
ComDetective: A Lightweight Communication Detection Tool
for Threads

Muhammad Aditya Sasongko
Koç University, Istanbul, Turkey

msasongko17@ku.edu.tr

Milind Chabbi
Scalable Machines Research, USA
milind@ScalableMachines.org

Palwisha Akhtar
Koç University, Istanbul, Turkey

pakhtar19@ku.edu.tr

Didem Unat
Koç University, Istanbul, Turkey

dunat@ku.edu.tr

ABSTRACT

Inter-thread communication is a vital performance indicator in
shared-memory systems. Prior works on identifying inter-thread
communication employed hardware simulators or binary instru-
mentation and suffered from inaccuracy or high overheads—both
space and time—making them impractical for production use. We
propose ComDetective, which produces communication matrices
that are accurate and introduces low runtime and low memory
overheads, thus making it practical for production use.

ComDetective employs hardware performance counters to sam-
ple memory-access events and uses hardware debug registers to
sample communicating pairs of threads. ComDetective can differ-
entiate communication as true or false sharing between threads. Its
runtime and memory overheads are only 1.30× and 1.27×, respec-
tively, for the 18 applications studied under 500K sampling period.
Using ComDetective, we produce insightful communication ma-
trices for microbenchmarks, PARSEC benchmark suite, and several
CORAL applications and compare the generated matrices against
MPI counterparts. Guided by ComDetective, we optimize a few
codes and achieve up to 13% speedup.

CCS CONCEPTS

• General and reference → Performance; • Software and its

engineering→Multithreading; • Computer systems organi-

zation → Multicore architectures.

KEYWORDS

Inter-thread communication, Communication matrix, Hardware
performance counters, Debug registers, False sharing, Sampling
ACM Reference Format:

Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Di-
dem Unat. 2019. ComDetective: A Lightweight Communication Detec-
tion Tool for Threads . In SC’19: The International Conference for High

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’19, November 17-22, 2019, Denver, CO, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356214

Performance Computing, Networking, Storage, and Analysis, November 17-
22, 2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3295500.3356214

1 INTRODUCTION

Inter-thread communication is an important performance indicator
in shared-memory multi-core systems [38]. Thread communica-
tion information offers valuable insights: it divulges, to an extent,
the inner workings of the program without having to examine the
code meticulously; it can be used for identifying possible sources of
communication-related performance overhead in parallel applica-
tions [7, 33]; it can also be used for verifying the multicore hardware
design. Therefore, identifying which groups of threads communi-
cate in what volume and their quantitative comparison against
expectations offer avenues to tune software for high performance.

Several techniques exist to capture communication patterns in
multi-threaded applications [3, 4, 9, 11, 13, 14, 35]. Though the pro-
posed techniques succeed in generating communication patterns
(often called as communication matrix), they come with several lim-
itations. Simulator-based methods (e.g., [4] [11]) (a) make simplistic
assumptions about CPU features (e.g., an in-order core), cache pro-
tocols and memory hierarchies, (b) introduce ∼ 10, 000× runtime
slowdown, and (c) generate enormous volume of execution traces
that grow linearly with execution time; hence, they are a misfit
for evaluating a complex, long-running application in its entirety.
Furthermore, to extract communication patterns from simulators,
post-mortem analysis of execution traces is needed, which adds
additional effort to the user.

Approaches in [35][3][9] use either a modified operating system
kernel or hardware extensions to mitigate overheads. The com-
munication pattern that they generate, however, might contain
false communication1—a situation where a cache line that is al-
ready evicted by a core is accessed by another core. Such false
communication is reported when the accesses to the same cache
line by different cores are separated in time. Prior approaches using
binary instrumentation techniques, such as [13][14], detect commu-
nications only by retaining the thread ids of previous accesses but
disregard the timestamps of those accesses. Hence, these schemes
also suffer from false communication. An additional source of in-
accuracy in binary instrumentation is the time dilation caused by
fine-grained instrumentation—the time gap between consecutive
1False communication should not be confused with false sharing. False sharing results
in communication at the hardware level that was not intended by the programmer,
while false communication does not lead to inter-core communication.

https://doi.org/10.1145/3295500.3356214
https://doi.org/10.1145/3295500.3356214
https://doi.org/10.1145/3295500.3356214
https://www.acm.org/publications/policies/artifact-review-badging/#available

SC ’19, November 17-22, 2019, Denver, CO, USA Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat

(a) LULESH - MPI

0 5 10 15 20 25
0

5

10

15

20

25

0.0×100

1.0×107

2.0×107

3.0×107

4.0×107

5.0×107

(b) LULESH

0 5 10 15 20 25
0

5

10

15

20

25

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(c) LULESH True Sharing

0 5 10 15 20 25
0

5

10

15

20

25

0.0×100

1.0×107

2.0×107

3.0×107

4.0×107

(d) LULESH False Sharing

Figure 1: Communication matrices of LULESH (Left to Right: MPI, ComDetective: All, True and False Sharing). Darker color indicates more communication.

accesses by the same core to the same cache line is widened due
to the online analysis overheads, which allows other threads to
interleave, which in turn results in overestimating communication
compared to uninstrumented execution. For example, Numalize
[14], one such tool that we use for comparison in our experimental
study, dilates execution, changes the execution behavior, and as
a result, overestimates total communication count. Other works
by Mazaheri et. al [25][26] instrument program code by using a
compiler-assisted tool. The code instrumentation enables detection
of read-after-write (RAW) and read-after-read (RAR) dependencies
among threads in the program and generates true communication
(RAW) and reuse (RAR) matrices as outputs. However, their method
still introduces large overhead, on average 140× slowdown.

In this work, we propose ComDetective, a communication ma-
trix extraction tool that avoids the drawbacks of the prior art. The
key premise of ComDetective is to observe the execution with
minimal perturbation. ComDetective resorts to the data offered
by hardware Performance Monitoring Units (PMUs) and debug
registers as a means of measuring inter-thread communication.
Hardware PMUs enable extracting the effective addresses involved
in loads and stores in sampling fashion. Additionally, debug regis-
ters enable monitoring memory access to a designated address by
a thread, without introducing any overhead in the intervening win-
dow of execution. By employing both PMUs and debug registers, we
are able to detect memory accesses performed by different threads
on shared cache lines in a short time window while not becoming
a severe victim of false communication, unlike other approaches.

Besides being lightweight, ComDetective differentiates com-
munication as true vs. false sharing, where true refers to the actual
communication intended by the programmer due to the shared
objects and false refers to the false sharing between two threads
due to the cache line sharing. Two-dimensional matrices that are
generated by tools such as Numalize[13][14] do not differentiate
different types of communication. Figure 1 shows a motivating
example, where we present the communication matrices for the
multi-threaded implementation of LULESH [18] and compare it
against the MPI implementation. The MPI matrix is generated us-
ing EZTrace [36] and requires post-mortem analysis. Meanwhile
executing the application with ComDetective took only 136 sec
with 1.48× runtime overhead. In addition, ComDetective can op-
tionally attribute communication to each object in the application.
To the best of our knowledge, there exists no other tool for multi-
threaded applications that delivers these features while maintaining
a low overhead. Our contributions can be summarized as follows:

• ComDetective, a communication detection algorithm and
its lightweight tool for multi-threaded applications with the
feature to distinguish false vs. true sharing communication

• A thorough evaluation of accuracy, sensitivity, and overhead
of ComDetective, and tool’s comparison with ground truth
and prior work

• Insightful communication matrices of PARSEC benchmark
suite and six CORAL applications (AMG, LULESH, MiniFE,
PENNANT, Quicksilver, and VPIC), and comparison with
MPI communication matrices for the CORAL applications

• Independent of code size, only 30% runtime and 27% mem-
ory overheads on the 18 applications studied, making it a
practical tool for production use.

The ComDetective tool is publicly available at https://github.
com/comdetective-tools.

2 BACKGROUND

Inter-thread communication:We define communication among
threads as the transfer of cache lines across different CPU cores
due to cache coherence protocol in a shared-memory system. An
example is a transfer of cache line from a thread running on a core
that has a cache line with ‘modified’ status, according to MESI
protocol, to another thread running on a different core that has
the same cache line in the ‘invalid’ status. Such communication or
cache line transfer can also happen from a core that has a cache
line with ‘exclusive’, ‘modified’, or ‘shared’ status to another core
that does not have that cache line in its local caches.

This kind of communications can occur due to either true sharing
or false sharing. True sharing happens when two different threads
communicate or transfer a cache line as both of them access the
same variable located in the cache line. False sharing ensues when
two threads communicate on a cache line, yet they do not access
the same variables, but these variables happen to reside on the
same cache line. While true sharing is an inevitable communication
for cooperating threads in parallel programs, false sharing can be
considered as an overhead since the two threads do not actually
need to communicate as they access different variables.

CommunicationMatrix: Communication matrix is defined as
amatrix that counts instances of communications between each pair
of threads in a multi-threaded application. The (i, j)th entry in the
matrix represents the number of communication instances between
thread i and thread j. The communication matrix is symmetric
(both parties are involved in communication) and has zero along
the diagonal (a thread does not communicate with itself). The cells

https://github.com/comdetective-tools
https://github.com/comdetective-tools

ComDetective: A Lightweight Communication Detection Tool for Threads SC ’19, November 17-22, 2019, Denver, CO, USA

only count the number of cache line-granularity data transfers;
they do not account other transactions that may be involved by the
underlying implementation of the coherence protocol.

Hardware Performance Monitoring Unit (PMU): CPU’s
PMU offers a programmable way to count hardware events such as
loads, stores, CPU cycles, etc. PMUs can be configured to trigger
an overflow interrupt once a threshold number of events elapse. A
profiler, running in the address space of the monitored program,
handles the interrupt and records and attributes the measurements
to their corresponding communication types or objects. We refer
to a PMU interrupt as a “sample.” PMUs are per CPU core and vir-
tualized by the operating system for each OS thread. Intel’s Precise
Event-Based Sampling (PEBS) [16] facility offers the ability to in-
spect the effective address accessed by the instruction on an event
overflow for certain kinds of events such as loads and stores. This
ability to extract the effective address is often referred to as address
sampling, which is a critical building block of ComDetective. Such
capability has been available in AMD processors via Instruction-
Based Sampling (IBS) facility [15] since AMD Family 10h Proces-
sors, in POWER processors via Marked Events facility [34] since
POWER 5, and in Intel processors via PEBS in Intel Nehalem and
their successors.

Hardware debug registers: Hardware debug registers [17, 27]
enable trapping the CPU execution for when the program counter
reaches an address (breakpoint) or an instruction accesses a des-
ignated address (watchpoint). One can program debug registers
with different addresses, widths, and conditions (e.g. W_TRAP and
RW_TRAP) that cause the CPU to trap on reaching the programmed
conditions. Today’s x86 processors have four debug registers.

Linux perf_events: Linux offers a standard interface to
program and sample PMUs and debug registers usin the
perf_event_open [20] system call and the associated ioctl calls.
The ability to program debug registers has been available since
Linux 2.6.33, and the ability to access multiple PMUs since Linux
2.6.39 [20]. The Linux kernel can deliver a signal to the specific
thread whose PMU event overflows or debug register traps. The
user code can (1) mmap a circular buffer into which the kernel keeps
appending the PMU data on each sample and (2) extract the signal
context on each debug register trap.

3 COMDETECTIVE

3.1 Overview

In generating communication matrices, ComDetective leverages
PMUs and debug registers to detect inter-thread data movement on
a sampling basis. If communication is frequent, the same addresses
appear in the samples taken on communicating threads; by compar-
ing the addresses seen in closely taken samples on different threads,
one can potentially detect communication. If communication is
infrequent, however, the probability of seeing the same address in
two samples taken by two different threads becomes rare. Hence,
ComDetective leverages debug registers to identify infrequent
communications. A thread sets a watchpoint for itself to monitor
an address recently accessed by another thread. If and when the
thread accesses such address in the near future, the debug register
traps and thus detects communication.

Communication
Matrix

BulletinBoard

Key	 <M,	δ,	ts,	T>	

Li	 Mi,	δi,	tsi,	Ti	

…	 ….	

…	 ….	

2

Thread Ti

CommDetective
signal_handler

PMUs

perf_event

Core

0 1

Debug Registers

4

5

2

Thread Tj

CommDetective
signal_handler

PMUs

perf_event

Core

0 3

Debug Registers

6

7

Figure 2: One possible execution scenario: 0) Every thread configures its PMU

to sample its stores and loads. 1) Thread Ti ’s PMU counter overflows on a

store. 2) Ti publishes the sampled address to BulletinBoard if no such entry

exists and tries to arm its watchpoints with an address in the BulletinBoard

(if any). 3) ThreadTj ’ PMU counter overflows on a load. 4)Tj looks up Bullet-

inBoard for a matching cache line. 5) If found, communication is reported. 6)

Otherwise, Tj tries to arm watchpoints. 7) Tj accesses an address on which it

set a watchpoint, the debug register traps, communication is reported.

In ComDetective, each application thread uses PMU to sam-
ple its memory access (load and store) events. When a threshold
number of events of a certain type (load or store) happen, the
corresponding PMU counter overflows. The thread, sayT1, encoun-
tering an overflow extracts the effective address involved in the
instruction at the time of the overflow (aka sample) and tries to
publish the address on to a global data structure, BulletinBoard,
that other threads can readily access. When another thread, say T2,
encounters its PMU overflow, it looks up the BulletinBoard for
an address conflicting with its sampled address located on the same
cache line. If such an entry is found in BulletinBoard and the two
accesses are by different threads, then communication is detected
between the two threads. If, however, no conflicting entry is found,
it may mean the sampled address may be a private address (which
is common when the fraction of sharing is less) or the thread may
access the location in the near future. In this situation, T2 picks an
unexpired addressM posted in BulletinBoard and arms its CPU’s
debug registers to monitor all or as many as possible addresses that
fall on the same cache line L shared by M. A subsequent access
by T2, anywhere on L, is a communication between T2 and the
thread that published M. This communication will be detected by
trapping of the watchpoints inT2. Once communication is detected,
the corresponding communication matrices are updated. The com-
munication is reported if and only if at least one store operation is
involved.

ComDetective maintains BulletinBoard as a concurrent hash
table. The sampled address, rounded down to the nearest cache line
address, serves as the key to the BulletinBoard; the value for each
entry in the BulletinBoard is the following tuple: Memory address
M accessed at the point of PMU sample, access length δ , ID of the
publishing thread, timestamp of the publishing. Only addresses
involved in store operations are inserted into the BulletinBoard,
but PMU address samples generated for both loads and stores are
looked-up in the BulletinBoard to detect communication. This
arrangement detects both write-after-write and read-after-write
sharing; note that any repeating write-after-read sharing in one
thread will be captured as a read-after-write sharing in another (the
reader) thread.

SC ’19, November 17-22, 2019, Denver, CO, USA Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat

Algorithm 1 Communication Detection
1: global ConcurrentMap BulletinBoard
2: thread_local Timestamp tprev = 0
3:
4: procedure PMUSampleHandler(Address M1 , AccessLen δ1 , Timestamp ts1 , ThreadID T1 ,

AccessType A1)
5: L1 = getCacheline (M1)
6: entry = BulletinBoard.AtomicGet (key=L1) ▷ Is L1 in hash?
7: if entry == NULL then ▷ Matching cache line is not found in hash
8: TryArmWatchpoint(T1)
9: else

10: < M2, δ2, ts2,T2 > = getEntryAttributes (entry)
11: if T1 != T2 and ts2 > tprev then ▷ A new sample from a different thread
12: if [M1,M1 + δ1) overlaps with [M2,M2 + δ2) then
13: Record true sharing
14: else

15: Record false sharing
16: end if

17: tprev = ts2
18: else

19: TryArmWatchpoint (T1)
20: end if

21: end if

22: if (A1 is not STORE) or (entry != NULL andM2 has not expired) then
23: return
24: end if

25: ▷ A1 is a store and the current entry has expired, then publishM1
26: BulletinBoard.TryAtomicPut(key = L1 , value = <M1 , δ1 , ts1 , T1>)
27: end procedure

28:
29: procedure TryArmWatchpoint(ThreadID T)
30: if current WPs in T are old then

31: Disarm any previously armed WPs
32: Set WPs on an unexpired address from BulletinBoard that is not from T
33: end if

34: end procedure

3.2 Communication Detection Algorithm

The main components of ComDetective and one possible work-
flow scenario are displayed in Figure 2. Next, we explain the algo-
rithm used in ComDetective.

Setup: Every thread configures its PMU to monitor its mem-
ory store and load events. Each of these threads is interrupted on
elapsing a specified number of events.

On A PMU Sample: When a PMU counter overflows, the
thread T1 that encounters the overflow, tries to publish the address
M1 that it sampled to BulletinBoard and calls PMUSampleHan-
dler presented in Algorithm 1. In Line 6, the thread queries the
BulletinBoard by using the base address of the cache line L1 con-
taining M1. If no entry is found, it tries to arm its watchpoints
(WPs) (Line 8). If the previously armed WPs are old, the thread T1
selects an unexpired addressM3 in the BulletinBoard and arms
its debug registers to monitor the cache line that M3 belongs to
(Line 29-34). Since WPs of a thread belong to the same cache line,
they are either all expired or all recent. On x86 with four 8-byte
length debug register, ComDetective can monitor only 32 bytes
out of the 64 bytes of a cache line. Hence, ComDetective randomly
chooses four chunks of the 64-byte cache line to monitor.

In case the entry is already filled by a cache line L2 from a
previous sample and the cachelines are the same, then Line 11
checks the IDs of the publisher thread T2 and the sampling thread
T1. If thread IDs are different, then communication is detected
betweenT1 andT2 (Line 12-16). The communication could be a true
sharing or false sharing. If the sampled access region [M1,M1 +
δ1) overlaps with the access region published in BulletinBoard
[M2,M2 + δ2) we treat it as a true sharing event and treat it as false
sharing event otherwise. We defer the details of how the volume of
communication is computed to Section 3.3.

In order not to overcount communications associated with the
same published address between two threads, we keep tprev per
thread, which is set when a communication is detected for that
thread. Line 17 sets tprev to the timestamp of the publisher thread,
ensuring that we do not overcount the cache line transfer between
two threads. If no communication is recorded forT1,T1 tries to arm
its WPs (Line 19) using an unexpired addressed published by some
other thread into the BulletinBoard, as described previously.

If either the sample is for a memory load operation or the pre-
viously published entry by the same thread is not expired yet, the
thread simply returns and resumes its execution. Otherwise, the
threadT1 publishes the sampled address along with other attributes
associatedwith the cache line L1, such as the timestamp of sampling,
memory access length, and thread ID (Line 26). Atomic operations
that perform load and store are treated as store.

On watchpoint trap: When a thread Ti experiences a trap
in one of the debug registers, Ti is considered to communicate
the thread Tj—the thread that had published an address in the
BulletinBoard whose cache line Ti is monitoring via its debug
registers.

After watchpoint trap: After handling the watchpoint trap,
the trapping thread disables all debug register armed to monitor the
same cache line. This is justified because the subsequent accesses
to the same cache line are expected to be served locally without
generating any communication. If the cache line were modified
by another core in the meantime, it will not be detectable and it
is indeed not necessary in the coarse-grained sampling scheme.
Watchpoints are re-armed with newer published addresses upon
next PMU counter overflow, as explained previously.

On program termination: The profiled data need not leave
the matrix symmetric. For example, the reported communication
may be more in the thread ⟨Ti ,Tj ⟩ pair compared to the thread
⟨Tj ,Ti ⟩ pair. However, since both parties are equally involved in a
communication event, we update every ⟨Ti ,Tj ⟩ pair to be the sum
of both ⟨Ti ,Tj ⟩ and ⟨Tj ,Ti ⟩, thus making the matrix symmetric.

Expiration period: For practical considerations, each thread
treats the timestamp of a BulletinBoard entry as “recent” (aka
“unexpired") if it was published between its current sample and its
previous sample (i.e., one sample period), and “old” (aka “expired”)
otherwise. This scheme allows each published address or watch-
point to survive long enough to be observed by all threads working
at the same rate and yet be naturally evicted by a newer address. A
published address is deemed expired, if it survived for more than
two store events from the same thread. Load events are not used
for determining the expiration period of a published address, since
only stores can ever be published into the BulletinBoard. The
expiration period of watchpoints includes loads as well because
watchpoints can be armed by samples generated by loads or stores.

3.3 Quantifying Communication Volume

There are two sources leading to underestimation in communi-
cation volume: sparsity of PMU samples and limited number of
debug registers to monitor an entire cache line. For instance, four
debug registers can cover 32 bytes of the total 64 bytes of an

ComDetective: A Lightweight Communication Detection Tool for Threads SC ’19, November 17-22, 2019, Denver, CO, USA

x86-64 cache line. To address the first problem, on each com-
munication detection or trap, instead of recording just one com-
munication event, ComDetective scales up the quantity by the
samplinд_period . In case a communication is detected in a sample
and without using debug registers, we update the Matrix[Ti ,Tj]
cell as:Matrix[Ti ,Tj] + = samplinд_period .

To address the second problem, we use the probability theory. If
D number of debug registers can monitorM bytes of memory each,
they can monitor a total of D ×M bytes. If the CPU cache line is
L bytes long, where L > (D ×M), then the probability of trapping
on an address involved in a communication after sampling it is
p = (D ×M)/L. If K traps are detected, in expectation, we can scale
it up by 1/p to get an estimated number of events, i.e., K/p. Taking
both effects into account, on each watchpoint trap, we update the
Matrix[Ti ,Tj] cell as:

Matrix[Ti ,Tj]+ =
samplinд_period × L

(D ×M)

3.4 Implementation

We implement ComDetective atop the open-source HPCToolkit
performance analysis tools suite [1]. ComDetective’s profiler
loads the monitoring library into the target application’s address
space at link time for statically linked executables or at runtime
using LD_PRELOAD [29] for dynamically linked executables. As the
target application executes, the profiler in ComDetective man-
ages PMUs and debug registers to record communication pairs.
On Intel processors, we use MEM_UOPS_RETIRED:ALL_STORES and
MEM_UOPS_RETIRED:ALL_LOADS to sample memory access events.
These events offer the effective memory address accessed in a sam-
ple along with the program counter. On a PMU sample, the profiler
walks the sampled thread’s call stack via an online binary analysis.
It, then, attributes the measurements to the sampled call path.

Monitoring stack addresses in the target application is tricky, be-
cause the frames of ComDetective’s sample/trap handler can over-
write the stack location and cause undesired debug register trap. We
avoid this problem by establishing a separate signal-handler stack
frame for both PMU signal handler and watchpoint exception han-
dler using the Linux sigaltstack facility [21]. The sigaltstack
facility allows each thread in a process to define an alternate signal
stack in a user-designated memory region. We use alternate stack to
handle PMU and watchpoint signals. All other signals continue to
use the default stack unless specified otherwise by the application.

ComDetective optionally allows mapping each communication
event to runtime objects in the program. It uses ADAMANT[8] to
extract static and dynamic object information. Static objects are
detected by parsing the binary file and the dynamic objects are
detected by intercepting allocation routines such as malloc and
free. All stack objects of a given thread are grouped into a single
object, while dynamic objects that have the same call stack are
grouped into an object.

4 EXPERIMENTAL STUDY

This section evaluates the accuracy, sensitivity, and overheads of
ComDetective and presents insightful communication matrices
for the selected CORAL and PARSEC benchmarks. Our evaluation
system is a 2-socket Intel Xeon E5-2640 v4 Broadwell CPU. There

1 #pragma omp parallel shared(sharedData) private(privateData) \
2 num_threads(nThreads)
3 {
4 for(int i = 0 ; i < N_ITER; i++) {
5 int rNum = rand_r (); // thread private
6 if (rNum < SHARING_FRACTION) {
7 sharedData = rNum;
8 } else {
9 privateData = rNum;
10 }}}

Listing 1: Write-Volume Benchmark

1
2 #pragma omp parallel shared(trueSharingData , falseSharingData) \
3 private(privateData) num_threads(nThreads)
4 {
5 int tid = omp_get_thread_num ();
6 atomic <uint64_t > * falseShared = &(falseSharingData[tid]);
7 for(int i = 0 ; i < N_ITER; i++) {
8 int rNum = rand_r (); // thread private
9 if (rNum < FALSE_SHARING_FRACTION) {
10 *falseShared += rNum;
11 } else {
12 trueSharingData += rNum;
13 }}}

Listing 2: False Sharing Benchmark

1 #pragma omp parallel shared(sharedData) private(privateData) \
2 num_threads(nThreads)
3 {
4 for(int i = 0 ; i < N_ITER; i++) {
5 int rNum = rand_r (); // thread private
6 if (rNum < READ_FRACTION) {
7 rNum = sharedData;
8 } else {
9 sharedData = rNum;
10 }}}

Listing 3: Read-Write Benchmark. Reading from shared data vs. writing to

shared data

1 #pragma omp parallel shared(sharedDataArray) private(privateData) \
2 num_threads(nThreads)
3 {
4 int tid = omp_get_thread_num ();
5 int shared_data_index = getSharedDataIndex(tid);
6 int sharing_fraction = getSharingFraction(shared_data_index);
7 atomic <uint64_t > * sharedData = \
8 &(sharedDataArray[shared_data_index]);
9 for(int i = 0 ; i < N_ITER; i++) {
10 int rNum = rand_r (); // thread private
11 if (rNum < sharing_fraction) {
12 *sharedData = rNum;
13 } else {
14 privateData = rNum;
15 }}}

Listing 4: Point-to-point Communication Benchmark. Communication hap-

pens between threads that have the same shared_data_index value

are ten cores per socket with 2-way simultaneous multi-threading.
Each core has its own local L1i, L1d, and L2 caches, while all cores in
a socket share a common L3 cache.We use Linux 4.15.0-rc4+ and
GNU-5.4 toolchain. Unless otherwise stated, the default sampling
interval in all experiments is 500K for both reads and writes and
the default hash table size in BulletinBoard is 127.

4.1 Accuracy Verification

We evaluate the accuracy of ComDetective with four microbench-
marks we have developed. These benchmarks assess the accuracy
against the known ground truth by varying the parameters such
as communication volume, false sharing fraction, communicating
thread subgroups, and read-to-write ratios.

SC ’19, November 17-22, 2019, Denver, CO, USA Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat

0 0.5 1

Sharing Fraction

0

0.5

1

1.5

2

2.5

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 2 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

0 0.5 1

Sharing Fraction

0

0.5

1

1.5

2

2.5

3

3.5

4

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 4 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

0 0.5 1

Sharing Fraction

0

1

2

3

4

5

6

7

8

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 8 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

0 0.5 1

Sharing Fraction

0

5

10

15

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 16 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

(a) Total communication counts for across different sharing fractions with threads mapped to a single socket (compact).

0 0.5 1

Sharing Fraction

0

2

4

6

8

10

12

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

107 2 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

0 0.5 1

Sharing Fraction

0

0.5

1

1.5

2

2.5

3

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 4 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

0 0.5 1

Sharing Fraction

0

1

2

3

4

5

6

7

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 8 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

0 0.5 1

Sharing Fraction

0

2

4

6

8

10

12

14

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
u
n
t

108 16 Threads

perf L2_RQSTS.ALL_RFO
ComDetective

(b) Total communication counts for different sharing fractions with threads mapped evenly to two sockets (scatter).

Figure 3

4.1.1 Write-Volume . In this benchmark, each thread performs
only a single store operation (atomic write) in each iteration of a
loop as shown in Listing 1. Each thread randomly either accesses its
private data or common shared data. The ratio of accesses to shared
vs. private data is controlled via the SHARING_FRACTION. For exam-
ple, if the sharing fraction is specified as 20%, then approximately
20% of the time over the entire execution, thread writes into the
shared data and writes to its private data in the remaining 80% of
the time. There is no false sharing in this benchmark. The source of
ground truth for this benchmark is the sum of L2_RQSTS.ALL_RFO
hardware performance event obtained from each thread in the ab-
sence of other cache sharing effects (which there is none in the
benchmark). An RFO event happens when a core tries to gain own-
ership of a cache line for updating it.

Figure 3 displays the results with different number of threads for
the Write-Volume benchmark, where the x-axis is the sharing frac-
tion and y-axis is the total communication volume. Figure 3-a and
b, respectively, show thread mapping to the same socket (compact)
vs. two different sockets (scatter). As expected, the communica-
tion volume increases as the sharing fraction increases or thread
count increases. Notice, however, that the actual communication
volume collected via RFO does not follow a straight line and in
most cases, ComDetective is very accurate in capturing this trend.
The nonlinear growth of communication is because when the same
cache line is repeatedly accessed by the same core, even if there is a
pending request from another core, the request from the core that
holds the line is unfairly favored. While such optimizations are not
unexpected from a CPU design perspective, they are unintuitive for
a programmer and make it harder for them to envision the commu-
nication pattern and volume in their programs without the help of

tools such as ComDetective. Another unintuitive behavior is that
mapping threads to different sockets results in less communication
than when they are mapped to the same socket and ComDetective
can identify this phenomenon. We have also performed similar ex-
periments with atomic_add and compare_and_swap and observed
similar behaviors.

The gaps of undercounting and overcounting in certain cases is
an artifact of sampling that relies on probability theory in estimating
total number of communications between any two threads. As
described in Sec 3.3, we use sampling period to estimate the number
of communication events that might have been missed between
samples. Because of this reason, certain degree of undercounting
and overcounting with respect to the ground truth is inevitable.

In Figure 3-a and b, ComDetective underestimates the number
of communications when the thread count is small and the sharing
fraction is high (~100%). This undercounting can be attributed to
signal handling. When a thread (say T1) takes a PMU sample or
watchpoint trap, T1’s execution gets diverted to handling the sig-
nal. During signal handling, T1 will not generate any cache line
communication with its peer thread (say T2). During this time, T2
progresses unhindered and continues performing memory access
operations across its loop iterations. The act of monitoring reduces
communication and hence it appears as undercounting with re-
spect to the unmodified original execution. Note however that this
level of extreme sharing without any computation as in our syn-
thetic benchmark shown in Listing 1 is as a pathological case for
ComDetective and unlikely in real-world code.

The right most plot in Figure 3-a presents the communication
volume for 16 threads running on 10-core socket, where some of
the physical cores are oversubscribed with more than one thread.

ComDetective: A Lightweight Communication Detection Tool for Threads SC ’19, November 17-22, 2019, Denver, CO, USA

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

10	

0.0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0	

To
ta
l	C
om

m
un

ic
at
io
n	
	C
ou

nt
			
	

Sharing	Fraction	

Numalize	vs	ComDetective	vs	Ground	Truth	(x10^9)	

Inter-socket	perf	L2_RQSTS.ALL_RFO		
Inter-socket	ComDetective	
Inter-socket	Numalize	
Intra-socket	perf	L2_RQSTS.ALL_RFO		
Intra-socket	ComDetective	
Intra-socket	Numalize	

Figure 4: Comparison between total communication

counts captured by Numalize[14], ComDetective,

and the real RFO counts

0	

1	

2	

3	

4	

5	

6	

7	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Sh
ar
in
g	
Co

un
t		
		

Sharing	Fraction	

True	Sharing	vs	False	Sharing	Count	(x10^8)	

False	Sharing	Count	
True	Sharing	Count	

Figure 5: Comparing true sharing vs. false sharing

counts across different sharing fractions using 8

threads.

0	

2	

4	

6	

8	

10	

12	

14	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

To
ta
l	C
om

m
un

ic
at
io
n	
	C
ou

nt
			
	

Read	Fraction	

Communication	Count	vs	Read	Fraction	(x10^8)	

2	threads	
4	threads	
8	threads	

Figure 6: Total communication counts detected by

ComDetective across different fraction of read op-

erations.

From the figure, it appears that ComDetective overestimates the
communication. However, RFO events are no longer the ground
truth in this case. This is because L2_RQSTS.ALL_RFO counts RFO
events between physical cores at L2 caches; and L2 is shared by
logical cores. As a result, communication happening between the
threads mapped to the same physical core does not result in an
RFO event. The RFO counts of threads sharing a physical core are
combined if they communicate with other physical cores. Conse-
quently, one would expect that the RFO counts should be lower than
the actual communication count when cores are oversubscribed.
Indeed, ComDetective gives higher counts than the counts of
L2_RQSTS.ALL_RFO events.

We compare ComDetective with the state of the art in Fig-
ure 4, which plots the communication volume captured by Numal-
ize [14], ComDetective, and the ground truth when two threads
are mapped to the same or different sockets using atomic add bench-
mark. Numalize hugely overestimates the volume possibly because
it does not maintain the timestamp of accesses, records many false
communications, and ignore data from the underlying hardware.

4.1.2 False-Sharing . Unlike Write-Volume , which has no false
sharing, this benchmark introduces a controllable amount of false
sharing as shown in Listing 2. Also for coverage, instead of an
atomic write, it performs atomic add operation. This benchmark
is valuable to assess the statistical nature of randomly selecting
parts of a cache line to observe using limited number of debug
registers. The ratio of false sharing to the entire communications
captured is expected to match the fraction of false sharing specified
by the user. Figure 5 shows the true and false sharing counts for
eight threads with varying false sharing fractions. As expected,
the false sharing count increases linearly as false sharing fraction
increases. Furthermore, the ratio of false sharing count to total
communication count is very close to the specified false sharing
fraction for each data point.

4.1.3 Read-Write . Since only store operations are inserted into
the BulletinBoard, it is important to assess the quality of results
for benchmarks that involve a mix of loads and stores. The bench-
mark is configured so that one thread always and only performs
a write operation in each iteration in a shared location, while the
remaining threads might perform either a write or a read oper-
ation on the same shared data depending on the specified read
fraction. The usage of the read fraction to control the amount of
read operations is illustrated in Listing 3. For the compiler not to

0 1 2 3

3

2

1

0

ComDetective (0.1 - 0.9)

0

0

0.14

0

0

0

0

0.14

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.1 - 0.9)

0

0

0.11

0

0

0

0

0.11

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.2 - 0.8)

0

0

0.25

0

0

0

0

0.25

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.2 - 0.8)

0

0

0.25

0

0

0

0

0.25

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.3 - 0.7)

0

0

0.38

0

0

0

0

0.38

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.3 - 0.7)

0

0

0.43

0

0

0

0

0.43

0

0

0

0

0

0

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.4 - 0.6)

0

0

0

0

0

0

0

0

0

0

0

0

0.56

0.56

1

1

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.4 - 0.6)

0

0

0

0

0

0

0

0

0

0

0

0

0.67

0.67

1

1

0

0.5

1

0 1 2 3

3

2

1

0

ComDetective (0.5 - 0.5)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0.94

0.94

0

0.5

1

0 1 2 3

3

2

1

0

Expected (0.5 - 0.5)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0.5

1

Figure 7: Communication matrices for point-to-point communications hav-

ing different sharing fractions. Thread 0 only communicates with thread 1,

thread 2 only communicates with thread 3. Sharing fractions for each pair

are shown on the top of the maps.

eliminate the loads, the loads are implemented with asm volatile.
As read fraction increases, more and more reads hit in the local
cache before the newly written value by the writer are visible. Thus,
increasing the reading fraction linearly decreases the communica-
tion volume. Figure 6 captures the total detected communication
count as a function of read fraction at different thread counts (2, 4,
and 8). The communication volume is naturally higher when there
are more number of readers. It is worth noting that the drop in
communication is more steep with increasing reading fraction for
larger number of threads than for a fewer number of threads.

4.1.4 Point-to-Point Communication . In this benchmark,
threads are grouped in pairs and the shared variables are per pair
instead of a single shared variable for all threads. This benchmark
evaluates the accuracy of point-to-point communication (every

SC ’19, November 17-22, 2019, Denver, CO, USA Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat

Execution Time (sec) Data Movement (GB)
MPI OpenMP MPI (Msg Size) OpenMP (Cache Lines)

AMG 35.19 39.22 6.22 7.33
MiniFE 111.82 142.25 3.24 1.46
Quicksilver 19.04 23.45 32.74 106.13

Table 1: Running time and data movement comparison of OpenMP and MPI

implementations for AMG, MiniFE and Quicksilver using 32 threads

cell of the communication matrix). To make a pair of threads
communicate, they both need to have similar values of index
variables (shared_data_index), which point to a same shared
array element that they write into as shown in Listing 4. Figure 7
shows the results for two groups performing only write operations;
thread 0 communicates only with thread 1, and thread 2 only
communicates with thread 3. Figure 7 shows the communication
matrices as heat maps; the observed communication is on the left
side and the expected results are on the right side. The number
in each matrix cell displays the normalized communication count
in that cell, which is computed by dividing each cell by the cell
with the highest count in its matrix. It is evident that heat maps
produced by ComDetective resemble the expected heat maps.

4.2 Communication in CORAL Benchmarks

In this section, we present insightful communication matrices for
the selected CORAL and CORAL-2 benchmarks, namely AMG
[2, 40], LULESH [23], miniFE [28], PENNANT [31], Quicksilver
[32], and VPIC [6, 39] as heatmaps in Figure 8, where darker color
indicates more cache line transfers between pairs. The matrices
are core-indexed not thread-indexed as ComDetective can covert
the thread IDs to core IDs using the sched_getcpu() system call if
needed. The threads in each benchmark are bound to the cores with
compact mapping strategy but evenly distributed to two sockets.

We compare the inter-thread communication matrices generated
by ComDetective with the inter-process communication matrices
generated by EZTrace [36]. EZTrace is a generic trace generation
framework and it collects the necessary information by intercept-
ing function calls and recording events during execution using the
FxT library [12] and then performs a post-mortem analysis on the
recorded events. The MPI and OpenMP variants of all six appli-
cations are based on the same source distributions with optional
flags to turn on/off the OpenMP/MPI compilation in their make-
files. As a result, there are no significant algorithmic differences in
their implementations. The MPI matrices report the total number
of messages exchanged between processes, not the message size.
All applications use 32 threads for OpenMP and 32 ranks for MPI
except for LULESH which uses 27 threads (or ranks) since it needs
a cubic number. For the hybrid implementations of MPI, we set the
thread count per rank to 1.

In general, ComDetective offers insights into communication
patterns in these applications. For example, the following patterns
emerge from our matrices: 1) L-shape pattern in the lower left
corners (e.g. LULESH, PENNANT), which indicates that all threads
heavily communicate with the master thread (a central bottleneck),
2) nearest neighborhood communication pattern, where threads
mostly communicate with adjacent threads (e.g. AMG, MiniFE,
VPIC), and 3) group communications (e.g. Quicksilver, LULESH).
Although the inter-thread communication matrices are generally
more populated than the inter-process communication matrices,

in most cases, they logically resemble their MPI counterparts ex-
cept for MiniFE and Quicksilver. Quicksilver uses a mesh in its
computation and the user defines mesh elements per dimension.
If the decomposition geometry is not explicitly specified by the
user for the MPI ranks, the MPI communication matrix (not shown)
becomes very similar to ComDetective’s matrix. However, follow-
ing the suggested decomposition by the Quicksilver developers
[32] we decompose the mesh in only one dimension, resulting in
nearest neighborhood communication for MPI. It is not possible
for a user to perform similar type of decomposition for threads in a
configuration file, resulting in more neighbors to communicate.

The total communication counts captured by the communica-
tion matrices might help explain the performance difference be-
tween OpenMP/MPI versions and scalability of benchmarks. Table 1
presents the execution time of the AMG, MiniFE and Quicksilver
applications. The table also shows the resulting data movement
for each benchmark, where data movement for the multi-threaded
applications is calculated based on the total number of cache line
transfers in Gbytes with the help of ComDetective. Similarly, for
MPI, we computed the total message size exchanged including peer-
to-peer and collective communications with the help of EZTrace.
In all three applications, MPI outperforms OpenMP. This result,
perhaps, can be attributed to the fact that the MPI implementa-
tions lead to less data movement than their OpenMP counterparts.
For example, the multi-threaded versions of AMG and Quicksil-
ver perform respectively 11% and 23% more data movement than
the multi-process versions. The exception for this is MiniFE, in
which the communication count of its OpenMP implementation is
lower than its MPI counterpart. However, while the MPI version ex-
changes 0.5Mmessages for its data movement, the OpenMP version
of MiniFE leads to 24.5M cache line transfers during its execution,
which explains the performance gap.

Figure 8 also splits the inter-thread communication matrices into
two matrices one each for true and false sharing. Due to the space
limitation, we discuss the false sharing matrices for only MiniFE,
which solves kernels of finite-element applications. It generates a
sparse linear-system from the steady-state conduction equation on
a brick-shaped problem domain of linear 8-node hex elements and
then solves the linear-system using a conjugate-gradient algorithm.
ComDetective shows that the communication is among the adja-
cent threads (other than with the thread id 0) and dominated by
false sharing. False sharing occurs sum_in_symm_elem_matrix and
sum_into_vector functions, where adjacent elements in a vector
falling into a single cache line are accessed by different threads.
While padding each scalar forming the elements of a vector can
eliminate such false sharing, it can also have the deleterious effect
of bloating the memory.

4.3 Communication in PARSEC Benchmarks

Figure 9 shows the PARSEC matrices created by ComDetective.
Our matrices differ from the ones previously studied by [4], [10]
and [14]. In general, ours are sparser. This can be explained by
the fact that our approach takes into account the cache coherency
protocol. Since we use expiration period to discard false communi-
cations among threads, which might happen due to the huge time

ComDetective: A Lightweight Communication Detection Tool for Threads SC ’19, November 17-22, 2019, Denver, CO, USA

(a) AMG - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

(b) AMG

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(c) AMG True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

(d) AMG False Sharing

(e) MiniFE - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

4.0×105

(f) MiniFE

0 5 10 15 20 25 30
0

5

10

15

20

25

30

−1.0×10−1

−7.5×10−2

−5.0×10−2

−2.5×10−2

0.0×100

2.5×10−2

5.0×10−2

7.5×10−2

1.0×10−1

(g) MiniFE True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

4.0×105

(h) MiniFE False Sharing

(i) PENNANT - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(j) PENNANT

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

(k) PENNANT True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(l) PENNANT False Sharing

(m) Quicksilver - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

7.0×106

8.0×106

9.0×106

(n) Quicksilver

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

(o) Quicksilver True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×106

2.0×106

3.0×106

4.0×106

5.0×106

6.0×106

(p) Quicksilver False Sharing

(q) VPIC - MPI

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

3.5×106

4.0×106

(r) VPIC

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(s) VPIC True Sharing

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

3.5×106

4.0×106

(t) VPIC False Sharing

Figure 8: Communication matrices of CORAL benchmarks. Darker color indicates more communication.

SC ’19, November 17-22, 2019, Denver, CO, USA Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

1.0×105

2.0×105

3.0×105

4.0×105

5.0×105

(a) Blackscholes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

(b) Bodytrack

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(c) Canneal

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

1.2×106

1.4×106

(d) Dedup

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

5.0×107

1.0×108

1.5×108

2.0×108

(e) Facesim

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(f) Ferret

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(g) Fluidanimate

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.5×105

5.0×105

7.5×105

1.0×106

1.2×106

1.5×106

1.8×106

2.0×106

(h) Freqmine

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×107

4.0×107

6.0×107

8.0×107

1.0×108

1.2×108

1.4×108

(i) Streamcluster

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

(j) Swaptions

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(k) Vips

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.0×100

2.0×105

4.0×105

6.0×105

8.0×105

1.0×106

(l) x264

Figure 9: Communication matrices of PARSEC benchmark suites. Darker color indicates more communication.

gap between memory accesses by two supposedly communicat-
ing threads, our tool records much fewer false positives than the
techniques previously used. In fact, ComDetective identifies no
communication for Blackscholes and very infrequent communica-
tion for Vips and Freqmine. Blackscholes and Vips indeed exhibit
very low communication, which is also pointed out by the PAR-
SEC authors [5]. For example, Blackscholes, which is a financial
analysis benchmark, splits the price options among threads where
each thread can process the options independently from each other.
Communication can potentially occur at the boundaries of the par-
titions if boundaries share a cache line. However, it is very unlikely
for threads to access the boundaries around the same time because
these accesses are far separated in time. The PARSEC authors note
that Freqmine has a high amount of sharing; however it has a very
large working set size too, which implies that accesses are served
from memory, not from cache. Moreover, the work in [4] fails to
identify any meaningful communication patterns for Bodytrack,
Dedup, Facesim, Ferret, Streamcluster and Swaptions, on the other
hand, ComDetective successfully detects these patterns.

4.4 Use-Case: Data Structure Optimization

ComDetective can optionally map detected communications, ei-
ther true or false sharing, to the data objects that experience them
at the expense of slightly increased overhead. Object-level attribu-
tion and quantification offers actionable feedback to the developers
for object-specific optimizations or code modifications for perfor-
mance tuning. To demonstrate this feature, we analyzed PARSEC’s
fluidanimate and streamcluster to identify their data objects that
suffer from false sharing the most. After identifying and analyzing
these objects, we modified some of their data structures to reduce
false sharing and improve the applications’ performance.

For fluidanimate, false sharing is caused by several dynamically
allocated objects and a global variable named barrier. Due to the
size of the dynamically allocated objects, applying padding among
object elements might result in memory bloat. Therefore, we modi-
fied only the data structure of barrier. The variable barrier is a
struct that has pthread_cond_t as an attribute. Since the attributes
of pthread_cond_t are read and written by multiple threads in
the pthread_cond_wait function, we introduced padding among
the attributes of pthread_cond_t in the pthread library. After this
modification, we achieved 13% speedup in fluidanimate.

0	

2	

4	

6	

8	

10	

12	

14	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

To
ta
l	C
om

m
un

ic
at
io
n	
	C
ou

nt
			
	

Sharing	Fraction	

Sampling	Interval	Sensitivity	Analysis	(x10^8)	

perf	L2_RQSTS.ALL_RFO	
Sampling	interval:	100K	
Sampling	interval:	500K	
Sampling	interval:	1M	
Sampling	interval:	2M	

Figure 10: Total communication counts detected by ComDetective

under different sampling intervals compared with the ground truth

(L2_RQSTS.ALL_RFO counts) when 16 threads are mapped to 2 sockets

For streamcluster, most of its false sharing is due to inter-thread
synchronization by using pthread_mutex_t data structure. By in-
troducing padding to the mutex attributes in the pthread library
and no changes in streamcluster itself, we achieved 6% speedup.

4.5 Sensitivity and Overhead Analysis

4.5.1 BulletinBoard Size: To test the sensitivity of the
ComDetective under different hash table sizes, we use the
Write-Volume benchmark but vary the size of BulletinBoard.
Using 16 threads, we observe no difference in total communication
counts detected by ComDetective under hash table sizes of 5, 17,
31, 61 and 127. Furthermore, we evaluate the performance overhead
at different hash table sizes using LULESH [18]. Increasing the
hash table size does not materially affect the runtime overhead. For
that reason, we use 127 as the hash table size for all experiments.

4.5.2 Sampling Interval: We measure the sensitivity of the tool
against sampling interval in terms of both the accuracy and over-
head using theWrite-Volume benchmark with 16 threads. Figure 10
shows the total communication counts under different sharing frac-
tions and sampling intervals from 100K up to 2M. The detected
total communication count does not deviate much from the ground
truth across all sampling intervals. However, we expect that in an
application where communication is infrequent, a large sampling
interval would result in highly sparse communication matrices or
no communication would be detected in the worst case. In such

ComDetective: A Lightweight Communication Detection Tool for Threads SC ’19, November 17-22, 2019, Denver, CO, USA

Sampling Runtime Memory Footprint
Interval Overhead Overhead

AMG LULESH MiniFE AMG LULESH MiniFE
100K 1.07× 2.12× 1.16× 1.00× 1.76× 1.00×
500K 1.10× 1.48× 1.10× 1.00× 1.62× 1.00×
1M 1.07× 1.33× 1.06× 1.00× 1.58× 1.00×
2M 1.08 × 1.20× 1.03× 1.00× 1.51× 1.00×

PARSEC + CORAL PARSEC + CORAL
500K 1.30× 1.27×

Table 2: Runtime and space overhead of ComDetective under different

sampling intervals for applications using 32 threads (LULESH 27 threads)

cases, a small sampling interval should be chosen at the expense of
increasing overhead.

4.5.3 Overhead: Table 2 displays the performance overhead of
ComDetective under different sampling intervals for AMG,
LULESH and MiniFE. As seen from the table, the tool has a low
space overhead, which allows it to be used in practice for large-scale
applications. The runtime overhead drops significantly when the
sampling interval is increased from 100K to 500K for LULESH and
the overhead is even lower for the other two applications. Since
ComDetective maintains good accuracy with reasonable perfor-
mance overhead on average at a sampling interval of 500K, we
chose 500K as the default sampling interval for all experiments.
For the twelve PARSEC benchmarks, the runtime overhead ranges
from 1.03× (streamcluster) to 2.10× (x264) with an average of 1.32×.
For the six CORAL benchmarks, the runtime overhead ranges from
1.02× (PENNANT) to 2.17× (VPIC) with an average of 1.27×.

4.5.4 Debug Registers: x86 processors have four debug registers,
and ComDetective uses all four for arming watchpoints. We study
the impact of the number of debug registers (1, 2, 3 and 4) on the
total communication counts detected by ComDetective for 16
threads using theWrite-Volume benchmark. We observed that the
number of debug registers has a negligible impact on the accuracy
of ComDetective. This is because when we quantify the communi-
cation volume, we scale the volume based on the number of debug
registers as discussed in Section 3.3.

5 RELATEDWORK

Simulator-based Approaches: Barrow-Williams et al. [4] gener-
ate communication patterns for SPLASH-2 and PARSEC bench-
marks by collecting memory access traces using Virtutech simics
simulator [24]. Thread table of the kernel running on the simulator
is also accessed to keep track of all running threads. Similar to [4],
Henrique Molina da Cruz et al. [11] also employ a simulator to
generate memory access traces. The resulting memory traces are
used as the basis to create memory sharing matrix. By consider-
ing the memory sharing matrix, thread affinity is implemented by
taking memory hierarchy into account. Application threads are
mapped according to the generated thread affinity by using Minas
framework [30]. ComDetective differs from these techniques in
the way that they generate thread communication pattern with the
help of a hardware simulator, while we generate communication
matrix by PMUs. This makes ComDetective practical to use and
runs faster than the simulator-based techniques, especially for full
application execution.

OS-based Approaches: Tam et al. [35] and Azimi et al. [3] ob-
tain communication patterns from running parallel applications

through PMUs. Unlike ComDetective, their technique requires
kernel support. PMUs are accessed by the kernel and the commu-
nication pattern of a running application can be generated by the
kernel. The PMUs that are accessed are pipeline stall cycle break-
down, L2/L3 remote cache access counters, and L1 cache miss data
address sampler.

Cruz et al. [9] use Translation Look-aside Buffers (TLBs) to gener-
ate of communication matrix that records page level memory shar-
ing. Two approaches were introduced that use software-managed
TLB and hardware-managed TLB. For the software-managed TLB,
a trap is sent to OS when TLB miss occurs. Before the missing
page table entry is loaded, TLB content of each core is checked for
the matches of the missing entry. The information on the matches
is used to update the communication matrix. For the hardware-
managed TLB, kernel will check the content of TLBs periodically.
Both approaches require OS support. In contrast, ComDetective
uses user-space PMU sampling. Moreover, TLB-granularity moni-
toring is too coarse-grained because inter-thread communications
happen at cache-line granularity.

Code Instrumentation-based Approaches: Diener et al. [13,
14] develop Numalize, which uses binary instrumentation [22]
to intercept memory accesses and identify potential communica-
tions among threads by comparing the intercepted memory ac-
cesses. Two or three threads that perform accesses to a memory
block consecutively are considered to communicate by the tool. We
have compared ComDetective with Numalize in our experimen-
tal study. Numalize introduces more than 16× runtime overhead
and almost 2000× memory overhead, whereas ComDetective in-
troduces only 1.30× runtime overhead and 1.27× space overhead.
Moreover, ComDetective does not dilate execution and produces
more accurate communication matrices.

A more recent work [25, 26] performs code instrumentation
with the help of the LLVM compiler. This instrumentation allows
detection of RAW and RAR dependencies in the original code and
outputs this information as communication and reuse matrices.
Through communication reuse distance and communication reuse
ratio derived from these outputs, the tool facilitates analysis of
communication bottlenecks that arise from thread interactions in
different code regions. However, this tool still suffers from sig-
nificant slowdown (140×), and is limited to detection of memory
accesses to similar addresses. Hence, to our knowledge, it cannot
detect cache line transfers that are triggered by false sharing.

Profiling Memory Accesses: Concerning the use of Perfor-
mance Monitoring Units (PMUs) by library or standalone tool to
profile memory accesses or data movement, our work is not the
first one that implements this idea. Lachaize et al. [19] introduced
MemProf, which utilizes kernel function calls to sample data from
memory access events. This data is used to identify objects that are
accessed remotely by any thread. Like ComDetective, MemProf
also intercepts functions for thread creation, thread destruction,
object creation, and object destruction to differentiate memory ac-
cesses belonging to different objects and different threads. Unat et
al. [37] introduce a tool, ExaSAT, to analyze the movement of data
objects using compiler analysis. Even though it has no runtime over-
head, it cannot capture all the program objects or their references
as it relies on static analysis. Chabbi et al. [7] employ PMUs and
debug registers to detect false sharing but do not generalize it for

SC ’19, November 17-22, 2019, Denver, CO, USA Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and Didem Unat

inter-thread communication matrices; furthermore, their technique
does not quantify communication volume even for false sharing.
Even though these tools can count memory access events, they do
not associate these events to threads and are not used in generating
communication pattern among threads.
6 CONCLUSIONS

Inter-thread communication is an important performance indica-
tor in shared-memory systems. We developed ComDetective, a
communication matrix generation tool that leverages PMUs and
debug registers to detect inter-thread data movement on a sampling
basis and avoids the drawbacks of prior work by being more accu-
rate and introducing low time and memory overheads. We present
the algorithm used by ComDetective and its implementation de-
tails, then evaluate the accuracy, performance, and utility of the
tool, by carrying out extensive experiments. Tuning code based
on the insights gained from ComDetective delivered up to 13%
speedup. Programmers can generate insightful communication ma-
trices, differentiate true and false sharing, associate communication
to objects, and pinpoint high inter-thread communication in their
applications with the help of ComDetective.

ACKNOWLEDGMENTS

The authors from Koç University are supported by the Scientific
and Technological Research Council of Turkey (TUBITAK), Grant
no. 215E193.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. 2010. HPCToolkit: Tools for Performance Analysis of Optimized
Parallel Programs. Concurrency Computation: Practice Experience 22, 6 (2010),
685–701.

[2] AMG. 2017. Parallel Algebraic Multigrid Solver. https://github.com/LLNL/AMG.
[3] Reza Azimi, David K. Tam, Livio Soares, and Michael Stumm. 2009. Enhancing op-

erating system support for multicore processors by using hardware performance
monitoring. ACM SIGOPS Operating Systems Review 43, 2 (2009), 56–65.

[4] Nick Barrow-Williams, Christian Fensch, and Simon Moore. 2009. A communica-
tion characterisation of Splash-2 and Parsec. In IEEE International Symposium on
Workload Characterization, 2009. IISWC 2009.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite:
Characterization and architectural implications. In 2008 International Conference
on Parallel Architectures and Compilation Techniques (PACT). 72–81.

[6] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J. Kerbyson. 2008.
0.374 Pflop/s Trillion-particle Kinetic Modeling of Laser Plasma Interaction on
Roadrunner. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC ’08). IEEE Press, Piscataway, NJ, USA, Article 63, 11 pages. http://dl.acm.
org/citation.cfm?id=1413370.1413435

[7] Milind Chabbi, Shasha Wen, and Xu Liu. 2018. Featherlight On-the-fly False-
sharing Detection. In 2018 SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP).

[8] Pietro Cicotti and Laura Carrington. 2016. ADAMANT: Tools to Capture, Analyze,
and Manage Data Movement. In The International Conference on Computational
Science, 2016. ICCS 2016.

[9] Eduardo H.M. Cruz, Matthias Diener, and Philippe O.A. Navaux. 2012. Using the
Translation Lookaside Buffer to Map Threads in Parallel Applications Based on
Shared Memory. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium (IPDPS).

[10] Eduardo H. M. Cruz, Matthias Diener, Laércio L. Pilla, and Philippe O. A. Navaux.
2019. EagerMap: A Task Mapping Algorithm to Improve Communication and
Load Balancing in Clusters of Multicore Systems. ACM Trans. Parallel Comput. 5,
4, Article 17 (March 2019), 24 pages. https://doi.org/10.1145/3309711

[11] Eduardo Henrique Molina da Cruz, Marco Antonio Zanata Alves, Alexandre
Carissimi, Philippe Olivier Alexandre Navaux, Christiane Pousa Ribeiro, and
Jean-Francois Mehaut. 2011. Using Memory Access Traces to Map Threads and
Data on Hierarchical Multi-core Platforms. In 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW).

[12] Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier. 2005. An
Efficient Multi-level Trace Toolkit for Multi-threaded Applications. In Proceedings

of the 11th International Euro-Par Conference on Parallel Processing (Euro-Par’05).
166–175.

[13] Matthias Diener, Eduardo H.M. Cruz, Laercio L. Pilla, Fabrice Dupros, and
Philippe O.A. Navaux. 2015. Characterizing communication and page usage
of parallel applications for thread and data mapping. Performance Evaluation
88-89 (2015), 18–36.

[14] Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, and Philippe O. A.
Navaux. 2016. Communication in Shared Memory: Concepts, Definitions, and
Efficient Detection. In 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing.

[15] Paul J. Drongowski. 2007. Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors. https://pdfs.semanticscholar.
org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf.

[16] Intel. 2010. Intel Microarchitecture Codename Nehalem Performance Monitoring
Unit Programming Guide. https://software.intel.com/sites/default/files/m/5/2/c/
f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf.

[17] Mark Scott Johnson. 1982. Some Requirements for Architectural Support of
Software Debugging. In Proceedings of the First International Symposium on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS
I). ACM, New York, NY, USA, 140–148. https://doi.org/10.1145/800050.801837

[18] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan
Cohen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang,
David Richards, Martin Schulz, and Charles Still. 2013. Exploring Traditional
and Emerging Parallel Programming Models using a Proxy Application. In 27th
IEEE International Parallel & Distributed Processing Symposium (IEEE IPDPS 2013).
Boston, USA.

[19] Renaud Lachaize, Baptiste Lepers, and Vivien Quema. 2012. MemProf: a memory
profiler for NUMA multicore systems. In USENIX ATC’12 Proceedings of the 2012
USENIX conference on Annual Technical Conference. 5.

[20] Linux. 2012. perf_event_open - Linux man page. https://linux.die.net/man/2/
perf_event_open.

[21] Linux. 2018. SIGALTSTACK. http://man7.org/linux/man-pages/man2/sigaltstack.
2.html.

[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation. 190–200.

[23] LULESH 2.0. [n. d.]. Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH). https://github.com/LLNL/LULESH.

[24] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. 2002. Simics: A full system simulation
platform. Computer 35, 2 (2002), 50–58.

[25] Arya Mazaheri, Felix Wolf, and Ali Jannesari. 2015. Characterizing Loop-Level
Communication Patterns in Shared Memory Applications. In Proceedings of the
2015 44th International Conference on Parallel Processing (ICPP 2015). https:
//doi.org/10.1109/ICPP.2015.85

[26] Arya Mazaheri, Felix Wolf, and Ali Jannesari. 2018. Unveiling Thread Communi-
cation Bottlenecks Using Hardware-Independent Metrics. In Proceedings of the
47th International Conference on Parallel Processing (ICPP 2018). ACM, New York,
NY, USA, Article 6, 10 pages. https://doi.org/10.1145/3225058.3225142

[27] R. E. McLear, D. M. Scheibelhut, and E. Tammaru. 1982. Guidelines for Creating
a Debuggable Processor. In Proceedings of the First International Symposium on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
I). ACM, New York, NY, USA, 100–106. https://doi.org/10.1145/800050.801833

[28] miniFE. [n. d.]. MiniFE Finite Element Mini-Application. https://github.com/
Mantevo/miniFE.

[29] Greg Nakhimovsky. 2001. Debugging and Performance Tuning with Library
Interposers. http://dsc.sun.com/solaris/articles/lib_interposers.html.

[30] Dimitrios S. Nikolopoulos, Eduard Ayguadé, and Constantine D. Polychronopou-
los. 2002. Runtime vs. Manual Data Distribution for Architecture-Agnostic
Shared-Memory Programming Models. International Journal of Parallel Program-
ming 30, 4 (2002), 225–255.

[31] PENNANT. 2016. Unstructured mesh hydrodynamics for advanced architectures.
https://github.com/lanl/PENNANT.

[32] Quicksilver. [n. d.]. A proxy app for the Monte Carlo Transport Code, Mercury.
https://github.com/LLNL/Quicksilver.

[33] Pirah Noor Soomro, Muhammad Aditya Sasongko, and Didem Unat. 2018.
BindMe: A thread binding library with advanced mapping algorithms. Con-
currency and Computation: Practice and Experience 30, 21 (2018). https://doi.org/
10.1002/cpe.4692

[34] M. Srinivas, B. Sinharoy, R. J. Eickemeyer, R. Raghavan, S. Kunkel, T. Chen, W.
Maron, D. Flemming, A. Blanchard, P. Seshadri, J. W. Kellington, A. Mericas,
A. E. Petruski, V. R. Indukuru, and S. Reyes. 2011. IBM POWER7 performance
modeling, verification, and evaluation. IBM JRD 55, 3 (May-June 2011), 4:1–4:19.

[35] David Tam, Reza Azimi, and Michael Stumm. 2007. Thread clustering: sharing-
aware scheduling on SMP-CMP-SMT multiprocessors. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. 47–58.

https://github.com/LLNL/AMG
http://dl.acm.org/citation.cfm?id=1413370.1413435
http://dl.acm.org/citation.cfm?id=1413370.1413435
https://doi.org/10.1145/3309711
https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf
https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://doi.org/10.1145/800050.801837
https://linux.die.net/man/2/perf_event_open
https://linux.die.net/man/2/perf_event_open
http://man7.org/linux/man-pages/man2/sigaltstack.2.html
http://man7.org/linux/man-pages/man2/sigaltstack.2.html
https://github.com/LLNL/LULESH
https://doi.org/10.1109/ICPP.2015.85
https://doi.org/10.1109/ICPP.2015.85
https://doi.org/10.1145/3225058.3225142
https://doi.org/10.1145/800050.801833
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
http://dsc.sun.com/solaris/articles/lib_interposers.html
https://github.com/lanl/PENNANT
https://github.com/LLNL/Quicksilver
https://doi.org/10.1002/cpe.4692
https://doi.org/10.1002/cpe.4692

ComDetective: A Lightweight Communication Detection Tool for Threads SC ’19, November 17-22, 2019, Denver, CO, USA

[36] F. Trahay, F. Rue, M. Faverge, Y. Ishikawa, R. Namyst, and J. Dongarra. 2011.
EZTrace: A Generic Framework for Performance Analysis. In 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. 618–619. https:
//doi.org/10.1109/CCGrid.2011.83

[37] Didem Unat, Cy Chan, Weiqun Zhang, Samuel Williams, John Bachan, John
Bell, and John Shalf. 2015. ExaSAT: An exascale co-design tool for perfor-
mance modeling. The International Journal of High Performance Computing
Applications 29, 2 (2015), 209–232. https://doi.org/10.1177/1094342014568690
arXiv:https://doi.org/10.1177/1094342014568690

[38] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain,
R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot, A. Kamil,
J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. Newburn, and
M. Pericas. 2017. Trends in Data Locality Abstractions for HPC Systems. IEEE
Transactions on Parallel and Distributed Systems 28, 10 (Oct 2017), 3007–3020.
https://doi.org/10.1109/TPDS.2017.2703149

[39] VPIC. [n. d.]. Vector Particle-In-Cell (VPIC) Project. https://github.com/lanl/vpic.
[40] Ulrike Meier Yang. 2006. Parallel Algebraic Multigrid Methods High Performance

Preconditioner. Numerical Solution of Partial Differential Equations on Parallel
Computers, LNCS 51 (2006), 209–233.

https://doi.org/10.1109/CCGrid.2011.83
https://doi.org/10.1109/CCGrid.2011.83
https://doi.org/10.1177/1094342014568690
http://arxiv.org/abs/https://doi.org/10.1177/1094342014568690
https://doi.org/10.1109/TPDS.2017.2703149
https://github.com/lanl/vpic

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We built our tool on top of the HPCToolkit v2017.11 and ran all
the experiments using gcc-5.4 compiler on a 10-core 2-socket Intel
Xeon E5-2640 v4 Broadwell CPU. For the MPI scalability results,
we used OpenMPI v4.0.

We tested our tool using the following benchmarks:
PARSEC 3.0 https://parsec.cs.princeton.edu/
AMG https://github.com/LLNL/AMG
LULESH https://github.com/LLNL/LULESH
MiniFE https://github.com/Mantevo/miniFE
PENNANT https://github.com/lanl/PENNANT
Quicksilver https://github.com/LLNL/Quicksilver
VPIC https://github.com/lanl/vpic
In our study, we also made use of the following tools:
EZTrace v1.1-8 https://gforge.inria.fr/frs/?group

id = 2774
ADAMANTv2.0 https://bitbucket.org/pcicotti/adamant/src/pebs/

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:
https://github.com/ParCoreLab/ComMonitoring/tree/v1.0
DOI 10.5281/zenodo.2636483

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: 2-socket Intel Xeon E5-2640 v4 Broad-
well CPU, 10 cores/socket, 2 hyperthreads/core, 64GB Memory

Operating systems and versions: Ubuntu 16.04.4 LTS running
Linux kernel 4.15.0-rc4+

Compilers and versions: gcc-5.4

Applications and versions: Parsec 3.0, AMG, LULESH 2.0, MiniFE,
PENNAT, Quicksilver, VPIC

Libraries and versions: OpenMPI v4.0, EZTrace v1.1-8

Paper Modifications: Our tool is a modified version of HPC-
Toolkit. The original HPCToolkit was modified so that it can detect
inter-thread communications (true and false sharing) through event
sampling and debug register interrupts, and generate communi-
cation matrices based on the detected communications. The tool
uses the modified Adamant to associate detected communications

to responsible objects and generate object level information. We
have provided both the modified Adamant and HPCToolkit in the
repository. We also provide a Linux kernel that we used for running
experiments. The Linux kernel provided contains a patch which
enables arming and disarming of watchpoints. This feature has
been accepted to main Linux development repo.

Other external dependencies are hpctoolkit-externals from
https://github.com/WitchTools/hpctoolkit-externals

Custom libmonitor fromhttps://github.com/WitchTools/libmonitor

Output from scripts that gathers execution environment informa-
tion.

SUDO_GID=1004
MAIL=/var/mail/USER
LANGUAGE=en_US:en
LC_TIME=tr_TR.UTF-8
USER=USER
HOME=/home/xxx
LC_MONETARY=tr_TR.UTF-8
SUDO_UID=1004
LOGNAME=USER
TERM=screen.xterm-256color
USERNAME=USER
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b ⌋

in:/sbin:/bin:/snap/bin↪→

LC_ADDRESS=tr_TR.UTF-8
LC_TELEPHONE=tr_TR.UTF-8
LANG=en_US.UTF-8

Sasongko, et al.

LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=0 ⌋

1;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;0 ⌋

1:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=3 ⌋

4;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:* ⌋

.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:* ⌋

.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31: ⌋

.txz=01;31:.tzo=01;31:*.t7z=01;31:*.zip=01;31: ⌋

.z=01;31:.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz= ⌋

01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01 ⌋

;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01; ⌋

31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01; ⌋

31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01; ⌋

31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01; ⌋

31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01; ⌋

35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01; ⌋

35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01; ⌋

35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01 ⌋

;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=0 ⌋

1;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv= ⌋

01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v ⌋

=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv ⌋

=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb ⌋

=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv ⌋

=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=0 ⌋

1;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=0 ⌋

1;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=0 ⌋

0;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka= ⌋

00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=0 ⌋

0;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*.spx= ⌋

00;36:*.xspf=00;36:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SUDO_COMMAND=./collect_environment.sh
LC_NAME=tr_TR.UTF-8
SHELL=/bin/bash
SUDO_USER=xxx
LC_MEASUREMENT=tr_TR.UTF-8
LC_IDENTIFICATION=tr_TR.UTF-8
PWD=/home/xxx
LC_NUMERIC=tr_TR.UTF-8
LC_PAPER=tr_TR.UTF-8
+ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 16.04.4 LTS
Release: 16.04
Codename: xenial
+ uname -a
Linux winter 4.15.0-rc4+ #1 SMP Sat Apr 6 01:48:12 +03

2019 x86_64 x86_64 x86_64 GNU/Linux↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 2
Core(s) per socket: 10

Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) CPU E5-2640 v4

@ 2.40GHz↪→

Stepping: 1
CPU MHz: 1197.486
CPU max MHz: 3400.0000
CPU min MHz: 1200.0000
BogoMIPS: 4791.43
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 25600K
NUMA node0 CPU(s): 0-9,20-29
NUMA node1 CPU(s): 10-19,30-39
Flags: fpu vme de pse tsc msr pae mce

cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc cpuid
aperfmperf pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3
cdp_l3 intel_ppin intel_pt tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a
rdseed adx smap xsaveopt cqm_llc cqm_occup_llc
cqm_mbm_total cqm_mbm_local dtherm ida arat pln
pts

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 65881728 kB
MemFree: 58400888 kB
MemAvailable: 64707056 kB
Buffers: 542152 kB
Cached: 6014420 kB
SwapCached: 0 kB
Active: 4001756 kB
Inactive: 2600860 kB
Active(anon): 50200 kB
Inactive(anon): 8376 kB
Active(file): 3951556 kB
Inactive(file): 2592484 kB
Unevictable: 3652 kB
Mlocked: 3652 kB
SwapTotal: 67022332 kB
SwapFree: 67022332 kB
Dirty: 92 kB
Writeback: 0 kB
AnonPages: 49624 kB
Mapped: 48776 kB

ComDetective: A Lightweight Communication Detection Tool for Threads

Shmem: 10032 kB
Slab: 641312 kB
SReclaimable: 428132 kB
SUnreclaim: 213180 kB
KernelStack: 9168 kB
PageTables: 5192 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 99963196 kB
Committed_AS: 817388 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 270700 kB
DirectMap2M: 4886528 kB
DirectMap1G: 62914560 kB
+ inxi -F -c0
./collect_environment.sh: 14:

./collect_environment.sh: inxi: not found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop1 7:1 0 271.7M 1 loop

/snap/pycharm-community/117↪→

sdb 8:16 0 931.5G 0 disk /mnt/data
loop6 7:6 0 0 loop
loop4 7:4 0 294.2M 1 loop

/snap/pycharm-community/121↪→

sr0 11:0 1 1024M 0 rom
loop2 7:2 0 89.3M 1 loop

/snap/core/6673↪→

loop0 7:0 0 295.9M 1 loop

/snap/pycharm-community/123↪→

sda 8:0 0 238.5G 0 disk
|-sda2 8:2 0 174.1G 0 part /
|-sda3 8:3 0 63.9G 0 part
| `-cryptswap1 252:0 0 63.9G 0 crypt [SWAP]
`-sda1 8:1 0 512M 0 part /boot/efi
loop7 7:7 0 0 loop
loop5 7:5 0 91.1M 1 loop

/snap/core/6531↪→

loop3 7:3 0 91M 1 loop

/snap/core/6405↪→

+ lsscsi -s

./collect_environment.sh: 16:

./collect_environment.sh: lsscsi: not found↪→

+ module list
./collect_environment.sh: 17:

./collect_environment.sh: module: not found↪→

+ nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate

with the NVIDIA driver. Make sure that the latest
NVIDIA driver is installed and running.

↪→

↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class

Description↪→

== ⌋

======↪→

system HP Z840
Workstation
(F5G73AV)

↪→

↪→

/0 bus 2129
/0/0 memory 64KiB BIOS
/0/7 memory System

Memory↪→

/0/7/0 memory 16GiB

DIMM Synchronous 2400 MHz (0.4 ns)↪→

/0/7/1 memory DIMM

[empty]↪→

/0/7/2 memory DIMM

[empty]↪→

/0/7/3 memory DIMM

[empty]↪→

/0/7/4 memory DIMM

[empty]↪→

/0/7/5 memory DIMM

[empty]↪→

/0/7/6 memory DIMM

[empty]↪→

/0/7/7 memory 16GiB

DIMM Synchronous 2400 MHz (0.4 ns)↪→

/0/4 memory System

Memory↪→

/0/4/0 memory 16GiB

DIMM Synchronous 2400 MHz (0.4 ns)↪→

/0/4/1 memory DIMM

[empty]↪→

/0/4/2 memory DIMM

[empty]↪→

/0/4/3 memory DIMM

[empty]↪→

/0/4/4 memory DIMM

[empty]↪→

/0/4/5 memory DIMM

[empty]↪→

/0/4/6 memory DIMM

[empty]↪→

Sasongko, et al.

/0/4/7 memory 16GiB

DIMM Synchronous 2400 MHz (0.4 ns)↪→

/0/5a memory 640KiB

L1 cache↪→

/0/5b memory 2560KiB

L2 cache↪→

/0/5c memory 25MiB L3

cache↪→

/0/5d processor Intel(R)

Xeon(R) CPU E5-2640 v4 @ 2.40GHz↪→

/0/5e memory 640KiB

L1 cache↪→

/0/5f memory 2560KiB

L2 cache↪→

/0/60 memory 25MiB L3

cache↪→

/0/61 processor Intel(R)

Xeon(R) CPU E5-2640 v4 @ 2.40GHz↪→

/0/6 memory
/0/8 memory
/0/100 bridge Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D DMI2↪→

/0/100/1 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 1

↪→

↪→

/0/100/1/0 scsi0 storage SAS2308

PCI-Express Fusion-MPT SAS-2↪→

/0/100/1/0/0.0.0 /dev/sda disk 256GB

MTFDDAK256MBF-1A↪→

/0/100/1/0/0.0.0/1 volume 511MiB

Windows FAT volume↪→

/0/100/1/0/0.0.0/2 /dev/sda2 volume 174GiB

EXT4 volume↪→

/0/100/1/0/0.0.0/3 /dev/sda3 volume 63GiB

Linux swap volume↪→

/0/100/1/0/0.1.0 /dev/sdb volume 931GiB

WDC WD10EZEX-60W↪→

/0/100/1.1 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 1

↪→

↪→

/0/100/2 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 2

↪→

↪→

/0/100/2/0 display GM107GL

[Quadro K620]↪→

/0/100/2/0.1 multimedia NVIDIA

Corporation↪→

/0/100/3 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 3

↪→

↪→

/0/100/3/0 display GK110BGL

[Tesla K40c]↪→

/0/100/5 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D
Map/VTd_Misc/System Management

↪→

↪→

/0/100/5.1 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO Hot Plug↪→

/0/100/5.2 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO RAS/Control
Status/Global Errors

↪→

↪→

/0/100/5.4 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D I/O APIC↪→

/0/100/11 generic C610/X99

series chipset SPSR↪→

/0/100/11.4 storage C610/X99

series chipset sSATA Controller [RAID mode]↪→

/0/100/14 bus C610/X99

series chipset USB xHCI Host Controller↪→

/0/100/14/0 usb3 bus xHCI

Host Controller↪→

/0/100/14/0/d bus TUSB8041

4-Port Hub↪→

/0/100/14/1 usb4 bus xHCI

Host Controller↪→

/0/100/14/1/4 bus USB hub
/0/100/16 communication C610/X99

series chipset MEI Controller #1↪→

/0/100/16.3 communication

C610/X99 series chipset KT Controller↪→

/0/100/19 eno1 network Ethernet

Connection (2) I218-LM↪→

/0/100/1a bus C610/X99

series chipset USB Enhanced Host Controller #2↪→

/0/100/1a/1 usb1 bus EHCI

Host Controller↪→

/0/100/1a/1/1 bus USB hub
/0/100/1b multimedia C610/X99

series chipset HD Audio Controller↪→

/0/100/1c bridge C610/X99

series chipset PCI Express Root Port #1↪→

/0/100/1c/0 enp5s0 network I210

Gigabit Network Connection↪→

/0/100/1c.3 bridge C610/X99

series chipset PCI Express Root Port #4↪→

/0/100/1c.4 bridge C610/X99

series chipset PCI Express Root Port #5↪→

/0/100/1d bus C610/X99

series chipset USB Enhanced Host Controller #1↪→

/0/100/1d/1 usb2 bus EHCI

Host Controller↪→

/0/100/1d/1/1 bus USB hub
/0/100/1f bridge C610/X99

series chipset LPC Controller↪→

/0/100/1f.2 storage C600/X79

series chipset SATA RAID Controller↪→

/0/100/1f.3 bus C610/X99

series chipset SMBus Controller↪→

/0/9 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0↪→

ComDetective: A Lightweight Communication Detection Tool for Threads

/0/a generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0↪→

/0/b generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0↪→

/0/c generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1↪→

/0/d generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1↪→

/0/e generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1↪→

/0/f generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1↪→

/0/10 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1↪→

/0/11 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1↪→

/0/12 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link Debug↪→

/0/13 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/15 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/16 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/17 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/18 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/19 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/1a generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/1b generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/1c generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/1d generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/1e generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/1f generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/20 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/21 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/22 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/23 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent↪→

/0/24 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent↪→

/0/25 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox↪→

/0/26 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox↪→

/0/27 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox↪→

/0/28 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0↪→

/0/29 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0↪→

/0/2a generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS

↪→

↪→

/0/2b generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS

↪→

↪→

/0/2c generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/2d generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/2e generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/2f generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/30 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Broadcast

↪→

↪→

/0/31 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast

↪→

↪→

/0/32 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Thermal Control

↪→

↪→

/0/33 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Thermal Control

↪→

↪→

/0/34 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Error

↪→

↪→

/0/35 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Error

↪→

↪→

/0/36 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/37 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/38 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/39 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

Sasongko, et al.

/0/3a generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Thermal Control

↪→

↪→

/0/3b generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Thermal Control

↪→

↪→

/0/3c generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Error

↪→

↪→

/0/3d generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Error

↪→

↪→

/0/3e generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Target
Address/Thermal/RAS

↪→

↪→

/0/3f generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Broadcast

↪→

↪→

/0/40 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast

↪→

↪→

/0/41 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
1 - Channel 0 Thermal Control

↪→

↪→

/0/42 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/43 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/44 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/45 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/46 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/47 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/48 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/49 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/4a generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/4b generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/4c generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/101 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 0

↪→

↪→

/0/1 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 1

↪→

↪→

/0/1.1 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 1

↪→

↪→

/0/2 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 2

↪→

↪→

/0/3 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 3

↪→

↪→

/0/3.2 bridge Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D PCI Express Root
Port 3

↪→

↪→

/0/5 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D
Map/VTd_Misc/System Management

↪→

↪→

/0/5.1 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO Hot Plug↪→

/0/5.2 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO RAS/Control
Status/Global Errors

↪→

↪→

/0/5.4 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D I/O APIC↪→

/0/4d generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0↪→

/0/4e generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0↪→

/0/4f generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0↪→

/0/50 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1↪→

/0/51 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1↪→

/0/52 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1↪→

/0/53 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1↪→

/0/54 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1↪→

/0/55 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1↪→

/0/56 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link Debug↪→

/0/57 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/58 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/59 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/62 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/63 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/64 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

ComDetective: A Lightweight Communication Detection Tool for Threads

/0/65 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/66 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/67 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/68 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/69 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/6a generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/6b generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/6c generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/6d generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent↪→

/0/6e generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent↪→

/0/6f generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent↪→

/0/70 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox↪→

/0/71 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox↪→

/0/72 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox↪→

/0/73 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0↪→

/0/74 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0↪→

/0/75 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS

↪→

↪→

/0/76 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS

↪→

↪→

/0/77 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/78 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/79 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/7a generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder

↪→

↪→

/0/7b generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Broadcast

↪→

↪→

/0/7c generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast

↪→

↪→

/0/14 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Thermal Control

↪→

↪→

/0/7d generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Thermal Control

↪→

↪→

/0/7e generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Error

↪→

↪→

/0/7f generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Error

↪→

↪→

/0/80 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/81 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/82 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/83 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface

↪→

↪→

/0/84 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Thermal Control

↪→

↪→

/0/85 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Thermal Control

↪→

↪→

/0/86 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Error

↪→

↪→

/0/87 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Error

↪→

↪→

/0/88 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Target
Address/Thermal/RAS

↪→

↪→

/0/89 generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Broadcast

↪→

↪→

/0/8a generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast

↪→

↪→

/0/8b generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
1 - Channel 0 Thermal Control

↪→

↪→

/0/8c generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/8d generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

Sasongko, et al.

/0/8e generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/8f generic Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface

↪→

↪→

/0/90 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/91 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/92 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/93 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/94 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/95 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/96 generic Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit↪→

/0/97 scsi6 storage
/0/97/0.0.0 /dev/cdrom disk DVDRW

GUD1N↪→

ARTIFACT EVALUATION
Verification and validation studies: We developed four mi-

crobenchmarks to validate our tool and compared the accuracy
of the tool with the ground truth if available or with expected
values. Please refer to section 4.1 in the paper for details.

Accuracy and precision of timings: We conducted a minimum of
three runs for each data collected on the system we experimented.
For the microbenchmarks, each microbenchmark ran for 100M
times so that the running time of the benchmarks are at least a cou-
ple of seconds to avoid any system noise. For the large applications,
we used a large number of iterations and input sizes so that the
performance data is free from system noise and cache effects. If we
encountered any huge variability in the results, we repeated the
experiments.

Used manufactured solutions or spectral properties: NA

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: As discussed in the
paper, there are a number of parameters that can potentially affect
the accuracy and performance of our tool. We tested the sensitivity
of the ComDetective under different hash table sizes and we observe
no difference in total communication counts detected by the tool.

We measure the sensitivity of the tool against sampling inter-
val in terms of both the accuracy and overhead. We perform the
sampling interval analysis on three large applications and decided
to use 500K as the sampling interval because it has a good balance
between the overhead and accuracy. For the overhead analysis,
we conducted experiments on all 18 applications. For the twelve
PARSEC benchmarks, the runtime overhead ranges from 1.03x
(streamcluster) to 2.10x (x264) with an average of 1.32×. For the

six CORAL benchmarks, the runtime overhead ranges from 1.02x
(PENNANT) to 2.17x (VPIC) with an average of 1.27x.

Lastly, we study the impact of number of debug registers (1, 2, 3
and 4) on the total communication counts detected byComDetective
for 16 threads using the Write-Volume benchmark. We observed
that the number of debug registers has a negligible impact on the
accuracy of ComDetective.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. We
exclusively used the workstation and ran no other jobs on the
workstation while collecting performance data.

	Abstract
	1 Introduction
	2 Background
	3 ComDetective
	3.1 Overview
	3.2 Communication Detection Algorithm
	3.3 Quantifying Communication Volume
	3.4 Implementation

	4 Experimental Study
	4.1 Accuracy Verification
	4.2 Communication in CORAL Benchmarks
	4.3 Communication in PARSEC Benchmarks
	4.4 Use-Case: Data Structure Optimization
	4.5 Sensitivity and Overhead Analysis

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

