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ABSTRACT

State-of-the-art convolutional neural networks (CNNs) used in vi-
sion applications have large models with numerous weights. Train-
ing these models is very compute- and memory-resource intensive.
Much research has been done on pruning or compressing these
models to reduce the cost of inference, but little work has addressed
the costs of training. We focus precisely on accelerating training.
We propose PruneTrain, a cost-efficient mechanism that gradually
reduces the training cost during training. PruneTrain uses a struc-
tured group-lasso regularization approach that drives the training
optimization toward both high accuracy and small weight values.
Small weights can then be periodically removed by reconfiguring
the network model to a smaller one. By using a structured-pruning
approach and additional reconfiguration techniques we introduce,
the pruned model can still be efficiently processed on a GPU ac-
celerator. Overall, PruneTrain achieves a reduction of 39% in the
end-to-end training time of ResNet50 for ImageNet by reducing
computation cost by 40% in FLOPs, memory accesses by 37% for
memory bandwidth bound layers, and the inter-accelerator com-
munication by 55%.

ACM Reference Format:

Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi,
and Mattan Erez. 2019. PruneTrain: Fast Neural Network Training by Dy-
namic Sparse Model Reconfiguration. In The International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC °19),
November 17-22, 2019, Denver, CO, USA. ACM, Denver, CO, USA, 12 pages.
https://doi.org/10.1145/3295500.3356156

1 INTRODUCTION

Training a modern convolutional neural network (CNN) requires
millions of computation and memory bandwidth-intensive iter-
ations. In addition, ever-growing network complexity and train-
ing dataset sizes are making the already expensive CNN training
even more costly. To accelerate the training of complex modern
CNNs, a cluster of accelerators is typically used [1, 2]. However,
training such complex networks on a large dataset, e.g., ImageNet
(ILSVRC) [3], is still a challenging problem. To reduce this high com-
plexity of training and eventually the training time, we use model
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pruning. Model pruning involves reducing the number of learning
parameters (or weights) in an initially-dense network leading to
lower memory and inference costs while losing the accuracy of the
original dense model as little as possible [4]. Although the main
goal of model pruning is improving the performance of inference,
we find that it can also substantially accelerate training by reducing
its computation, memory, and communication costs. Our technique
speeds up the time needed to train a pruned ResNet50 on ImageNet
by up to 39%, which eventually generates a dense pruned model
with 47% less inference FLOPs and 1.9% lower accuracy.

Numerous model pruning mechanisms have been proposed for
high-performance and energy-efficient inference. They either indi-
vidually remove less important parameters (with small values) [4, 5],
or structurally remove a group of such parameters [6-10]. Most
such prior work performs model pruning using a pre-trained model,
and actually increases end-to-end training time as a result.

A few other prior works prune the model during training. Train-
ing is an optimization process to minimize the loss function, which
represents the error (typically cross-correlation) between predic-
tions and the training-set ground truth. One approach to prune
during training is to add regularization terms to the loss function,
such as the Il1-norm of weights or of a group lasso [11] that uses
l1-norms or ly-norms of groups of weights for structural pruning.
This causes the optimization process to prefer small absolute val-
ues for weights or groups of weights, sparsifying the model. Very
small weights and their associated momentum and normalization
parameters can then be zeroed out, or pruned.

Although these prior works can prune during training, they do
not speed up training effectively. Most prior works maintain the
original dense CNN structure even after pruning and thus cannot
save computation, while others require complex and performance-
reducing data indexing to process a sparse CNN structure [6, 12, 13].
The closest prior work to ours reconfigures the CNN architecture
exactly once during the training process, processing the smaller
model from that point on [8]. However, the reconfiguration point
is not known a priori, making applying this approach problematic,
or even counterproductive.

We propose PruneTrain, a CNN training acceleration mech-
anism that, unlike prior work, prunes the model during training
from scratch with the sparsification process starting during the first
training epoch. We use group lasso regularization [14] as the base-
line sparsification approach and then periodically prune weights
and reconfigure the CNN to continue training on the pruned model.
For efficient execution on data-parallel training accelerators (e.g.,
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Fig. 1: PruneTrain process: weights of each channel are con-
tinuously regularized to small absolute values during train-
ing. The sparsified channels, whose all input or output con-
nections become dotted, are removed and the network archi-
tecture is reconfigured into a new dense form. Decreasing
training memory capacity requirement after each reconfig-
uration enables using a larger mini-batch.

Training epochs

GPUs), we group parameters at channel granularity and prune
those channels for which all parameters are below a threshold. As
a result, the periodic reconfiguration maintains a still dense, yet
smaller model (Fig. 1). This model, which requires less computation,
memory, and communication, continues to shrink as sparsifica-
tion and pruning continue throughout training. This approach is
possible because, as we observe, once weights are sparsified by
group lasso, they rarely grow to above threshold later in training;
these sparsified weights almost never revive and can be pruned
without degrading accuracy. PruneTrain reduces the computations
of ResNet50 for ImageNet, a most commonly used modern image
classifier, by 40%, the memory traffic of memory bound layers (e.g.
batch normalization) by 37%, and the inter-GPU communication
cost by 55% compared to the dense baseline training.

For the efficient realization of PruneTrain, we introduce three key
optimization techniques. First, we propose a systematic method
to set the group lasso regularization penalty coefficient at the
beginning of training. This penalty coefficient is a hyperparameter
that trades off model size with accuracy. Prior work searches for an
appropriate penalty value, making it expensive to include pruning
from the beginning of training. Our mechanism effectively controls
this group lasso regularization strength and achieves a high model
pruning rate with small impact on accuracy with even a single
training run.

Second, we introduce channel union, a memory-access cost-
efficient and index-free channel pruning algorithm for modern
CNN5s with short-cut connections. Short-cut connections (e.g., resid-
ual blocks in ResNet [15]) are widely used in modern CNNs [16-18].
Pruning all the zeroed channels of such CNNs require frequent
tensor reshaping to match channel indices between layers. Such
reshaping or indexing decreases performance. Our channel union
algorithm does not require any zeroed channel indexing and tensor
reshaping, and can thus accelerate convolution layer performance
by 1.9X on average compared to a dense baseline; if indexing is
used, training is slowed down rather than accelerated.

Lastly, we propose dynamic mini-batch adjustment that dy-
namically adjusts the size of the mini-batch (the number of sam-
ples used for each stochastic gradient descent step) by monitor-
ing the memory capacity requirement of a training iteration after
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each pruning reconfiguration (Fig. 1). Dynamic mini-batch adjust-
ment compensates for the reduced data parallelism of the smaller
pruned model by increasing the mini-batch size. This both im-
proves HW resource utilization in processing a pruned model and
reduces the communication overhead by decreasing the model up-
date frequency. When increasing the mini-batch size, our algorithm
increases the learning rate by the same ratio to avoid affecting
accuracy [19].
We summarize our contributions as follows:

e We propose PruneTrain to continuously prune a CNN model and
reconfigure its architecture into a more cost-efficient but still
dense form. PruneTrain accelerates model training by reducing
computation, memory access, and communication costs.

o We propose a systematic method to set the regularization penalty
coeflicient that enables parameter regularization from the be-
ginning of training and achieves high model pruning rate with
minor accuracy loss by a single training run.

e We propose channel union that does not require any complex
channel indexing or tensor reshaping of processing a pruned
CNN model with short-cut connections by negligible computa-
tion cost increase.

e We dynamically increases the mini-batch size by monitoring
the memory capacity requirement of a training iteration, which
increases the data parallelism and reduces inter-accelerator com-
munication frequency leading to shorter training time compared
to the baseline PruneTrain.

2 BACKGROUND AND RELATED WORK

Although the proposed mechanisms of PruneTrain are applicable
to different neural networks, e.g., recurrent neural networks, we
describe PruneTrain in the context of CNNs in this paper.

2.1 CNN Architecture

A CNN consists of various layer operators and the performance of
different layer types is bounded by different HW resources. Con-
volution and feature normalization layers account for the majority
of the training time of modern CNNs. Convolution layers extract
features from input images for pattern recognition and their compu-
tation consists primarily of matrix multiplication and accumulation.
Since convolution layers exhibit high input and output data locality,
their execution time is bounded by the computation throughput of
an accelerator.

Feature normalization layers (e.g batch normalization) main-
tain stable feature distribution across layers and different input
samples [20] to enable a deep layer architecture and fast training
convergence. Normalization layers read their inputs multiple times
to calculate mean, variance, and normalize them, which typically
takes ~30% of CNN training time [21]. Due to low arithmetic in-
tensity, the performance of normalization layers is bounded by
memory access bandwidth. CNNs also contain other types of layers
such as a fully connected (FC) layers that generate class scores,
down-sampling layers that reduce the size of features, and many
other element-wise operation layers. However, their execution time
in training is relatively negligible.
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2.2 CNN Model Training

The weights (or model parameters) of a CNN are trained in three
steps. First, a network takes in input samples, forward propagates
them through layers, and attempts to predict the correct outputs
using its current weights. Then, it compares its prediction outputs
to their ground truth and computes an average loss (or prediction
error). Next, this loss is back-propagated through layers and, at
each layer, gradients of the loss w.r.t. the weights are calculated.
Finally, the original weights are updated by using these weight
gradients and an optimization algorithm [22].

Mini-batch SGD (stochastic gradient descent) is the most com-
monly used CNN training algorithm, which uses a set of input
samples for each training iteration. Using a large mini-batch ex-
hibits many benefits: (1) it provides abundant data parallelism to
each layer operation, which helps achieve high HW resource utiliza-
tion, (2) reduces the frequency of weight updates, and (3) decreases
the variance in weight updates between training iterations [23].

Distributed Training. A cluster of GPUs is typically used to train
a complex CNN model on a large dataset. Data parallelism [24]
is the most commonly used multi-processor training mechanism.
First, each GPU in the system holds the same copy of weights. Then,
the mini-batch of input samples are distributed to each GPU and
all GPUs process the inputs in parallel. Data parallelism is network
traffic-efficient as the inter-GPU communication is required only for
the model updates; the partial weight gradients of all GPUs are first
reduced then used to update the current weights. Although using
more GPUs increases the peak computation throughput, it also in-
creases this communication overhead, preventing linear end-to-end
training performance scaling. For efficient weight gradient reduc-
tion, ring-allreduce based communication is commonly used for
weight gradients reduction, which efficiently pipelines data transfer
latencies among nodes [25]. In particular, recently proposed hierar-
chical allreduce communication [26] reduces the communication
complexity by hierarchically dividing the reduction granularity and
achieves more linear training performance scaling with increasing
number of GPUs.

Training Memory Context. Processing a training iteration re-
quires large off-chip memory space. This is mainly because the
inputs of each layer at forward propagation should be kept in mem-
ory and reused to compute the local gradients in back-propagation.
In particular, the total size of all layer inputs linearly increases with
mini-batch size [27]. Therefore, small off-chip memory capacity or
a large feature size of a CNN can constrain the mini-batch size per
accelerator, and hence also the data parallelism of each layer. This
eventually decreases HW resource utilization. In addition, insuf-
ficient memory increases the total number of training iterations
per epoch because of smaller mini-batches, which increases the
communication cost for model updates.

2.3 Network Model Pruning

Model pruning has been studied primarily for CNNs, to make their
models more compact and their inference fast and energy-efficient.
Most pruning methods compress a CNN model by removing small-
valued weights with a fine-tuning process to minimize accuracy
loss [4, 5]. Pruning algorithms can be unstructured or structured.

Unstructured pruning can maximize model-size reduction but re-
quires fine-grained indexing with irregular data access patterns.
Such accesses and extra index operations lead to poor performance
on deep learning accelerators with vector or matrix computing
units despite reducing the number of weights and FLOPs [28-30].
Structured-pruning algorithms remove or reduce fine-grained in-
dexing and better match the needs of hardware and thus effectively
realize performance gains.

Trial-and-Error Based Structured Model Pruning. One approach
to structured pruning is to start with a pre-trained dense model and
then attempt to remove weights in a structured manner, generally
removing channels rather than individual weights [9, 10, 31, 32].
Unimportant channels are removed based on the value of their
weights or hints derived from regression [33]. The removed chan-
nels are rolled back if accuracy is severely affected. Although effec-
tive, the search space of such a trial-and-error based model pruning
substantially increases with the complexity of the network model,
which can increase pruning time significantly. Also, as pruning is
applied to a pre-trained model, these mechanisms do not speed up
training.

Related Work: Structured Pruning During Training. An al-
ternative mechanism to trial-and-error pruning uses parameter
regularization. This optimizes training loss while simultaneously
forcing the absolute values of weights or groups of weights toward
zero. We call this process of forcing weights toward zero sparsifici-
ation. Group lasso regularization is typically used to structurally
sparsify weights by assigning a regularization penalty to Iz-norms
of groups of weights [6-8, 12, 13].

This regularization-based pruning mechanism adds regulariza-
tion loss terms to the baseline classification loss function, then
back-propagate the loss to update the weights to both improve ac-
curacy and reduce their absolute values. Eventually, the sparsified
weights can be effectively zeroed-out and pruned from the model.

In particular, Wen et al. [6] propose SSL, a pruning mechanism
that sparsify weights while training a CNN. However, they start
from a pre-trained model and maintain the original dense network
architecture until the end of training because sparsified weights
may revive later in training. Thus, SSL actually requires more time
to train, first training the dense baseline and then pruning it. The
pruning mechanism proposed by Zhou et al. [13] prunes the zeroed
parameters during training but does not reconfigure the network
architecture. Instead, gradient updates in back-propagation are
skipped by setting weight momentum to zero. Since this mechanism
still performs all training computation, no training performance
improvement is achieved.

On the other hand, Alvarez and Salzmann [8] propose to recon-
figure the sparse network architecture and reload the model to
accelerate training. However, they reconstruct the network only
once at specific training epoch. This misses the opportunity to
further improve training performance by timely network recon-
figuration especially because a good reconfiguration point is not
known a priori.
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3 MOTIVATION FOR CONTINUOUS PRUNING
AND RECONFIGURATION

Continuous pruning and reconfiguration can significantly speed
up training for two reasons. First, of all the convolutional channels
that regularization sparsifies, most are sparsified very early in the
training process, so pruning these channels has a significant pos-
itive impact on the overall training time. Second, regularization
sparsifies the channels gradually over time, so it is more beneficial
to prune the sparsified channels frequently, as opposed to prun-
ing them only once. To show this, we train ResNet50, one of the
most commonly used image classifiers for various vision applica-
tions [34-36], on the CIFAR10 dataset with regularization. Every
epoch, we measure the FLOPs (floating-point operations) per train-
ing iteration, assuming we can prune the unnecessary channels
every 10 epochs. Fig. 2a shows the FLOPS per iteration normal-
ized to the dense baseline. Each line in the figure shows the FLOPs
using a different regularization strength. We will describe our defi-
nition for regularization strength in Section. 4.1. Regardless of the
strength, the majority of FLOPs is pruned in the early epochs, with
the rate of pruning gradually saturating. This is further shown by
the breakdown of aggregated pruned FLOPs (Fig. 2b) over three
training phases, where most FLOPs are pruned within the first 90
training epochs.

Given that weights are gradually sparsified during training, it is
apparent that continuous and timely model pruning and reconfig-
uration can reduce training computations much more effectively
than the one-time reconfiguration proposed by Alvarez and Salz-
mann [8]. Fig. 2c compares the training FLOPs of one-time pruning
and reconfiguration used in prior work to PruneTrain. Regardless
of the strength of group lasso regularization, even with the opti-
mistic assumption that we know the best reconfiguration point,
prior works uses more than 25% additional training FLOPs com-
pared to PruneTrain. In reality, it is impossible to know the best
reconfiguration time a priori, and thus, PruneTrain prunes and
reconfigures the models periodically.

4 PRUNETRAIN

We first explain the baseline group lasso regularization pruning
approach also used by prior work, then describe how we modify
this technique to better accelerate training and enable pruning
from the first training iteration, motivate and explain our approach
to dynamic reconfiguration, and finally discuss the potential for
dynamically adjusting the mini-batch size as the model shrinks
through pruning.

4.1 Model Pruning Mechanism

Baseline Pruning Mechanism. Like prior work [6, 8, 12], we use
group lasso regularization to sparsify weights so that they can be
pruned. Group lasso regularization is a good match for PruneTrain
because it is incorporated with the training optimization and im-
poses structure on the pruned weights, which we use to maintain
an overall dense computation. Group lasso regularization modifies
the optimization loss function to also include consideration for
weight magnitude. This is shown in Eq. 1, where the left term is the
standard cross entropy classification loss and the right term is the
general form of the group lasso regularizer. Here f is the network’s
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Fig. 2: (a) FLOPs per training iteration normalized to the
dense baseline (ResNet50 on CIFAR10). (b) Breakdown of
prunable training FLOPs over epochs. (¢) Training compu-
tation overhead of one-time network reconfiguration at dif-
ferent training epoch compared to PruneTrain; each line in
(a) and (c) is the result of different sparsification strengths.

prediction on the input x;, W are the weights, [ is the classification
loss function between the prediction and its ground truth y;, N
is the mini-batch size, G is the number of groups chosen for the
regularizer, and A; are tunable coefficient that set the strength of
sparsification.

1 N G
min| = > 1y fxi W)+ ) Ag - [Wl (1)

i=1 g=1

This lasso regularization sparsifies groups of weights by forcing the
weights in each group to very small values, when possible without
incurring high error. After sparsification, we use a small threshold
of 107* to zero out these weights.

Proposed Group Lasso Design. We design a specific group lasso
regularizer that groups the weights of each channel (input or output)
of each layer. We also choose a single global regularization strength
parameter A rather than adjust the penalty per group. The resulting
regularizer term is shown in Eq. 2, where L is the number of layers
in the CNN and C; and K] are the number of input and output
channels in a layer, respectively.

L (G K
Y ( D Wep el + Y ||W:,k,,:,:||z) @)
I=1 \¢cj=1 kj=1
Prior work proposes to penalize each channel proportionally to
its number of weights in order to maintain similar regularization
strength across all channels [37, 38]. Instead, we choose to use a
single global regularization penalty coefficient because this empha-
sizes reducing computation over reducing model size. All convolu-
tion layers of a CNN have similar computation cost. Because early
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layers have fewer channels and each channel has larger features,
each channel of their layers involves more computation. Therefore,
applying a single global penalty coefficient effectively prioritizes
sparsifying large features, which leads to greater computation cost
reduction. We do not apply group lasso to the input channels of
the first convolution layer and the output neurons of the last fully-
connected layer, because the input data and output predictions of a
CNN have logical significance and should always be dense.

Regularization Penalty Coeflicient Setup. To use lasso regular-
ization from the beginning of training, the penalty coefficient A
should be carefully set to both maintain high prediction accuracy
and to achieve a high pruning rate. We develop a new technique to
set this strength coefficient without requiring resource-intensive
hyper-parameter tuning. To do so, we choose A using the ratio of
group lasso regularization loss out of the total loss (the sum of
the group lasso regularization loss and the classification loss). This
group lasso penalty ratio is shown in Eq. 3. Based on our obser-
vations of several CNN models (ResNet32/50 and VGG11/13) and
training data (CIFAR10, CIFAR100, and ImageNet), we find that
using a group lasso penalty ratio of 20-25% robustly achieves high
structural model pruning (> 50%) with small accuracy impact (<
2%).

23S Wy, |
1(ys. fGxin W) + A5G || Wy..|

We compute this using the random values to which weights are
initialized at the beginning of training and the cross-entropy loss
calculated after the very first network forward propagation. This
penalty coefficient is set once at the first training iteration and
maintained through training. Without our approach, prior work
searches for a desired lasso regularization penalty coefficient, e.g.,
by trying random coefficient values until one that has a small impact
on accuracy is found [6, 8]. This can potentially require many
training runs for each CNN being trained and increase total training
time.

Lasso penalty ratio =

®)

Layer Removal by Overlapping Regularization Groups. Wen
et al. [6] propose to use layer-wise lasso groups for regularization
in order to remove layers of a CNN with short-cut connections.
However, we do not include such grouping in our regularizer. We
find that because there is an overlap in the weights between input
and output channel lasso groups (Fig. 3a), unimportant layers are
eventually removed even without additional layer-wise weight
regularization. As an example, when an input channel becomes
sparse (Fig. 3b) by lasso regularization, it gradually sparsifies all the
intersecting output channels (c), eventually leading to the entire
layer to become zero.

4.2 Dynamic Network Reconfiguration

The main goal of PruneTrain is reducing the training cost and time
by continuously pruning the spasified channels or layers and re-
configuring the network architecture into a more cost-efficient
form during training. There are two main concerns with doing
so. The first is that pruning while training might prematurely re-
move weights that are unimportant early in training but become
important as training proceeds. The second, is that the overhead
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Fig. 3: Group lasso regularization structure of a convolution
layer: Weights of a filter (each square box) affect the spar-
sification of weights in both input and output channels (red
and blue dotted boxes). The white filters are zeroed-out after
sparsification.

WCI, Ki,

4=

[
[
[

]
]

[

)
)
2]

)

f

SR | S—
[HI

G | S—
[H
[H|

‘fﬁf—\
i J
‘fﬁf—\
| S —

Input channels

]

D00
COEL
<3
<d
<

of processing a pruned network exceeds any benefits realized by
training a smaller model.

Early Weight Pruning. A prior pruning mechanism for CNNs
that uses group lasso regularization, SSL [6], maintains the sparsi-
fied channels until the end of training instead of removing them
from the model. This is because pruning while training prohibits
weights from “reviving” and becoming non-zero as training pro-
ceeds. This can happen as gradients flow back from the last FC layer
and potentially increase the value of previously-zeroed weights.
However, we observe that already-zeroed input and output channels
of convolution layers are likely to suppress such revived weights
from ever becoming large. This can be inferred from the equation
of the local weight gradients for a layer [:

oL oL T

7:z_®7
aw, = 2

x; ©)

Here, ® is convolution operator, and z;_; and g—)fl are the input
activations (or input features) and the upstream gradients from
the subsequent normalization layer. If a channel is sparsified and
zeroed-out, its convolution outputs x;_; are zeroed and they remain
zero after normalization and activation layers, meaning that z;_; is
zero. Also, if an input channel of the subsequent convolution layer
(1) is zeroed, the upstream gradients of this input channel are forced
to be small. Thus, the gradients after passing the normalization
layer g—fc‘l are also kept small by the gradient equation from [20].
Therefore, using Eq. 4, the gradients of zeroed weights are forced
to remain very small and often zero, effectively restricting the
previously zeroed weights from reviving.

This behavior is apparent in Fig. 4 that shows the output channel
sparsity of three layers of ResNet50 [15] trained on CIFAR10 dataset
across training epochs. Each point in the graph is the absolute
maximum value among the parameters of each output channel. If
the absolute maximum value of a channel becomes smaller than
the threshold (107%), the parameters of the channel are zeroed out
(white). Convolution layers 5 and 6 are typical and none of the
weights from the zeroed output channels revive. Although some
parameters in output channels of convolution layer 7 revive, their
weight values are still very small and near the threshold, indicating
a very small contribution to the prediction accuracy of the final
learned model. Similar patterns are observed in all convolution
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Fig. 4: The maximum absolute weight value of each output
channel over training epochs. Three convolution layers be-
long to one residual path of ResNet50 trained on CIFAR10.

layers of different ResNet and VGG models on CIFAR10/100, with
all layers exhibiting no significant revived parameters.

Robustness to Reconfiguration Interval. We now discuss the
practical mechanisms for performing dynamic reconfiguration. We
define a reconfiguration interval, such that after every such interval
the zeroed input and output channels are pruned out. Note that if
all the sparsified input and output channels are pruned, there is a
possibility of a mismatch between the dimensions of the output
channels of one layer and to the input channels of the next. To
maintain dimension consistency, we only prune the intersection
of the sparsified channels of any two adjacent layers. At any re-
configuration, all training variables of the remaining channels (e.g.,
parameter momentums) are kept as is.

The reconfiguration interval is the only additional hyperparam-
eter added by PruneTrain. Intuitively, a very short reconfiguration
interval may degrade learning quality while a long interval offers
less speedup opportunity. We extensively evaluate the impact of
the reconfiguration interval in Section. 5.3 and show that training
is robust within a wide range of reconfiguration intervals.

Channel Union for CNNs with Short-cut Connections. Short-
cut connections are widely adopted in modern CNNs, including
ResNet and its many variations [16, 39-41]. They enable deep net-
works by mitigating the vanishing-gradients problem and achieve
high accuracy [15]. For such CNNs, the channels of the convolution
layers at a merge-point should match in dimensionality after each
reconfiguration for proper feature propagation (Fig. 5a). We pro-
pose two mechanisms to ensure this occurs. The first is channel
gating layers that add gating to each residual branch to match
dimensions, as shown in Fig. 5b. This ensures that all convolution
layers in a residual block operate only on dense channels by gath-
ering and scattering the dense channel indices. This improves on
the channel sub-sampling approach proposed by [9], with channel
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Fig. 5: Channel indexing for CNNs with short-cut paths.
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Fig. 6: Normalized training and inference FLOPs of ResNet32
and ResNet50 on CIFAR10 with different pruning intensity.

sub-sampling only avoiding redundant computation of the very
first convolution layer of each residual block.

We evaluate channel gating on an NVIDIA V100 GPU and find
that channel gating involves significant memory accesses for tensor
reshaping needed for channel indexing that often slows down train-
ing. Therefore, as an alternative, we propose channel union that
does not need any tensor reshaping and data indexing. Channel
union prunes only the intersection of sparsified channels of all
neighboring convolution layers within a residual stage (residual
blocks sharing the same node). For instance, in Fig. 5¢c, the union
of the dense input channels of convolution layer 1 and 4 and the
dense output channels of convolution layer 3 and 6 are maintained.
As each following residual path adds new information to the shared
node, the early convolution layers in the stage (convolution layer
1) have to process operations from the sparse channels, thereby
performing redundant operations.
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Fig. 7: Per-layer execution time of channel gating and chan-
nel union for ResNet50 for ImageNet. G and U indicate chan-
nel gating and channel union respectively.

However, our experiments show that the additional FLOPs from
channel union, as compared to channel gating are very small. Fig. 6
compares the normalized inference FLOPs of channel gating and
channel union for ResNet32 and ResNet50 pruned with different
intensities. Across different pruning rates, the FLOPs difference
is only 1-6%, but the overhead saved from indexing is substantial.
Additionally, this FLOPs difference does not grow with increasing
layer depth as shown in Fig. 6 comparing ResNet32 and ResNet50.
Fig. 7 shows the measured per-layer (the last layer of each residual
block) execution time of ResNet50 for ImageNet. For all residual
blocks, channel union shows far less execution time compared to
channel gating. Especially, the tensor reshaping time of early layers
has bigger overhead as their activation size is eight times bigger
than the layers in the last residual block.

4.3 Dynamic Mini-batch Adjustment

As discussed in Section. 2.2, training with a large mini-batch reduces
the frequency of costly inter-GPU communication and off-chip
memory accesses for model updates. In addition, a larger mini-
batch increases the data parallelism available at each network layer
improving HW utilization. We find that our gradual channel and
layer pruning simultaneously reduces available data parallelism
and decreases the memory capacity requirement for training, thus
allowing the use of larger mini-batches. The latter allows us to
compensate for the former as follows.

We propose dynamic mini-batch adjustment to increase the size
of the mini-batch by monitoring the memory context volume of
a training iteration, which is gradually decreased by PruneTrain.
When channels are pruned by PruneTrain, the output features cor-
responding to these channels are also not generated, which reduces
the off-chip memory space required for back-propagation. In par-
ticular, early layers of a CNN have larger features and removing
the channels of these layers effectively reduces the training mem-
ory requirement. Using a global regularization penalty, PruneTrain
prunes the channels of early layers by a larger ratio than prior
work and enables using a larger mini-batch over training epochs.
At every network architecture reconfiguration, PruneTrain moni-
tors the off-chip memory capacity required for a training iteration
and increases the mini-batch size when possible.

However, dynamically increasing the size of the mini-batch alone
does not guarantee high prediction accuracy as it is the hyperpa-
rameter closely coupled with the learning rate. To maintain the

algorithmic functionality, we increase the learning rate by the same
ratio of a mini-batch size increase to maintain the same learning
quality. This mechanism is similar to adjusting the mini-batch size
instead of decaying the learning rate, as proposed by Smith et
al. [19]. However, our proposed mechanism is different in that we
change the mini-batch size and learning rate dynamically at any
point during training, unlike this prior work that changes them at
the original learning rate decay points. Note that dynamic mini-
batch size adjustment relies on the linear relation between mini-
batch size and learning rate. For other deep learning applications
that have a different relation, an appropriate learning rate adjust-
ment rule can be adopted instead (e.g., the square root scaling rule
for language models [42]). We evaluate dynamic mini-batch adjust-
ment by training ResNet50 on both CIFAR and ImageNet datasets
and confirm that it maintains equally high accuracy compared to
the baseline PruneTrain.

The overall PruneTrain training flow is summarized in Algorithm. 1.

Algorithm 1 PruneTrain neural network model training flow

1: > B: training dataset, M: mini-batch

2: > W;: weights of a network model at i th iteration
3: > Net: network architecture

4: > LR: learning rate

5: for e «— 0, training_epochs do

6 > Mini-batch iterations over the training dataset
7 for n < 0, f%‘ldo

8: i:n+(e><|'%'|)
: lossy, features = ForwardProp(M,,, W;)

10: lossy = GroupLassoReg(W;)
11: > Set the group lasso regularization penalty coefficient
12: if i = 0 then
13: A = SetCoeff(lossi, lossy)
14: loss =loss; + A X lossy
15: > Process network back-propagation and model updates
16: AW; = BackProp(loss, features, W;)

17: Wi41 = Optimizer(W;, AW;, LR)
18: if IsReconfigurationInterval(e) then

19: > Prune and reconfigure the network architecture
20: Net = PruneAndReconfigNetwork(W; .1, Net)
21: > Update the mini-batch size and LR
22: Msize, LR = UpdateMiniBatch(system_memory, Net)

5 EVALUATION

Evaluation Methodology. We evaluate PruneTrain on both small
(CIFAR10 and CIFAR100 [43]) and large datasets (ImageNet [3]).
We train four CNNs (ResNet32, ResNet50, VGG11, and VGG13) on
CIFAR and ResNet50 on ImageNet, which is the most commonly
used modern CNN for modern vision applications [34-36]. We use a
mini-batch size of 128 and 256 (64 per GPU) for CIFAR and ImageNet
training runs and a learning rate of 0.1 for both as the baseline
hyperparameters [15]. We use four NVIDIA 1080 Ti and V100 [44]
GPUs for ImageNet training and a single TITAN Xp GPU [45] for
CIFAR training. We build PruneTrain using PyTorch [46]. Because
of limited resources, we perform sensitivity evaluation primarily
with CIFAR and evaluate functionality and final efficiency with
ImageNet.
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Tab. 1: Training FLOPs and time compared to the dense
baseline: top1 validation accuracy of the dense baselines
for CIFAR10: ResNet32 (93.6), ResNet50 (94.2), VGG11
(92.1), VGG13 (93.9), and for CIFAR100: ResNet32 (71.0),
ResNet50 (73.1), VGG11 (70.6), VGG13 (74.1), and for Ima-
geNet: ResNet50 (76.2)

Val. Accuracy A Train. FLOPs Inf.

Dataset Model

(fine-tunning) (time) FLOPs
ResNet32 -1.8% 47% (81%) 349,
ResNet50 -1.1% 50% (81%) 30%
CIFAR10
VGG11 -0.7% 43% (57%) 35%
VGG13 -0.6% 44% (57%) 37%
ResNet32 -1.4% 68% (88%) 54
ResNet50 -0.7% 47% (66%) 31%
CIFAR100
VGG11 -1.3% 53% (74%) 43%
VGG13 -1.1% 58% (67%) 48%

-1.87% (-1.58%)
-1.47% (-1.16%)
-0.24% (+0.20%)

* Measured using V100 GPUs

60% (71%, *66%)  47%
70% (16%, *72%)  56%
97% (98%, *98%)  88%

ImageNet ResNet50

5.1 Model Pruning and Training Acceleration

We first present our evaluation results on CIFAR and ImageNet
in Tab. 1. We report 4 metrics: the training and inference FLOPs
(FP operations), measured training time, and validation accuracy.
Training time does not include network architecture reconfigura-
tion time, which we do optimize and occurs only once in many
epochs. We compare the training results of ResNet and VGG using
PruneTrain with the dense baseline. We use the same number of
training iterations for both the dense baseline and PruneTrain to
show the actual training time saved by PruneTrain. We use 182
epochs [15] and 90 epochs to train CNNs on CIFAR and ImageNet,
respectively.

For ResNet32 and ResNet50 on CIFAR10, PruneTrain reduces the
training FLOPs by ~50% with a minor accuracy drop compared to
the dense baseline. The compressed models after training show only
34% and 30% of the dense baseline inference cost for ResNet32 and
ResNet50, respectively. The results of ResNet32/50 on CIFAR100
show similar patterns, which exhibits the robustness of PruneTrain,
given that CIFAR100 is a more difficult classification problem. For
CIFAR100, PruneTrain reduces the training and inference FLOPs
by 32% and 46% for ResNet32, and 53% and 69% for ResNet50, while
losing only 1.4% and 0.7% of validation accuracy, respectively com-
pared to the dense baseline. These results show that PruneTrain
reduces more training FLOPs from a deeper CNN model, since
more unimportant channels and layers are sparsified and removed
early in the training. PruneTrain also achieves high model compres-
sion with similar validation accuracy loss for both VGG models on
CIFAR.

PruneTrain also shows high training cost savings for ResNet50
trained on ImageNet: 40%, 30%, and 3% for three different prun-
ing strengths (0.25, 0.2, and 0.1). Thus, we conclude that Prune-
Train is robust to changes in CNN model and dataset complexity.
The trained ResNet50 shows 53%, 44%, and 12% reduced inference
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Tab. 2: Inference performance comparison (number of im-
ages per second and relative speedup by PruneTrain). The
three ResNet50 results on ImageNet use different regulariza-
tion strengths of 0.25, 0.2, and 0.1.

Batch size=10 Batch size=100
Base PruneTrain  Base PruneTrain

ResNet32 3038 4081 (1.34x) 18587 24759 (1.33X)
ResNet50 1442 1442 (1.18X) 7847 11865 (1.51X)
VGGI1 5534 5534 (1.44X) 15489 23878 (1.54X)
VGGI3 5197 5197 (1.38x) 12845 21075 (1.64x)

Dataset Model

CIFAR100

937 (1.53x) 1194 (1.55X)
ImageNet ResNet50 610 833 (1.36X) 772 1047 (1.36X)
661 (1.08X) 813 (1.05X)

FLOPs with 1.87%, 1.47%, and 0.24% accuracy loss, respectively. In
addition, with extra training epochs for fine-tuning without group
lasso regularization, we could recover 0.3% additional accuracy
for the regularization strengths of 0.25 and 0.2, and achieve even
better accuracy than the baseline by 0.2% for the regularization
strength of 0.1. Although not shown in the table, PruneTrain also
saves 37%, 33%, and 5% of off-chip memory accesses of BN (batch
normalization) layers for ResNet50 with the three different regular-
ization strengths. Since the performance of BN layers is bounded
by memory access bandwidth, reducing their memory traffic has a
significant impact on the overall CNN model training time.

The measured training time reduction is smaller compared to
the saved training FLOPs across datasets and CNN models. This is
mainly caused by the reduced data parallelism at each layer after
pruning, which decreases GPU execution resource utilization. Also,
SIMD utilization within the GPU cores decreases for some layers
due to the irregular channel dimensions after pruning and recon-
figuration. In particular, for CIFAR10 and and CIFAR100, ResNets
shows lower training time saving compared to VGGs, because it
has many layers with reduced parallelism. In comparison, VGG has
fewer layers with wider data parallelism and utilization is impacted
less by pruning. For ImageNet, the training time saving of ResNet50
is bigger when V100 GPUs are used. This is because high off-chip
memory bandwidth of V100 [? ] makes the execution time por-
tion of memory bandwidth-bound layers smaller, which eventually
makes the training time saving by the pruned computations more
visible in the overall training time.

We also compare the performance of the trained models in terms
of inference images per second (Tab. 2). We evaluate using two dif-
ferent batch sizes of 10 and 100 using mixed precision [47], which
we execute on one TITAN Xp GPU. Overall speedup of PruneTrain
is lower than the saved inference FLOPs in Tab. 1 because of re-
source underutilization. Therefore, processing 100 samples shows
performance that is equal to or slightly better than the batch size
of 10. Also, since ResNet50 for ImageNet has more channels, its
PruneTrain inference performance is better than the CNN models
for CIFAR100 given the ratio of their pruned FLOPs.

5.2 Comparison to Prior Work

Comparison to Pruning From a Pre-trained Model (SSL). We
verify that pruning while training from scratch shows comparable
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Fig. 8: (a) Inference FLOPs and the validation accuracy by different regularization ratios of PruneTrain and SSL for ResNet32/50
on CIFAR10 (c) and on CIFAR100, (b) Training FLOPs and BN cost by accuracy of PruneTrain for ResNet32/50 on CIFAR10 and
on (d) CIFAR100. (The triangles in all figures represent the dense baseline)

compression quality and accuracy as following the current best
practice of training from a pre-trained model as done by SSL [6].
The comparison results are summarized in Fig. 8, which plots the
tradeoffs between both inference and training cost and validation
accuracy for ResNet32/50 on CIFAR10/100. We sweep the group
lasso penalty ratio from 0.05 to 0.2 with an interval of 0.05. Since
Wen et al. [6] do not discuss how to set the group lasso penalty
coeflicient, we apply our proposed mechanism to SSL as well.

Results for inference (Fig. 8a and Fig. 8c) demonstrate that PruneTrain

is, in fact, superior to pruning from a pre-trained model. We make
three important observations. First, for ResNet50, PruneTrain at-
tains higher accuracy than the baseline dense model while still
reducing cost. Accuracy is highest at around 150 MFLOPs/inference
compared to the dense 230 MFLOPs/inference. We attribute this to
the regularizer we use for pruning also leading to better generaliza-
tion [11]. Second, PruneTrain and SSL achieve comparable accuracy-
cost tradeoffs, yet PruneTrain offers a wider tradeoff range. Third,
pruning is a very effective way to learn a good CNN model—starting
from the complex ResNet50, PruneTrain is able to learn a network
model that is simultaneously more accurate and lower-cost to use.

Fig. 8b and Fig. 8d show the training-cost tradeoff curve. We do
not show the training cost of SSL, because its training protocol first
trains the dense network and then prunes, resulting in a cost that’s
almost 3 times higher than baseline. We show two aspects of train-
ing cost: the computation required for training and the memory
traffic needed for the bandwidth-limited batch-normalization layers
(bandwidth has lower impact on other layers). PruneTrain reduces
both the computation and memory traffic with a minor accuracy
loss compared to the dense baseline (triangles in the graph). The
shape of computation tradeoff curve is similar to that of inference.
Because PruneTrain gradually and continuously prunes the net-
work to reduce its training cost over time, it can start from the

complex ResNet50 and learn a better model in less training time
compared to conventional dense ResNet32 training. Interestingly,
unlike FLOPs, the memory traffic does not scale as well with regular-
ization strength. This is because the regularization learns a different
number of channels for different layers and the per-channel compu-
tation and memory cost are not always correlated; e.g., removing a
channel of a 1x1 convolution layer decreases computations less than
that of a 3x3 convolution layer, but their memory cost reduction
for batch normalization is the same.

Comparison to Trial-and-Error Based Model Pruning. We com-
pare the training results of PruneTrain to AMC (Auto ML for model
compression) [10] to show that learning the architecture by regu-
larization during training leads to a better compression and accu-
racy tradeoff than trial-and-error based pruning from a pre-trained
model (Tab. 3). We use ResNet56 on CIFAR10 for comparison, which
is the experimental setting used in AMC. While AMC reduces
the inference FLOPs to 50% with 0.9% accuracy drop (after fine-
tuning), PruneTrain reduces an additional 16% FLOPs while achiev-
ing higher accuracy by 0.4%. While the capability of learning net-
work depth was not discussed in AMC, PruneTrain also learns
depth and removes 21% of the convolution layers of ResNet56. This

Tab. 3: Comparison to AMC (Auto ML for Model Compres-
sion): compression results of ResNet56 on CIFAR10. The re-
sults of AMC are taken directly from [10].

Base Val. Validation Inference = Removed
Method
accuracy accuracy A FLOPs layers
PruneTrain 94.5% -0.5% 34% 18 (21%)
AMC 92.8% -0.9% 50% Not known
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layer removal is effective in reducing the actual inference latency
because pruning layers does not decrease data parallelism and does
not affect compute-resource utilization.

5.3 Optimization and Sensitivity Evaluation

Dynamic Mini-Batch Size Adjustment. Fig. 9 shows the off-chip
memory requirement per GPU for a single training iteration using
PruneTrain. We train ResNet50 for CIFAR100 and ImageNet datasets
on a GPU with an 11 GB memory capacity (NVIDIA 1080 Ti). As
training proceeds, the memory requirement gradually decreases
due to pruning.

Once enough space is freed up, our proposed dynamic mini-
batch size adjustment mechanism increases the mini-batch size to
fully utilize the off-chip memory capacity. As shown in Fig. 9a, for
ImageNet, we start with a per-GPU mini-batch of 64 (total of 256
across 4 GPUs), which is the largest mini-batch that can fit in the
off-chip device memory. As the memory requirement gradually
decreases by pruning, we increase the per-GPU mini-batch from
64 to 96 and later to 128 at 10! and 30 epoch, respectively. The
training context still fits in the GPU memory at each epoch. In this
example, we use a mini-batch size adjustment granularity of 32
samples per GPU, but a smaller granularity can also be used.

The memory required by ResNet50 for CIFAR100 is already small.
Hence, in order to demonstrate the effect of dynamic mini-batch
size adjustment in this case, instead of trying to fit the largest mini-
batch size possible in the GPU memory, we start with the standard
mini-batch size of 128 (Fig. 9b).

Then, as PruneTrain gradually reduces the memory requirement,
we gradually increase the mini-batch size such that we maintain
similar device memory capacity utilization. This is shown in Fig. 9b,
where we increase the mini-batch size by multiples of 32 up to,
eventually, a mini-batch of 320, which is 2.5X larger than the initial
mini-batch size. Note that increasing the mini-batch size not only
increases the computational parallelism, it also linearly decreases
the model update frequency. Reducing model update frequency
can significantly accelerate distributed training by lowering inter-
device communication and off-chip memory accesses.

Tab. 4 compares the training time reduction with and without
dynamic mini-batch size adjustment. The table also compares the
validation accuracy and final inference computation complexity in
the two scenarios. While dynamic mini-batch size adjustment barely
affects the quality of learning and pruning, it has a high impact
on training time. Dynamic mini-batch size adjustment improves
accuracy by 0.3% and raises the inference FLOPs by 3% for CIFAR100
and reduces accuracy by 0.04% and decreases the inference FLOPs
by 1% for ImageNet. It reduces the training time by 57% and 34%
(39% on a V100 GPU) compared to the dense baseline for CIFAR100
and ImageNet, respectively. This is also an improvement of 26% and
17% (14% on a V100 GPU) compared to the naive PruneTrain for
CIFAR100 and ImageNet, respectively. Although the training time
is substantially reduced, the impact is less than expected, given
that we are enabling 2X more computational parallelism with fewer
model updates than the naive PruneTrain. We suspect that this is
caused by a sub-optimal GPU convolution kernel choice that comes
from the increased data parallelism only in mini-batch dimension.
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Fig. 9: Memory requirement of one training iteration per ac-
celerator during training epochs.

Tab. 4: Training time, inference FLOPs, and validation accu-
racy with and without dynamic mini-batch size adjustment
for ResNet50. Top-1 validation accuracy of the dense base-
lines: ResNet50 trained on CIFAR100 (73.1) and on ImageNet
(76.2).

Train time Inference  Val.

Dataset Model Method reduction FLOPs Acc. A
CIFAR100 ResNetso — Naive 34% 31% - -0.7%
Adjusted 43% 34% -0.4%

Naive  29% (*34%)  47.4%  -1.87%
Adjusted  34% (*39%)  46.4%  -1.91%

* Measured using V100 GPUs

ImageNet ResNet50

Network Reconfiguration Interval. PruneTrain adds two hyper-
parameters on top of dense training: sparsification strength, which
we already discussed, and the reconfiguration interval. The recon-
figuration interval affects training time by trading off the time
overhead of manipulating the network model with greater savings
of more-frequent pruning (actual removal of computation). The
reconfiguration interval may also affect the compression and accu-
racy of the final learned model. Fortunately, the compression and
accuracy achieved are insensitive to this hyper-parameter, as shown
in Fig. 10, which shows the accuracy vs. computation cost tradeoff
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curve for different intervals. Thus, the interval can be chosen to
balance per-iteration performance gains with reconfiguration time
overhead. The overhead depends on the specific framework used.
We find that reconfiguring a network architecture every 10 epochs
for CIFAR or 5 epochs for ImageNet has small overhead in our
experiments.
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Fig. 10: Reduced inference FLOPs and validation accuracy by
different network reconfiguration intervals. ResNet32 (Left)
ResNet50 (Right) on CIFAR10.

Communication Cost Savings in Distributed Training. As train-
ing proceeds, the model size reduction by PruneTrain leads to de-
creasing communication cost between GPUs. Fig. 11 shows the
projected decrease in communication cost during the training of
ResNet50 for ImageNet. We model the communication cost us-
ing ring allreduce. The figure shows the communication cost per
training epoch normalized to the dense baseline for different spar-
sification strengths (therefore, different pruning rates). Each time
the network is reconfigured, the number of weights decreases, lead-
ing to a reduction in weight gradients communicated per training
iteration. Furthermore, an aggressive sparsification strength (0.2
and 0.25) allows dynamic mini-batch adjustment to increase the
mini-batch sizes (dotted lines), leading to further reduction in com-
munication cost for later epochs. Overall, PruneTrian saves 55%
average communication cost regardless of the number of GPUs used
for distributed training. This pruning-based communication reduc-
tion is orthogonal to other existing techniques for communication
reduction in distributed training, e.g. weight gradient compres-
sion and efficient gradient reduction mechanisms, which can be
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Fig. 11: Projected per-epoch communication cost of model
updates based on hierarchical ring-allreduce. The commu-
nication cost is normalized to the cost of dense baseline
ResNet50 training on ImageNet for different group lasso reg-
ularization penalty ratios.
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used in conjunction with PruneTrain for further communication
improvements.

Individual Weight Sparsity. PruneTrain uses structured pruning
of channels (and possibly layers) to learn a smaller, yet still dense
model. This is important for high-performance execution on current
hardware. However, the regularization leads to weight sparsity even
within the remaining channels. Fig. 12 shows the density of channels
(input channel density X output channel density) and the density of
weights for each layer in ResNet50 trained on ImageNet. Roughly
half of all weights within the remaining channels (roughly half
of all dense channels) are also near-zero and can be pruned. Such
unstructured sparsity can be utilized to store the pruned model in a
compressed form and to possibly further speed up execution if the
inference hardware supports efficient sparse computations [48].

H Channel density
Weight density

0.0+
1 10 20 30 40 50 FC

Layer index

Fig. 12: Channel and weight density of each layer. (ResNet50
trained on ImageNet using PruneTrain) The number in the
x-axis indicates the convolution layer index.

6 CONCLUSION

In this paper, we propose PruneTrain, a mechanism to accelerate
the training from scratch of a network model, while pruning it
for a faster inference. PruneTrain uses structural pruning, and con-
tinuously reconfigures the network architecture during training,
so as to take advantage of the reduced model size not just during
inference, but also during training. This is based on our observation
that while pruning with group lasso regularization, once a group
of model parameters are forced to near-zero magnitude, they rarely
revive during the rest of the training. We propose three key op-
timizations for efficient implementation of PruneTrain. First, we
update the group lasso regularization penalty coefficient such that
we enable achieving high model pruning rate with minor accuracy
loss during a single training run from scratch. Second, we introduce
channel union, a way to prune CNN models with short-cut con-
nections to lower the overheads from naive channel indexing and
tensor reshaping. Lastly, we dynamically increase the mini-batch
size while training with PruneTrain, which increases the data par-
allelism and reduces communication frequency, leading to further
training time saving. Altogether, PruneTrain cuts the computation
cost of training modern CNNs (represented as ResNet50) at least by
half, and up to 53% and 40% for small and large datasets, enabling
34% and 39% reduction in end-to-end training time respectively.
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