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ABSTRACT
The implementation of Molecular Dynamics (MD) on FPGAs has
received substantial attention. Previous work, however, has consisted
of either proof-of-concept implementations of components, usually
the range-limited force; full systems, but with much of the work
shared by the host CPU; or prototype demonstrations, e.g., using
OpenCL, that neither implement a whole system nor have compet-
itive performance. In this paper, we present what we believe to be
the first full-scale FPGA-based simulation engine, and show that
its performance is competitive with a GPU (running Amber in an
industrial production environment). The system features on-chip
particle data storage and management, short- and long-range force
evaluation, as well as bonded forces, motion update, and particle mi-
gration. Other contributions of this work include exploring numerous
architectural trade-offs and analysis of various mappings schemes
among particles/cells and the various on-chip compute units. The
potential impact is that this system promises to be the basis for long
timescale Molecular Dynamics with a commodity cluster.

CCS CONCEPTS
• Hardware → Hardware accelerators; Reconfigurable logic ap-
plications.

KEYWORDS
Molecular Dynamics, FPGA, High-Performance Computing.
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1 INTRODUCTION
There are dozens of MD packages in production use (e.g., [1–5]),
many of which have been successfully accelerated with GPUs. Scal-
ing, however, remains problematic for the small simulations (20K-
50K particles) commonly used in critical applications, e.g., drug
design [6, 7], where long timescales are also extremely beneficial.
Simulation of long timescales of small molecules is, of course, a
motivation for the Anton family of ASIC-based MD engines [8, 9].
Anton addresses scalability by having direct communication links–
application layer to application layer–among the integrated circuits
(ICs) in the cluster. But while ASIC-based solutions can have orders-
of-magnitude better performance than commodity clusters, they may
also have issues with general availability, plus problems inherent
with small-run ASIC-based systems.

FPGAs have been explored as possible MD accelerators for many
years [10–16]. The first generation of complete FPGA/MD systems
accelerated only the range limited (RL) force and used CPUs for the
rest of the computation. While performance was sometimes compet-
itive, high cost and lack of availability of FPGA systems meant that
they were never in production use. In the last few years, however, it
has been shown that FPGA clusters can have performance approach-
ing that of ASIC clusters for the Long Range force computation
(LR) [17–20], the part of MD that is most difficult to scale.

It remains to be demonstrated, however, whether a single FPGA
MD engine can be sufficiently competitive to make it worth develop-
ing such a cluster. And if so, how should it be implemented? One
thing that is certain is that previous CPU-centric approaches are
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not viable: long timescales require ultra-short iteration times which
make the cost of CPU-device data transfers prohibitive. This leads
to another question: is it possible to build such an FPGA MD engine
where there is little interaction with other devices?

One advantage with current FPGAs is that it is now possible–for
simulations of great interest (up to roughly 40K particles)–for all data
to reside entirely on-chip for the entire computation. Although this
does not necessarily impact performance (double-buffering off-chip
transfers still works), it simplifies the implementation and illumi-
nates a fundamental research question: what is the best mapping
among particles, cells, and force computation pipelines? Whereas
the previous generation of FPGA/MD systems only dealt with a few
cells and pipelines at a time, the concern now is with hundreds of
each. Not only does this lead to a new version of the problem of
computing pairwise forces with cutoff (see [21, 22]), it also requires
orchestrating RL with the other force computations, and then all of
those with motion update and particle movement.

The major contribution is an end-to-end MD system implemented
on a widely used FPGA board.We have validated simulation quality
using Amber 18. In preliminary experiments with the Dihydrofolate
Reductase (DFHR) dataset (23.5K particles), the system achieves a
throughput of 630ns/day. Other contributions are as follows.

• The first implementation of full MD (RL, LR, and Bonded
force with Motion Integration) on a single FPGA, that com-
pletely removes the dependency on off-chip devices, thus
eliminating the communication overhead of data transfer;

• The first analysis of mappings among particles/cells, on-chip
memories (BRAMs), on-chip compute units (pipelines) of
LR, RL, and bonded forces;

• Various microarchitecture contributions related to every as-
pect of the system, including exploration of RL particle-pair
filtering, two sets of memory architectures (distributed for
RL and LR, and global for Bonded), a scoreboarding mech-
anism that enables motion update in parallel with the force
evaluation, and integrating motion update;

• Application-aware optimizations through HDL generator scripts.

The potential impact is that this system promises to be the basis
for scalable long timescale Molecular Dynamics with a commodity
cluster. In the Discussion section we present preliminary scalability
results based on a model derived from previous inter-FPGA commu-
nication studies.

2 MD BACKGROUND
Basics. MD alternates between force calculation and motion update.
The forces computed depend on the system being simulated and
may include bonded terms, pairwise bond, angle, and dihedral; and
non-bonded terms, van der Waals and Coulomb [23]:

Ftotal = Fbond + Fanдle + Fdihedral + Fnon−bonded (1)
The Bonded Force terms involve small numbers of particles per

bond, but the computations themselves can be complex; interactions
can be expressed as follows: bond (Equation (2)), angle (Equa-
tions (3) and (4)), and dihedral(Equations (5) and (6)), respectively
(from Equation (1) [24]).

Fbondi = −2k(ri j − r0) ®ei j (2)

®ei j is the unit vector from one item to another, ri j the distance be-
tween the two particles, k the spring constant, and r0 the equilibrium
distance;

Fanglei = −
2kθ (θ − θ0)

ri j
·
®ei jcos(θ ) − ®ek j

sin(θ )
+ fub (3)

fub = −2kub (rik − rub ) ®eik (4)
®ei j , ®ek j , ®eik are the unit vectors from one item to another, θ the angle

between vectors ®ei j and ®ek j , θ0 the equilibrium angle, kθ the angle
constant, kub the UreyBradley constant, and rub the equilibrium
distance;

Fdihedrali = −∇
Ud
®r

(5)

Ud =

{
k(1 + cos(nψ + ϕ)) n > 0,

k(ψ − ϕ)2 n = 0. (6)

n is the periodicity, ψ the angle between the (i, j,k)-plane and the
(j,k, l)-plane, ϕ the phase shift angle, and k the force constant.

The Non-bonded Force uses 98% of FLOPS and includes Lennard-
Jones (LJ) and Coulombic terms. For particle i, these can be:

FLJi =
∑
j,i

ϵab
σ 2ab

{
48

(
σab
|r ji |

)14
− 24

(
σab
|r ji |

)8}
®rji (7)

FCi =
qi
4π

∑
j,i

1
ϵab

{
1

|r ji |

}3
®rji (8)

where the ϵab (unit: k J or kcal) and σab (unit: meter) are parameters
related to the types of particles.

The LJ term decays quickly with distance, thus a cutoff radius,
rc , is applied: the LJ force is zero beyond it. The Coulombic term
does not decaying as fast; but this term can be divided into two
parts, fast decaying within rc and slowly developing beyond it. Con-
sequently, we approximate the LJ force and the fast decaying part
of the Coulombic force as the Range-Limited (RL) force, and the
other part of the Coulombic force force as the Long-Range (LR)
force. RL is the more computationally intensive (90% of flops) and
is calculated as:

FRLji
rji
= Aabr

−14
ji + Babr

−8
ji +QQabr

−3
ji (9)

where Aab = 48ϵabσ 12ab , Bab = -24ϵabσ 6ab , QQab = qaqb
4πϵab .

The LR force is calculated by solving the Poisson Equation for
the given charge distribution.

FLRi =
∑
j,i

qj

|r ji |
®rji (10)

ρд =
∑
p

Qpϕ(|xд − xp |)ϕ(|yд − yp |)ϕ(|zд − zp |) (11)

LR is often calculated with a grid-based map of the smoothing
function converted from continuous space to a discrete grid coor-
dinate system [25]. Each particle is interpolated to grid points by
applying a third-order basis function for charge density calculation.
Grid points obtain their charge densities from neighboring particles
within a range of two grid points in each direction. There, grid elec-
trostatics are converted into the Fourier domain, evaluated using the
Green’s function, then converting back through an inverse FFT.

Force Evaluation Optimizations. RL uses the cutoff to reduce the
O(N 2) complexity: forces on each reference particle are computed
only for neighbor particles within rc . The first approximation is the
widely used partitioning of the simulation space into equal sized
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cells with a size related to rc . The particles can be indexed using
cell-lists [26]: for any reference particle and a cell length of rc , only
neighbor particles in the 26 neighboring cells need to be evaluated.
Another optimization is Newton’s 3rd Law (N3L): since the force
only needs to be computed once per pair, only a fraction of the neigh-
boring cells need to be referenced. Most of the particles, however,
are still outside the cutoff radius. In CPU implementations this can
be handled by periodically creating neighbor lists. In FPGAs, the
preferred method is to do this on-the-fly [15] through filtering.

Boundary Conditions. We assume Periodic Boundary Conditions
(PBC): When evaluating particles in boundary cells, we imagine a
fictional space that is an exact copy of the simulated space.

Motion Integration. Changes of position and velocity of each parti-
cle can be computed using the Verlet algorithm. Since we are using
a short timestep (2f s), we can use simple integration equations such
as symplectic Euler:

®a(t) =
®F (t)

m
(12)

®v(t + ∆t) = ®v(t) + ®a(t) × ∆t (13)
®r (t + ∆t) = ®r (t) + ®v(t + ∆t) × ∆t (14)

wherem is mass, ®a is acceleration, ®v is velocity, ®r is position.

3 FPGA-MD SYSTEM ARCHITECTURE
In this section, we cover the four major components inside an MD
simulation system, along with some high-level design decisions. We
begin with a classic FPGA-based MD force evaluation pipeline and
then add several function units that, in previous implementations,
were executed on the host processor or embedded cores.

3.1 Overall Architecture
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Figure 1: MD End-to-End System Overview. Details of each sec-
tion is covered in following figures.

Since configuration time is long with respect to iteration time, the
design is fixed within a single simulation. A design goal is to give
the force computations resources such that their compute times are
equalized; resource allocation to summation and motion update is
analogous. All components (LR, RL, etc.) have parameterized de-
signs with performance proportional to the parallelism applied (and
thus chip resources used). This applies also to fractional parallelism:

some components can be folded, e.g., to obtain half performance
with half resources.

Figure 1 depicts the proposed FPGA-MD system. The RL units
evaluate the pair-wise interactions. Since this is the most computa-
tionally intensive part, the base module is replicated multiple times.
The LR unit includes: (i) mapping particles to a charge grid, (ii)
conversion of charge grid to potential grid via 3D FFT (and inverse-
FFT), and (iii) evaluating forces on individual particles based on the
potential grid. Since our timestep is small (2f s), LR is only updated
every few iterations. The Bonded Evaluation unit has pipelines for
the three parts (see Eq. 1). At the end of each timestep, the Sum-
mation unit sums the three partial forces and sends the result to
the Motion Update unit to update position and handle particle mi-
gration among adjacent cells.

3.2 RL Architecture
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Figure 2: RL Evaluation Architecture Overview

The RL force evaluation pipeline (Figure 2) is based on a design
first proposed in [27], although nearly all parts have been redesigned
from scratch; see [28] for more details. The particle position cache
holds the initial position of each particle. Modern high-end FPGAs
like Intel Stratix 10 [29] provide enough on-chip storage to hold
particle data for our range of simulations. Next is a set of filters that
performs a distance evaluation of possible particle pairs (in certain
neighboring cells) and only pass the pairs within the cutoff radius.
Remaining data then enter the most computationally intensive part
in the process: force evaluation. Since each particle is contributing to
multiple pair-wise interactions, we design an efficient accumulation
mechanism on the output of the force evaluation pipeline to sum up
the partial forces on each particle.

3.2.1 Particle-Pair Filtering. Mapping among cells, BRAMs,
and filters is complex and is described below. Once a particle pair
is generated and sent to a filter, its distance is compared with rc
(actually r2 with r2c to avoid the square root). Possible neighbor
particles can reside in 27 cells in 3-dimensions (13+1 if considering
N3L, as shown in Figure 3). Since the average pass rate is only
15.5%, providing a force pipeline with at least one valid output per
cycle requires a bank of at least seven filters plus load balancing (we
use eight). If there are multiple valid outputs, round-robin arbitration
is used. The not-selected valid outputs are stored in the filter buffer
(on the output side of each filter) as shown in Figure 2.
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Figure 3: Simulation space about particle P . Its cell neighbor-
hood is shown in non-gray; cell edge size is the cutoff radius
(circle). After application of N3L, we only need to consider half
of the neighborcells (blue) plus the homecell (red).

3.2.2 Force Evaluation. Various trade-offs have been explored in
other FPGA/MD work [30, 31]. These are two of the most important.
Precision and Datatype: CPU and GPU systems often use a com-
bination of single-precision, double precision, integer, fixed-point,
and floating-point. ASIC-based systems have complete flexibility
and use non-standard types and precisions. FPGAs have multiple
implementation possibilities. If logic cells alone are used, then ASIC-
type designs would be preferred for fixed [15, 32, 33] or floating-
point [34, 35]. Modern FPGAs, however, also have many thousands
of embedded ASIC blocks, viz. DSP and/or floating-point units. So
while the arithmetic design space is still substantial, preferred de-
signs are likely to be quantized by these fixed-sized hard blocks. We
find that, in contrast with earlier FPGA-MD studies, there is less
advantage to use integer and fixed point; rather we primarily use
the native floating-point IP core. For certain computations where
accuracy is critical, we also employ fixed-point arithmetic; this is at
the cost of high resource overhead (see Section 5.3.3).
Direct Computation vs. Interpolation with Table-lookup: The
RL force calculation requires computing r−3, r−8 and r−14 terms.
Since r2 is already provided from the filter unit, a total of 8 DSP
units (pipelined) are needed to get these 3 values (based on the
force pipeline proposed in [15]). Plus, we need 3 extra DSP units
to multiply the 3 indexes, QQab , Aab and Bab , with r−3, r−14 and
r−8 respectively. In order to reduce DSP usage, we use interpolation
with table-lookup. As is common with this method, we divide the
curve into several sections along the X-axis, such that the length of
each section is twice that of the previous. Each section has the same
number of intervals with equal size. We implement 3 sets of tables
for r−3, r−8 and r−14 curve. We use r2, instead of r , as the index to
further reduce resource consumption that would be needed when
evaluating square root and division.

3.2.3 RL Workload Distribution. FPGAs provide abundant de-
sign flexibility that enables various workload to bare metal mapping
schemes. In this subsection, we introduce two levels of mapping:
particles onto Block RAMs (BRAMs), and workload onto pipelines.
Cell mapping onto BRAMs: Figure 4 lists two of many possible
mapping schemes, which we refer to as Mem 1 and Mem 2.

Mem 1: A single global memory module holds position data for
all particles (Figure 4a). This design simplifies the wiring between
position memory and the hundreds of pipelines. To overcome the
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Figure 4: Cell to RAM Mapping Schemes: (a) all cells mapped
onto a single memory module; (b) each cell occupies an individ-
ual memory module.

bandwidth bottleneck, we insert an input cache at the start of each
pipeline to hold the pre-fetched position data.

Mem 2: The bandwidth problem can also be overcome by having
each cell map onto an individual memory unit (Figure 4b). But when
there are hundreds of pipelines and cells, the all-to-all connect incurs
large resource consumption and timing challenges.

Workload mapping onto pipelines: The simulation space is parti-
tioned into cells. We successively treat each particle in the homecell
as a reference particle and evaluate the distance with neighbor parti-
cles from its homecell and 13 neighborcells (N3L). The system then
moves to the next cell and so on until the simulation space has been
traversed. There are a vast number of potential mapping schemes;
due to limited space, we present just three of the most promising.

Figure 5: Workload mapping onto force pipelines: (a) all
pipelines work on the same reference particle; (b) all pipelines
work on the same homecell, but with different reference parti-
cles; (c) each pipeline works on a different homecell.

Distribution 1: All pipelines work on the same reference particle
(Figure 5a). A global controller fetches a particle from the current
homecell and broadcasts it to all the filters in the system, around
1000. Potential neighbor particles from home and neighbor cells
are evenly distributed among all the filters. The evaluated partial
force output from each pipeline is collected by an adder tree for
summation and written back. At the same time, the partial forces are
also sent back to the neighborcells and accumulated inside each cell.
This implementation achieves the workload balance on the particle-
pair level. However, it requires extremely high read bandwidth from
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the position cache to satisfy the need for input data for each filter,
and requires high write bandwidth when accumulating partial forces
to neighbor particles, since the R&W only targets 14 cells at a time.

Distribution 2: All pipelines work on the same homecell, but on
different reference particles (Figure 5b). To start, the particle pair
generator reads out a reference particle from the homecell for filters
belonging to each force pipeline. During the evaluation, the same
neighbor particles are broadcast to all filters (belonging to different
force pipelines) at the same time, since the neighbor particle set for
every reference particle is the same as long as they belong to the
same homecell. Compared with the first implementation, this one
alleviates the pressure on the read port of the position cache. The
tradeoff is that partial forces targeting the same neighbor particle
may arrive at the neighborcell at the same time; thus a special unit
is needed to handle the read-after-write data dependency. Since
each force pipeline is working on different reference particles, an
accumulator is needed for each force pipeline.

Distribution 3: Each pipeline works on its own homecell (Fig-
ure 5c). Under this mapping scheme, each filter only needs to inter-
act with a subset of spatially adjacent homecells, along with a set
of neighborcells. Compared with the previous two schemes, there
is only interaction among a small set of cells. This method not only
fully utilizes the parallelism in force evaluation, but also reduces
the number of wires between particle caches and force evaluation
units. The downside, however, is load balancing. Suppose we have
100 pipelines, but 150 cells. After each pipeline evaluates a cell, half
of the pipelines will remain idle while the others evaluate a second
homecell. To avoid this waste of resources, an application-aware
mapping scheme is required.

3.3 LR Architecture
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Parts of the LR computation have been explored previously (see
[36] on mapping and [37–39] on the 3D FFT), but this is the first
time they have been integrated. LR (Figure 6) begins with a cache of
position data, which maintains particle information when mapping
to the particle grid and the force calculation. The position cache is
necessary since positions may change during LR. Particle charges

are evaluated and assigned to 64 neighboring cell locations using a
third order basis function, with results stored in grid memory. After
all particle data are consumed, the FFT runs on the resulting grid
(through each axis X, Y, and Z). The resulting data, after multiplying
with the Green’s function, is replaced in the memory grid only a
few cycles after evaluation. This is possible because of the pipeline
implementation of the FFT. The inverse FFT is then performed on
each dimension. Finally, forces are calculated for each individual
particle using the final FFT grid results and the starting particle
position information saved previously in the position cache. These
are then saved into a force cache which is used during the motion
update phase to apply long-range forces to the particle positions.

Figure 7: Particle to grid flow: (a) Initial particle position data;
(b) Particle to 1D interpolation for each dimension using basis
functions; (c) Mapping 1D interpolation results to a 4x4x4 3D
grid; (d) Final 64 grid points to 16 independent memory banks

3.3.1 Particle to Grid Mapping. The third order basis functions
Equation (15) are used to spread particle charges to the four closest
grid points, based on particle position data, and can be independently
evaluated for each dimension. After a particle is evaluated in each
dimension, values are assigned to 64 neighboring cells and each
result is accumulated into grid memory locations. Figure 7 shows
the process of a single particle’s influence on 64 neighborcells and
their mapping to the grid memory structure. Parallel particle-to-grid
mapping occurs with the use of accumulators before entering grid
memory due to restrictions in using BRAMs.

ϕ0(oi) = −1/2oi3 + oi2 − 1/2oi

ϕ1(oi) = 3/2oi3 + 5/2oi2 + 1

ϕ2(oi) = −3/2oi3 + 2oi2 + 1/2oi

ϕ3(oi) = 1/2oi3 − oi2.

(15)

3.3.2 Grid Memory. We store grid points in BRAMs using an
interleaved memory structure.This allows for stall-free access of grid
locations while performing FFT calculations.

3.3.3 FFT. The FFT subsystem performs calculations in parallel
using vendor supplied FFT core configured by Intel Quartus Prime
Design Suite FFT IP controller. It has the capability of dictating
the number of streaming values, by which we can change the core
to suit the size of our design space (16, 32, ect.) [40]. To ensure
high throughput memory access, we assign the FFT units to specific
banks of the grid memory. As a result, grid data can be continuously
streamed through all FFT cores in parallel. While output is being
generated for a given vector, a new input is sent for the next set
of calculations. Each dimension is performed sequentially until all
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three dimensions are completed on the memory grid. Once all three
dimensions are evaluated and converted into the Fourier-domain,
the grid is multiplied with Green’s function, before proceeding to
the inverse FFT stage going through each dimension again and
converting back. Final values at each grid point are used to compute
the LR force for each particle based on its position.

3.4 Bonded Architecture
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While the bonded force has been explored previously [41], this
design and implementation is entirely new.

3.4.1 Sequential Evaluation of Bonded Interactions. As shown
in Figure 8, we evaluate three types of bonded interactions: bond,
angle, and dihedral, which have, respectively contributions from
2, 3, and 4 atoms. For a given dataset, the covalent bonds remain
fixed as long as no chemical reaction is involved. In general, the
bonded computation requires only a few percent of the FLOPs, so
attenuation rather than parallelism is advantageous: we therefore
process bonds sequentially.

3.4.2 Bonded Force Memory Architecture. For LR and RL
we organize the particle data based on cells; this proves costly for
bonded force evaluation. Rather than particles interacting with others
based on their spatial locality, bonded interactions have a fixed set
of contributing particles. As simulation progresses, particles can
move across different cells and require extra logic to keep track of
their latest memory address. Given the fact that we process bondeds
sequentially, and this requires little memory bandwidth, we propose
a different memory architecture: a single global memory module
(Bonded Particle MEM in Figure 8) that maintains information on
each particle position based on a fixed particle global id (gid). The
gid is assigned prior to the simulation and remains fixed.

A read-only memory, Bonded Pair MEM, holds pairs of gids that
form chemical bonds in the dataset. During force evaluation, the
controller first fetches a pair of gids along with other parameters
from Pair MEM, then proceeds to fetch the related particle posi-
tion from Particle MEM and sends this for force evaluation. The
evaluated bonded force is accumulated in the Bonded Force Cache
addressed by gid. During motion update, the accumulated bonded
force summed with partial results from RL and LR. Finally, Particle

MEM receives the updated position, along with the particle gid, to
maintain an up-to-date value.

3.5 Force Summation and Motion Integration
The three force components must be combined before the motion
update. Even with load balancing, RL always finishes last; this is
guaranteed, in part, by the small variance in the other computations.
Therefore we can assume that the LR and bonded force caches
always have data ready. Thus, as soon as RL of a certain particle
is ready, we can perform the summation and motion update. As
described in Section 3.2.1, for any given particle, it needs to be
evaluated with respect to each neighbor particle from 27 cells. Since
we make use of N3L to avoid revisiting particle pairs more than
once, we need to keep track of how many times each cell has been
visited (as homecell and neighborcells). To handle this we propose
a Score Boarding mechanism. Once computations on all particles
in a cell have finished, the Score Board module will access LR,
RL and Bounded forces from the corresponding caches for force
summation. By doing so, the positions of particles from the same
cell can be updated immediately when a cell is fully evaluated; the
motion update is executed in parallel with force evaluation with
limited resource overhead; a large fraction of motion update latency
can therefore be hidden.

After summation for a particle is finished, the aggregated force
is sent to the motion update unit, along with particle’s position and
velocity. Since we organize particle data based on the cells they
belong to (except for the bonded unit), particles can move from
one cell to another. This creates a challenge on particle memory
management: we need to maintain a record of which memory is
ready for receiving new particles (due to particles left in the current
cell, or the pre-allocated vacant memory space in each cell). It may
take multiple cycles to find an available memory slot when the
cell memory is almost full, or to find a valid particle in the cell
when the cell memory is almost empty. Our solution is to double
buffer the particle position and velocity caches; details are given in
Section 4.1.1.

4 MD SYSTEM IMPLEMENTATION
In this section, we highlight a selection of implementation details.

4.1 Datatype and Particle Cache
The system maintains three sets of information for each particle:
position, velocity, and force. The first two need to be maintained
throughout the entire simulation, while the force data is flushed after
motion update.
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4.1.1 RL Particle Cache. RL Position Cache organizes data
into cells. Double buffering is implemented (Figure 9a) with the
particle gids being kept along with position data, which is used
during summation and motion update process. RL Force Cache
is read and written during force evaluation. Since the system has
hundreds of pipelines, that many partial forces must be accumulated
each cycle. To manage the potential data hazards, we implement an
accumulator inside each force cache module (see Figure 9b). After
the aggregated forces are read out during motion update, they are
cleared for the next iteration.

4.1.2 LR Particle Cache. The LR force evaluation is generally
performed every two to four iterations while motion update happens
every iteration. Since LR evaluation needs the positions to remain
fixed, we allocate a separate LR particle cache (Figure 1&6). Ev-
ery time LR starts a new evaluation (every second iteration in our
experiments), it first performs a memory copy from RL Position
Cache. To shorten the memory copy latency, we implement LR
cache using Mem 2, which provides high write bandwidth.

4.2 RL Force Evaluation
We use the Native Floating Point IP Core controller inside Intel
Quartus Prime Pro 18.1 Design Suite to configure the DSP units on
FPGA to realize the IEEE floating point operations in our design.

4.2.1 Filter Logic. We propose two methods.

1. Filter v1: Direct computation uses 8 DSP units to calculate r2

in floating-point and compare with r2c . If the distance is within cutoff,
the evaluated r2 is reused by the force pipeline. Since there are 8
filters per pipeline, the direct implementation consumes 48 DSP
units, which limits the number of pipelines per chip.

2. Filter v2: Planar method uses Equations (16) to (18); note that
the rc terms are constants and not computed.

|x | < rc , |y | < rc , |z | < rc (16)

|x | + |y | <
√
2rc , |x | + |z | <

√
2rc , |y | + |z | <

√
2rc (17)

|x | + |y | + |z | <
√
3rc (18)

To avoid using DSPs altogether, input data is converted from floating-
point to 28-bit fixed-point.

4.2.2 Filter Arbitration. Round-robin is used to select among
filters with a valid output. To reduce the latency in the filter bank,
which also saves buffer space, we have developed an arbitration
algorithm that delivers one result per cycle.

4.2.3 RL Force Pipeline. Depending on the filter implementa-
tion, the force pipeline will receive one of two different inputs. Filter
v1 provides r2, while Filter v2 provides only the raw particle position
so r2 must be computed (Figure 10).

The pipeline evaluates forces via interpolation with table-lookup.
Assuming the interpolation is second order, it has the format:

rk = (C2(x − a) +C1)(x − a) +C0 (19)
where x = r2, a is the x value at the beginning of the target interval,
and x − a is the offset into the interval. Based on different datasets,
the interpolation coefficients are pre-calculated, packed into the mif
file, and loaded onto the FPGA along with position and velocity data.
After the coefficients are read from memory, the pipeline performs
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the evaluation following Equation (19). Figure 10 shows this for the
first order; the actual system supports upto the third order.

4.2.4 Partial Force Accumulator. The system traverses particles
in the simulation space following cell order. When treating a particle
as reference particle, the filter will check the distance with all the
potential neighbor particles residing in the home and neighbor cells.
We use N3L to avoid evaluating the same particle pair twice. But
this also means the evaluated force need to accumulate to 2 particles.
A difficulty is that the floating-point adder on FPGA has a latency
of 3 cycles, leading to the classic accumulator problem: we can only
perform one accumulation every 3 cycles. This is clearly unaccept-
able. We have two solutions, one for reference particles and one for
neighbor particles.
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Figure 11: (a) Accumulator for reference particles, located at
the output of the force pipeline; (b) Accumulator for neighbor
particles, located at the input of the force cache.

Reference Particle Accumulator: The force pipeline keeps work-
ing on the same reference particle until all the assigned neighbor
particles are traversed once. When a valid force arrives, the refer-
ence particle id (PID) is checked, if the particle has the same id as
the accumulator is working on, then it is forwarded to the adder. If
not, then it is recognized as the new reference particle, and the PID
register will record the new particle ID. The returned value to the
input sets to 0 for 3 cycles to reset the sum value. In the meantime,
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the output writes to a small cache for 3 cycles, where they are added
together and written back to force cache (see Figure 11a). The design
is replicated 3 times to simultaneously handle Fx , Fy , Fz .

Neighbor Particle Accumulator: Multiple pipelines’ outputs
may target the same reference particle at the same time. But it is
unrealistic to handle those conflicts in each pipeline. Our solution
is to put the neighbor accumulator inside force cache; the pipelines
forward their results to the force cache that holds the neighbor parti-
cle. The neighbor accumulator is shown in Figure 11b. All incoming
data are buffered. Three registers are used to record the currently
evaluated particle id which will be used to compare against the in-
coming particle id. If there is no conflict, then they are processed on
accumulation. Otherwise, the particle will be sent back to the buffer.

4.3 LR Force Evaluation
4.3.1 Particle to Grid Mapping. Due to the large number of
particles, the particle to grid mapping must be optimized to avoid
adding additional stall cycles when each particle enters the system.
This means replication is a must to avoid long delays. The first step
is to evaluate each individual basis function per dimension to obtain
a single particle contribution to an individual cell. As Figure 12
shows, one function takes 5 steps to evaluate a single equation. This
unit can be replicated to evaluate all 4 functions simultaneously and
each dimension is done in parallel requiring a total of 12 replications
of each unit. After all functions are evaluated, values are combined
to form 64 unique values representing the 4x4x4 neighbor grid of
cells around the particle. These 64 cells are then accumulated with
the previous information, found in their respective cells.

Figure 12: One instance of the particle to grid conversion equa-
tion: The unit is replicated 12 times. Four instances represent
the four basis equations for each dimension X, Y, and Z.

4.3.2 FFT. Using the interleaved structure of the grid memory,
the FFT implementation allows for the use of multiple FFT units to
evaluate each dimension in parallel. Since this part of LR is not the
bottleneck, a modest number of FFT blocks (16) is currently used.

4.3.3 Matching RL performance. By using a parameterized
design, our sample implementation maintains a 2:1 timing ratio
between LR and RL. Details are complex, but entail using methods
such as folding and reusing logic.
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Figure 13: Motion Update Pipeline

4.4 Bonded Force Pipeline
It is possible to stay within the time budget even if only one of
the three evaluation pipelines (Figure 8) is active in a given cycle.
Also, many functions overlap among the three interactions. There-
fore, to maximize the DSP units’ utilization ratio, we merge the
three pipelines into a single one with control registers and muxes at
different stages of the pipeline (Figure 13).

4.5 Summation Logic

Figure 14: Summation logic with score boarding mechanism

Summation logic scoreboard support is shown in Figure 14. The
Status Tracker tracks the force evaluation of cells with one entry
tracks per cell. To start motion update of a certain cell, all its particles,
and of its 26 neighborcells, must be fully evaluated. When that
happens, the entries tracking the cell, as well as its neighborcells, are
shifted right 1 step. The initial value of each entry is a one followed
by 27 zeros. Once a cell and its 26 neighbors are all evaluated,
the most-right bit of the corresponding entry becomes 1 and the
scoreboard will send access request to the Request Holder.

Since there is only one summation pipeline, summing parti-
cles/cells is sequential. The Request Holder is used to deal with
the scenario when the force summation of a cell is still in progress,
but access requests for other cells have been received. The Request
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Holder sends access requests to the address generator using round-
robin. Once the address generator receives an access request, it can
access the LR, RL, and Bonded Forces from the respective caches.
The forces are summed and the results used for motion update.

4.6 Motion Update and Particle Migration
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Figure 15: Motion Update Pipeline

Figure 15 shows the workflow inside the motion update module.
When the updated positions are calculated, the module computes the
target cell of the updated particle. Since we are using a short timestep,
and we perform motion integration each iteration, particles rarely
move across more than one cell. Each cell has a pre-stored lower
and upper boundary. If the updated position falls in the current cell
range, the output cell id remain the same as the input. Otherwise, the
output cell id will add or subtract one depending on the comparison
with the boundary value.

4.7 Workload-aware Adoption
There are numerous places where the design can be optimized with
respect to workload. So that a user does not have to be concerned
with this, we have implemented a workload-aware hardware gen-
erator script. Our script has two parts: an analytical performance
estimator and an HDL generator. Given the dataset features (number
of particles, particle density, etc.), the analytical estimator provides
a coarse estimate of resource usage and simulation performance for
various mapping schemes. The user can select the most promising
combinations of mapping schemes and use the HDL generator to
create the HDL code that is ready to run on FPGAs. The HDL gener-
ator script parameters include: workload mapping scheme, number
of RL and LR evaluation units, and certain other hardware design pa-
rameters like buffer depth and floating-point unit configuration. This
script, along with the scripts used for generating data for particle
cache, interpolation indices, etc., will be made publicly available.

5 EVALUATION
5.1 FPGA Programming Methods
As is common with application acceleration using FPGAs, devel-
opment proceeds in several steps. (i) The golden model is Am-
ber 18 [42]; the force evaluation code guides the hardware design.
(ii) The software model is composed of multiple independent sub-
functions that are exact matches of the major hardware modules;
results here are validated with respect to Amber 18. (iii) The hard-
ware design is implemented using Verilog HDL derived from the
software model. Simulation is performed using ModelSim 10.6c
to establish logical correctness and, again, to validate results. (iv)
The actual hardware implementation is generated using synthesis

and place & route in the Quartus Prime Pro development suite; the
output is a bitstream that is ready to load onto FPGA-chips. Also
generated are FPGA resource usage numbers. Debugging is effected
using two tools: SignalTap Logic Analyzer, which directly read out
contents from on-chip register and memory, and a vendor-provided
API to read out data in batch.

In general, even with a well-defined golden model like Amber,
creating a high-quality mapping onto FPGAs still requires a sig-
nificant amount of code/design restructuring. Here, the inner-most
loop–pair-wise force evaluation–is a straightforward translation. But
other parts of the design, including the particle data organization and
data flow control, require redesign to make it efficient and guarantee
the correctness. We have experimented with implementing parts
of this design using OpenCL [43, 44] with promising results; with
appropriate coding methods, HDL-level performance appears to be
achievable [45, 46].

5.2 Experimental Setup
We have implemented, tested, and verified the designs on a Reflex
XpressGX S10-FH200G Board with an Intel Stratix 10 1SG280
LU2F50E2VG chip [47]. This chip is high-end with 933,120 ALMs,
11,721 RAM blocks, and 5,760 DSP units, which makes it a good
target for implementing FPGA/MD. To get the comparable MD
simulation performance on CPU and GPU, we installed Amber
18 [42] on a single node with an Intel Platinum 8160 2.1GHz CPU
and various Nvidia GPUs. The operating system is CentOS 7.4.

The dataset is Dihydrofolate Reductase (DFHR), a 159-residue
protein in water, with 23,558 atoms [1]. The dataset is constrained
to a bounding box of 62.23×62.23×62.23Å, with a cutoff radius of
9Å. The simulation timestep if 2fs with Particle Mesh Ewald (PME)
every two iterations.

The generator script (introduced in Section 4.7) is run in CentOS
6.10, with a gcc version 4.4.7. Given the dataset size, the perfor-
mance estimator will provide a theoretical simulation throughput
and a good estimate of resource usage on the six different mapping
schemes. The HDL generator is used to generate the hardware code
and run the design on FPGAs installed on platform described.

5.3 RL Performance Trade-offs

Table 1: Filter bank resource usage under two implementations

Design
Usage

ALM BRAM DSP

Direct Computation 5077(0.5%) 66(0.6%) 57(1%)
Planar 5605(0.5%) 65(0.6%) 15(0.3%)

5.3.1 RL Filter Resource Usage. In Section 4.2.1 we propose
two designs. Since the planar method requires an extra datapath in
the force pipeline to generate r2, we evaluate aggregate resource
usage, including both filter bank and force pipeline. Table 1 gives
the resource usage of a single bank consisting of a force evaluation
unit and eight filters. We note that a 10% increase in ALM usage
saves 74% on DSPs; the planar method thus enables more pipelines
per FPGA. All following evaluations assume planar filters.
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Table 2: Force evaluation pipeline resource usage and performance comparisons

Design Datatype ALM BRAM DSP Frequency (MHz) Latency(Clock Cycle)
Direct Computation 32-bit Fixed-Point 1365(0.15%) 4(0.04%) 19(0.33%) 505 89

Interpolation 32-bit Fixed-Point 866(0.09%) 17(0.15%) 10(0.17%) 433 22
Direct Computation Single Float 698(0.08%) 3(0.03%) 11(0.19%) 486 59

Interpolation Single Float 462(0.05%) 17(0.15%) 6(0.09%) 654 14

5.3.2 RL Interpolation Setup. We first measure the interpola-
tion accuracy with respect to direct computation in single-precision
floating-point. Our experiments cover up to third order interpolation
with different numbers of intervals in each section. The evaluation
results are shown in Table 3. We notice that the higher interpolation
is, the fewer intervals we need to achieve the same level of accuracy,
which means less BRAM usage. But on the other hand, the DSP
usage and number of indexes increase with interpolation order. In
order to preserve DSP units for replicating more force evaluation
pipelines, we choose first order interpolation with 256 intervals per
segment.

Table 3: Accuracy comparison of interpolation with table
lookup with respect to direct computation. The columns denote
the different number of intervals inside each section.

Interval 16 32 64 128 256
1st Order 99.7700 99.9336 99.9842 99.9960 99.9990
2nd Order 99.9899 99.9988 99.9991 99.9999 99.9999
3rd Order 99.9993 99.9999 99.9999 99.9999 99.9999

5.3.3 RL Force Pipeline Comparison. Section 3.2.2 describes
decisions between fixed and float and direct and interpolated. Re-
source utilization is shown in Table 2. We use first order interpolation
with 256 intervals. Again, the deciding factor is DSP usage, which
favors interpolation with floating-point.

5.4 LR Performance Trade-offs
We parameterize the LR modules to make trade-offs between LR
evaluation time and resource usage. Here we specifically show the ef-
fect of varying particle to grid mapping modules, while maintaining
a constant number of input particles (see Table 4). We note overall
that the mapping units have a small effect on resource consumption.
For performance, however, adding a single mapping unit improves
performance by more than a third. Beyond this, however, the FFT &
IFFT latency becoming the dominant factor.

Table 4: LR resource usage and evaluation time
# LR

GridMapping Units ALM BRAM DSP Latency
(Clock Cycle)

1 209,284 2,608 1,845 190,069
2 210,406 2,608 2,019 119,395
3 211,528 2,608 2,193 106,307
4 212,650 2,608 2,367 101,727

5.5 Bonded Force Performance Trade-offs
In Section 4.4, we propose merging three bonded force pipelines
into a single one. Table 5 shows the benefits of this approach. The
proposed merged pipeline saves 27%, 43%, 25% on ALM, BRAM,
and DSP, respectively. As the bonded force is still almost twice as
fast as LR and RL this design decision is justified.

Table 5: Bonded force pipeline resource usage

ALM BRAM DSP Latency
(Clock Cycles)

Frequency
(MHz)

Bond 1,481 10 18 148 398
Angle 13,691 77 153 187 401

Dihedral 12,432 77 201 244 392
Merged 20,109 93 278 276 330

5.6 Full System Performance
5.6.1 Overall System Resource Utilization. As described in
Section 4.3, RL, LR, and Bonded are designed for balanced load.
To recap, as introduced in Section 3.2.3, we have two particle-to-
memory mapping schemes: mapping all the particle in a single large
memory unit and mapping particles onto small block RAMs based
on the cell it belongs to. We also have three workload to pipeline
mapping schemes: all pipelines work on same reference particle,
all pipelines work on the same home cell with different reference
particles, and each pipeline works on a different home cell. This
yields six different designs.

Table 6 lists the resource utilization and the number of function
units that can fit onto a single FPGA-chip under different RL map-
ping schemes. We also list the stand-alone performance number
for both RL and LR parts. By adjusting the number of LR Parti-
cle to Grid Mapping modules (column 6), we aim to make the LR
evaluation time about twice as much as RL (column 8 & 9).

We note first that Designs 2 & 4 can only fit 35 pipelines. Those
two designs have hundreds of memory modules, while the work-
load mapping requires each pipeline to receive data from all cells.
Because of this, a very large on-chip switch (mux-tree based) is
required, which consumes a large number of ALMs (196,805). Com-
pared with Mem 2, designs using Mem 1 all have more pipelines, due
to the convenience of having a single source of input data. Given the
resource usage comparison, it seems that having a global memory
provides benefits of having more pipelines mapped on to a single
chip. However, the stand-along RL performance shows otherwise.
We describe this next.

5.6.2 MD System Performance. Table 7 lists performance num-
bers for the DHFR dataset on various platforms, including multi-core
CPU, GPU, and our six HDL implementations on different FPGAs.
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Table 6: Full system resource usage. Columns 2-4 are post place&route. Columns 5-6 give the number of replications of RL pipeline
and LR Grid Mapping units in each design. Column 7 lists running frequency of each design. The last two give the stand-alone
performance of RL and LR units.

Design ALM BRAM DSP # RL Pipes # LR Units Freq
(MHz)

RL Iter Time
(µs)

LR Iter Time
(µs)

Design 1: Mem 1 + Dis 1 657,808 (71%) 9,430 (80%) 4,419 (77%) 52 1 350 64,376.87 817.56
Design 2: Mem 2 + Dis 1 747,075 (80%) 9,077 (77%) 4,338 (75%) 35 2 340 349.30 513.45
Design 3: Mem 1 + Dis 2 657,508 (71%) 9,430 (81%) 4,038 (70%) 52 1 340 968.95 817.56
Design 4: Mem 2 + Dis 2 746,775 (80%) 9,077 (77%) 3,957 (69%) 35 2 340 292.89 513.45
Design 5: Mem 1 + Dis 3 646,946 (69%) 9,362 (80%) 4,197 (73%) 51 2 350 270.72 513.45
Design 6: Mem 2 + Dis 3 586,336 (63%) 9,362 (80%) 4,047 (70%) 41 2 350 260.37 513.45

The CPU and Titan XP GPU numbers come from collaborators in an
industrial drug design environment. The RTX 2080 and Titan RTX
GPU performance numbers are public available from Amber [48].
Compared with the best-case single CPU performance, the best-case
FPGA design has one order of magnitude better performance. The
FPGA design has 10% more throughput than that of the GPU per-
formance. Much more evaluation needs to be done, but we believe
these results to be promising.

As shown in Table 6, RL is the limiting factor on the overall
performance. The poor performance of Design 1 is due to the mem-
ory bandwidth limitation: for most cycles, pipelines are waiting for
data. In Design 2, the distributed memory provides much higher
read bandwidth. Design 3 faces a different problem: the number of
particles per cell (70) is not a multiple of the number of pipelines
(52), which means a set of pipelines (18) is idle after evaluating a
single reference particle. It also suffers from memory bandwidth
limitations. Design 4 has a happy coincidence that its pipeline count
(35) can be divided evenly into 70 and most pipelines will have
close to 100% usage (this is subject to dataset). Designs 5 & 6 might
be supposed to have similar performance, but in Design 5 there is
overhead on reading the first sets of input data from a single memory
unit. But the subsequent read latency can be fully hidden.

5.7 Dataset Impact on Mapping Selection
Our system takes advantage of FPGAs’ reconfigurability to fully
customize the number of pipelines and the mapping scheme of
workload and particle storage. Since RL evaluation takes both most
of the resources and evaluation time, we focus here on examining
the RL performance. Using the scripts introduced in Section 4.7, we
can quickly estimate the number of pipelines and resource usage
based on the size of the input dataset and number of cells, along with
an estimation of the simulation performance from the six different
mapping schemes. In order to further demonstrate the selection
of mapping schemes, we use a variety of datasets (5K to 50K) and
cutoff radii (leading to different cell sizes). Characteristics are shown
in Table 8.

The number of pipelines and performance are shown in Figure 16.
We note first (from Figure 16a) that the dataset size has little impact
on the number of pipelines we can map on a single Stratix 10 FPGA
until the dataset grows large enough to cause a resource conflict (in
BRAMs). However, this is not the case on simulation performance
as shown in Figure 16b. All the performance number is normalized
to the Design 1 performance for each dataset. We have the following

Table 7: Performance comparison: the middle column shows
time to perform one full iteration (23k dataset); the right col-
umn shows throughput with a 2f s timestep.

Platform Iteration Time
(µs)

Simulation Rate
(ns/day)

CPU 1-core 85,544 2.02
CPU 2-core 38,831 4.45
CPU 4-core 21,228 8.14
CPU 8-core 11,942 14.47
CPU 16-core 6,926 24.95

GTX 1080 GPU 720 240.13
Titan XP GPU 542 318.97

RTX 2080 GPU 389 444.05 [48]
Titan RTX GPU 304 567.53 [48]

Design 1: Mem 1 + Distribution 1 64,411 2.68
Design 2: Mem 2 + Distribution 1 370 467.40
Design 3: Mem 1 + Distribution 2 1003 172.36
Design 4: Mem 2 + Distribution 2 313 551.55
Design 5: Mem 1 + Distribution 3 291 593.55
Design 6: Mem 2 + Distribution 3 274 630.25

Table 8: Various testing datasets evaluating the impacts on
workload mapping selection

Particle # Cell # Particle #/Cell
Dataset 1 5,000 63 80
Dataset 2 5,000 12 417
Dataset 3 20,000 252 80
Dataset 4 20,000 50 400
Dataset 5 50,000 625 80
Dataset 6 50,000 125 400

observations: (i) Design 1 with single particle memory and workload
distribution 1 always has the worst performance due to memory
bottleneck; (ii) When the dataset is sparse (see Dataset 1, 3, 5),
Design 6 tends to return the best performance, and the relative
performance among the six designs is similar; (iii) When the dataset
is dense (see Dataset 2, 4, 6), workload distribution 3 provides fewer
benefits comparing with workload distribution 2; this is especially
clear when the dataset is small and dense.
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Figure 16: Performance with Different Datasets: (a) Number of
RL pipelines that can map onto a single FPGA; (b) RL simula-
tion performance, normalized to Design 1 for each dataset.

Figure 17: Energy Waveform

5.8 Verification and Validation
As is usual with complex FPGA designs, we have multiple levels
of verification, starting with MatLab models of the computations,
HDL simulations of components, HDL simulations of full system,
and the actual implementation. These are also validated with respect
to Amber 18.

To validate using energy waveforms, we run two sets of simu-
lations to collect system energy values using different evaluation
methods: the FPGA using 1st-order interpolation and Amber run-
ning on a CPU (see Figure 17). We note that our simulation system
maintains an equilibrium state and that the energy level is similar
to Amber’s. The variance is likely due to the fact that Amber uses a
sophisticated motion integration method [1] and different smoothing
techniques [49], which are not yet implemented in our system.

6 EXTENSIONS TO FPGA CLUSTERS
One of the motivations for using FPGAs in HPC is their support for
communication. FPGA-clusters with FPGAs directly linked through
their Multi-Gigabit Transceivers (MGTs) have a proven advantage
over other commodity architectures in facilitating communication
that is both high bandwidth and low latency; but also in the collo-
cation of compute and communication on the same device [50–52]:

there is single cycle latency between application and physical net-
work layers. For MD, these benefits have previously been demon-
strated through strong scaling of small 3D FFTs [19, 20].

Extending the current single-chip MD simulation system onto
FPGA clusters is work in progress, but we can estimate the per-
formance of such systems using the model presented in [20] and
the results in Section 5. In general, adding cluster support requires
additional elements (see, e.g., [9]). In the case where the number of
FPGAs is modest with respect to the number of cells, e.g., ≤ 64, the
current design can be used almost as is, but augmented with com-
munication support as described in [17, 53–55]. This support takes
< 10% of chip area; the communication model has been validated on
a real system up to 64 nodes.

7 SUMMARY AND FUTURE WORK
We present an end-to-end MD system on a single FPGA featuring on-
line particle-pair generation; force evaluation on range-limited, long
range, and bonded interactions; motion update; and particle data mi-
gration. We provide an analysis of the most likely mappings among
particles/cells, BRAMs, and on-chip compute units. We introduce
various microarchitecture contributions on routing the accumula-
tion of hundreds of particles simultaneously and integrating motion
update. A set of software scripts is created to estimate the perfor-
mance of various design choices based on different input datasets.
We evaluate the single-chip design on a commercially available Intel
Stratix 10 FPGA and achieve a simulation throughput of 630ns/day
on a 23.5K DFHR dataset, which is comparable to the analogous
state-of-the-art GPU implementations.

In continuing work, besides mapping to FPGA-centric clusters,
the current version has significant upgrade potential. For example,
most of the resources are currently devoted to floating point units
for the RL computation; the FPGA’s arithmetic flexibility (which it
has in common ASIC implementations) can be exploited.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
In the paper, we conduct experiments on a single Intel Stratix 10
FPGA. We propose multiple HDL implementations optimized for
high-end Intel FPGAs. We evaluate performance from both HDL
simulation (in ModelSim) and on-chip measurements (via Signal-
Tap). We use the Dihydrofolate Reductase (DFHR) dataset with
23.5K particles. To get a performance comparison with CPU and
GPU, we also run Amber 18 on Intel Xeon Skylake CPU and Nvidia
GPUs. In order to verify the stability of our simulation, we collect
the particle position data every 10 simulation timestep and evaluate
the system energy and prove that the system reaches an equilibrium
state after few thousands of iterations (due to page limitation, we
could not fit the energy figure in the paper).

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: All author-created hardware arti-
facts are maintained in a public repository under an OSI-approved
license.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/SC2019-MD/SC2019\_MD

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Stratix 10 SG280LU2F50E2VG
FPGA, Nvidia GTX 1080 GPU, Intel Xeon Skylake 24-core CPU

Operating systems and versions: CentOS 7.4.1708

Applications and versions: Amber 18

Key algorithms: Molecular Dynamics

Input datasets and versions: Amber14 Benchmark Suite, Dihydro-
folate Reductase (DFHR) Dataset

PaperModifications: Weuse Amber software suite to collect state-
of-the-art CPU and GPU performance, with the only modification
being addition of breakpoints for inspecting pair-wise force values.
Performance and other system state values are printed automati-
cally, and thus we did not need to instrument code in this regards.
No modification is applied on the FPGA board hardware.

Output from scripts that gathers execution environment informa-
tion.

#################################################### ⌋

####################↪→

# CPU Evaluation Machine
#################################################### ⌋

####################↪→

MKLROOT=/opt/intel/compilers_and_libraries_2017.2.17 ⌋

4/linux/mkl↪→

MANPATH=/opt/intel/man/common:/opt/intel/compilers_a ⌋

nd_libraries_2017.2.174/linux/mpi/man:/opt/intel ⌋

/documentation_2017/en/debugger//gdb-ia/man/:/op ⌋

t/intel/documentation_2017/en/debugger//gdb-mic/ ⌋

man/:/opt/intel/documentation_2017/en/debugger// ⌋

gdb-igfx/man/:/usr/local/share/man:/usr/share/ma ⌋

n/overrides:/usr/share/man:

↪→

↪→

↪→

↪→

↪→

↪→

XDG_SESSION_ID=22765
HOSTNAME=skylake
INTEL_LICENSE_FILE=/opt/intel/compilers_and_librarie ⌋

s_2017.2.174/linux/licenses:/opt/intel/licenses: ⌋

/server-home1/USER/intel/licenses
↪→

↪→

IPPROOT=/opt/intel/compilers_and_libraries_2017.2.17 ⌋

4/linux/ipp↪→

TERM=xterm-256color
SHELL=/bin/bash
HISTSIZE=1000
GDBSERVER_MIC=/opt/intel/debugger_2017/gdb/targets/m ⌋

ic/bin/gdbserver↪→

SSH_CLIENT=192.168.239.13 37528 22
LIBRARY_PATH=/opt/intel/compilers_and_libraries_2017 ⌋

.2.174/linux/ipp/lib/intel64:/opt/intel/compiler ⌋

s_and_libraries_2017.2.174/linux/compiler/lib/in ⌋

tel64_lin:/opt/intel/compilers_and_libraries_201 ⌋

7.2.174/linux/mkl/lib/intel64_lin:/opt/intel/com ⌋

pilers_and_libraries_2017.2.174/linux/tbb/lib/in ⌋

tel64/gcc4.7:/opt/intel/compilers_and_libraries_ ⌋

2017.2.174/linux/daal/lib/intel64_lin:/opt/intel ⌋

/compilers_and_libraries_2017.2.174/linux/daal/. ⌋

./tbb/lib/intel64_lin/gcc4.4

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SCHRODINGER=/opt/schrodinger2014-3
MIC_LD_LIBRARY_PATH=/opt/intel/compilers_and_librari ⌋

es_2017.2.174/linux/mpi/mic/lib:/opt/intel/compi ⌋

lers_and_libraries_2017.2.174/linux/compiler/lib ⌋

/mic:/opt/intel/compilers_and_libraries_2017.2.1 ⌋

74/linux/ipp/lib/mic:/opt/intel/compilers_and_li ⌋

braries_2017.2.174/linux/compiler/lib/intel64_li ⌋

n_mic:/opt/intel/compilers_and_libraries_2017.2. ⌋

174/linux/mkl/lib/intel64_lin_mic:/opt/intel/com ⌋

pilers_and_libraries_2017.2.174/linux/tbb/lib/mic

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SSH_TTY=/dev/pts/1
NAMD=/server-home1/USER/Downloads/NAMD_2.10_Linux-x8 ⌋

6_64-multicore/↪→

QT_GRAPHICSSYSTEM_CHECKED=1
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CUDA_HOME=/usr/local/cuda-8.0
USER=USER
LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

MIC_LIBRARY_PATH=/opt/intel/compilers_and_libraries_ ⌋

2017.2.174/linux/mpi/mic/lib:/opt/intel/compiler ⌋

s_and_libraries_2017.2.174/linux/compiler/lib/mi ⌋

c:/opt/intel/compilers_and_libraries_2017.2.174/ ⌋

linux/compiler/lib/intel64_lin_mic:/opt/intel/co ⌋

mpilers_and_libraries_2017.2.174/linux/mkl/lib/i ⌋

ntel64_lin_mic:/opt/intel/compilers_and_librarie ⌋

s_2017.2.174/linux/tbb/lib/mic

↪→

↪→

↪→

↪→

↪→

↪→

↪→

CPATH=/opt/intel/compilers_and_libraries_2017.2.174/ ⌋

linux/ipp/include:/opt/intel/compilers_and_libra ⌋

ries_2017.2.174/linux/mkl/include:/opt/intel/com ⌋

pilers_and_libraries_2017.2.174/linux/tbb/includ ⌋

e:/opt/intel/compilers_and_libraries_2017.2.174/ ⌋

linux/daal/include

↪→

↪→

↪→

↪→

↪→

MAIL=/var/spool/mail/USER

PATH=/root/miniconda2/bin:/root/miniconda2/bin:/serv ⌋

er-home1/USER/.local/UCSF-Chimera64-1.10.1/bin:/ ⌋

opt/mgltools_x86_64Linux2_1.5.6/bin:/server-home ⌋

1/USER/ambermidpoint/bin:/server-home1/USER/ambe ⌋

rmidpoint/AmberTools/bin:/opt/intel/compilers_an ⌋

d_libraries_2017.2.174/linux/bin/intel64:/opt/in ⌋

tel/compilers_and_libraries_2017.2.174/linux/mpi ⌋

/intel64/bin:/opt/intel/debugger_2017/gdb/intel6 ⌋

4_mic/bin:/usr/local/bin:/usr/bin:/usr/local/sbi ⌋

n:/usr/sbin:/usr/local/cuda-8.0/bin:/server-home ⌋

1/USER/Downloads/NAMD_2.10_Linux-x86_64-multicor ⌋

e/:/opt/schrodinger2014-3:/server-home1/USER/.lo ⌋

cal/bin:/server-home1/USER/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

_=/usr/bin/env
TBBROOT=/opt/intel/compilers_and_libraries_2017.2.17 ⌋

4/linux/tbb↪→

PWD=/server-home1/USER/Author-Kit
GDB_CROSS=/opt/intel/debugger_2017/gdb/intel64_mic/b ⌋

in/gdb-mic↪→

LANG=en_US.UTF-8
MODULEPATH=/usr/share/Modules/modulefiles:/etc/modul ⌋

efiles↪→

LOADEDMODULES=
MKL_HOME=/opt/intel/compilers_and_libraries_2017.2.1 ⌋

74/linux/mkl/↪→

DAALROOT=/opt/intel/compilers_and_libraries_2017.2.1 ⌋

74/linux/daal↪→

MPM_LAUNCHER=/opt/intel/debugger_2017/mpm/mic/bin/st ⌋

art_mpm.sh↪→

HISTCONTROL=ignoredups
INTEL_PYTHONHOME=/opt/intel/debugger_2017/python/int ⌋

el64/↪→

SHLVL=3
HOME=/root
LOGNAME=USER
CLASSPATH=/opt/intel/compilers_and_libraries_2017.2. ⌋

174/linux/mpi/intel64/lib/mpi.jar:/opt/intel/com ⌋

pilers_and_libraries_2017.2.174/linux/daal/lib/d ⌋

aal.jar

↪→

↪→

↪→

XDG_DATA_DIRS=/server-home1/USER/.local/share/flatpa ⌋

k/exports/share/:/var/lib/flatpak/exports/share/ ⌋

:/usr/local/share/:/usr/share/
↪→

↪→

SSH_CONNECTION=192.168.239.13 37528 192.168.239.25 22
MODULESHOME=/usr/share/Modules
LESSOPEN=||/usr/bin/lesspipe.sh %s
INFOPATH=/opt/intel/documentation_2017/en/debugger// ⌋

gdb-ia/info/:/opt/intel/documentation_2017/en/de ⌋

bugger//gdb-mic/info/:/opt/intel/documentation_2 ⌋

017/en/debugger//gdb-igfx/info/

↪→

↪→

↪→

XDG_RUNTIME_DIR=/run/user/1370
AMBERHOME=/server-home1/USER/ambermidpoint
I_MPI_ROOT=/opt/intel/compilers_and_libraries_2017.2 ⌋

.174/linux/mpi↪→

BASH_FUNC_module()=() { eval `/usr/bin/modulecmd

bash $*`↪→

}
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+ lsb_release -a
./collect_environment.sh: line 10: lsb_release:

command not found↪→

+ uname -a
Linux skylake 3.10.0-693.21.1.el7.x86_64 #1 SMP Wed

Mar 7 19:03:37 UTC 2018 x86_64 x86_64 x86_64
GNU/Linux

↪→

↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: 06/55
Stepping: 2
CPU MHz: 1100.000
CPU max MHz: 1801.0000
CPU min MHz: 1000.0000
BogoMIPS: 3600.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Flags: fpu vme de pse tsc msr pae mce

cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc art arch_perfmon
pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm
pcid dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3
invpcid_single intel_pt tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a
avx512f avx512dq rdseed adx smap clflushopt clwb
avx512cd avx512bw avx512vl xsaveopt xsavec
xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total
cqm_mbm_local dtherm ida arat pln pts

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 181036796 kB
MemFree: 161953520 kB
MemAvailable: 175246240 kB
Buffers: 2132 kB
Cached: 14882064 kB

SwapCached: 0 kB
Active: 10362124 kB
Inactive: 5977448 kB
Active(anon): 2362940 kB
Inactive(anon): 415152 kB
Active(file): 7999184 kB
Inactive(file): 5562296 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 32833532 kB
SwapFree: 32833532 kB
Dirty: 20 kB
Writeback: 0 kB
AnonPages: 1455424 kB
Mapped: 68312 kB
Shmem: 1322704 kB
Slab: 812020 kB
SReclaimable: 421712 kB
SUnreclaim: 390308 kB
KernelStack: 24464 kB
PageTables: 18100 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 123351928 kB
Committed_AS: 3928752 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 845304 kB
VmallocChunk: 34258503676 kB
HardwareCorrupted: 0 kB
AnonHugePages: 880640 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 323608 kB
DirectMap2M: 7751680 kB
DirectMap1G: 178257920 kB
+ inxi -F -c0
./collect_environment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 745.2G 0 disk

sda1 8:1 0 1G 0 part /boot

sda2 8:2 0 744.2G 0 part

cl_skylake-root 253:0 0 712.9G 0 lvm /

cl_skylake-swap 253:1 0 31.3G 0 lvm [SWAP]
sr0 11:0 1 1024M 0 rom
+ lsscsi -s
[4:0:0:0] cd/dvd TEAC DV-W28S-A 9.2A

/dev/sr0 -↪→

[6:0:0:0] disk ATA INTEL SSDSC2BA80 0140

/dev/sda 800GB↪→

+ module list
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++ /usr/bin/modulecmd bash list
No Modulefiles Currently Loaded.
+ eval
+ nvidia-smi
./collect_environment.sh: line 18: nvidia-smi:

command not found↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class

Description↪→

==================================================== ⌋

=====↪→

system S2600WFT

(SKU Number)↪→

/0 bus S2600WFT
/0/0 memory 1536KiB

L1 cache↪→

/0/6 memory 24MiB L2

cache↪→

/0/7 memory 33MiB L3

cache↪→

/0/9 processor 06/55
/0/13 memory 1536KiB

L1 cache↪→

/0/14 memory 24MiB L2

cache↪→

/0/a memory 33MiB L3

cache↪→

/0/b processor 06/55
/0/c memory 176GiB

System Memory↪→

/0/c/0 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/1 memory DIMM

Synchronous [empty]↪→

/0/c/2 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/3 memory DIMM

Synchronous [empty]↪→

/0/c/4 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/5 memory DIMM

Synchronous [empty]↪→

/0/c/6 memory DIMM

Synchronous [empty]↪→

/0/c/7 memory DIMM

Synchronous [empty]↪→

/0/c/8 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/9 memory DIMM

Synchronous [empty]↪→

/0/c/a memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/b memory DIMM

Synchronous [empty]↪→

/0/c/c memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/d memory DIMM

Synchronous [empty]↪→

/0/c/e memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/f memory DIMM

Synchronous [empty]↪→

/0/c/10 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/11 memory DIMM

Synchronous [empty]↪→

/0/c/12 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/13 memory DIMM

Synchronous [empty]↪→

/0/c/14 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/15 memory DIMM

Synchronous [empty]↪→

/0/c/16 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/c/17 memory DIMM

Synchronous [empty]↪→

/0/42 memory 64KiB BIOS
/0/100 bridge Intel

Corporation↪→

/0/100/4 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.1 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.2 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.3 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.4 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.5 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.6 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.7 generic Sky

Lake-E CBDMA Registers↪→

/0/100/5 generic Sky

Lake-E MM/Vt-d Configuration Registers↪→

/0/100/5.2 generic Intel

Corporation↪→

/0/100/5.4 generic Intel

Corporation↪→

/0/100/8 generic Sky

Lake-E Ubox Registers↪→
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/0/100/8.1 generic Sky

Lake-E Ubox Registers↪→

/0/100/8.2 generic Sky

Lake-E Ubox Registers↪→

/0/100/11 generic Intel

Corporation↪→

/0/100/11.1 generic Intel

Corporation↪→

/0/100/11.5 scsi4 storage

Lewisburg SSATA Controller [AHCI mode]↪→

/0/100/11.5/0.0.0 /dev/cdrom disk DV-W28S-A
/0/100/14 bus Intel

Corporation↪→

/0/100/14/0 usb1 bus xHCI Host

Controller↪→

/0/100/14/0/2 bus USB hub
/0/100/14/0/2/1 input Keyboard
/0/100/14/1 usb2 bus xHCI Host

Controller↪→

/0/100/14.2 generic Intel

Corporation↪→

/0/100/16 communication Intel

Corporation↪→

/0/100/16.1 communication Intel

Corporation↪→

/0/100/16.4 communication Intel

Corporation↪→

/0/100/17 scsi6 storage Lewisburg

SATA Controller [AHCI mode]↪→

/0/100/17/0.0.0 /dev/sda disk 800GB

INTEL SSDSC2BA80↪→

/0/100/17/0.0.0/1 /dev/sda1 volume 1GiB

Linux filesystem partition↪→

/0/100/17/0.0.0/2 /dev/sda2 volume 744GiB

Linux LVM Physical Volume partition↪→

/0/100/1c bridge Intel

Corporation↪→

/0/100/1c/0 bridge AST1150

PCI-to-PCI Bridge↪→

/0/100/1c/0/0 display ASPEED

Graphics Family↪→

/0/100/1f bridge Lewisburg

LPC or eSPI Controller↪→

/0/100/1f.2 memory Memory

controller↪→

/0/100/1f.4 bus Lewisburg

SMBus↪→

/0/100/1f.5 bus Lewisburg

SPI Controller↪→

/0/d generic Intel

Corporation↪→

/0/e generic Sky

Lake-E RAS Configuration Registers↪→

/0/18 generic Intel

Corporation↪→

/0/19 generic Sky

Lake-E CHA Registers↪→

/0/1a generic Sky

Lake-E CHA Registers↪→

/0/1b generic Sky

Lake-E CHA Registers↪→

/0/1c generic Sky

Lake-E CHA Registers↪→

/0/1d generic Sky

Lake-E CHA Registers↪→

/0/1e generic Sky

Lake-E CHA Registers↪→

/0/1f generic Sky

Lake-E CHA Registers↪→

/0/20 generic Sky

Lake-E CHA Registers↪→

/0/21 generic Sky

Lake-E CHA Registers↪→

/0/22 generic Sky

Lake-E CHA Registers↪→

/0/23 generic Sky

Lake-E CHA Registers↪→

/0/24 generic Sky

Lake-E CHA Registers↪→

/0/25 generic Sky

Lake-E CHA Registers↪→

/0/26 generic Sky

Lake-E CHA Registers↪→

/0/27 generic Sky

Lake-E CHA Registers↪→

/0/28 generic Sky

Lake-E CHA Registers↪→

/0/29 generic Sky

Lake-E CHA Registers↪→

/0/2a generic Sky

Lake-E CHA Registers↪→

/0/2b generic Sky

Lake-E CHA Registers↪→

/0/2c generic Sky

Lake-E CHA Registers↪→

/0/2d generic Sky

Lake-E CHA Registers↪→

/0/2e generic Sky

Lake-E CHA Registers↪→

/0/2f generic Sky

Lake-E CHA Registers↪→

/0/30 generic Sky

Lake-E CHA Registers↪→

/0/31 generic Sky

Lake-E CHA Registers↪→

/0/32 generic Sky

Lake-E CHA Registers↪→
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/0/33 generic Sky

Lake-E CHA Registers↪→

/0/34 generic Sky

Lake-E CHA Registers↪→

/0/35 generic Sky

Lake-E CHA Registers↪→

/0/36 generic Sky

Lake-E CHA Registers↪→

/0/37 generic Sky

Lake-E CHA Registers↪→

/0/38 generic Sky

Lake-E CHA Registers↪→

/0/39 generic Sky

Lake-E CHA Registers↪→

/0/3a generic Sky

Lake-E CHA Registers↪→

/0/3b generic Sky

Lake-E CHA Registers↪→

/0/3c generic Sky

Lake-E CHA Registers↪→

/0/3d generic Sky

Lake-E CHA Registers↪→

/0/3e generic Sky

Lake-E CHA Registers↪→

/0/3f generic Sky

Lake-E CHA Registers↪→

/0/40 generic Sky

Lake-E CHA Registers↪→

/0/41 generic Sky

Lake-E CHA Registers↪→

/0/43 generic Sky

Lake-E CHA Registers↪→

/0/44 generic Sky

Lake-E CHA Registers↪→

/0/45 generic Sky

Lake-E CHA Registers↪→

/0/46 generic Sky

Lake-E CHA Registers↪→

/0/47 generic Sky

Lake-E CHA Registers↪→

/0/48 generic Sky

Lake-E CHA Registers↪→

/0/49 generic Sky

Lake-E CHA Registers↪→

/0/4a generic Sky

Lake-E CHA Registers↪→

/0/4b generic Sky

Lake-E CHA Registers↪→

/0/4c generic Sky

Lake-E CHA Registers↪→

/0/4d generic Sky

Lake-E CHA Registers↪→

/0/4e generic Sky

Lake-E CHA Registers↪→

/0/4f generic Sky

Lake-E CHA Registers↪→

/0/50 generic Sky

Lake-E CHA Registers↪→

/0/51 generic Sky

Lake-E CHA Registers↪→

/0/52 generic Sky

Lake-E CHA Registers↪→

/0/53 generic Sky

Lake-E CHA Registers↪→

/0/54 generic Sky

Lake-E CHA Registers↪→

/0/55 generic Sky

Lake-E CHA Registers↪→

/0/56 generic Sky

Lake-E PCU Registers↪→

/0/57 generic Sky

Lake-E PCU Registers↪→

/0/58 generic Sky

Lake-E PCU Registers↪→

/0/59 generic Sky

Lake-E PCU Registers↪→

/0/5a generic Sky

Lake-E PCU Registers↪→

/0/5b generic Sky

Lake-E PCU Registers↪→

/0/5c generic Sky

Lake-E PCU Registers↪→

/0/101 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/101/0 bridge Intel

Corporation↪→

/0/101/0/3 bridge Intel

Corporation↪→

/0/101/0/3/0 enp61s0f0 network Ethernet

Connection X722 for 10GBASE-T↪→

/0/101/0/3/0.1 enp61s0f1 network Ethernet

Connection X722 for 10GBASE-T↪→

/0/5d generic Intel

Corporation↪→

/0/5e generic Sky

Lake-E RAS Configuration Registers↪→

/0/5f generic Intel

Corporation↪→

/0/60 generic Intel

Corporation↪→

/0/61 generic Intel

Corporation↪→

/0/62 generic Intel

Corporation↪→

/0/63 generic Intel

Corporation↪→

/0/64 generic Intel

Corporation↪→
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/0/65 generic Intel

Corporation↪→

/0/66 generic Intel

Corporation↪→

/0/67 generic Intel

Corporation↪→

/0/68 generic Intel

Corporation↪→

/0/69 generic Intel

Corporation↪→

/0/6a generic Intel

Corporation↪→

/0/6b generic Intel

Corporation↪→

/0/6c generic Intel

Corporation↪→

/0/6d generic Intel

Corporation↪→

/0/6e generic Intel

Corporation↪→

/0/6f generic Intel

Corporation↪→

/0/70 generic Intel

Corporation↪→

/0/71 generic Intel

Corporation↪→

/0/72 generic Intel

Corporation↪→

/0/73 generic Intel

Corporation↪→

/0/74 generic Intel

Corporation↪→

/0/75 generic Intel

Corporation↪→

/0/76 generic Intel

Corporation↪→

/0/77 generic Intel

Corporation↪→

/0/78 generic Intel

Corporation↪→

/0/79 generic Intel

Corporation↪→

/0/2 bridge Sky

Lake-E PCI Express Root Port C↪→

/0/3 bridge Sky

Lake-E PCI Express Root Port D↪→

/0/7a generic Intel

Corporation↪→

/0/7b generic Sky

Lake-E RAS Configuration Registers↪→

/0/7c generic Intel

Corporation↪→

/0/7d generic Intel

Corporation↪→

/0/7e generic Intel

Corporation↪→

/0/7f generic Intel

Corporation↪→

/0/80 generic Intel

Corporation↪→

/0/81 generic Intel

Corporation↪→

/0/82 generic Intel

Corporation↪→

/0/83 generic Sky

Lake-E M3KTI Registers↪→

/0/84 generic Sky

Lake-E M3KTI Registers↪→

/0/85 generic Sky

Lake-E M3KTI Registers↪→

/0/86 generic Sky

Lake-E M3KTI Registers↪→

/0/87 generic Sky

Lake-E M2PCI Registers↪→

/0/88 generic Sky

Lake-E M2PCI Registers↪→

/0/89 generic Sky

Lake-E M2PCI Registers↪→

/0/8a generic Sky

Lake-E M2PCI Registers↪→

/0/4 generic Sky

Lake-E CBDMA Registers↪→

/0/4.1 generic Sky

Lake-E CBDMA Registers↪→

/0/4.2 generic Sky

Lake-E CBDMA Registers↪→

/0/4.3 generic Sky

Lake-E CBDMA Registers↪→

/0/4.4 generic Sky

Lake-E CBDMA Registers↪→

/0/4.5 generic Sky

Lake-E CBDMA Registers↪→

/0/4.6 generic Sky

Lake-E CBDMA Registers↪→

/0/4.7 generic Sky

Lake-E CBDMA Registers↪→

/0/8b generic Sky

Lake-E MM/Vt-d Configuration Registers↪→

/0/8c generic Intel

Corporation↪→

/0/8d generic Intel

Corporation↪→

/0/8e generic Sky

Lake-E Ubox Registers↪→

/0/8f generic Sky

Lake-E Ubox Registers↪→

/0/90 generic Sky

Lake-E Ubox Registers↪→
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/0/91 generic Intel

Corporation↪→

/0/92 generic Sky

Lake-E RAS Configuration Registers↪→

/0/93 generic Intel

Corporation↪→

/0/94 generic Sky

Lake-E CHA Registers↪→

/0/8.1 generic Sky

Lake-E CHA Registers↪→

/0/8.2 generic Sky

Lake-E CHA Registers↪→

/0/95 generic Sky

Lake-E CHA Registers↪→

/0/96 generic Sky

Lake-E CHA Registers↪→

/0/97 generic Sky

Lake-E CHA Registers↪→

/0/98 generic Sky

Lake-E CHA Registers↪→

/0/99 generic Sky

Lake-E CHA Registers↪→

/0/9a generic Sky

Lake-E CHA Registers↪→

/0/9b generic Sky

Lake-E CHA Registers↪→

/0/9c generic Sky

Lake-E CHA Registers↪→

/0/9d generic Sky

Lake-E CHA Registers↪→

/0/9e generic Sky

Lake-E CHA Registers↪→

/0/9f generic Sky

Lake-E CHA Registers↪→

/0/a0 generic Sky

Lake-E CHA Registers↪→

/0/a1 generic Sky

Lake-E CHA Registers↪→

/0/a2 generic Sky

Lake-E CHA Registers↪→

/0/a3 generic Sky

Lake-E CHA Registers↪→

/0/a4 generic Sky

Lake-E CHA Registers↪→

/0/a5 generic Sky

Lake-E CHA Registers↪→

/0/a6 generic Sky

Lake-E CHA Registers↪→

/0/a7 generic Sky

Lake-E CHA Registers↪→

/0/a8 generic Sky

Lake-E CHA Registers↪→

/0/a9 generic Sky

Lake-E CHA Registers↪→

/0/aa generic Sky

Lake-E CHA Registers↪→

/0/ab generic Sky

Lake-E CHA Registers↪→

/0/ac generic Sky

Lake-E CHA Registers↪→

/0/ad generic Sky

Lake-E CHA Registers↪→

/0/ae generic Sky

Lake-E CHA Registers↪→

/0/af generic Sky

Lake-E CHA Registers↪→

/0/b0 generic Sky

Lake-E CHA Registers↪→

/0/b1 generic Sky

Lake-E CHA Registers↪→

/0/b2 generic Sky

Lake-E CHA Registers↪→

/0/b3 generic Sky

Lake-E CHA Registers↪→

/0/b4 generic Sky

Lake-E CHA Registers↪→

/0/b5 generic Sky

Lake-E CHA Registers↪→

/0/b6 generic Sky

Lake-E CHA Registers↪→

/0/b7 generic Sky

Lake-E CHA Registers↪→

/0/b8 generic Sky

Lake-E CHA Registers↪→

/0/b9 generic Sky

Lake-E CHA Registers↪→

/0/ba generic Sky

Lake-E CHA Registers↪→

/0/bb generic Sky

Lake-E CHA Registers↪→

/0/bc generic Sky

Lake-E CHA Registers↪→

/0/bd generic Sky

Lake-E CHA Registers↪→

/0/be generic Sky

Lake-E CHA Registers↪→

/0/bf generic Sky

Lake-E CHA Registers↪→

/0/c0 generic Sky

Lake-E CHA Registers↪→

/0/c1 generic Sky

Lake-E CHA Registers↪→

/0/c2 generic Sky

Lake-E CHA Registers↪→

/0/c3 generic Sky

Lake-E CHA Registers↪→

/0/c4 generic Sky

Lake-E CHA Registers↪→
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/0/c5 generic Sky

Lake-E CHA Registers↪→

/0/11 generic Sky

Lake-E CHA Registers↪→

/0/c6 generic Sky

Lake-E CHA Registers↪→

/0/c7 generic Sky

Lake-E CHA Registers↪→

/0/c8 generic Sky

Lake-E CHA Registers↪→

/0/c9 generic Sky

Lake-E CHA Registers↪→

/0/ca generic Sky

Lake-E CHA Registers↪→

/0/cb generic Sky

Lake-E CHA Registers↪→

/0/cc generic Sky

Lake-E CHA Registers↪→

/0/cd generic Sky

Lake-E PCU Registers↪→

/0/ce generic Sky

Lake-E PCU Registers↪→

/0/cf generic Sky

Lake-E PCU Registers↪→

/0/d0 generic Sky

Lake-E PCU Registers↪→

/0/d1 generic Sky

Lake-E PCU Registers↪→

/0/d2 generic Sky

Lake-E PCU Registers↪→

/0/d3 generic Sky

Lake-E PCU Registers↪→

/0/d4 generic Intel

Corporation↪→

/0/d5 generic Sky

Lake-E RAS Configuration Registers↪→

/0/d6 generic Intel

Corporation↪→

/0/8 generic Intel

Corporation↪→

/0/d7 generic Intel

Corporation↪→

/0/d8 generic Intel

Corporation↪→

/0/d9 generic Intel

Corporation↪→

/0/da generic Intel

Corporation↪→

/0/db generic Intel

Corporation↪→

/0/dc generic Intel

Corporation↪→

/0/dd generic Intel

Corporation↪→

/0/de generic Intel

Corporation↪→

/0/df generic Intel

Corporation↪→

/0/e0 generic Intel

Corporation↪→

/0/e1 generic Intel

Corporation↪→

/0/e2 generic Intel

Corporation↪→

/0/e3 generic Intel

Corporation↪→

/0/e4 generic Intel

Corporation↪→

/0/e5 generic Intel

Corporation↪→

/0/e6 generic Intel

Corporation↪→

/0/e7 generic Intel

Corporation↪→

/0/e8 generic Intel

Corporation↪→

/0/e9 generic Intel

Corporation↪→

/0/ea generic Intel

Corporation↪→

/0/eb generic Intel

Corporation↪→

/0/ec generic Intel

Corporation↪→

/0/ed generic Intel

Corporation↪→

/0/ee generic Intel

Corporation↪→

/0/ef generic Intel

Corporation↪→

/0/102 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/1 bridge Sky

Lake-E PCI Express Root Port B↪→

/0/5 generic Intel

Corporation↪→

/0/5.2 generic Sky

Lake-E RAS Configuration Registers↪→

/0/5.4 generic Intel

Corporation↪→

/0/f0 generic Intel

Corporation↪→

/0/f1 generic Intel

Corporation↪→

/0/f generic Intel

Corporation↪→

/0/f2 generic Intel

Corporation↪→
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/0/10 generic Intel

Corporation↪→

/0/f3 generic Intel

Corporation↪→

/0/12 generic Sky

Lake-E M3KTI Registers↪→

/0/f4 generic Sky

Lake-E M3KTI Registers↪→

/0/f5 generic Sky

Lake-E M3KTI Registers↪→

/0/f6 generic Sky

Lake-E M3KTI Registers↪→

/0/15 generic Sky

Lake-E M2PCI Registers↪→

/0/16 generic Sky

Lake-E M2PCI Registers↪→

/0/f7 generic Sky

Lake-E M2PCI Registers↪→

/0/17 generic Sky

Lake-E M2PCI Registers↪→

/0/f8 system PnP

device PNP0b00↪→

/0/f9 system PnP

device PNP0c02↪→

/0/fa communication PnP

device PNP0501↪→

/0/fb communication PnP

device PNP0501↪→

/0/fc system PnP

device PNP0c02↪→

/0/fd system PnP

device PNP0c02↪→

/1 virbr0-nic network Ethernet

interface↪→

/2 virbr0 network Ethernet

interface↪→

#################################################### ⌋

####################↪→

# FPGA Evaluation Machine
#################################################### ⌋

####################↪→

XDG_SESSION_ID=2150
HOSTNAME=xxxx
SHELL=/bin/bash
TERM=xterm-256color
HISTSIZE=
USER=USER

LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SUDO_USER=xxxx
SUDO_UID=1002
USERNAME=USER
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAIL=/var/spool/mail/xxxx
PWD=/home/xxxx/Author-Kit
LANG=en_US.UTF-8
SHLVL=1
SUDO_COMMAND=./collect_environment.sh
HOME=/USER
LOGNAME=USER
SUDO_GID=1002
_=/bin/env
+ lsb_release -a
./collect_environment.sh: line 10: lsb_release:

command not found↪→

+ uname -a
Linux stxexpfpga01 3.10.0-957.1.3.el7.x86_64 #1 SMP

Thu Nov 29 14:49:43 UTC 2018 x86_64 x86_64 x86_64
GNU/Linux

↪→

↪→
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+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Silver 4110

CPU @ 2.10GHz↪→

Stepping: 4
CPU MHz: 800.061
CPU max MHz: 3000.0000
CPU min MHz: 800.0000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 11264K
NUMA node0 CPU(s): 0-7,16-23
NUMA node1 CPU(s): 8-15,24-31
Flags: fpu vme de pse tsc msr pae mce

cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc art arch_perfmon
pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr
pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3
intel_ppin intel_pt ssbd mba ibrs ibpb stibp
tpr_shadow vnmi flexpriority ept vpid fsgsbase
tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid
rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap
clflushopt clwb avx512cd avx512bw avx512vl
xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc
cqm_mbm_total cqm_mbm_local dtherm ida arat pln
pts hwp hwp_act_window hwp_epp hwp_pkg_req pku
ospke spec_ctrl intel_stibp flush_l1d

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 131477236 kB
MemFree: 37432008 kB
MemAvailable: 50586508 kB
Buffers: 952 kB
Cached: 13196720 kB
SwapCached: 87052 kB
Active: 21239520 kB
Inactive: 3866028 kB
Active(anon): 11067016 kB

Inactive(anon): 888948 kB
Active(file): 10172504 kB
Inactive(file): 2977080 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 16383996 kB
SwapFree: 15089560 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 11858112 kB
Mapped: 322820 kB
Shmem: 48084 kB
Slab: 5863788 kB
SReclaimable: 630988 kB
SUnreclaim: 5232800 kB
KernelStack: 28336 kB
PageTables: 103056 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 82122612 kB
Committed_AS: 23659164 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 1954980 kB
VmallocChunk: 34289420784 kB
HardwareCorrupted: 0 kB
AnonHugePages: 3184640 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 1179776 kB
DirectMap2M: 40404992 kB
DirectMap1G: 94371840 kB
+ inxi -F -c0
./collect_environment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE

MOUNTPOINT↪→

sda 8:0 0 1.8T 0 disk

sda1 8:1 0 487M 0 part

sda2 8:2 0 1K 0 part

sda5 8:5 0 1.8T 0 part

stxexpfpga01--vg-root 253:3 0 1.7T 0 lvm

stxexpfpga01--vg-swap_1 253:4 0 127.7G 0 lvm
sdb 8:16 0 1.8T 0 disk

sdb1 8:17 0 200M 0 part

sdb2 8:18 0 1G 0 part

sdb3 8:19 0 1.8T 0 part

cl00-swap 253:5 0 4G 0 lvm

cl00-home 253:6 0 1.8T 0 lvm
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cl00-root 253:7 0 50G 0 lvm
sdc 8:32 0 1.8T 0 disk

sdc1 8:33 0 1.8T 0 part

sdc9 8:41 0 8M 0 part
sdd 8:48 0 1.8T 0 disk

sdd1 8:49 0 1.8T 0 part

sdd9 8:57 0 8M 0 part
sde 8:64 0 223.6G 0 disk

sde1 8:65 0 487M 0 part

sde2 8:66 0 1K 0 part

sde5 8:69 0 223.1G 0 part
sdf 8:80 0 1.8T 0 disk

sdf1 8:81 0 1.8T 0 part

sdf9 8:89 0 8M 0 part
sdg 8:96 0 1.8T 0 disk

sdg1 8:97 0 1.8T 0 part

sdg9 8:105 0 8M 0 part
sdh 8:112 0 1.8T 0 disk

sdh1 8:113 0 1.8T 0 part

sdh9 8:121 0 8M 0 part
nvme0n1 259:0 0 1.1T 0 disk

nvme0n1p1 259:1 0 3.8G 0 part

/boot↪→

nvme0n1p2 259:2 0 1.1T 0 part

cl-root 253:0 0 50G 0 lvm /

cl-swap 253:1 0 15.6G 0 lvm

[SWAP]↪→

cl-home 253:2 0 231.5G 0 lvm

/home↪→

+ lsscsi -s
[0:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sda 2.00TB↪→

[1:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sdb 2.00TB↪→

[2:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sdc 2.00TB↪→

[3:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sdd 2.00TB↪→

[4:0:0:0] disk ATA PNY CS900 240GB 0211

/dev/sde 240GB↪→

[5:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sdf 2.00TB↪→

[6:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sdg 2.00TB↪→

[7:0:0:0] disk ATA ST2000NX0253 SN04

/dev/sdh 2.00TB↪→

+ module list
./collect_environment.sh: line 17: module: command

not found↪→

+ nvidia-smi
Tue Apr 9 21:40:37 2019

+--------------------------------------------------- ⌋

--------------------------+↪→

| NVIDIA-SMI 410.48 Driver Version:

410.48 |↪→

|-------------------------------+------------------- ⌋

---+----------------------+↪→

| GPU Name Persistence-M| Bus-Id Disp.A

| Volatile Uncorr. ECC |↪→

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage

| GPU-Util Compute M. |↪→

|===============================+=================== ⌋

===+======================|↪→

| 0 GeForce GTX 1080 Off | 00000000:DA:00.0 Off

| N/A |↪→

| 28% 42C P8 11W / 180W | 10MiB / 8119MiB

| 0% Default |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

+--------------------------------------------------- ⌋

--------------------------+↪→

| Processes:

GPU Memory |↪→

| GPU PID Type Process name

Usage |↪→

|=================================================== ⌋

==========================|↪→

| No running processes found

|↪→

+--------------------------------------------------- ⌋

--------------------------+↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class

Description↪→

==================================================== ⌋

=====↪→

system B7109F77 ⌋

DV10E4HR-2T-N
(empty)

↪→

↪→

/0 bus

S7109GM2NR-2T↪→

/0/0 memory 64KiB BIOS
/0/3a memory 128GiB

System Memory↪→

/0/3a/0 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/1 memory [empty]
/0/3a/2 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/3 memory [empty]
/0/3a/4 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/5 memory [empty]
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/0/3a/6 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/7 memory [empty]
/0/3a/8 memory [empty]
/0/3a/9 memory [empty]
/0/3a/a memory [empty]
/0/3a/b memory [empty]
/0/3a/c memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/d memory [empty]
/0/3a/e memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/f memory [empty]
/0/3a/10 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/11 memory [empty]
/0/3a/12 memory 16GiB

DIMM DDR4 Synchronous 2666 MHz (0.4 ns)↪→

/0/3a/13 memory [empty]
/0/3a/14 memory [empty]
/0/3a/15 memory [empty]
/0/3a/16 memory [empty]
/0/3a/17 memory [empty]
/0/62 memory 512KiB L1

cache↪→

/0/63 memory 8MiB L2

cache↪→

/0/64 memory 11MiB L3

cache↪→

/0/65 processor Intel(R)

Xeon(R) Silver 4110 CPU @ 2.10GHz↪→

/0/66 memory 512KiB L1

cache↪→

/0/67 memory 8MiB L2

cache↪→

/0/68 memory 11MiB L3

cache↪→

/0/69 processor Intel(R)

Xeon(R) Silver 4110 CPU @ 2.10GHz↪→

/0/100 bridge Sky

Lake-E DMI3 Registers↪→

/0/100/4 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.1 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.2 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.3 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.4 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.5 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.6 generic Sky

Lake-E CBDMA Registers↪→

/0/100/4.7 generic Sky

Lake-E CBDMA Registers↪→

/0/100/5 generic Sky

Lake-E MM/Vt-d Configuration Registers↪→

/0/100/5.2 generic Intel

Corporation↪→

/0/100/5.4 generic Intel

Corporation↪→

/0/100/8 generic Sky

Lake-E Ubox Registers↪→

/0/100/8.1 generic Sky

Lake-E Ubox Registers↪→

/0/100/8.2 generic Sky

Lake-E Ubox Registers↪→

/0/100/11 generic C620

Series Chipset Family MROM 0↪→

/0/100/11.1 generic C620

Series Chipset Family MROM 1↪→

/0/100/11.5 scsi0 storage C620

Series Chipset Family SSATA Controller [AHCI mode]↪→

/0/100/11.5/0 /dev/sda disk 2TB

ST2000NX0253↪→

/0/100/11.5/0/1 /dev/sda1 volume 487MiB

Linux filesystem partition↪→

/0/100/11.5/0/2 /dev/sda2 volume 1862GiB

Extended partition↪→

/0/100/11.5/0/2/5 /dev/sda5 volume 1862GiB

Linux LVM Physical Volume partition↪→

/0/100/11.5/1 /dev/sdb disk 2TB

ST2000NX0253↪→

/0/100/11.5/1/1 /dev/sdb1 volume 199MiB

Windows FAT volume↪→

/0/100/11.5/1/2 /dev/sdb2 volume 1023MiB

data partition↪→

/0/100/11.5/1/3 /dev/sdb3 volume 1861GiB

LVM Physical Volume↪→

/0/100/11.5/2 /dev/sdc disk 2TB

ST2000NX0253↪→

/0/100/11.5/2/1 /dev/sdc1 volume 1863GiB

OS X ZFS partition or Solaris /usr partition↪→

/0/100/11.5/2/9 /dev/sdc9 volume 8191KiB

reserved partition↪→

/0/100/11.5/3 /dev/sdd disk 2TB

ST2000NX0253↪→

/0/100/11.5/3/1 /dev/sdd1 volume 1863GiB

OS X ZFS partition or Solaris /usr partition↪→

/0/100/11.5/3/9 /dev/sdd9 volume 8191KiB

reserved partition↪→

/0/100/11.5/4 /dev/sde disk 240GB

PNY CS900 240GB↪→

/0/100/11.5/4/1 /dev/sde1 volume 487MiB

Linux filesystem partition↪→

/0/100/11.5/4/2 /dev/sde2 volume 223GiB

Extended partition↪→
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/0/100/11.5/4/2/5 /dev/sde5 volume 223GiB

Linux LVM Physical Volume partition↪→

/0/100/11.5/5 /dev/sdf disk 2TB

ST2000NX0253↪→

/0/100/11.5/5/1 /dev/sdf1 volume 1863GiB

OS X ZFS partition or Solaris /usr partition↪→

/0/100/11.5/5/9 /dev/sdf9 volume 8191KiB

reserved partition↪→

/0/100/14 bus C620

Series Chipset Family USB 3.0 xHCI Controller↪→

/0/100/14/0 usb1 bus xHCI Host

Controller↪→

/0/100/14/0/1 bus USB2.0 Hub
/0/100/14/0/1/3 bus USB2.0 Hub
/0/100/14/0/1/3/1 generic FT230X

Basic UART↪→

/0/100/14/0/1/3/2 generic S10 520

card↪→

/0/100/14/0/2 input USB

Receiver↪→

/0/100/14/1 usb2 bus xHCI Host

Controller↪→

/0/100/14.2 generic C620

Series Chipset Family Thermal Subsystem↪→

/0/100/16 communication C620

Series Chipset Family MEI Controller #1↪→

/0/100/16.1 communication C620

Series Chipset Family MEI Controller #2↪→

/0/100/16.4 communication C620

Series Chipset Family MEI Controller #3↪→

/0/100/17 scsi6 storage C620

Series Chipset Family SATA Controller [AHCI mode]↪→

/0/100/17/0 /dev/sdg disk 2TB

ST2000NX0253↪→

/0/100/17/0/1 /dev/sdg1 volume 1863GiB

OS X ZFS partition or Solaris /usr partition↪→

/0/100/17/0/9 /dev/sdg9 volume 8191KiB

reserved partition↪→

/0/100/17/1 /dev/sdh disk 2TB

ST2000NX0253↪→

/0/100/17/1/1 /dev/sdh1 volume 1863GiB

OS X ZFS partition or Solaris /usr partition↪→

/0/100/17/1/9 /dev/sdh9 volume 8191KiB

reserved partition↪→

/0/100/1c bridge C620

Series Chipset Family PCI Express Root Port #1↪→

/0/100/1c/0 enp1s0f0 network Ethernet

Controller 10G X550T↪→

/0/100/1c/0.1 enp1s0f1 network Ethernet

Controller 10G X550T↪→

/0/100/1f bridge C621

Series Chipset LPC/eSPI Controller↪→

/0/100/1f.2 memory Memory

controller↪→

/0/100/1f.4 bus C620

Series Chipset Family SMBus↪→

/0/100/1f.5 bus C620

Series Chipset Family SPI Controller↪→

/0/101 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/101/0 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/101/0/8 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/101/0/8/0 generic Altera

Corporation↪→

/0/101/0/10 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/1 generic Intel

Corporation↪→

/0/2 generic Sky

Lake-E RAS Configuration Registers↪→

/0/3 generic Intel

Corporation↪→

/0/6 generic Sky

Lake-E CHA Registers↪→

/0/7 generic Sky

Lake-E CHA Registers↪→

/0/9 generic Sky

Lake-E CHA Registers↪→

/0/a generic Sky

Lake-E CHA Registers↪→

/0/b generic Sky

Lake-E CHA Registers↪→

/0/c generic Sky

Lake-E CHA Registers↪→

/0/d generic Sky

Lake-E CHA Registers↪→

/0/e generic Sky

Lake-E CHA Registers↪→

/0/f generic Sky

Lake-E CHA Registers↪→

/0/10 generic Sky

Lake-E CHA Registers↪→

/0/11 generic Sky

Lake-E CHA Registers↪→

/0/12 generic Sky

Lake-E CHA Registers↪→

/0/13 generic Sky

Lake-E CHA Registers↪→

/0/14 generic Sky

Lake-E CHA Registers↪→

/0/15 generic Sky

Lake-E CHA Registers↪→
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/0/16 generic Sky

Lake-E CHA Registers↪→

/0/17 generic Sky

Lake-E CHA Registers↪→

/0/18 generic Sky

Lake-E CHA Registers↪→

/0/19 generic Sky

Lake-E CHA Registers↪→

/0/1a generic Sky

Lake-E CHA Registers↪→

/0/1b generic Sky

Lake-E CHA Registers↪→

/0/1c generic Sky

Lake-E CHA Registers↪→

/0/1d generic Sky

Lake-E CHA Registers↪→

/0/1e generic Sky

Lake-E CHA Registers↪→

/0/1f generic Sky

Lake-E PCU Registers↪→

/0/20 generic Sky

Lake-E PCU Registers↪→

/0/21 generic Sky

Lake-E PCU Registers↪→

/0/22 generic Sky

Lake-E PCU Registers↪→

/0/23 generic Sky

Lake-E PCU Registers↪→

/0/24 generic Sky

Lake-E PCU Registers↪→

/0/25 generic Sky

Lake-E PCU Registers↪→

/0/26 generic Intel

Corporation↪→

/0/27 generic Sky

Lake-E RAS Configuration Registers↪→

/0/28 generic Intel

Corporation↪→

/0/29 generic Intel

Corporation↪→

/0/2a generic Intel

Corporation↪→

/0/2b generic Intel

Corporation↪→

/0/2c generic Intel

Corporation↪→

/0/2d generic Intel

Corporation↪→

/0/2e generic Intel

Corporation↪→

/0/2f generic Intel

Corporation↪→

/0/30 generic Intel

Corporation↪→

/0/31 generic Intel

Corporation↪→

/0/32 generic Intel

Corporation↪→

/0/33 generic Intel

Corporation↪→

/0/34 generic Intel

Corporation↪→

/0/35 generic Intel

Corporation↪→

/0/36 generic Intel

Corporation↪→

/0/37 generic Intel

Corporation↪→

/0/38 generic Intel

Corporation↪→

/0/39 generic Intel

Corporation↪→

/0/3b generic Intel

Corporation↪→

/0/3c generic Intel

Corporation↪→

/0/3d generic Intel

Corporation↪→

/0/3e generic Intel

Corporation↪→

/0/3f generic Intel

Corporation↪→

/0/40 generic Intel

Corporation↪→

/0/41 generic Intel

Corporation↪→

/0/42 generic Intel

Corporation↪→

/0/43 generic Intel

Corporation↪→

/0/102 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/102/0 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/102/0/8 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/102/0/8/0 generic Altera

Corporation↪→

/0/102/0/10 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/44 generic Intel

Corporation↪→

/0/45 generic Sky

Lake-E RAS Configuration Registers↪→
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/0/46 generic Intel

Corporation↪→

/0/47 generic Intel

Corporation↪→

/0/48 generic Intel

Corporation↪→

/0/49 generic Intel

Corporation↪→

/0/4a generic Intel

Corporation↪→

/0/4b generic Sky

Lake-E M3KTI Registers↪→

/0/4c generic Sky

Lake-E M3KTI Registers↪→

/0/4d generic Sky

Lake-E M3KTI Registers↪→

/0/4e generic Sky

Lake-E M2PCI Registers↪→

/0/4f generic Sky

Lake-E M2PCI Registers↪→

/0/50 generic Sky

Lake-E M2PCI Registers↪→

/0/4 generic Sky

Lake-E CBDMA Registers↪→

/0/4.1 generic Sky

Lake-E CBDMA Registers↪→

/0/4.2 generic Sky

Lake-E CBDMA Registers↪→

/0/4.3 generic Sky

Lake-E CBDMA Registers↪→

/0/4.4 generic Sky

Lake-E CBDMA Registers↪→

/0/4.5 generic Sky

Lake-E CBDMA Registers↪→

/0/4.6 generic Sky

Lake-E CBDMA Registers↪→

/0/4.7 generic Sky

Lake-E CBDMA Registers↪→

/0/51 generic Sky

Lake-E MM/Vt-d Configuration Registers↪→

/0/52 generic Intel

Corporation↪→

/0/53 generic Intel

Corporation↪→

/0/54 generic Sky

Lake-E Ubox Registers↪→

/0/55 generic Sky

Lake-E Ubox Registers↪→

/0/56 generic Sky

Lake-E Ubox Registers↪→

/0/103 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/103/0 enp134s0f0 network 82599ES

10-Gigabit SFI/SFP+ Network Connection↪→

/0/103/0.1 enp134s0f1 network 82599ES

10-Gigabit SFI/SFP+ Network Connection↪→

/0/57 generic Intel

Corporation↪→

/0/58 generic Sky

Lake-E RAS Configuration Registers↪→

/0/59 generic Intel

Corporation↪→

/0/5a generic Sky

Lake-E CHA Registers↪→

/0/8.1 generic Sky

Lake-E CHA Registers↪→

/0/8.2 generic Sky

Lake-E CHA Registers↪→

/0/5b generic Sky

Lake-E CHA Registers↪→

/0/5c generic Sky

Lake-E CHA Registers↪→

/0/5d generic Sky

Lake-E CHA Registers↪→

/0/5e generic Sky

Lake-E CHA Registers↪→

/0/5f generic Sky

Lake-E CHA Registers↪→

/0/60 generic Sky

Lake-E CHA Registers↪→

/0/61 generic Sky

Lake-E CHA Registers↪→

/0/6a generic Sky

Lake-E CHA Registers↪→

/0/6b generic Sky

Lake-E CHA Registers↪→

/0/6c generic Sky

Lake-E CHA Registers↪→

/0/6d generic Sky

Lake-E CHA Registers↪→

/0/6e generic Sky

Lake-E CHA Registers↪→

/0/6f generic Sky

Lake-E CHA Registers↪→

/0/70 generic Sky

Lake-E CHA Registers↪→

/0/71 generic Sky

Lake-E CHA Registers↪→

/0/72 generic Sky

Lake-E CHA Registers↪→

/0/73 generic Sky

Lake-E CHA Registers↪→

/0/74 generic Sky

Lake-E CHA Registers↪→

/0/75 generic Sky

Lake-E CHA Registers↪→

/0/76 generic Sky

Lake-E CHA Registers↪→
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/0/77 generic Sky

Lake-E CHA Registers↪→

/0/78 generic Sky

Lake-E PCU Registers↪→

/0/79 generic Sky

Lake-E PCU Registers↪→

/0/7a generic Sky

Lake-E PCU Registers↪→

/0/7b generic Sky

Lake-E PCU Registers↪→

/0/7c generic Sky

Lake-E PCU Registers↪→

/0/7d generic Sky

Lake-E PCU Registers↪→

/0/7e generic Sky

Lake-E PCU Registers↪→

/0/104 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/104/0 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/104/0/8 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/104/0/10 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/7f generic Intel

Corporation↪→

/0/80 generic Sky

Lake-E RAS Configuration Registers↪→

/0/81 generic Intel

Corporation↪→

/0/8 generic Intel

Corporation↪→

/0/82 generic Intel

Corporation↪→

/0/83 generic Intel

Corporation↪→

/0/84 generic Intel

Corporation↪→

/0/85 generic Intel

Corporation↪→

/0/86 generic Intel

Corporation↪→

/0/87 generic Intel

Corporation↪→

/0/88 generic Intel

Corporation↪→

/0/89 generic Intel

Corporation↪→

/0/8a generic Intel

Corporation↪→

/0/8b generic Intel

Corporation↪→

/0/8c generic Intel

Corporation↪→

/0/8d generic Intel

Corporation↪→

/0/8e generic Intel

Corporation↪→

/0/8f generic Intel

Corporation↪→

/0/90 generic Intel

Corporation↪→

/0/91 generic Intel

Corporation↪→

/0/92 generic Intel

Corporation↪→

/0/93 generic Intel

Corporation↪→

/0/94 generic Intel

Corporation↪→

/0/95 generic Intel

Corporation↪→

/0/96 generic Intel

Corporation↪→

/0/97 generic Intel

Corporation↪→

/0/98 generic Intel

Corporation↪→

/0/99 generic Intel

Corporation↪→

/0/9a generic Intel

Corporation↪→

/0/105 bridge Sky

Lake-E PCI Express Root Port A↪→

/0/105/0 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/105/0/8 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/105/0/8/0 display GP104

[GeForce GTX 1080]↪→

/0/105/0/8/0.1 multimedia GP104

High Definition Audio Controller↪→

/0/105/0/10 bridge PEX 8747
48-Lane, 5-Port PCI Express Gen 3 (8.0 GT/s)
Switch

↪→

↪→

/0/105/0/10/0 storage PCIe Data

Center SSD↪→

/0/5 generic Intel

Corporation↪→

/0/5.2 generic Sky

Lake-E RAS Configuration Registers↪→
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/0/5.4 generic Intel

Corporation↪→

/0/9b generic Intel

Corporation↪→

/0/9c generic Intel

Corporation↪→

/0/9d generic Intel

Corporation↪→

/0/9e generic Intel

Corporation↪→

/0/9f generic Sky

Lake-E M3KTI Registers↪→

/0/a0 generic Sky

Lake-E M3KTI Registers↪→

/0/a1 generic Sky

Lake-E M3KTI Registers↪→

/0/a2 generic Sky

Lake-E M2PCI Registers↪→

/0/a3 generic Sky

Lake-E M2PCI Registers↪→

/0/a4 generic Sky

Lake-E M2PCI Registers↪→

/0/a5 system PnP

device PNP0b00↪→

/0/a6 system PnP

device PNP0c02↪→

/0/a7 system PnP

device PNP0c02↪→

/0/a8 communication PnP

device PNP0501↪→

/0/a9 system PnP

device PNP0c02↪→

/0/aa system PnP

device PNP0c02↪→

/1 power To Be

Filled By O.E.M.↪→

/2 virbr0 network Ethernet

interface↪→

ARTIFACT EVALUATION
Verification and validation studies: We compare our FPGA-based

MD simulation result with a widely used benchmark, Amber 18,
using the sameDFHR dataset.We first compare a subset of randomly
selected pair-wise force value, logged at intermediate stages of
the simulations, and confirm that force value are the same. Once
equilibrium state is achieved, we compare system energy levels and
ensure that they are within the same orders of magnitude, which is
an acceptable threshold. Since Amber use different a motion update
and force accumulation process, an exact match is not necessary.

Accuracy and precision of timings: We use HDL simulation (in
ModelSim 10.6c) to count the exact runtime in clock cycles. The
FPGA operating frequency is constrained to our specified number
during the place&route stage of compilation (in Quartus Pro 18.0),
and we verify that timing requirements are met. Next, we adjust the

PLL to generate this frequency for the FPGA logic running on-chip,
and confirm that measured results match those obtained through
HDL simulation waveforms. Then we count the clock cycles from
simulation waveform and multiply with the clock frequency to get
a value for true performance.

Quantified the sensitivity of results to initial conditions and/or pa-
rameters of the computational environment: Our FPGA performance
is not affected by the hosting platform on which it running, as long
as the FPGA chip is the same. However, the dataset size and density
will have a direct influence on the MD simulation performance.
In general, for larger and denser datasets, the simulation time per
iteration will increase. More details discussions are provided in the
Evaluation Section of our paper.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. The
two primary sources of potential noise in our measurements are
performance fluctuations of external devices, such as host CPU,
and FPGA temperature. To address the former, we design a stand-
alone FPGA system where no off-chip data is exchanged during
the experiment. With regards to the latter, we keep monitoring
the FPGA’s temperature during the experiment, using the vendor
provided tool, and ensure that the chip temperature has negligible
variations.
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