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ABSTRACT
This paper proposes a versatile high-performance execution model,
inspired by systolic arrays, for memory-bound regular kernels run-
ning on CUDA-enabled GPUs. We formulate a systolic model that
shifts partial sums by CUDA warp primitives for the computation.
We also employ register files as a cache resource in order to operate
the entire model efficiently. We demonstrate the effectiveness and
versatility of the proposed model for a wide variety of stencil ker-
nels that appear commonly in HPC, and also convolution kernels
(increasingly important in deep learning workloads). Our algorithm
outperforms the top reported state-of-the-art stencil implementa-
tions, including implementations with sophisticated temporal and
spatial blocking techniques, on the two latest Nvidia architectures:
Tesla V100 and P100. For 2D convolution of general filter sizes and
shapes, our algorithm is on average 2.5× faster than Nvidia’s NPP
on V100 and P100 GPUs.

CCS CONCEPTS
• Computer systems organization → Systolic arrays; Multi-
core architectures.
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1 INTRODUCTION
GPU accelerators have been increasingly adopted to meet the ex-
ponentially growing computational requirements in various fields,
such as scientific simulations and machine learning. Those increas-
ing computational requirements are pushing for the trend of build-
ing GPU-accelerated supercomputers made up of dense nodes that
include several GPUs (e.g. ORNL Summit has six GPUs/node, and
LLNL’s Sierra and TokyoTech’s Tsubame 3.0 both have four GPUs/n-
ode). Hence it is imperative that codes running on those systems
be high in performance and scale vertically (i.e. on a single node),
as well as horizontally (i.e. on the entire system). In this paper, we
focus on the single node performance of one of the commonly occur-
ring computational motifs in HPC (and occasionally deep learning):
memory-bound regular computation on a structured grid [2].

Memory-bound kernels that have a regular pattern of compu-
tation are particularly challenging, since they appear to be simple,
yet they require very complex data reuse schemes to effectively
utilize the memory hierarchy. Typically, advanced GPU implemen-
tations for memory-bound kernels on structured grids rely on the
optimized use of fast on-chip scratchpad memory: the programmer
uses this user-managed scratchpad memory for reducing the global
memory access. Indeed, there exists a plethora of work proposing
variations and combinations of the three locality schemes that rely
on scratchpad memory: spatial blocking, temporal blocking, and a
wavefront pipeline (the reader can find some of the notable work
at [31, 32, 36, 41, 52, 58]). Those complex locality schemes enabled
strides in performance improvements. However, they essentially
moved the bottleneck from the global memory to the faster, yet
smaller, scratchpad. The objective of this work is to yet again move
the bottleneck from the scratchpad to a faster resource: register
files.
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This paper proposes a versatile systolic execution model for
improving the performance of memory-bound kernels with regular
access patterns. A wide class of kernels and applications can benefit
from this versatile model: convolution, stencils, scan/reduction
operators [35], Summed Area Tables [8], . . . etc. The systolic model
is based on the transfer and accumulation of partial results in thread-
private registers. Additionally, we employ the register files as a
cache to avoid using the scratchpad altogether.

To accumulate and transfer partial sums using thread-private
registers, in a SIMT fashion, different groups of threads (known as
warps in CUDA) operate over different input points, with some data
redundancy that we introduce to account for the halo layers. Differ-
ent threads in a warp compute the partial sums, before moving the
partial sums to the downstream neighbor thread to be accumulated.
To transfer the partial sums, we rely on the warp shuffle primitives
that provide low-latency register exchange within a warp [43].

To match the high throughput of shuffling the partial sums, we
fully utilize the registers for caching the computed partial sums.
Accordingly, our model can perform structured grid memory-bound
computations at low latency and high throughput. As a result,
we can decrease the dependency on scratchpad or cache memory
and thus improve the application’s performance by avoiding the
scratchpad and cache bottleneck. To avoid overemphasis on intra-
warp communication, it is necessary to clarify that we do not limit
the use of scratchpad for inter-warp communication.

A systolic array model [33] is typically a well-structured two-
dimensional mesh of Processing Elements (PEs) and provides ex-
tremely high TOPS (TeraOps/Second) and high TOPS/Watt [17]. Re-
cently, systolic arrays have been successfully used to speed up deep
learning workloads, e.g. Google Tensor Processing Unit (TPU) [17]
and Nvidia Tensor Cores. Inspired by the mechanism of hard-wired
systolic arrays, we propose a versatile execution model to improve
the performance of regular memory-bound kernels by moving the
memory access bottleneck from the scratchpad to registers. Our
model can be viewed as Software Systolic Array Execution Model
(SSAM).

Kernels that can be mapped to SSAM should have a regular
memory access pattern. However, there are several challenges that
should be addressed in order to implement an efficient software sys-
tolic model on the top of partial sums accumulation/exchange, and
register caching. First, the algorithms must be expressed in the way
the systolic array can process. Second, the total number of threads
executed together in a working unit (i.e. CUDA warp) is relatively
small1. Hence, this enforces a limit on the systolic array size and
parallelism. We have to rely on Instruction Level Parallelism (ILP)
and in-thread data reuse to provide enough concurrency in each
node (i.e. thread) in the systolic array. Finally, the shuffle primitives
work only for a single warp: a redundancy method for halo layers,
along with a redundancy analysis, is necessary. The contributions
in this paper are as follows:
• A formulation, design, and implementation of a model (called
SSAM), inspired by systolic arrays, for efficiently computing
memory-bound kernels with regular access on GPUs.
• A detailed analysis of the data reuse and redundancy schemes
to quantify the efficiency and limitations of SSAM.

1WarpSize is equal to 32 on all Nvidia GPU generations

• Evaluation of the proposed model for a wide variety of iterative
2D/3D stencils and 2D general convolution on Tesla P100/V100
GPUs. Our model outperforms the top reported state-of-the-art
implementations, including implementations with sophisticated
temporal and spatial blocking techniques. SSAM-based convolu-
tion is over 2.5× faster than Nvidia’s NPP library, and up to 1.5×
faster than the ArrayFire library.
The rest of this paper is organized as follows. Section 2 discusses

the background, i.e., CUDA, convolution, and stencils. In Section 3
we propose the formulation of SSAM. In Section 4 we present the
implementation of various algorithms in SSAM. Section 5 describes
our performance model. In Section 6 we report the evaluated per-
formance of convolution and stencils on the latest Nvidia GPUs.
Section 7 discusses the GPU architectures from the perspective
of operation dependencies in SSAM. In Section 8, we review the
related work. Finally, Section 9 concludes.

2 BACKGROUND
We briefly introduce the CUDA’s concepts and programming model
(more details about CUDA can be found in [44]): (i) CUDA Mem-
ory Hierarchy. GPUs support different memory types: global, lo-
cal, texture, constant, shared and register files [44]. Global memory
is the largest off-chip memory with the highest R/W (Read/Write) la-
tency. Shared memory is a fast on-chip scratchpad memory limited
in scope to CUDA thread blocks. (ii) Register Cache Vs. Shared
Memory Cache. Register cache is an approach in which a sin-
gle warp builds a virtual cache layer on top of register files for
low-latency data R/W [5]. As Table 1 shows, on the latest GPUs, the
register memory per SM is 256KB (65536*4B) and is more than 2.7×
larger than shared memory. (iii) Intra-Warp Communication
By Shuffle. Shuffle is an intra-warp communication mechanism
for a CUDA-enabled GPU. It allows the exchange of data between
threads directly within a single warp without using shared memory
or global memory. (iv) Register Spilling. Registers are a limited
resource in GPUs. If the required number of registers per thread
is too high, the compiler may spill to local memory [37]. However,
there are methods to reduce the register pressure as in [48, 51].

2.1 Convolution
Mathematically, convolution combines two linear functions to form
a third one in order to measure the correlation of overlap between
functions. The canonical form of 2D convolution is

(f ∗w )(x, y) =
d∑
t=c

b∑
s=a

f (x − s, y − t )·w (s, t )

Where ∗ and · are convolution and multiplication operators, respec-
tively. f(x, y) denotes a 2D matrix (or image), while w is a filter of
size (M, N) applied to the matrix, where M=b-a+1, N=d-c+1. Here-
after, we assume that the size of the matrix is (W, H) where W is
the width of the matrix and H is its height.

Note that throughout the paper, we use W, H, M, N as defined in
this section.

2.2 Stencils
Iterative stencil computations are fundamental for scientific ap-
plications in many domains [19, 38]. Figure 1a shows a typical
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Figure 1: (a) 2D 5-point stencil example. (b) 3D 7-point stencil example. (c) Hardware 2D systolic array structure. PE is a pro-
cessing element. (d) SSAM on CUDA (2D problem illustration: "reg" is a register). In the vertical direction, registers are in the
same thread. In the horizontal direction, registers are exchanged by the shuffle instruction. (e) Eight elements KS-scan [20].
Arrows represent the dependency of our model in Equation 2.

Table 1: Shared Memory and Register Files on GPUs

Tesla GPU Shared Memory/SM 32-bit registers/SM SMs
K40 16/32/48 KB 65536 15
M40 96 KB 65536 24
P100 64 KB 65536 56
V100 up to 96 KB 65536 80

first-order 2D diffusion 5-point stencil (also known as 2D Jacobi
stencil). Mathematically, the 2D diffusion stencil is defined as
si+1(x, y) = si (x − 1, y)·West + si (x, y − 1)·North

+ si (x, y) ·Current + si (x, y + 1)·South + si (x + 1, y)·East

where (x, y) is a relative position, si is a cell’s value at the ith

iteration, and · is the multiplication operator. West, North, Current,
South, and East denote the stencil coefficients.

Regarding 3D stencils, taking the 7-point diffusion stencil as an
example (Figure 1b), two vertical points (namely Above and Below)
are added to the 2D 5-point stencil. The stencil is computed by
adding si (x ,y, z − 1)·Above and si (x ,y, z − 1)·Below , where (x, y, z)
is the cell position.

3 SSAM: SOFTWARE SYSTOLIC ARRAY
MODEL

We propose an execution model, named Software Systolic Array
Execution Model (SSAM), that enhances the performance of regular
memory-bound kernels on GPUs. Our work is motivated by the
recent revival of systolic arrays and similar architectures such as
Tensor cores of Nvidia GPUs, Intel TBB [50] data flow graphs, and
wavefront accelerators (mainly FPGAs [18] and ASICs [7]). Tensor
cores are specially optimized for matrix multiplication, however,
SSAM is a general model that is applicable to a wide range of
memory-bound algorithms.

3.1 Systolic Arrays
A systolic array [25] is a structured computing model composed of
many interconnected, yet independent, Processing Elements (PEs)
as shown in Figure 1c. In parallel, all PEs compute the partial results
for a specified function, store results locally, and then send them
to neighbor PEs for the next cycle. The computational and data
storage behavior of each PE can be formulated as

s←ctr l (r ⊗x )⊕s (1)

where s is a partial result held by each PE, r is an external coefficient
(e.g. for convolution r is the weights), and x is an input value. Both
⊗ and ⊕ are basic arithmetic operations, and ctrl(E) is a control
function having the value of 0 or E, i.e. the output of ctrl(E) is 0 or
E.

3.2 Hardware Systolic Array
In the past decades, systolic arrays have been well researched. The
authors in [9, 23, 29, 46, 57] have proposed well-structured systolic
arrays architectures. Ideally, a systolic array is qualified for a spe-
cific computing purpose: e.g., matrix multiplication [22], convolu-
tion [24], DCT [27] . . . etc. A hardware systolic array is a computing
pipeline network with physical interconnects between PEs. As Fig-
ure 1c shows, all of the PEs are connected with their neighbors.
The PEs simultaneously compute, store, and transfer their partial
results to downstream neighbors.

3.3 SSAM: Software Systolic Array Model
SSAM is built as an execution model to express a variety of al-
gorithms, with regular access pattern, in a systolic array fashion.
In other words, it simulates the mechanism of hardware systolic
arrays in CUDA architecture. Our target in this paper is to improve
the performance of the memory-bound kernels with regular mem-
ory access pattern. However, SSAM, in general, is not limited to
memory-bound kernels and could be extended to compute bound
kernels, such as GEMM. In this section, we present SSAM’s for-
mulation and discuss motivating examples. Three core techniques
contribute to the SSAM model:
(i) Efficient in-register computation via register cache;
(ii) Fast intra-warp communication via shuffle instructions;
(iii) Parallel accumulation of partial sums.

We build a software systolic array on the top of a virtual register
cache that is used for efficient data access and reuse. In addition,
the shuffle instructions are used for low latency communication
between threads in a warp. As Figure 1d shows, each register per-
forms the same function as a PE in Figure 1c. It is important to
iterate that the registers (PEs) in the vertical direction belong to the
same CUDA thread, while the registers in the horizontal direction
belong to different threads.

The similarity between systolic array PEs and our registers can
be listed as follows: (i) the ability to execute any arithmetic oper-
ations by oneself (ii) the ability to store partial result by oneself
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(iii) the ability to pass the partial result to neighbors (direct register
access in the vertical direction, and using shuffle in the horizontal
direction), (iv) most importantly, all of the operations are performed
simultaneously.

It is worth mentioning that the use of in-register computing and
partial sums have been proposed in specific implementations of
individual algorithms (as will be discussed in the related work in
Section 8). On the other hand, the model proposed in this paper is a
robust and versatile model that can be leveraged by a wide variety
of problems with different patterns of data dependency, as will be
demonstrated in the following sections.

3.4 Expressing Algorithms in SSAM
In order to express algorithms in SSAM, we build an algorithmic
formulation that extends the prior work in the literature [39]. From
the perspective of a CUDA warp, an algorithm can be formulated
as a four-tuple

J = (O, D, X , Y ) (2)

where
• O : computing operations of J
• D : dependencies of J
• X : input variables of J
• Y : output variables of J

In the model J, the register cache is used for storing X and Y (more
details about register cache will be discussed in Section 4.2). In
contrast to hardware systolic arrays, SSAM can perform computing
operations O like Equation 1, i.e. all arithmetic and intrinsic opera-
tions supported by CUDA. In addition, the graph representing the
dependencies D can take any shape and is not limited to a struc-
tured mesh. This is due to the fact that the shuffle operation allows
arbitrary threads in a warp to exchange values held in registers. It
is worth mentioning that the partial results are updated as specified
in Equation 1, and are passed according to the dependency graph
D. There are several methods to extract the dependency graph D.
We briefly introduce one of those methods in Section 7.2 : using
the polyhedral model [13] to represent D.

3.5 Motivating Example 1: 1D Convolution
We use 1D convolution as a motivating example to illustrate how
an algorithm can be expressed in SSAM. Given an input array
A = [a0, · · ·,an−1] and filter F = [f0, f1, f2], the output of convolu-
tion is an array B = [b0, · · ·,bn−1], such that bi =

∑i+1
z=i−1 az · fz .

We use registers to cache the input data, with one thread comput-
ing one element. In SSAM, we map the 1D convolution to a warp
(Equation 2) such that the input X = [ak , · · ·,ak+WarpSize−1] and
output Y = [bk , · · ·,bk+WarpSize−1], where 0 ≤ k≤n −WarpSize .
For the computation O (in Equation 1) where r∈F, ⊗ and ⊕ are mul-
tiplication and addition operations, respectively. The dependency
graph D can be represented as in Figure 2c, where the ctrl() ≡ 1 is
fixed.

3.6 Motivating Example 2: Scan Operator
Scan operator is the sums of prefixes (running total) of an input
sequence [? ]. Even though we do not evaluate Scan operator in
this paper, we choose Scan operator as an example of mapping

algorithms in SSAM to demonstrate its versatility. Given an input
array [a0, · · ·,an−1], the output of Scan is an array [b0, · · ·,bn−1],
such that bi =

∑i
0 ai . For simplicity, we use registers to cache the

input data where each thread holds one element. In our model, we
map the Scan operation to a warp in SSAM such that the input X =
[ak , · · ·,ak+WarpSize−1], and output Y = [bk , · · ·,bk+WarpSize−1],
where 0 ≤ k ≤ n −WarpSize . As to the computation operations O,
in each computing stage (Equation 1), r ≡ 1, ⊗ is a multiplication
and ⊕ is an addition operation. Since we use the Kogge-Stone Scan
algorithm [20], the dependency graph D is similar to Figure 1e,
namely the arrows in Figure 1e can be expressed as ctrl() in Equa-
tion 1.

One-dimensional scan operator is simple to some extent. Fur-
thermore, the complex case of two-dimensional scan, known as
Summed Area Tables (SAT), is proven to benefit of a systolic model
optimization similar to SSAM, more details can be found in our
another work [8].

4 IMPLEMENTATION OF ALGORITHMS IN
SSAM

Detailed techniques required in implementing the SSAM model
are illustrated in this section, such as coalescing global memory
accesses, caching data by register files, computing and transferring
partial sums, and overlapped blocking. Using 2D convolution as
a motivating example, we discuss the implementation of SSAM.
Additionally, we mention the special considerations given to stencil
operators when necessary.

4.1 Mapping 2D Convolution to SSAM
Using the SSAM model introduced in the previous section, we
implement an efficient 2D convolution algorithm. Regarding the
mapping of algorithms to SSAM as J (Equation 2), the input X and
output Y are addressed in Section 4.2. The computing operation O
is discussed in Section 4.3, and the dependency graph D is discussed
in Section 4.4. The detailed 2D convolution implemented by SSAM
model is shown in Listing 1:

(i) All of the filter weights are stored into shared memory (lines
7∼12).

(ii) A subset of the image data residing in global memory is cached
into registers (lines 13∼14). Since registers are a limited re-
source, the register cache is managed with careful considera-
tion. For this purpose, we introduce a sliding window scheme
(more details on that in the next section).

(iii) As shown in Figure 2a, according to the sliding window2 posi-
tion and filter height, we fetch both sub-vector v and w from
the register cache and filter coefficients, respectively. Next, we
compute the partial sums by the fused multiply-add operator
MAD (lines 24∼26) and transfer the partial sums to the neighbor
threads via the shuffle primitive (line 22).

(iv) Repeat step (iii)M times for all of the sub-vectors (w1, . . . ,wM ),
then store the final partial sums to the register cache again (line
28).

2We use a sliding window to compute several output points per thread. This method
improves both data reuse and ILP
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Listing 1: SSAM-based 2D Convolution: CUDA kernel. M, N,
W, H are defined in Section 2.1, P, B and C are illustrated in
Section 4.2.

1 template<typename T, int B, int P, int M, int N>
2 __global__ void 2Dconvolution(const T* src,
3 T* dst, int W, int H, const T* weight) {
4 const int C = P + N - 1;
5 //register files
6 T data[C];
7 __shared__ T smem[N][M];
8 T* psmem = &smem[0][0];
9 //1, Load filter weights to shared memory
10 for (int i=threadIdx.x; i < N*M; i += B)
11 psmem[threadIdx.x] = weight[threadIdx.x];
12 __syncthreads();
13 //2, Load data from global memory to registers
14 data[DATA_IDX] = src[SRC_IDX];
15 //3, Compute convolution via registers
16 #pragma unroll
17 for (int i=0; i<P; i++) {
18 T sum = 0;
19 #pragma unroll
20 for (int m = 0; m < M; m++) {
21 if (m > 0)
22 sum = __shfl_up_sync(0xffffffff, sum, 1);
23 #pragma unroll
24 for (int n = 0; n < N; n++) {
25 sum = MAD(data[i + n], smem[n][m], sum);
26 }
27 }
28 data[i] = sum;
29 }
30 //4, Store Result to Global Memory
31 dst[DST_IDX] = data[DATA_IDX];
32 }

(v) We move the sliding window step by step for a total of P times
(line 17) in Listing. 1. At each step, we repeat the convolution
computation, namely (iii) and (iv).

(vi) Finally, the convolution results, which reside in the register
cache, are stored back to global memory (lines 30∼31).

The following sections elaborate on the steps of the algorithm.

4.2 Register Cache & Coalesced Memory Access
In SSAM, and in CUDA best practice in general, it is crucial for
performance to account for coalesced global memory access. Hence,
we make sure that all of the threads in a warp read data from
global memory contiguously (one element per thread) as shown in
Listing 1. The operation is repeated to cache multiple lines of data
from global memory into register files, line by line. As illustrated
in Figure 2a, each thread in a single warp caches C elements as

C = N + P − 1 (3)

Where N is the filter size. Each thread computes the output of P
elements using a sliding window. The sliding window is designed
such that a portion of the data in the register cache can be reused
when computing the neighboring output points. More specifically,
the computation of the convolution of point P in a thread can
reuse the data in the register cache loaded when computing the
convolution of point P-1. Using this scheme, at any given point, a
WarpSize×C register matrix is stored in the register cache.

In Figure 2a, the left side of the figure illustrates how to populate
the register cache for a warp. In a single warp, each thread reserves

C registers for storing data. The register cache size, and systolic
array size, in each warp is equal to WarpSize×C. The right side
of the figure shows how to cache the filter matrix. We store the
filter coefficients in shared memory, then compute the convolution
by moving the sliding window step by step P times. At each step
we compute the inner products of [vi , vi+1, ..., vi+N−1] with w1,
w2, ..., wM as shown in Fig 2b. Next, we shift the partial inner
product to the neighboring threads as shown in Figure 2c. It is
worth emphasizing that such a sliding window provides a simple
yet effective method to tackle the second challenge in Section 1.

4.3 Computing Partial Sums
In this section, we describe the computation of partial sums. Com-
puting the partial sum for 2D convolution by Equation 1 is similar
to the 1-D convolution example in Section 3.5. More specifically as
seen in Figure 2b, all threads simultaneously, in a systolic fashion,
compute the partial sum (sumk ) between a register vector v ([vi ,
vi+1, ...,vi+N−1]) and a column of filterw1,w2, ..., orwM . Addition-
ally, the vector v is held by each thread and w is managed by shared
memory. It is necessary to access the filter weights in the same
order as the data is stored in register cache: namely, unit-strided
access in the vertical direction as shown in Figure 2b. The partial
sum requires N multiplications and N-1 addition operations. The
multiplication and addition operations are typically optimized to
fused-multiply-add (MAD instruction in CUDA [44]). For the M×N
filter, the inner products are computed M times (as shown in Fig-
ure 2a) to compute a single output element of convolution (Listing 1
line 20∼27).

4.4 Transferring & Accumulating Partial Sums
In the SSAM model, all of the threads within a single warp accumu-
late and transfer the partial sums. We use the shuffle instructions
to transfer the partial results to the downstream neighbor threads
for further accumulations. In Figure 2a the M×N filter is decom-
posed into M vectors, namelyw1,w2, ...,wM . Each partial sum is
computed between register vector v ([vi , vi+1, ..., vi+N−1]) and
filter vector w. Then, all of the inner products, namely partial sums,
are shifted to the right side neighbor thread within a single warp
using the CUDA shuffle_up function. In Figure 2c, all of the regis-
ters are shifted only once at each step (Listing 1 line 22). Next, the
shifted partial results are added to the accumulated results by each
thread (Listing 1 line 25). This process is repeated M-1 times (List-
ing 1 line 20∼27). Finally a row of convolution results could be
attained from a group of threads, namely whose laneIds [44] ranges
from M-1 to WarpSize-1. By moving the sliding window once, each
warp of threads computesWarpSize-M+1 convolution results.

4.5 Overlapped Blocking Scheme
The overlapped blocking scheme is widely adopted to improve the
concurrency in time-tiled stencils computations [21, 62]. We use
this scheme to eliminate warp-divergence, which can have negative
performance effects. As Figure 3 shows, we design our overlapped
blocking algorithm to avoid intra-block communications that may
cause branching when computing the partial sums and shifting of
the register. Using multiple loops for computation is the heaviest
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Figure 3: Overlapped Blocking: the cached block size is
WarpSize×C, the valid output size is (WarpSize-M+1)×P.
Overlapped block size is a function of the specified filter
size.

and most complex part of computing the 2D convolution (List-
ing 1 lines 16∼27). The overlapped blocking scheme enables all
of the threads in our CUDA kernel to perfectly execute without
any branching. Halo layer(s) overhead is introduced when using
overlapped blocking (the last challenge in Section 1). We provide
an elaborate analysis of the halo layers impact on performance (
performance model in Section 5.3).

4.6 Caching Filter Coefficients
We cache filter weights by shared memory. Filter weights are often
tens of bytes (e.g. 36B for 3×3 and 100B for 5×5). Since the weights
are shared by all of the threads in a CUDA block, it is reasonable
to access the weights via shared memory. It is also possible to
use other kinds of memory, such as constant memory and texture
memory. A small number of weights could also be passed to the
CUDA kernel directly as arguments. However, considering our
commitment to scaling to large filter sizes, we use shared memory
in our implementation. Our algorithm performs a broadcast read
pattern to the shared memory: all threads in a CUDA block access
the same address of shared memory. This assures no bank conflict
problems, as described by CUDA guide [44].

4.7 Number of Required CUDA Blocks
We use a one-dimensional block in our implementation, Block-
Dim=(B, 1, 1). B is equal to blockDim.x, both blockDim.y, and block-
Dim.z are 1. In each CUDA block, its warp count is defined as

Listing 2: 2D 5-point stencil CUDA kernel. Variable defini-
tions are the same as Listing 1. West, North, Current, South
and East are stencil coefficients.

1 #pragma unroll
2 for (int i=0; i<P; i++) {
3 T sum = 0;
4 sum = MAD(data[i + 1], West, sum); //1st column
5 sum = __shfl_up_sync(0xffffffff, sum, 1);
6 sum = MAD(data[i + 0], North, sum); //2nd column
7 sum = MAD(data[i + 1], Current, sum);
8 sum = MAD(data[i + 2], South, sum);
9 sum = __shfl_up_sync(0xffffffff, sum, 1);
10 sum = MAD(data[i + 1], East, sum); //3rd column
11 data[i] = sum;
12 }

WarpCount = B/WarpSize . The required CUDA grid dimensions
are expressed as GridDim .x = ⌈ W

WarpCount ·(WarpSize−M+1) ⌉ and
GridDim .y = ⌈H/P ⌉ = ⌈H/(C − N + 1)⌉, respectively.

4.8 Mapping 2D Stencil to SSAM
In this section, we describe mapping 2D stencils to SSAM. In List-
ing 2, the SSAM-based 5-point stencil kernel differs slightly from
the convolution example in Listing 1. First, the stencil coefficients
are divided into three groups as {West}, {North, Current, South}, and
{East}. Then we compute in parallel the partial sums between the
coefficients groups and the cached data. Finally, the partial sums are
shifted to the neighbor threads like Section 4.3. In 2D convolution,
we cache the filter coefficients by shared memory to account for
the cases of large filters. Stencils typically have fewer coefficients
than convolutions, so we directly transfer the stencil coefficients
to the kernel as arguments (namely Current, . . . , East). It is impor-
tant to note that SSAM is not limited to low order stencils such as
the 5-point stencil. SSAM, as will be shown, is highly effective for
different shapes of stencils of the high order.

4.9 Mapping 3D Stencil to SSAM
This section discusses using SSAM for a 3D stencil. We divide
the 3D grid into many 3D sub-grids with overlapping blocks (to
account for the halo layers as in Figure 3). Each sub-grid is processed
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Table 2: The latency of different operations. All of the la-
tency values are measured by our micro-benchmarks in the
unit of cycles/warp. Tsmem_r ead is the latency of reading
shared memory.

GPU Operation Latency GPU Operation Latency
shfl_up_sync 33 shfl_up_sync 22

P100 add, sub, mad 6 V100 add, sub, mad 4
Tsmem_r ead 33 Tsmem_r ead 27

by a CUDA block, and each warp in a CUDA block processes a
2D slice in the X-Y plane as in Figure 1b. Regarding the threads
accumulating the final result si+1(x ,y, z), since in the Z direction
values of si (x ,y, z−1) and si (x ,y, z+1) are inaccessible (i.e. residing
the registers of neighbor warps), we use the shared memory to
accumulate the partial sums, which are computed by corresponding
warps. In this scenario, SSAM performs intra-warp communication
using the shuffle instruction and inter-warp communication using
shared memory.

5 PERFORMANCE MODEL
In this section, we introduce a performance model to analyze the
effectiveness of SSAM over the conventional scratchpad memory
implementations. In addition, we analyze the overhead of process-
ing the halo area required in the overlapped blocking scheme (in
Section 4.5). For most of the memory-bound regular applications
that could be implemented with SSAM, the analysis results should
be valid, yet the details of the analysis may vary from case to case.
We use 2D convolution as a motivating example in the following
discussions.

5.1 Micro-benchmarking
We use micro-benchmarking to better understand some perfor-
mance characteristics of GPUs. Several papers have made contri-
butions in demystifying parts of the details about CUDA-enabled
GPUs, such as the memory hierarchy latency and throughput [34].
We adopt the micro-benchmarks proposed by cudabmk [55], and im-
prove its functions for our purpose. Some of the relevant measured
results are listed in Table 2.

5.2 Efficient In-register Partial Sums
Computation

In this section, we demonstrate the benefits of using SSAM by
comparing the latency of computing a single output element of 2D
convolution using SSAM versus the conventional shared memory
implementation.

We define the following parameters for modeling the compute
time. Tsmem_r ead is the latency of reading shared memory, Tr eд is
the latency of reading/writing register, Tshf l is the latency of shuf-
fle instruction, Tmad is the latency of MAD operation, Tдmem_r ead

and Tдmem_write are respectively the latency of reading and writ-
ing global memory. Suppose M×N filter coefficients are cached
in shared memory in advance. Conventionally, the image data is
cached in shared memory, the latency of computing an output

element is

Lsmem = M ·N ·(Tmad + 2·Tsmem_r ead + 2·Tr eд)

Where 2·Tsmem_r ead is the time to perform one load of a filter weight
plus one store of cached data from shared memory to registers. In
the case of SSAM, the image data is cached in register cache, the
latency may be expressed as

Lr eд = M ·N ·(Tmad +Tsmem_r ead + 2·Tr eд) + (M − 1)·Tshf l (4)

It is worth mentioning that we require (M-1) shuffle instructions
for intra-warp communication: no shared memory is required for
intra-warp communication. The difference of computing an output
element between the shared memory method and register cache
can be derived as

Di fsmem_r eд = Lsmem − Lr eд
= M ·N ·Tsmem_r ead − (M − 1)·Tshf l

(5)

Based on the metrics in Table 2, The result is Di fsmem_r eд≫0,
whereM≥2 and N≥2.

In conclusion, the register-based partial sums computationmethod
is more efficient than the shared memory method.

5.3 Halo Layer(s) Overhead
In this section, we analyze the benefits and overhead of using over-
lapped blocking (as shown in Section 4.5) by comparing the shared-
memory-cache implementation with SSAM. The input 2D data
residing on global memory is divided into many contiguous blocks
as Fig 3 shows, with overlapping areas to account for the halo lay-
ers. Since the cache size is considerably smaller than the original
2D data, the halo data must be stored into cache memory multi-
ple times. Note that the required halo data is loaded from global
memory and stored to cache and incurs no additional computation:
the halo data does not generate redundancy in the convolution
computation.

The following parameters are defined in our analysis: Tд2rc is
the required time of loading data from global memory to register
in the case of using the register cache method. When using the
shared memory method, Tд2r s is the required time for loading the
data from global memory to registers and Tr2s is required time of
storing data from register to shared memory.

Loading the halo layer data is a redundant operation that could
penalize performance. We compare the penalizing effects of halo
layers between SSAM and shared memory. We define the ratio of
halo for SSAM as HRrc = (S ·C − (S −M )·(C − N ))/(S ·C ), where S is Warp-
Size. Hence, we can further derive that HRrc < (S ·N +C ·M )/(S ·C ). We
define HRsmc as the ratio of shared memory used for the halo lay-
ers, where HRsmc ∈[0, 1), we can reach that Tд2rc /(1 +HRrc ) approxi-
mates Tд2r s /(1 +HRsmc ). Since the shared memory can be accessed
within a CUDA block, while the register can be only within a
warp, HRrc≫HRsmc becomes true. Suppose that the shared memory
caches the global memory without halo layers as HRsmc =0, we can
achieve the ideal caching pattern as Tд2rc≈(1 + HRrc )·Tд2r s . The dif-
ference in time between using the shared memory method versus
the register cache for loading and storing data may be expressed as
Tdif _mem_io = (Tд2r s +Tr 2s +Tr 2д ) − (Tд2rc +Tr 2д ), where Tд2rc is the time
required to store the convolution result of W*H elements back to
the global memory. Hence, Tdif _mem_io = Tr 2s −Tд2r s ·HRrc . Suppose
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that each thread processes P elements and loads C elements, the
difference of using shared memory and register cache to compute
convolution, while accounting for the halo layers is
Dif ≈ Tr 2s −Tд2r s ·HRrc + P ·Dif _smem_r eд

> Tr 2s −Tд2r s ·(N /(N + P − 1) +M/32) + P ·(M ·N ·Tsmem_r ead − (M − 1)·Tshf l )

for each thread loading C elements from global memory. The dif-
ference of execution time on average can be expressed as

AvдDif = Dif /C > Tr 2s /C −Tд2r s /C ·1/(N /(N + P − 1) +M/32)
+ P/C ·(M ·N ·Tsmem_r ead − (M − 1)·Tshf l )

In comparison to HRrc , HRsmc is relatively small since Tr 2s /C is purely
dominated by the shared memory latency. Considering Tд2r s /C
as the global memory read latency, we reach (Tr 2s /C) = Tsmem ≫
Tsmem_r ead and (Tд2r s /C)≈Tдmem_r ead , thus

AvдDif >Tsmem_r ead −Tдmem_r ead ·(N /(N + P − 1) +M/32)
+ P ·M ·N ·Tsmem_r ead /(N + P − 1) − (M − 1)·Tshf l

SinceTдmem_r ead is 200∼400 cycles/warp for coalesced access [42].
We can conclude that AvдDi f≫0, where M≥2 and N≥2.

To sum up, in comparison to the shared memory-based algo-
rithms, the overhead of handling the halo layers in register cache
method is marginal.

5.4 The Importance of Dependency D in SSAM
In this section, we present the importance of dependency (namely
D) in SSAM. Our performance model proves the bases for why the
SSAM improves the performance of memory-bound kernel. Based
on former discussions and the Equation 2, we can conclude the
following:
(i) The in-register partial sums computing operation (O) achieves

higher computing efficiency in comparison to the conventional
methods.

(ii) Coalescing access to global memory and efficient register cache
make the input (X ) and the output (Y ) operations perform data
Read/Write efficiently.

(iii) However, the partial sums transfer path (D) varies from one
algorithm to another. Exploring the correct dependency is criti-
cal to algorithm performance and thus we need a careful design
of the data transfer paths in SSAM. In other words, D should be
mapped carefully to the register communication pattern within
a single warp, e.g. Fig 1d shows that exchanging registers in
the horizontal direction is more expensive than vertical. Hence,
decreasing the transfer of partial sums in the horizontal direc-
tion is essential for expressing algorithms efficiently in SSAM.
More specifically, we can determine the best D by computing
and comparing the latency of variants of SSAM-based kernels
via micro-benchmarking, e.g., computing the latency of 2D
convolution as in Equation 4.

6 EVALUATION
This section is dedicated to reporting the achieved performance of
our executionmodel using the latest Nvidia GPUs. The performance
of 2D convolution and 2D/3D stencil computation is analyzed in
detail. It is noteworthy to mention that we prioritized the imple-
mentation and reporting of 3D stencil over 3D convolution in the
paper, in part due to 3D stencils being more exhaustively studied
in literature and targeted with complex data reuse schemes (shown

later). We are however currently targeting 3D convolutions after
performing an exhaustive study of the diversity of 3D convolutions
sizes used in deep learning.

6.1 Software & Hardware Setup
The experimental results presented here are evaluated by two Tesla
P100 and V100 GPUs. The CUDA driver is 410.48, we use CUDA
10.0 (including NPP/cuFFT and cuDNN v7.4), GPU memory is 16GB,
and the OS is CentOS 7.6. ECC option for GPUs is on. Nvidia nvcc
and gcc-5.4 are used to compile the CUDA kernel and host codes,
respectively.

6.2 2D Convolution Results
In Figure 4, we evaluate 2D convolutions for various filter sizes,
which ranges from 2×2 to 20×20. It is noteworthy that P=4, B=128
are used as parameters. We use the OS-independent cudaEvent
function to measure the execution time for all of the convolution
computations, and ignore the data transfer time between host and
device. Note that although in our experiments we only show square-
shaped filters (i.e. M=N), a simple change in a template function in
our implementation enables the computation of 2D convolution for
any filter shape (M,N) as well.
(i) ArrayFire [56]. ArrayFire is a highly optimized library by

CUDA.We report the performance of the fastest 2D convolution
kernel, called kernel::convolve2, in which the shared memory
and constant memory are employed to cache image data and fil-
ter weights, respectively. Its filter size limitation is 16×16. Note
that there are no official documents about this value, which
was found out by analyzing source code and lots of tests.

(ii) NPP [44]. The Nvidia Performance Primitives (NPP) library
is a closed-source library, thus we investigate it by the nvprof
profiling tool. NPP does not use any shared memory as cache.
Note that NPP particularly optimizes the convolution compu-
tation for filters of size 3×3 and 5×5 using dedicated kernels,
the kernel names are FilterBorder32f3x3ReplicateQuadNew and
FilterBorder32f5x5ReplicateQuadNew, respectively.

(iii) cuFFT [44]. The Nvidia CUDA Fast Fourier Transform (cuFFT)
library provides a constant, yet relatively high, run time regard-
less of the filter size.

(iv) Halide [40]. The Halide is a domain-specific language (DSL)
designed to generates pipelines for image processing [40]. It
is difficult to instrument its pipeline to measure the kernel
execution time, so we use the Nvidia nvprof profiling tool to
report the kernel execution time.

(v) cuDNN [10]. cuDNN is a GPU-accelerated library by Nvidia
for deep neural networks. We evaluate it by a special parameter
that an image with a single channel is convolved by a single
filter. Several algorithms are implemented in cuDNN, and we
only report the result with the best performance. Note that the
supported filter sizes in cuDNN must be odd numbers, e.g. 3×3,
5×5.
Figure 4 gives indications of the accuracy of the findings of the

performance model (Section 5). Equation 5 indicates that given
a fixed output size of 2D convolution, while increasing size of
filters, the performance difference between SSAM and other kinds
of implementations (not only shared memory-based algorithm)
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Figure 4: 2D Convolution performance and scalability. The image size is 8192×8192, the x-axis is filter size, the y-axis is execu-
tion time.

Table 3: Stencil benchmark. The k is stencil order, the FPP is
FLOP per point. The domain sizes of the 2D and 3D stencil
are 81922 and 5123, respectively. A detailed description of the
benchmarks can be found in literatures [47, 48].

benchmark k FPP benchmark k FPP benchmark k FPP
2d5pt 1 9 2d9pt 2 17 2d13pt 3 25
2d17pt 4 33 2d21pt 5 41 2ds25pt 6 49
2d25pt 2 33 2d64pt 4 73 2d81pt 4 95
2d121pt 5 241 3d7pt 1 13 3d13pt 2 25
3d27pt 1 30 3d125pt 2 130 poisson 1 21

becomes increasingly larger. Such a conclusion can be verified
by observing the difference in the performance of the graphs in
Figure 4.

6.3 Stencil Results
To better understand the performance of SSAM-based stencil com-
putations, we evaluate a diverse collection of 2D/3D stencil bench-
mark (listed in Table 3) and compare the performance with a variety
of CUDA implementations on the latest GPUs. Note that the stencils
in the experiments include both low order and high order stencils.
High-performance stencil libraries rarely provide a consistent per-
formance advantage for both low and high order stencils since high
order stencils are typically bound by the registers. For instance, tem-
poral blocking is effective for low order stencils [62], while register
re-ordering schemes are effective for high order stencils [47, 48].

Figure 5 shows three implementations: "original", "reordered",
and "unrolled", with state-of-the-art performance results by Rawat
et al. [47, 48]. The "original" is a basic CUDA implementation,"
reordered" is register-optimized version for "original", "unroll" is
the unroll-optimized method. Note that we adapted Rawat’s source
code to P100/V100 GPUs, ran multiple tuned configurations and
only report the result with the best performance. We also compare
with the latest ppcg (0.08 version) compiler [53] and Halide [40].

We use GCells/s and not GFlops/s as the performance metric in
all our stencil experiments since we observed that different libraries
count FLOPS differently. Additionally, the achieved GFlops/s can
be obtained by multiplying the reported GCells/s with the corre-
sponding FPP factor (as in Table 3). Note that the execution time of
all stencil kernels is measured by Nvidia nvprof profiler.

In Figure 5, SSAMmostly outperforms the other implementations
using the latest GPUs in both single and double precision runs. The
performance advantage of SSAM is due to the better register locality,
less global memory access and efficient threads communication.
Such a result is consistent with the performance of 2D convolution
(as in Figure 4) and is further explained by the performance model.

There are two important observations in Figure 5. One is that in
comparison to the P100 GPU, the performance variance on V100
become smaller, and the other is that when using double precision
on the V100 GPU, few of the SSAM-based stencils do not achieve
the highest performance. The reason behind that is that Volta’s
architecture is different in many aspects, which will be discussed
in Sec 7.1.

6.4 Comparison with Temporal/Spatial
Blocking Libraries

SSAM is a versatile model that enables temporal blocking without
much change to the implementation: the use of register cache and
shuffling in SSAM does not limit the use of temporal blocking. It
is worth to mention that temporal/spatial blocking algorithms are
widely used to improve the performance of stencil computation by
reducing the required memory bandwidth. In this section, we focus
on comparing SSAM to state-of-the-art temporal blocking libraries
for stencils.

StencilGen. We compare the performancewith StencilGen [49].
To the author’s knowledge, StencilGen reports the highest perfor-
mance among temporal blocking libraries. As Figure 6 shows, in the
majority of benchmarks, SSAM performs better than StencilGen.
However, register pressure can limit our performance in some cases.
It is important to mention that StencilGen is optimized for stencil
computations only, while SSAM is more versatile and general for
different types of kernels. In addition, it is important to point out
that SSAM provides a consistent performance advantage for both
low and high order stencils. Some approaches, such as those pro-
posed in [48, 49], can further be adopted by SSAM to improve the
performance for the specific cases of deep temporal blocking.

Diffusion. The authors in [62] report a competitive perfor-
mance of the 3d7pt stencil (highly optimized by shared memory
as proposed in [32], called Diffusion in Figure 6) as 92.7 GCells/s
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(c) Double precision on Tesla P100 GPU.
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Figure 5: Performance evaluation for the 2D and 3D stencil benchmarks on Tesla P100 and V100 GPUs, the x-axis is the
stencil benchmarks defined in Table 3. The y-axis is the performance in a unit of GCells/s. The "original", "reordered", and
"unrolled" are implemented by Rawat et al. as open-source [47, 48], the "ppcg" is auto-generated from the C code using the
ppcg compiler [53].

and 162.4 GCells/s using single precision on P100 and V100 GPUs,
30.6 GCells/s and 46.9 GCells/s using double precision on P100 and
V100 GPUs, respectively. This performance is significantly lower
than SSAM.

Bricks. Bricks is a general stencil library targeting both CPUs
and GPUs [61]. The performance of Bricks on P100 is reported to
be 41.4 GCells/s and 24.25 GCells/s for single and double precision,

respectively. As seen in Figure 6a and Figure 6b, SSAM outperforms
Bricks on P100. Since Bricks is not publicly available, we can not
compare our result for the V100 GPU.

7 DISCUSSION
This section discusses the performance considerations given to
Pascal and Volta architectures, and elaborates on how to extract
dependency for SSAM.
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7.1 Considerations for Pascal & Volta
Architectures

In this section, we outline the reasons why SSAM performs differ-
ently on P100 and V100 GPUs.

(i) The L1 cache in Volta is significantly enhanced. (1) According
to Nvidia user guide [45], the capacity of L1 cache in Volta has
increased up to 128KB, which is more than 7× larger than Pascal;
(2) Regarding the access latency of L1 cache, V100 is about 2.8×
faster than the P100 (as reported in [15]: V100 is 28 cycles vs.
P100 is 82 cycles). This narrows the gap between applications
that are manually optimized by caching data in registers (or
shared memory) and those that access global memory directly.
Hence, the difference of performance between the SSAM and
other implementations become smaller on the V100 GPU.

(ii) The improvement of L2 cache also contributes to the change in
performance behavior between P100 and V100 GPUs. According
to the experiments in [15], in comparison to P100, the capacity
of L2 cache in V100 increases by 50% (P100 is 4096KB vs. V100
is 6144KB), the access latency improves by up to 10% (P100 is
≤234 cycles vs. V100 is ≤193 cycles).

(iii) As Jia et al. [16] illustrated, due to register bank conflict in Volta
architecture, MAD instruction (accessing 3 registers in the same
cycle) results in one clock stall. More specifically, in Volta, regis-
ters are divided into two banks. However, other generations (e.g.
Pascal, Maxwell, Kepler) have four banks [1, 60]. Finally, SSAM
performs as well as Pascal in Maxwell and Kepler architectures.
Due to the space limitation, we do not show the result.

7.2 Automation and Extracting Dependency (D)
for SSAM

This paper proposes a method for executing kernels with regular
data-access behavior in a systolic fashion. The paper is dedicated
to explaining the method in a comprehensive way that covers the
systolic representation/mapping, a performance model, detailed im-
plementation, and a broad range of experiments and comparisons.
It is important to note that all kernels evaluated in Section 6 are
strictly implemented as Listing 1 and Listing 2 without extra manual

optimization. Taking Figure 4 for instance, Listing 1, a single tem-
plate kernel function, is used for all SSAM-based 2D convolution
evaluations.

That being said, it is a non-trivial task for users to manually
apply SSAM in large code bases made of tens kernels. An ideal case
would be to automate SSAM, by using a DSL or code transformation.
We argue that code transformation is the more practical approach
since users can be reluctant to move to new DSLs. To apply SSAM
as an automated code transformation, extracting the dependency
and mapping it to SSAM is an important point to consider when
generalizing SSAM to different types of algorithms. Automatic code
generation by SSAM is future work that is outside the scope of
this paper due to the space limit, and the nontrivial body of work
required to extract dependencies and map them to SSAM for any
given kernel.

In this paragraph, we briefly discuss the possibility of repre-
senting the dependency graph (namely the D in Equation 2) us-
ing the polyhedral model [13, 30, 54]. The polyhedral model is a
well-researched mathematical framework for performance opti-
mization [6], which often involves nested loops and large numbers
of operations, i.e. convolution, matrix multiplication. According
to our formulation in Equation 2, and motivational examples in
earlier sections, such a parametric representation can be analyzed
for mapping algorithms and code, i.e. C/C++, to the SSAM-based
intermediate representation (IR).

8 RELATEDWORK
Register cachemethods are widely used on GPUs to boost individual
application’s performance [5, 12, 14, 26]. Most notably, a technology
called register packing demonstrated how to avoid shared memory
communication for improving cyclic reduction performance [11].
Lai and Seznec [26] suggest a method named register blocking
to explore the potential peak performance of SGEMM on Fermi
and Kepler GPUs. Enfedaque et al. proposed a discrete wavelet
transform (DWT) implementation for fast image processing based
on register cache [12]. The binary finite field multiplication al-
gorithm was implemented by Eli Ben-Sasson et al. yielded up to
138× speedup than the popular Number Theory Library [5]. Hou
et al. [14] implemented a register-based sort method shows great
improvements over scratchpad memory methods on NVIDIA K80-
Kepler and TitanX-Pascal GPUs. A 1-D stencil method is introduced
as an example to illustrate how register cache and shuffle instruc-
tion works [5].

Register optimization is an important approach to improve the
performance of stencil codes. The authors in [59] implemented a
register-only method to improve the 3D 7-point stencil without
using thread communication. Zumbusch et al. implemented vec-
torized kernels for high order finite stencils on multi-platforms,
i.e. AMD/Intel CPUs, Nvidia GPUs [63]. Rawat et al. proposed a
reorder framework to optimize register allocation for both CPUs
and GPUs [47, 48].

Partial sums method is used by Basu et al. to generate SIMD code
for CPUs within CHiLL compiler [3]. On the other hand, SSAM
is introduced at the application level to perform the in-register
computation and not just partial sums for GPUs. Krishnamoorthy
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et al. used overlapped tiling optimization for the stencil to preserve
concurrency in time-tiled computations [21].

The majority of the work above is limited in scope to specific
applications (e.g. stencil), and architectures. Moreover, they lack
performance models for the redundancy and do not optimize for
reuse in register cache. Li et al. proposed a general model for all gen-
erations of GPUs, called Warp-Consolidation, however, it is focused
on improving the Cooperative-Thread-Array execution [28].

StencilGen [49], a state-of-the-art DSL implementing advanced
temporal blocking for stencils. Halide [40] is a DSL and ppcg [53]
is general code-to-code transformation framework. Both generate
code for GPUs, yet the automated code does not always yield the
ideal performance as demonstrated in earlier sections.

Using a Stateful DataFlow multiGraph (called as SDFG) to op-
timize HPC applications, Ben-Nun et al. [4] demonstrated a very
general IR (Intermediate Representation) for a number of accel-
erators, e.g. CPUs, GPUs, FPGAs. Obviously, SDFG is reported to
achieve high performance by considering more characteristics of
GPU architectures.

To the best of our knowledge, this work is the first to propose a
completely generic and versatile method, driven by a performance
model, to use locality-optimized register cache and shuffle instruc-
tion for directly computing different filter/stencil sizes for both 2D
and 3D grids. Last but most importantly, we pave a novel way to
optimize algorithms on CUDA-enabled GPUs : mapping the CUDA
cores to software systolic arrays. Thereby, we build a bridge be-
tween code automation and optimization.

9 CONCLUSION AND FUTUREWORK
This paper proposes a novel and versatile high-performance exe-
cution model (namely SSAM) for improving the performance of
structured grid memory-bound kernels on CUDA-enabled GPUs.
Using the SSAM execution model, we improve the performance of
challenging problems, such as convolution and stencil. Our model
performs as a software systolic array by computing and shifting
partial sums. The evaluation shows that SSAM outperforms top
libraries for 2D convolution and 2D/3D stencil, in both Pascal and
Volta GPU architectures.

Nvidia Volta V100GPU includes hardware systolic arraya (namely
Tensor cores). Tensor cores are efficient in computation yet they
are limited in precision since they designed for Deep Learning
workloads. Our software systolic array can be used for a varity of
applications at single and double precision. For future work, we
plan to apply our model to 3D/4D convolution workload for accel-
erating deep learning training. We also intend to generate SSAM
codes automatically using polyhedral analysis and DSL tools, e.g.
ppcg, Halide.
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