }

where k∗ denotes the integer dlogIN OUTe.
Next, we show that this is tight, i.e., there exists an instance R ∈ R(IN,OUT) such that for

one subset S1 ⊆ E involving k∗−1 relations, there is | one∈S1 R(e)| = INk∗−1 and for another subset
S2 ⊆ E involving k∗ relations, there is | one∈S2 R(e)| = OUT. Our hard instance construction is
based on the following property of acyclic joins (this is probably known, but we cannot find an
explicit reference):

Lemma 1. An acyclic join has integral edge cover number.
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Proof. For an acyclic hypergraph Q = (V, E), denote the optimal edge covering of Q as C. If there
exist e, e′ ∈ E such that e ⊆ e′, then C(e) = 0; otherwise we can just shift the weight from e to e′

and obtain a better (at least not worse) edge covering. So the optimal edge cover of Q is equivalent
to that of the residual query by removing e. If there exists an attribute that appears only in edge
e, then C(e) = 1. So the optimal edge cover of Q is equivalent to the edge e and the optimal
edge cover of the residual query by removing all attributes in e. After recursively apply these two
procedures, the query will become an empty set implied by the GYO reduction [1]. In this process,
every edge chosen by C has weight 1.

Let C be the optimal edge covering of Q. We identify two subsets of C with k∗ − 1, k∗ edges
respectively, denoted as Ck∗−1, Ck∗ , such that Ck∗−1 ⊆ Ck∗ . Such two subsets can always be found
since |C| ≥ dlogIN OUTe by the AGM bound [4]. We consider a hard instance R constructed as
below. Each edge e ∈ C is associated with at least one unique attribute denoted as e(u). One of
the unique attributes in e for e ∈ Ck∗ has IN distinct values in its domain while one of the unique
attributes in e for e ∈ Ck∗ − Ck∗−1 has OUT

INk
∗−1 distinct values in its domain. Remaining attributes

have only one value in their domains. On this instance, there is | one∈Ck∗−1
R(e)| = INk∗−1 and

| one∈Ck∗ R(e)| = OUT.

Theorem 4. There is an algorithm that computes any r-hierarchical join in O(1) rounds with load

O
(

IN
p1/max{1,k∗−1} + (OUT

p )
1
k∗
)

, where k∗ = dlogIN OUTe. This bound is output-optimal.

Below we give a cleaner output-sensitive bound. This is not tight for OUT > IN2, but easier
to use. In particular, this result will be used in the analysis of the output-sensitive algorithm for
arbitrary acyclic joins in Section 5.1.

Corollary 1. There is an algorithm that computes any r-hierarchical join in O(1) rounds with load

O( IN
p +

√
OUT
p ).

Proof. When OUT ≤ IN, we have k∗ = 1 and the load complexity is O( IN
p ) trivially. For k∗ ≥ 2,

the term (OUT
p )1/k∗ is always no larger than

√
OUT
p . The term IN/p1/max{1,k∗−1} is also no larger

than
√

OUT
p as long as IN2 · p1−2/max{1,k∗−1} ≤ OUT, which always holds when k∗ ≥ 2.

4 Line-3 Join

The simplest acyclic but not r-hierarchical join is the line-3 join R1(A,B) on R2(B,C) on R3(C,D).

In this section, we give an output-optimal MPC algorithm with load O( IN
p +

√
IN·OUT
p ), together with

a matching lower bound. In particular, the lower bound implies that instance-optimal algorithms
are not possible for the line-3 join. In Section 5, we extend these results to arbitrary acyclic joins.

4.1 The Yannakakis algorithm revisited

The Yannakakis algorithm first removes all the dangling tuples, which is just a series of semi-joins
and can be done with load O( IN

p ). Then the algorithm performs pairwise joins in some arbitrary
order. In the RAM model, the join order does not affect the asymptotic running time: After
dangling tuples have been removed, any intermediate join result is part of a full join result, so the
running time of the last join, which is Θ(OUT), dominates that of any intermediate join. In fact,
this argument applies on a per-instance basis, and the Yannakakis algorithm is instance-optimal
on any instance with any join order.
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Interestingly, the join order does matter in the MPC model. Consider the following instance of
the line-3 join (see the top half of Figure 3). AttributesA,B,C,D have domain sizes OUT

N , N2

OUT , N, 1,
respectively. Set R1(A,B) = dom(A)× dom(B), R2(B,C) is a one-to-many relation from dom(B)
to dom(C), and R3(C,D) = dom(C) × dom(D). Note that this instance has IN = Θ(N) and
the output size is exactly OUT. Consider first the join plan (R1 on R2) on R3, and note that

|R1 on R2| = |R1 on R2 on R3| = OUT. Using the O( IN
p +

√
OUT
p )-load algorithm [8, 18] for binary

joins, the load of computing R1 on R2 is O( IN
p +

√
OUT
p ). However, since the output of the first

join is the input of the second join, the input size for the second join is OUT, so the load of the

second join is O(OUT
p +

√
OUT
p ) = O(OUT

p ). In general, the intermediate join result can be as large

as O(OUT), which is why the Yannakakis algorithm incurs a load of O(OUT
p ) (after dangling tuples

are removed) on an acyclic join, as observed in [2, 25].
Now consider the alternative plan R1 on (R2 on R3). Note that |R2 on R3| = O(IN), so the load

of computing R2 on R3 is O( IN
p ), while the load of computing the second join is O( IN

p +
√

OUT
p ).

Crucially, the reason why the second plan is better is that it has a smaller intermediate join size.
Note that a smaller intermediate join size does not matter in the RAM model, where the total
cost is always dominated by the last join. But it does matter in the MPC model, because of the

O( IN
p +

√
OUT
p ) load complexity of a binary join, which has a linear dependency on the input size

but sublinear in the output size. Fundamentally, this is because the MPC model is all about locality:
algorithms strive to send all “related” tuples to the same server so as to maximize the number of
join results that can be found by the server locally.

A B C D

Figure 3: A hard instance for the Yannakakis algorithm.

Now, the key question is if there is always a join plan with an intermediate join size asymp-
totically smaller than O(OUT). Unfortunately, the answer is no. A bad example can be easily
constructed, by just putting two of the above instances together, but in opposite directions (see
Figure 3). Nevertheless, this bad example precisely points us to the right direction: Although a
global best join order may not exist, but if we decompose the join into multiple pieces, it is pos-
sible to find a provably good join order for each. This is exactly the basic idea of our algorithm,
presented next.

4.2 A new algorithm for the line-3 join

We first compute OUT (an MPC primitive). Then we proceed in two steps:

Step (1): Computing degrees. For a value in attribute B, it is heavy if its degree in relation
R1, i.e., |σB=bR1|, is greater than τ (value to be determined later), otherwise light. We first use
the sum-by-key primitive to compute the degrees of all b’s for b ∈ dom(B). After classifying the
values in dom(B) as heavy and light, we divide tuples in R1 and R2 also into heavy tuples and light
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tuples, depending on their B value. More precisely, a tuple in R1 or R2 is heavy if its B value is
heavy, and light otherwise. This can be done by the multi-search primitive. We denote the heavy
(resp. light) tuples in Ri as RHi (resp. RLi ), for i = 1, 2.

Step (2): Decomposing the join. We decompose the join into the following two parts, and
compute them using different join orders:

Q1 = RH1 on (RH2 on R3),

Q2 = (RL1 on RL2 ) on R3.

Note that since R1 and R2 are both divided according to the B attribute, RH1 do not join with RL2 ,
RL1 do not join with RH2 .

Now we analyze the load. For Q1, the intermediate join R23 = RH2 on R3 has size bounded by
OUT
τ , since each intermediate join result from R23 has a heavy B value, so it joins with at least τ

tuples in R1. Thus, the load of computing Q1 is (big-Oh of)

IN

p
+

OUT

pτ
+

√
OUT

p
. (4)

For Q2, the intermediate join R12 = RL1 on RL2 has size bounded by IN · τ , since each light tuple
from R2 can join with at most τ tuples from R1. Thus, the load of computing Q2 is (big-Oh of)

O( IN
p + IN·τ

p +
√

OUT
p ).

IN

p
+

IN · τ
p

+

√
OUT

p
. (5)

Setting τ =
√

OUT
IN balances the second term in (4) and in (5), and we obtain the claimed result

(note that
√

OUT
p ≤

√
IN·OUT
p for IN ≥ p):

Theorem 5. There is an algorithm computing the line-3 join with load O
(

IN
p +

√
IN·OUT
p

)
in O(1)

rounds.

4.3 Lower bound

We prove the following lower bound on any tuple-based algorithm for computing the line-3 join.

Theorem 6. For any OUT ≥ IN, there exists an instance R for the line-3 join with input size
Θ(IN) and output size Θ(OUT), such that any tuple-based algorithm computing the join in O(1)

rounds must have a load of Ω
(

min
{√

IN·OUT
p·log IN , IN√

p

})
.

Proof. Our lower bound argument is combinatorial in nature. We will construct a hard instance
R, such that a server can produces at most J(L) join results in a round, no matter which L tuples
from R are loaded to the server. Then p servers can product at most O(p · J(L)) results over O(1)
rounds. Setting p ·J(L) = Ω(OUT) will yield a lower bound on L. Thus, any upper bound on J(L)
will yield a lower bound on L, and we will only focus on upper bounding J(L).

We construct R using the probabilistic method, i.e., we randomly generate an instance, and
show that with positive probability (actually, with high probability), such a randomly generated
instance satisfies our needs. The construction is similar to the one used in [18], but the parameters
and arguments are different.
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A randomly constructed instance is shown in Figure 4. In fact, only R2 is random, while R1

and R3 are deterministic. Let N = IN
3 , τ =

√
OUT
N , and set dom(B) = dom(C) = N

τ . Each distinct

value of B appears in τ tuples in R1(A,B), and each distinct value in C appears in τ tuples in
R3(C,D). The τ tuples in R1 (resp. R3) that share the same B (resp. C) value are called a group.
For each pair of values (b, c), b ∈ dom(B), c ∈ dom(C), the tuple (b, c) is included in R2(B,C) with

probability τ2

N independently. Note that |R1| = |R3| = N , and E[|R2|] = N , so the input size

is expected to be IN. The output size is expected to be τ2 · (Nτ )2 · τ2N = OUT. By the Chernoff
inequality, the probability that the input size or output size deviates from their expectations by
more than a constant fraction is exp(−Ω(N)).

A B C D

Figure 4: A randomly constructed instance on L3.

To give an upper bound on J(L), we only restrict the server to load at most L tuples from R1

and R3, while tuples in R2 can be accessed for free. Furthermore, we argue below that we only
need to consider the situation where the server loads R1 and R3 in whole groups. Suppose two
groups in R1, say, g1 and g2, are not loaded in full (we may assume w.l.o.g. that L is a multiple
of τ , so there cannot be exactly one non-full group): x1 < τ tuples of g1 and x2 < τ tuples of g2

have been loaded. Suppose they respectively join with y1 and y2 tuples in R3 that are loaded by
the server. Note that they will produce x1y1 +x2y2 join results. Without loss of generality, assume
y1 ≥ y2. Now consider the alternative where the server loads x1 + 1 tuples of g1 and x2 − 1 tuples
of g2. Then this would produce (x1 +1)y1 +(x2−1)y2 = x1y1 +x2y2 +y1−y2 ≥ x1y1 +x2y2 tuples.
This means that by moving one tuple from g2 to g1, the server can only get more join results (at
least not less). We can move tuples from one group to another as long as there are two non-full
groups. Eventually we arrive at a situation where all groups of R1 are loaded by the server in full,
without decreasing the reported join size. Next, we apply the same transformation to the groups
of R3 to make all its groups full as well. Therefore, to maximize J(L), the server should only load
R1 and R3 in full groups.

Thus, the server loads L
τ groups from R1 and L

τ groups from R3. Below we show that a random
instance constructed as above has the following property with high probability: On every possible
choice of the L

τ groups of R1 and L
τ groups of R3 to be loaded, J(L) is always bounded.

Consider a particular choice of the L
τ groups from R1 and L

τ groups from R3 to be loaded. There

are
(
L
τ

)2
pairs of groups, and each pair has probability τ2

N to join, so we expect to see L2

N pairs to
join. Because the pairs join independently, by the Chernoff bound, the probability that more than

δ · L2

N pairs join is at most exp
(
−Ω(δ · L2

N )
)

, for some parameter δ ≥ 2 to be determined later.

There are O
(

(Nτ )
2L
τ

)
different choices of L

τ groups from R1 and L
τ groups from R3. So, by the

union bound, the probability that one of them yields more than δ · L2

N joining groups is at most

O

(
(
N

τ
)
2L
τ

)
· exp

(
−Ω(

δL2

N
)

)
= exp

(
−Ω(

δL2

N
) +O(

L

τ
logN)

)
.
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This probability is exponentially small if δ · L2

N > c1 · Lτ logN for some sufficiently large constant
c1, so we set

δ = max

{
c1 ·N logN

τL
, 2

}
. (6)

Since each joining group produces τ2 join results, we have shown that with high probability,
a random instance has the property that no matter which L tuples are loaded, we always have
J(L) ≤ δ · τ2L2

N . Putting this into p · J(L) = Ω(OUT), we obtain

δ · τ
2L2

N
· p = Ω(OUT). (7)

Plugging (6) into (7), we have

max

{
N logN

τL
· τ

2L2

N
· p, τ

2L2

N
· p
}

= Ω(OUT),

or

max

{
τpL logN,

τ2pL2

N

}
= Ω(OUT). (8)

Plugging in τ =
√

OUT
N , N = IN

3 ,

max

{
log IN · pL

√
OUT

IN
,
OUT · pL2

IN2

}
= Ω(OUT).

The theorem is then proved after rearranging the terms.

Ignoring logarithmic factors, this lower bound completes our understanding of the line-3 join
in terms of output-optimality: (1) When OUT ≤ IN, the Yannakakis algorithm has linear load

O
(

IN
p

)
. (2) When IN < OUT ≤ p · IN, the lower bound becomes Ω̃

(√
IN·OUT
p

)
, which is matched

by our new algorithm. (3) When OUT ≥ p · IN, the lower bound is Ω
(

IN√
p

)
, which is matched by

the worst-case optimal algorithm in [19, 24]. In particular, this means that when OUT is large
enough, the load complexity of the join is no longer output-sensitive. This also stands in contrast
with the RAM model, where the complexity of any acyclic join always grows linearly with OUT.

An easy corollary is the following result, which shows that instance-optimality is not achievable
for the line-3 join.

Corollary 2. For any IN ≥ p3/2, there is an instance R with input size Θ(IN) for the line-3
join, such that any tuple-based algorithm computing the join in O(1) rounds must have a load of
Ω( IN

p1/2 log IN
), while Linstance(p,R) = O( IN

p ).

Proof. We use OUT = p · IN, τ =
√
p in the lower bound construction above. Plugging these values

into (8), we obtain the claimed lower bound. On the other hand, we have Linstance(p,R) as large as

max{ IN

p
, (
τ IN

p
)1/2, (

OUT

p
)1/3} = max{ IN

p
,
IN1/2

p1/4
, IN1/3}.

As long as IN ≥ p3/2, the first term dominates.

19



5 Acyclic Joins

In this section, we first extend the results from the previous section to arbitrary acyclic joins.
Specifically, the algorithm is a (nontrivial) generalization of the line-3 algorithm, but it is self-
contained; the lower bound builds on top of the hard instance of the line-3 join.

5.1 Algorithm

As a preprocessing step, we remove all dangling tuples. We also assume that the output size OUT
has been computed (an MPC primitive).

Recall that in an acyclic join Q = (V, E), the hyperedges E can be organized into a join tree
T , such that for each attribute x ∈ V, the nodes corresponding to Ex are connected in T . Given
such a join tree T , our algorithm recursively decomposes the join into multiple pieces, and apply a
different join strategy for each.

We start from an internal node of T whose children are all leaves. Let this node be e0, which
has k leaf children e1, · · · , ek (see Figure 5 for an example). Let si = e0 ∩ ei be the set of join
attributes between e0 and ei. We will assume si 6= ∅; otherwise we can add a dummy attribute to
both e0 and ei and all tuples in R(e0) and R(ei) share the same value on this dummy attribute
(e.g., we add a dummy attribute H ′ to both e0 and e6 in Figure 5). Note that the join tree ensures
the property that if x ∈ ei ∩ ej for i 6= j, then x ∈ e0.

ABDGH′

ABC BD B ADE DF HH′

e0

e1 e2 e3 e4 e5 e6

Figure 5: A node e0 in the join tree T and its leaf children e1, e2, e3, e4, e5, e6.

Let Nα =
∑k

i=1 |R(ei)| and Nβ = IN − Nα. We will actually prove a slightly tighter bound,

that the load of our algorithm is bounded by O( IN
p +

√
Nβ ·OUT

p +
√

OUT
p ).

Set τ =
√

OUT
Nβ

. Our algorithm proceeds in three steps.

Step (1): Computing data statistics. In each relation R(ei), i = 1, . . . , k, let v be an
assignment of values for attributes si. The set of heavy assignments in R(ei) is

H(si, ei) = {v ∈ πsiR(ei) : |σsi=vR(ei)| ≥ τ}.

Tuples in R(ei) can also be identified as heavy or light, depending on their projection on attributes
si. More precisely, a tuple t ∈ R(ei) is heavy if πsit ∈ H(si, ei). The set of heavy tuples and light
tuples in R(ei) are denoted as RH(ei) and RL(ei), respectively. All the statistics can be computed
in by the sum-by-key and multi-search primitives with linear load.

Let Ē = E − {e0, e1, · · · , ek}. We decompose the join into the following sub-joins:

R(e0) on R?(e1) on · · · on R?(ek) on
(
one∈Ē R(e)

)
,

where each ? can be either H or L. Note that there are 2k, which is a constant, sub-joins, so we
can afford to use p servers for each sub-join. If a sub-join involves at least one RH(ei), we apply
the procedure in step (2) to it. In step (3), we handle the case where all ? are L.
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Step (2): Sub-joins with at least one RH(ei). Without loss of generality, suppose RH(e1) is
in the sub-join, i.e., we need to compute the sub-join

R(e0) on RH(e1) on R?(e2) on · · · on R?(ek) on
(
one∈Ē R(e)

)
,

where each ? can be either H or L. The algorithm consists of three steps:

(2.1) Compute R′(e0) = R(e0) nRH(e1).

(2.2) Compute R′ = R′(e0) on R?(e2) on · · · on R?(ek) on
(
one∈Ē R(e)

)
by any order.

(2.3) Compute RH(e1) on R′.

We analyze the load in each step: (2.1) is a primitive operation that incurs linear load. To bound
the load of (2.2), observe that |R′| ≤ OUT

τ , since each tuple in R′ joins with at least τ tuples in
RH(e1), each producing one final join result. Thus, the load is bounded by O( IN

p + OUT
p·τ ). The binary

join in (2.3) has input size OUT
τ +IN and output size OUT, incurring a load of O( IN

p + OUT
p·τ +

√
OUT
p ),

which dominates the first two steps. Plugging in the value of τ , the total load is bounded by

O( IN
p +

√
Nβ ·OUT

p +
√

OUT
p ), as desired.

Step (3): The sub-join with all RL(ei). It remains to compute the following sub-join:

R(e0) on RL(e1) on · · · on RL(ek) on
(
one∈Ē R(e)

)
.

We further divide R(e0) into heavy and light tuples, as follows. Let s = s1 ∪ s2 ∪ · · · ∪ sk, and
let v be an assignment over attributes s. The set of heavy assignments in R(e0) is define as

H(s, e0) =

{
v ∈ πsR(e0) :

k∏
i=1

|σsi=πsivRL(ei)| ≥ τ

}
.

Tuples in R(e0) are classified as heavy or light, depending on their projection on attributes s, i.e.,
a tuple t ∈ R(e0) is heavy if πst ∈ H(s, e0), and light otherwise. Similarly, denote the heavy and
light tuples in R(e0) as RH(e0) and RL(e0), respectively.

These statistics can also be computed using the primitives, but with some more care. For
each relation RL(ei), we first use sum-by-key to compute |σsi=viRL(ei)| for every vi ∈ πsiRL(ei).
This gives us a list of (vi, |σsi=viRL(ei)|) pairs. Then, we use multi-search to find, for each tuple
t ∈ R(e0), the up to k pairs (vi, |σsi=viRL(ei)|) such that σsit = vi. After this step, each tuple in
R(e0) is attached with k values, and we multiply them together to decide if the tuple is heavy or
light.

Step (3.1): The sub-join with RH(e0). We first compute the following sub-join:

RH(e0) on RL(e1) on · · · on RL(ek) on
(
one∈Ē R(e)

)
.

The algorithm consists of three steps:

(3.1.1) Compute R′(e0) = RH(e0) on
(
one∈Ē R(e)

)
by any order.

(3.1.2) Compute R′(ei) = RH(e0) on RL(ei) for each i = 1, · · · , k.

(3.1.3) Compute R′(e0) on R′(e1) on · · · on R′(ek). Note that each of these relations contains all
attributes in e0, so it is a hierarchical join (it is actually tall-flat), so we can use the instance-
optimal algorithm in Section 3 to compute this join.
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Now we analyze the load of each step: First, observe that |R′(e0)| ≤ OUT
τ . This is because

the projection of each tuple in R′(e0) on s is a heavy assignment, so it will produce at least τ
join results after joining with the RL(ei)’s. Therefore, the load of computing the join in (3.1.1)

is O( IN
p + OUT

p·τ ). Each binary join in (3.1.2) has a load of O( IN
p +

√
OUT
p ). Note that each join

result R′(ei) has size bounded by Nβ · τ , since any tuple in R(e0) can join with at most τ tuples in
RL(ei). Thus, the hierarchical join in (3.1.3) has input size O(Nβ · τ + OUT

τ ) and output size OUT,

so the instance-optimal algorithm has load O(
Nβ ·τ
p + OUT

p·τ +
√

OUT
p ) according to Corollary 1. All

the loads are bounded by O( IN
p +

√
Nβ ·OUT

p +
√

OUT
p ), as desired.

Step (3.2): The sub-join with RL(e0). Finally, we are left with the sub-join

RL(e0) on RL(e1) on · · · on RL(ek) on
(
one∈Ē R(e)

)
.

This is actually the only case where we need recursion:

(3.2.1) Compute R′L(e0) = RL(e0) on RL(e1) on · · · on RL(ek) by any order.

(3.2.2) If Ē 6= ∅, compute R′L(e0) on
(
one∈Ē R(e)

)
recursively.

Now we analyze the load: First, we have |R′L(e0)| ≤ Nβ · τ , since the projection of each tuple

in RL(e0) on s is a light assignment. Thus, the load of step (3.2.1) is O( IN
p +

Nβ ·τ
p ), which is also

bounded by O( IN
p +

√
Nβ ·OUT

p +
√

OUT
p ). So far, we have completed the base case of the induction

proof.
For the join to be computed recursively in step (3.2.2), its input size is at most IN +Nβ · τ and

output size is at most OUT. More importantly, Nβ can only become smaller, since e0 becomes a leaf
in the residual join and |R(e0)| is no longer included in Nβ, no matter which node in the residual
join is picked to be its new e0. By the induction hypothesis, computing the residual join recursively

incurs a load of O( IN
p +

Nβ ·τ
p +

√
Nβ ·OUT

p +
√

OUT
p ), thus bounded by O( IN

p +

√
Nβ ·OUT

p +
√

OUT
p ).

Note that the recursion will increase the constant in the big-Oh, but as the recursion depth
depends only on the query not the data size, it does not change the asymptotic result.

This completes the induction proof that the algorithm has a load of O( IN
p +

√
Nβ ·OUT

p +
√

OUT
p ).

Observing that Nβ ≤ IN and
√

OUT
p ≤

√
IN·OUT
p , we obtain the following result.

Theorem 7. There is an algorithm that computes any acyclic join with load O( IN
p +

√
IN·OUT
p ) in

O(1) rounds.

5.2 Lower bound

In Section 6 we have constructed a hard instance for the line-3 join and have shown that any

algorithm must incur a load of Ω(min{
√

IN·OUT
p·log IN , IN√

p}) on this instance. In this section, we generalize

this lower bound to an arbitrary acyclic join that is not r-hierarchical. Note that for r-hierarchical

joins, we can achieve a smaller load O( IN
p +

√
OUT
p ) (see Corollary 1), so this establishes a separation

between r-hierarchical joins and acyclic joins.
The basic idea in the lower bound is that any acyclic join must “include” a line-3 join, such that

any algorithm computing the acyclic join must also compute the line-3 join. This is more formally
captured by the following structural lemma on acyclic and r-hierarchical joins. To state the lemma,
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we need some terminology. In a hypergraph Q = (V, E), a path between x, y ∈ V, denoted P (x, y), is
a sequence of vertices starting with x and ending with y, such that each consecutive pair of vertices
appear together in an edge. The length of a path is defined as the number of vertices in P (x, y)
minus 1. A path P (x, y) is minimal if there is no other path P ′(x, y) that is a strict subsequence
of P (x, y). It is easy to see that P (x1, xk) = (x1, x2, · · · , xk) is minimal if and only if there exists
no edge e ∈ E containing xi and xj with |j − i| > 1. Note that a shortest path must be minimal,
but not vice versa.

Lemma 2. An acyclic join is not r-hierarchical if and only if it has a minimal path of length 3.

The proof is given in Appendix A. With this lemma, we can extend the hard instance for the line-
3 join to any acyclic but non-r-hierarchical join Q = (V, E). Let (x1, x2, x3, x4) be a minimal path
of length 3 in Q, and suppose {x1, x2} ⊆ e1, {x2, x3} ⊆ e2, {x3, x4} ⊆ e3. Let R = {R1(x1, x2),
R2(x2, x3), R3(x3, x4)} be the hard instance for the line-3 join. We construct the hard instance
R′ = {R′(e) : e ∈ E} for Q as follows. The domain of xi, i = 1, 2, 3, 4 is the same as in R. For any
other attribute y, set |dom(y)| = 1.

Since the path is minimal, each e ∈ E must fall into one of the following three cases:

1. For any e with e∩{x1, x2, x3, x4} = ∅, R′(e) contains only one tuple connecting the only value
in the domains of attributes in e.

2. If e∩ {x1, x2, x3, x4} = {xi}, i = 1, 2, 3, 4, then R′(e) contains |dom(xi)| tuples, each having a
distinct value of dom(xi).

3. If e ∩ {x1, x2, x3, x4} = {xi, xi+1}, i = 1, 2, 3, then R′(e) contains |Ri(xi, xi+1)| tuples such
that πxi,xi+1R

′(e) = Ri(xi, xi+1).

It can be easily verified that Q(R′) is exactly the join results of the line-3 join on R, so the
same lower bound applies. However, since the output size of the line-3 join is at most IN2, we do
have a condition on OUT:

Theorem 8. For an acyclic but non-r-hierarchical join and any IN ≥ p3/2,OUT ≤ IN2, there exists
an instance R with input size Θ(IN) and output size Θ(OUT) such that any tuple-based algorithm

computing it in O(1) rounds must have a load of Ω(min{
√

IN·OUT
p·log IN , IN√

p}).

Similar to the line-3 join, this lower bound shows that our acyclic join algorithm is output-
optimal (up to a logarithmic factor) when OUT ≤ p · IN.

Furthermore, the same argument for Corollary 2 can be used here to show that instance-optimal
algorithms do not exist for any acyclic but non-r-hierarchical join.

Corollary 3. For any IN ≥ p3/2, there is an instance R with input size Θ(IN) for any acyclic but
non-r-hierarchical join, such that any tuple-based algorithm that computes the join in O(1) rounds
must have a load of Ω( IN

p1/2 log IN
), while Linstance(p,R) = O( IN

p ).

6 Join-Aggregate Queries

We consider join-aggregate queries over annotated relations [16, 21]. Let (R,⊕,⊗) be a commu-
tative semiring. Every tuple t is associated with an annotation w(t) ∈ R. Let Q = (V, E) be a
join hypergraph. The annotation of a join result t ∈ Q(R) is w(t) := ⊗te∈R(e),πet=te,e∈Ew(te). Let
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y ⊆ V be a set of output attributes and ȳ = V − y the non-output attributes. A join-aggregate
query Qy(R) asks us to compute

⊕ȳQ(R) = ⊕ȳQ(R) =
{

(ty, w(ty)) : ty ∈ πyQ(R), w(ty) = ⊕t∈Q(R):πyt=tyw(t)
}
.

In plain language, a join-aggregate query first computes the join Q(R) and the annotation of each
join result, which is the ⊗-aggregate of the tuples comprising the join result. Then it partitions
Q(R) into groups by their projection on y. Finally, for each group, it computes the ⊕-aggregate
of the annotations of the join results.

Many queries can be formulated as special join-aggregate queries. For example, if we take R to
be the domain of integers, ⊕ to be addition, ⊗ to be multiplication, and set w(t) = 1 for all t, then
it becomes the COUNT(*) GROUP BY y query; in particular, if y = ∅, the query computes |Q(R)|.

The join-project query πyQ(R), also known as a conjunctive query, is a special join-aggregate
query, and we extend the terminology from [6] to join-aggregate queries. A width-1 GHD of a
hypergraph Q = (V, E) is a tree T , where each node u ∈ T is a subset of V, such that

1. (coherence) for each attribute x ∈ V, the nodes containing x are connected in T ;

2. (edge coverage) for each hyperedge e ∈ E , there exists a node u ∈ T such that e ⊆ u; and

3. (width-1) for each node u ∈ T , there exists a hyperedge e ∈ E such that u ⊆ e.

Given a set of output attributes y (a.k.a. free variables), we say that T is free-connex if there is a
subset of connected nodes of T including its root, denoted as T ′ (such a T ′ is said to be a connex
subset), such that y =

⋃
u∈T ′ u. A join-aggregate query Qy(R) is free-connex if it has a free-connex

width-1 GHD.
As preprocessing, we remove the dangling tuples and then apply the reduce procedure repeatedly

to remove an e ∈ E if there is another e′ ∈ E such that e ⊂ e′. Note that while dangling tuples
can be just discarded, we cannot simply discard R(e) in the reduce procedure. To ensure that
the annotations will be computed correctly, we should replace R(e′) with R(e) on R(e′) and then
discard R(e). Note that by the earlier definition, the annotation of a join result is the ⊗-aggregate
of the annotations of tuples comprising the join result, so the annotation in R(e) are aggregated
into those in R(e′).

We find a free-connex width-1 GHD T of Q [6, 5]. Note that the nodes of T also define a
hypergraph, and can be regarded as another join-aggregate query, but with the property that it
has a free-connex subset T ′ such that y =

⋃
u∈T ′ u. We construct an instance RT = {R(u) : u ∈ T }

such that Qy(R) = T (RT ), where T (RT ) denotes the result of running the query defined by πyT
on RT . Observe that on a reduced Q, the condition e ⊆ u in property (2) of a width-1 GHD can
be replaced by e = u, since if e ⊂ u and u ⊆ e′ for some other e′ ∈ E due to property (3), we would
find e ⊂ e′. This implies that T has only two types of nodes: (1) all hyperedges in E , and (2) nodes
that are a proper subset of some e ∈ E . Then we construct RT as follows. For each u ∈ T of type
(1), we set R(u) := R(e) where e = u; for each u ∈ T of type (2), we set R(u) := R(e) for any
e ∈ E , u ⊂ e, but the annotations of all tuples in R(u) are set to 1 (the ⊗-identity). Below, we will
focus on computing T (RT ).

Joglekar et al. [21] modified the Yannakakis algorithm into AggroYannakakis, and showed
that it has load O( IN

p + OUT
p ) on any free-connex join-aggregate query8. Since we want to avoid

8The bound stated in [21] is actually O( (IN+OUT)2

p
), because they used a sub-optimal binary join algorithm as the

subroutine following [2]. Replacing it with the optimal binary join algorithm in [8, 18] yields the claimed bound. In
addition, they only considered simple join-aggregate queries, which are a strict subclass of free-connex queries. But
after our conversion from Qy(R) to T (RT ), their algorithm actually works for all free-connex queries.
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Algorithm 1: LinearAggroYannakakis(T , T ′,RT )

1 RT ′ = ∅;
2 for u ∈ T in some bottom-up ordering do
3 if u ∈ T ′ then
4 add R(u) to RT ′ ;
5 else
6 ȳ′ ← ȳ ∩ {x ∈ V : TOPT (x) = u} ;
7 R(u)← ⊕ȳ′R(u) (sum-by-key)
8 u′ ← parent of u in T ;
9 R(u′)← R(u′) on R(u); (multi-search)

the sub-optimal O(OUT
p ) term, we modify their algorithm into LinearAggroYannakakis, which

runs with linear load. It aggregates over all the non-output attributes, returning a modified query
T ′(RT ′) that only has the output attributes. The guarantees of LinearAggroYannakakis is
stated in the following lemma.

Lemma 3. LinearAggroYannakakis is a constant-round, linear-load algorithm that, given any
free-connex width-1 GHD T and an instance RT , returns an instance RT ′ such that T (RT ) =
T ′(RT ′), where T ′ is the free-connex subset of T .

Proof. Let T be a width-1 free-connex GHD and T ′ be the connex subset of T such that y =⋃
u∈T ′ u. For an attribute x, denote the highest node in T containing x as TOPT (x). Below,

we describe LinearAggroYannkakakis, an algorithm that converts RT into RT ′ such that
T (RT ) = T ′(RT ′).

The LinearAggroYannkakakis algorithm visits each node u ∈ T in a bottom-up fashion
over T . If u ∈ T ′, i.e., all its attributes are output attributes, we add R(u) to RT ′ (line 4).
Otherwise, we aggregate over ȳ′, which are the non-output attributes in u that do not appear in
the ancestors of u (line 6–7). This is a sum-by-key problem. Note that after the aggregation, the
attributes of R(u) are u− ȳ′. Let u′ be the parent of u in T . Note that u′ always exists since the
root of T must be in T ′. Then we replace R(u′) by R(u′) on R(u) (line 9). Below we show how this
join can be done in linear load. Consider any non-output attribute x ∈ u− ȳ′−y. Since TOPT (x)
is an ancestor of u, we have x ∈ u′. Consider any output attribute y ∈ u ∩ y. In the connex
subset T ′, there exists u′′ ∈ T such that y ∈ u′′. Each node on the path from u′′ to u must contain
attribute y, including u′. Thus, we must have u− ȳ′ ⊆ u′. This means that tuples in R(u′) on R(u)
are actually the same as those in R(u′), except that we update the annotation of each t ∈ R(u′)
as w(t) ← w(t) ⊗ w(t′), where t′ ∈ R(u), t′ = πu−ȳ′t. Thus, this can be done by the multi-search
primitive in linear load. Because this algorithm never increases the size of any relation, the two
primitive operations (line 7 and 9) incur linear load throughout the bottom-up traversal of T .

It should be obvious from the algorithm description above that LinearAggroYannkakakis
incurs linear load, but we still need to argue for its correctness. Note that RT ′ has only output
attributes. It suffices to show that T (RT ) = T ′(RT ′).

Joglekar et al. [21] have shown that for any leaf u ∈ T and its parent u′, performing the opera-
tion in lines 6–9 and then discarding R(u) does not change the query results. AggroYannkakakis
performs this operation over all the relations of T in a bottom-up fashion, and applying this fact
inductively means that the root relation becomes the final query result in the end, but this incurs
load O( IN

p + OUT
p ). LinearAggroYannkakakis performs this operation on a subset of relations,

and stops as soon as it sees a node in T ′. Then applying the result of [21] inductively up until T ′
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proves our claim.

Because T ′ is acyclic, we can run our output-optimal algorithm to compute T ′(RT ′). More
precisely, when the algorithm emits a join result, we compute the ⊗-aggregate of the tuples com-
prising the join result. Note that in the following result, OUT = |Qy(R)|, i.e., the size of the final
output, which can be much smaller than |Q(R)|.

Theorem 9. There is an algorithm that computes any free-connex join-aggregate query in O(1)

rounds with load O( IN
p +

√
IN·OUT
p ).

Observing that the join size of a (non-aggregate) join is a special join-aggregate query with
y = ∅, we obtain the following result, which has been used as a primitive. Note that there is no
circular dependency here, because it only uses LinearAggroYannakakis.

Corollary 4. For any acyclic join Q and any instance R, |Q(R)| can be computed in O(1) rounds
with load O( IN

p ).

Furthermore, if T ′ is r-hierarchical, we run our instance-optimal algorithm to compute T ′(RT ′).
In fact, we can precisely characterize the class of queries with an r-hierarchical T ′. A query is called
out-hierarchical if it is free-connex and its residual query by removing all non-output attributes is
r-hierarchical.

Lemma 4. A join-aggregate query Qy is out-hierarchical if and only if it has a width-1 GHD T
with a connex subset T ′ such that y =

⋃
u∈T ′ u and T ′ is r-hierarchical.

Proof. First we have known that join-aggregate query Qy is free-connex iff it has a width-1 GHD
T with a connex subset T ′ such that y =

⋃
u∈T ′ u. Consider Qout = (y, {e ∩ y : e ∈ E}) the

residual query of Qy after removing all non-output attributes. Then it suffices to show that for a
free-connex query Qy, Qout is r-hierarchical iff T ′ is r-hierarchical.

An edge e ∈ E is out-irreducible if there exists no e′ ∈ E such that e ∩ y ⊂ e′ ∩ y or e ⊂ e′;
otherwise out-reducible. We first claim that for each out-irreducible e ∈ E there exists one node
v ∈ T ′ such that e ∩ y ⊆ v. Consider the node u ∈ T such that u = e. If u ∈ T ′, the claim holds
trivially. Otherwise, consider the lowest ancestor of u in T ′ as v. As each output attribute x ∈ u∩y
appears in some node of T ′, it also appears in v due to the coherence constraint. Thus, e ∩ y ⊆ v.

Recall that for each node u ∈ T , there exists an edge e ∈ E such that u ⊆ e. Correspondingly,
for each node v ∈ T ′, there exists an edge e ∈ E such that v ⊆ e∩y. Thus, for each out-irreducible
e ∈ E , there exists one node v ∈ T ′ such that e ∩ y = v, since if e ∩ y ⊂ v and v ⊆ e′ ∩ y for some
other e′ ⊆ E , e would be out-reducible. This implies that T ′ has only two types of nodes: (1) e∩y
for each out-irreducible e ∈ E , and (2) a proper subset of e ∩ y for some e ∈ E .

Not surprisingly, Qout also have two types of edges, (1) e ∩ y for each out-irreducible e ∈ E ,
and (2) e ∩ y for each out-reducible e ∈ E . Nodes in T ′ of type (1) are one-to-one mappings to
edges in Qout of type (1). Moreover, after applying the reduce procedure repeatedly on T ′ or Qout,
only nodes or edges of type (1) can survive. Thus, the reduced query of Qout is hierarchical iff the
reduced query of T ′ is hierarchical, and the Qout is r-hierarchical iff T ′ is r-hierarchical.

Theorem 10. For out-hierarchical query Qy and any instance R, there is an algorithm computing
it in O(1) rounds with load O( IN

p + Linstance(p,R,y)).

Note that the instance-optimal lower bound Linstance for a join-aggregate query is defined with
respect to the output attributes only, i.e.,

Linstance(p,R,y) := max
S⊆E

(
|πyQ(R, S)|

p

) 1
|S|
,
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where πyQ(R, S) = πy((one∈S R(e)) nQ(R)).

7 A Lower Bound on Triangle Join

Finally, we look beyond acyclic joins. In particular, we give an output-sensitive lower bound on
the triangle join Q4 = R1(B,C) on R2(A,C) on R3(A,B). For Q4, a worst-case lower bound of
Ω( IN

p2/3
) is known, by the following argument: A server loading L tuples can emit at most O(L3/2)

join results by the AGM bound [4], while the join size of Q4 can be as large as Ω(IN3/2). Then

setting p · L3/2 = Ω(IN3/2) yields this lower bound. However, if OUT is used as a parameter, this
argument only leads to a lower bound of Ω((OUT

p )2/3). Below, we improve this lower bound to the
following:

Theorem 11. For any IN/ log2 IN ≥ 3p3,OUT, there exists an instance R for Q4 with input size
Θ(IN) and output size Θ(OUT) such that any tuple-based algorithm computing it in O(1) rounds
must have a load of Ω(min{ IN

p + OUT
p logN ,

IN
p2/3
}).

Proof. When OUT ≤ IN, the claimed lower bound simplifies to Ω( IN
p ), so we will only consider the

case OUT > IN. Let N = IN/3 and τ = OUT
N . Note that τ ≤

√
N as implied by the AGM bound.

Our construction of the hard instance R is illustrated in Figure 6.

A

CB

|dom(A)| = τ

|dom(C)| = N
τ

|dom(B)| = N
τ

Figure 6: A randomly constructed hard instance.

Set |dom(A)| = τ , and |dom(B)| = |dom(C)| = N
τ . Set R2(A,B) = dom(A) × dom(C) and

R3(A,B) = dom(A) × dom(B). The relation R1(B,C) is constructed randomly, in which each

distinct value in B and each distinct value of C have a probability of τ2

N to form a tuple. Note that
relations R2 and R3 are deterministic and always have N tuples. Relation R1 is probabilistic with
N tuples in expectation. So this instance has input size 3N = IN and output size (Nτ )2 · τ2N ·τ = OUT
in expectation. By the Chernoff bound, the probability that the input size and output size deviate
from their expectation by more than a constant factor is at most exp(−Ω(|R1|)) = exp(−Ω(N)).

Similar to the proof of Lemma 6, we will show that with positive probability, an instance
constructed this way will have a bounded J(L), the maximum number of join results a server can
produce, if it loads at most L tuples from each relation. Then setting p · J(L) = Ω(OUT) yields a
lower bound on L.

To bound J(L), we first argue that on any instance constructed as above, we can limit the
choice of the L tuples loaded from R2(A,C) (R3(A,B), respectively) by any server to the form
X × Y for some X ∈ dom(A), Y ∈ dom(C) (Y ∈ dom(B), respectively), i.e., the algorithm should
load tuples from R2(A,B) and R3(A,C) in the form of a Cartesian product. More precisely, we
show below that making such a restriction will not make J(L) smaller by more than a constant
factor.
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Suppose a server has loaded L tuples from R1(A,B). Then the server needs to decide which L
tuples from R2 and R3 to load to maximize the number of triangles formed. This is a combinatorial
optimization problem that can be formulated as an integer linear program (ILP). Introduce a
variable uab for each pair a ∈ dom(A), b ∈ dom(B) and a variable vac for each pair a ∈ dom(A), c ∈
dom(C). Also let I(bc) = 1 if (b, c) ∈ R1 is loaded by the server, and 0 otherwise. Then ILP1

below defines this optimization problem, where a always ranges over dom(A), b over dom(B), c
over dom(C) unless specified otherwise.

ILP1 : maximize
∑

a,b,c I(bc) · uab · vac
s.t.

∑
a,b uab ≤ L∑
a,c vac ≤ L

uab ∈ {0, 1}, vac ∈ {0, 1},∀a, b, c

ILP2 : maximize
∑

b,c I(bc) · uab · vac
s.t. max{

∑
b uab,

∑
c vac} ≤ w

uab ∈ {0, 1}, vac ∈ {0, 1},∀b, c

ILP3 : maximize
∑

a ∆(wa)
s.t.

∑
awa ≤ 2L, wa ∈ {0, 1, · · · , L}, ∀a

We transform ILP1 into another ILP, shown as ILP3 above. ILP3 uses a function ∆(w), which
denotes the optimal solution of ILP2. ILP2 is parameterized by w and a, which finds the maximum
number of triangles that can be formed with the tuples loaded from R1(B,C) and a ∈ dom(A),
subject to the constraint that at most w tuples containing a are loaded from R2 and R3. Because
all values a ∈ dom(A) are structurally equivalent, the optimal solution of IL2 does not depend on
the particular choice of a, which is why we write the optimal solution of ILP2 as ∆(w). Also, it is
obvious that ∆(.) is a non-decreasing function. Then, ILP3 tries to find the optimal allocation of
the L tuples to different values a ∈ dom(A) so as to maximize the total number of triangles formed.
Let the optimal solutions of ILP1, ILP3 be OPT1, OPT3, respectively. Because ILP3 only restricts
the server to load at most 2L tuples from R2 and R3 in total, any feasible solution to ILP1 is also
a feasible solution to ILP3, so OPT1 ≤ OPT3. Next we construct a feasible solution of ILP3 with
the Cartesian product restriction above, and show that it is within a constant factor from OPT3,
hence OPT1.

Let w∗ = arg maxL
τ
≤w≤L

L
w ·∆(w). We choose L

w∗ values arbitrarily from dom(A) and allocate

w∗ tuples to each such a. For each such a, we use the optimal solution of ILP2 to find the w∗

tuples to load from R2 and R3. Note that the optimal solution is the same for every a, so each a
will choose the same sets of b’s and c’s. Thus, this feasible solution loads tuples from R1 and R2

in the form of Cartesian products. The number of triangles formed is W = L
w∗ ·∆(w∗). We show

that this is a constant-factor approximation of OPT3.

Lemma 5. W ≥ 1
3OPT3 ≥ 1

3OPT1.

Proof. Suppose OPT3 chooses a set of values A∗ from A, and each a ∈ A∗ has wa tuples loaded
from R2 and R3. A value a ∈ A∗ is efficient if ∆(wa)

wa
≥ ∆(w∗)

w∗ , otherwise inefficient. Denote the set

of efficient values as A∗1 and inefficient values as A∗2. Note that for every efficient value a, wa ≤ L
τ

by the definition of w∗.
We relate W and OPT3 by showing how to cover all the triangles reported by OPT3 with the

feasible solution constructed above. First, we use

∑
a∈A∗2

wa

3w∗ values of A each with w∗ tuples from
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R2 and R3 to cover the triangles reported by A∗2. The total number of tuples needed is at most
2
3

∑
a∈A∗2

wa ≤ 4
3L. The number of triangles that can be reported is∑

a∈A∗2
wa

3w∗
·∆(w∗) ≥ 1

3

∑
a∈A∗2

wa ·
∆(wa)

wa
=

1

3

∑
a∈A∗2

∆(wa).

Next, we use L
3w∗ values each with w∗ tuples from R2 and R3 to cover the triangles reported by

A∗1. The total number of tuples needed is 2
3L. Recall that wa ≤ L

τ for each a ∈ A∗1. The number of
triangles that can be reported is

L

3w∗
·∆(w∗) ≥ L

3
·

∆(Lτ )
L
τ

=
τ

3
·∆(

L

τ
) ≥ 1

3

∑
a∈A∗1

∆(wa),

where the rationale behinds the last inequality is that there are at most τ values in A∗1 and there
is ∆

(
L
τ

)
≥ ∆(wa) for each a ∈ A∗1 by the non-decreasing property of ∆(.).

Combining the two parts for the optimal solution A∗, our alternative solution loads at most 2L
tuples from R2 and R3, and can report at least 1

3 ·OPT3 triangles.

Next, we show that with positive probability (actually high probability), we obtain an instance
on which J(L) is bounded. By the analysis above, we only need to consider the case where tuples
from R2 and R3 are loaded in the form of Cartesian products. One value b ∈ dom(B) is loaded if
at least one tuple t ∈ R3(A,B) with πBt = b is loaded. Similarly, value c ∈ dom(C) is loaded if at
least one tuple t ∈ R2(A,C) with πCt = c is loaded. Suppose α and β distinct values from B and C
are loaded respectively. Note that we must have 1 ≤ α, β ≤ min{L, Nτ }. Without loss of generality,
assume α ≤ β. Due to Cartesian product constraint, the number of distinct values loaded from A
is at most τ = min{Lβ , τ}.

Case 1: αβ ≤ NL
τ2

.
We first upper bound the probability that the server can report many triangles on a random

instance, for a particular choice of α values loaded from dom(B) and β values from dom(C). Since
at most γ distinct values from A are loaded, each tuple loaded from R1(B,C) can form at most γ

triangles. Because each (b, c) pair have probability τ2

N to form a tuple in R1(B,C), on a random

instance, we expect to see τ2αβ
N tuples and τ2αβγ

N triangles. Note that this is always smaller than

τ
√

L3

N : (1) If τβ ≥ L, γ = L
β , then τ2αβγ

N ≤ τ2L
N ·
√
αβ ≤ τ2L

N ·
√

NL
τ2
≤ τ

√
L3

N ; (2) Otherwise, γ = τ ,

then τ2αβγ
N ≤ τ3β2

N ≤ τ3

N ·
L2

τ2
≤ τL2

N ≤ τ
√

L3

N . This server can report more than δτ
√

L3

N triangles,

for some δ > 1, if more than δτ
γ

√
L3

N tuples exist among those αβ pairs. By Chernoff bound, this

happens with probability no larger than exp

(
−Ω( δτγ

√
L3

N )

)
.

This is the probability that the server succeeds in reporting many triangles under a particular
choice of α values loaded from dom(B) and β values from dom(C). There are O

(
(Nτ )2

)
possible

(α, β) pairs. For each (α, β) pair, there are O (τγ) choices of loading γ values from A, O
(
(Nτ )α

)
choices of loading α values from B, and O

(
(Nτ )β

)
choices from C. Thus the server has exp(O((α+

β + γ) logN)) possible choices. By the union bound, the probability that any of these choices

produces more than δτ
√

L3

N join results is at most

exp

(
−Ω

(
δτ

γ

√
L3

N

)
+O((α+ β + γ) logN)

)
, (9)
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which is exponentially small if

δτ

γ

√
L3

N
≥ c1 ·

L

γ
logN ≥ c1 · β logN

and
δτ

γ

√
L3

N
≥ c2 ·

τ2

γ
logN ≥ c2 · γ logN

for some sufficiently large constants c1, c2. Rearranging, this becomes

δ ≥ c3 ·max

{
1

τ

√
N

L
logN, τ

√
N

L3
logN

}
(10)

for some sufficiently large constant c3. Under this condition, the probability in (9) is at most

exp

(
−Ω

(
δ
√

L3

N

))
.

Case 2: αβ > NL
τ2

. In this case, we have β ≥
√
NL
τ . The server loads L

β distinct values from A,

so each tuple loaded from R1 can form at most L
β triangles. The server can load at most L tuples

from R1, so at most L2

β ≤ δτ
√

L3

N triangles can be reported, for any

δ ≥ 1. (11)

Combining these two cases, under the condition (10) and (11) on δ, with high probability the

server cannot find any way to load L tuples to report more than δτ
√

L3

N triangles. Therefore, on

these instances, we have

J(L) ≤ δτ
√
L3

N
, (12)

where we set

δ = c3 max

{
1

τ

√
N

L
logN, τ

√
N

L3
logN, 1

}
. (13)

With the facts that N
p ≤ L and OUT ≤ N

3
2 , we observe

τ

√
N

L3
logN =

OUT√
NL3

logN ≤ N
3
2 logN

N
1
2 (Np )

3
2

=
p

3
2 logN

N
1
2

≤ 1,

where the last inequality follows from our assumption N = IN/3 ≥ p3 log2 IN ≥ p3 log2N . Then
(13) can be simplified to

δ = c3 max

{
1

τ

√
N

L
logN, 1

}
. (14)

Plugging (12) and (14) into p · J(L) = Ω(OUT) = Ω(Nτ), we obtain

L =Ω

(
N

δ
2
3 p

2
3

)
= Ω

min


(

τ

logN
·
√
L

N

) 2
3

, 1

 · Np2/3

 .
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Finally, after plugging in τ = OUT/N and rearranging, we obtain

L = Ω

(
min

{
OUT

p logN
,

IN

p2/3

})
.

Remark. Our lower bound has the following consequences:

1. When OUT ≥ IN · p1/3, the lower bound becomes Ω̃( IN
p2/3

), which means that the worst-case

optimal algorithm of [24] is actually also output-optimal in this parameter range. Finding
Ω̃(IN · p1/3) triangles is as difficult as finding Θ(IN3/2) triangles.

2. When IN ≤ OUT ≤ IN · p1/3, the lower bound becomes Ω̃(OUT
p ) while we do not have a

matching upper bound yet. Nevertheless, this already exhibits a separation from acyclic

joins, which can be done with load O(
√

IN·OUT
p ). The gap is at least Ω̃(

√
OUT

IN ).
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A Proof of Lemma 2

Proof. Direction (⇐): In an acyclic join Q = (V, E), a minimal path of length 3 is a sequence of
4 vertices (x1, x2, x3, x4), such that {x1, x2} ⊆ e1, {x2, x3} ⊆ e2, {x3, x4} ⊆ e3 and there exists no
edge e ∈ E with {x1, x3} ⊆ e, or {x1, x4} ⊆ e, or {x2, x4} ⊆ e. This already testifies that Q is not
hierarchical. To show that it is not r-hierarchical, consider the process of repeatedly applying the
reduce procedure to Q. If any of {e1, e2, e3} is removed in the process, say e1, there must exist an
edge e′1 such that e1 ⊆ e′1, x3 /∈ e′1, x4 /∈ e′1. The same applies for e2 and e3. Thus we can always
find three edges e′1, e

′
2, e
′
3 such that e′2 ∈ Ex2 ∩ Ex3 , e′1 ∈ Ex2 − Ex3 , e′3 ∈ Ex3 − Ex2 after applying the

reduce procedure, so this query is not r-hierarchical.

Direction (⇒): The proof is constructive. We will show below how to find a minimal path of
length 3 in any acyclic but non-r-hierarchical join. We first apply the reduce procedure to Q such
that no edge is contained in another. The rationale behind this is that a minimal path between
two vertices x, y ∈ V of length 3 in the reduced join is also a minimal path between x, y of length
3 in the original join. Then we proceed in 3 steps: (We give an intuitive illustration of the results
after each step, in Figure 7.)

Step 1: Find a subgraph defined by three distinct edges {e1, e2, e3} and four distinct vertices
{x1, x2, x3, x4}, such that x1 ∈ e1, x1 /∈ e2 ∪ e3, x2 ∈ e1 ∩ e2, x2 /∈ e3, x3 ∈ e2 ∩ e3, x3 /∈ e1, x4 ∈
e3, x4 /∈ e1 ∪ e2.

Step 2: Find a subgraph defined by three distinct edges {e1, e2, e3} and four distinct vertices
{x1, x2, x3, x4}, such that x1 ∈ e1, x1 /∈ e2 ∪ e3, x2 ∈ e1 ∩ e2, x2 /∈ e3, x3 ∈ e2 ∩ e3, x3 /∈ e1, x4 ∈
e3, x4 /∈ e1 ∪ e2, and there exists no edge e ∈ E with {x1, x2, x3} ⊆ e or {x2, x3, x4} ⊆ e.

Step 3: Find a minimal path of length 3 between x1 and x4. Our construction and its correctness

e2

e3e1

x3

x1

x2 x3

x4

x2

x1 x4

Figure 7: The left figure is the result of step 1 and the right figure is the result of step 2 & 3.

proof is based on a basic property of acyclic join, as stated in Lemma 6. With Lemma 6, we are
able to prove stronger results in Corollary 5 and Corollary 6, which will be used as building blocks
in proving Lemma 2.

Lemma 6. For three distinct edges exy, exz, eyz ∈ E, if exy ∩ exz− eyz 6= ∅, exy ∩ eyz− exz 6= ∅, exz ∩
eyz − exy 6= ∅, then there exists one edge e ∈ E such that exy ∩ exz ⊆ e, exz ∩ eyz ⊆ e, exy ∩ eyz ⊆ e.

Proof of Lemma 6: Consider attributes x, y, z such that x ∈ exy∩exz−eyz, y ∈ exy∩eyz−exz, z ∈
exz ∩ eyz − exy. In the GYO reduction [1], we observe that (1) Any of x, y, z won’t be removed
as an unique attribute before any edge of exy, exz, eyz is removed; (2) Any of exy, exz, eyz won’t be
removed as an empty edge before any of x, y, z is removed. So it is always feasible to identify one
edge e ∈ E such that exy ∩ exz − eyz ⊆ e, exy ∩ eyz − exz ⊆ e, exz ∩ eyz − exy ⊆ e. Moreover, any
attribute in exy ∩ exz ∩ eyz if exists won’t be removed as an unique attribute before any edge of
exy, exz, eyz is removed. Thus we come to the conclusion in Lemma 6.
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Corollary 5. For two distinct edges exy, exz ∈ E and a subset of edges Eyz ⊆ E − {exy, exz}, if

exy ∩ exz − eyz 6= ∅, exy ∩ eyz − exz for each eyz ∈ Eyz and
(⋂

eyz∈Eyz(exz ∩ eyz)
)
− exy 6= ∅, then

there exists one edge e ∈ E such that exy ∩ exz ⊆ e,
⋃
eyz∈Eyz(exy ∩ eyz) ⊆ e,

⋂
eyz∈Eyz(exz ∩ eyz) ⊆ e.

Proof of Corollary 5: For simplicity, rename edges in Eyz as e1, e2, · · · , ek. We prove it by
induction. The base case when k = 1 is precisely characterized and solved by Lemma 6. We hold
the hypothesis that there exists one edge e ∈ E such that

e ⊇ (exy ∩ exz) ∪

 ⋃
i∈{1,··· ,k−1}

(exy ∩ ei)

 ∪
 ⋂
i∈{1,··· ,k−1}

(exz ∩ ei)

 .

Moreover, if exy ∩ ek ⊆ e, edge e is exactly the one characterized by Corollary 5 and we are done.
Otherwise, (exy ∩ ek)− e 6= ∅.

We observe that
(⋂

i∈{1,··· ,k}(exz ∩ ei)
)
⊆ e∩ek, so there is (e∩ek)−exy 6= ∅. If exy∩e−ek = ∅,

there is exy ∩ e ⊆ ek. So far we have following observations on ek that (1) ek ⊇ exy ∩ e ⊇
(exy ∩ exz)∪

(⋃
i∈{1,··· ,k−1}(exy ∩ ei)

)
; (2) ek ⊇ exy ∩ ek; (3) ek ⊇ exz ∩ ek ⊇

⋂
i∈{1,··· ,k}(exz ∩ ei), or

equivalently,

ek ⊇ (exy ∩ exz) ∪

 ⋃
i∈{1,··· ,k}

(exy ∩ ei)

 ∪
 ⋂
i∈{1,··· ,k}

(exz ∩ ei)

 .

Thus edge ek is exactly the one characterized by Corollary 5, and we are done. Otherwise, exy∩e−
ek 6= ∅. Implied by Lemma 6, there exists an edge e′ ∈ E such that exy∩ek ⊆ e′, exy∩e ⊆ e′, ek∩e ⊆
e′. More precisely, (1) e′ ⊇ exy ∩ e ⊇ (exy ∩ exz) ∪

(⋃
i∈{1,··· ,k−1}(exy ∩ ei)

)
; (2) e′ ⊇ exy ∩ ek; (3)

e′ ⊇ ek ∩ e ⊇
⋂
i∈{1,··· ,k}(exz ∩ ei). Or equivalently,

e′ ⊇ (exy ∩ exz) ∪

 ⋃
i∈{1,··· ,k}

(exy ∩ ei)

 ∪
 ⋂
i∈{1,··· ,k}

(exz ∩ ei)

 ,

thus edge e′ is exactly the one characterized by Corollary 5, and we are done.

Corollary 6. For a set of distinct vertices x, y1, y2, · · · , yk, if there exists one edge e0 ∈ E such
that x /∈ e0, {y1, y2, · · · , yk}
⊆ e0, and there exists one edge ei ∈ E such that {x, yi} ⊆ ei for each i ∈ {1, 2, · · · , k}, then there
exists one edge e′ ∈ E such that {x, y1, y2, · · · , yk} ⊆ e′.

Proof of Corollary 6: We prove it by induction. The base case when k = 1 is trivial. We hold
the hypothesis that there exists one edge e ∈ E such that {x, y1, y2, · · · , yk−1} ⊆ e.

If yk ∈ e, edge e is exactly the one characterized by Corollary 6 and we are done. Moreover, if
{y1, y2, · · · , yk−1} ⊆ ek, edge ek is exactly the one characterized by Corollary 6 and we are done.
Otherwise, yk /∈ e and {e1, e2, · · · , ek−1} − ek 6= ∅. Note that yk ∈ ek ∩ e0 − e, x ∈ ek ∩ e − e0,
and e ∩ e0 − ek 6= ∅. Implied by Lemma 6, there exists one edge e′ ∈ E such that e ∩ ek ⊆ e′,
ek ∩ e0 ⊆ e′ and e0 ∩ e ⊆ e′. More precisely, {e1, e2, · · · , ek−1} ⊆ e ∩ e0 ⊆ e′, {x} ⊆ e ∩ ek ⊆ e′, and
{ek} ⊆ ek ∩ e0 ⊆ e′, thus {x, y1, y2, · · · , yk} ⊆ e′.

Proof of step 1:
If an acyclic join is not r-hierarchical, then there exist two attributes x, y such that Ex ∩ Ey 6=

∅, Ex−Ey 6= ∅, Ey−Ex 6= ∅. Consider exy ∈ Ex∩Ey, ex ∈ Ex−Ey and ey ∈ Ey−Ex. It suffices to show
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that ex−exy−ey 6= ∅ and ey−exy−ex 6= ∅ by the constraint. First ex−exy is not empty otherwise
ex ⊆ exy contradicting our assumption. The same applies for ey − exy 6= ∅. If ex − exy − ey = ∅,
each attribute appearing in ex − exy also appears in ey. In this way, we can identify three distinct
attributes x, y, z such that x ∈ ex ∩ exy − ey, y ∈ ey ∩ exy − ex, ex ∩ ey − exy, which form a cycle.
Thus there exists an edge exyz ∈ E such that ex ∩ exy ⊆ exyz, ey ∩ exy ⊆ exyz, ex ∩ ey ⊆ exyz implied
by Lemma 6. Note that ex− exy − ey = ∅ implies that ex can be rewritten as (ex ∩ exy)∪ (ex ∩ ey).
In this way, ex ⊆ exyz contradicting our assumption. So we have ex − exy − ey 6= ∅, and the same
applies for ey − exy − ex 6= ∅.
Proof of step 2:

Assume we already have a subgraph defined by edges {e1, e2, e3} and vertices {x1, x2, x3, x4},
such that x1 ∈ e1, x1 /∈ e2 ∪ e3, x2 ∈ e1 ∩ e2, x2 /∈ e3, x3 ∈ e2 ∩ e3, x3 /∈ e1, x4 ∈ e3, x4 /∈ e1 ∪ e2. If
there exists no edge e ∈ E such that {x1, x2, x3} ⊆ e or {x2, x3, x4} ⊆ e, we are done. Otherwise, we
need to show how to find x′1, x

′
4 satisfying our condition to replace x1, x4. Note that the replacement

of x1 and that of x4 are independent, as well as their correctness arguments.
In the following, we will tackle the situation where there exists an edge e ∈ E such that

{x1, x2, x3} ⊆ e. The situation where there exists an edge e ∈ E such that {x2, x3, x4} ⊆ e is
symmetric and can be tackled similarly.

Define the attribute set S = {x ∈ e1 : ∃e ∈ E , {x2, x3, x} ⊆ e}. If e1 − e2 − e3 − S 6= ∅, then we
just replace x1 by any attribute in e1− e2− e3− S. Otherwise, e1− e2− e3− S = ∅, which implies
that e1 can be rewritten as (e1 ∩ S)∪ (e1 ∩ e2)∪ (e1 ∩ e3). We will prove by contradiction that this
case won’t happen in the reduced join. Define the edge set ES = {e ∈ E : ∃x ∈ S, {x2, x3, x} ⊆ e}.
Note that if x /∈ S, then x /∈ e for each e ∈ ES . We distinguish following four cases. We give an
intuitive illustration of the contradiction in each case, in Figure 8. The same technique we adopt
is to identify an edge e ∈ E such that e1 6= e and e1 ⊆ e, coming to a contradiction in a reduced
join.

e1 e3

e2

e1 e3

e2

case 1 case 2

case 3 case 4

e1 e3

e2

e1 e3

e2

Figure 8: Illustration of four cases in step 2. The shade area represents the attribute set S.

Case 1: e1 ∩ e3 − e2 − S 6= ∅.
Consider an arbitrary attribute x ∈ e1 ∩ e3 − e2 − S. Denote E ′S = {e2} ∪ ES . Note that

x2 ∈ e1 ∩ e − e3, x3 ∈ e ∩ e3 − e1, and x ∈ e1 ∩ e3 − e for each e ∈ E ′S . Implied by Corollary 5,
there exists an edge e′ ∈ E such that e1 ∩ e3 ⊆ e′, x3 ∈ e′ and e1 ∩ e ⊆ e′ for each e ∈ E ′S . This also
implies e1 ∩ S ⊆ e′, e1 ∩ e2 ⊆ e′, and e1 6= e′. Thus, e1 ⊆ e′ contradicting our assumption.

Case 2: e1 ∩ e3 − e2 − S = ∅ and e1 ∩ e2 − e3 − S 6= ∅.
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Consider an arbitrary attribute x ∈ e1 ∩ e2 − e3 − S. Denote S′ = S − e2, where S′ 6= ∅ since
x1 ∈ S− e2. Note that x ∈ e1 ∩ e2− e, e∩ e1− e2 6= ∅, and x3 ∈ e2 ∩ e− e1 for each e ∈ E ′S . Implied
by Corollary 5, there exists an edge e′ ∈ E such that e1 ∩ e2 ⊆ e′, x3 ∈ e′ and e1 ∩ e ⊆ e′ for each
e ∈ E ′S . This also implies e1 ∩ S′ ⊆ e′ and e1 6= e′. Thus (e1 ∩ S) ∪ (e1 ∩ e2) ⊆ e. We already have
e1 ∩ e3 − e2 − S = ∅ in this case. Thus, e1 ⊆ e contradicting our assumption.

Case 3: e1 ∩ e3 − e2 − S = ∅, e1 ∩ e2 − e3 − S = ∅, and e1 ∩ e2 ∩ e3 − S 6= ∅.
Consider an arbitrary attribute x ∈ e1 ∩ e2 ∩ e3−S. Note that x2 ∈ e1 ∩ e− e3, x3 ∈ e3 ∩ e− e1,

and x ∈ e1 ∩ e3 − e for each e ∈ ES . Implied by Corollary 5, there exists an edge e′ ∈ E such that
e1 ∩ e3 ⊆ e′, x3 ∈ e′ and e1 ∩ e ⊆ e′ for each e ∈ ES . This also implies e1 ∩ S ⊆ e′ and e1 6= e′. We
already have e1 ∩ e2 − e3 − S = ∅ in this case. Thus, e1 ⊆ e′ contradicting our assumption.

Case 4: e1 ∩ e3 − e2 − S = ∅, e1 ∩ e2 − e3 − S = ∅, and e1 ∩ e2 ∩ e3 − S = ∅.
Under this circumstances, e1 ⊆ S. Implied by the fact that S ⊆ e1, we have e1 = S. For

attributes x3 and all attributes in S, there is S ⊆ e1, and for each x ∈ S there exists one edge
ex ∈ ES such that {x, x3} ⊆ ex. Implied by Corollary 6, there exists one edge e′ ∈ E ′ such that
x3 ∈ e′ and S ⊆ e′. Thus, e1 6= e′ and e1 ⊆ e′, contradicting our assumption.

Combining these four cases proves the step 2.

Proof of step 3: Consider the subgraph found in the last step. By the definition of minimal
path, it suffices to show that there exists no edge e′ ∈ E such that {x1, x3} ⊆ e′, or {x1, x4} ⊆ e′, or
{x2, x4} ⊆ e′. By contradiction, assume there is an e′ where {x1, x3} ⊆ e′. Implied by the contraints
of this subgragh, x2 /∈ e′ and x4 /∈ e′. Attributes x1, x2, x3 form a cycle on edges e1, e2, e

′, then
there must exist an edge containing all of {x1, x2, x3} contradicting the constraints. The similar
argument applies for {x1, x4} ⊆ e′ and {x2, x4} ⊆ e′.
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