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Watchdog timers are devices that are commonly used to monitor the health of safety-critical hardware and

software systems. Their primary function is to raise an alarm if the monitored systems fail to emit periodic

“heartbeats” that signal their well-being. In this article, we design and verify a molecular watchdog timer

for monitoring the health of programmed molecular nanosystems. This raises new challenges, because our

molecular watchdog timer and the system that it monitors both operate in the probabilistic environment of

chemical kinetics, where many failures are certain to occur and it is especially hard to detect the absence of

a signal.

Our molecular watchdog timer is the result of an incremental design process that uses goal-oriented re-

quirements engineering, simulation, stochastic analysis, and software verification tools. We demonstrate the

molecular watchdog’s functionality by having it monitor a molecular oscillator. Both the molecular watchdog

timer and the oscillator are implemented as chemical reaction networks, which are the current programming

language of choice for many molecular programming applications.
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1 INTRODUCTION

Molecular programming uses the information processing inherent in chemistry, especially the
chemistry of DNA and other biomolecules, to engineer useful nanoscale systems. Molecular pro-
gramming applications including diagnostic biosensors, medical therapeutics, molecular robots,
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and bio-compatible materials already exist in the laboratory and are poised to have a major im-
pact on society.

This article proposes the design of verifiable safety mechanisms for molecular programming
applications. This is an important and timely objective, because many of the planned future uses
of molecular programmed systems are safety-critical, such as biosensors to detect pollutants in
water or drug therapeutics to deliver customized medicine only to the locations in the body where
disease has been detected [18, 39, 63, 65]. During the rapid expansion of the field of molecular
programming, basic research has been rightly focused on normal operation (systems doing what
they should). However, as the field progresses to development and deployment, it will also need to
focus on avoiding hazards (systems not doing what they should not do). Designing and formally
verifying safety mechanisms for programmable control of molecular systems now will help enable
this future focus on safety [21].

In many safety-critical systems, the failure of a monitored system can be dangerous if it goes un-
detected. A standard remedy is to introduce a software watchdog timer, a safety mechanism whose
responsibility is to monitor for the occurrence of the failure and to raise an alarm that can trigger
recovery action if a failure occurs [29, 38]. For example, on the Voyager spacecraft, a heartbeat was
sent every two seconds from the attitude control computer to the command computer responsible
for monitoring its health. If the attitude control computer’s self tests failed, then no heartbeat was
generated. “After about 10 seconds passed with no heartbeats, the command computer would issue
a switch-over command to the backup processor” [44]. Correct behavior of a watchdog timer in
the context of the system it monitors is essential. For example, the faulty integration of a watchdog
timer such that it did not actually monitor the throttle may have resulted in the failure of a major
task in the Toyota unintended acceleration accidents [30].

A watchdog timer receives a periodic heartbeat from the system that it is monitoring. Receipt of
the heartbeat resets the watchdog timer, indicating that the monitored system is still alive. When
the heartbeat signal stops, the absence of the heartbeat causes the watchdog timer to time out and
“bark.” Outputting this alarm indicates that a fault has occurred in the monitored system that led
to its experiencing a service failure [4]. Watchdog timers often serve both to detect the failures
of monitored systems and to trigger their recovery, either through corrective interventions or
automated recovery actions.

Guided by the successes of software watchdog timers, we have chosen a Molecular Watchdog

Timer (MWT) as our first safety mechanism for molecular programming applications. This MWT
should monitor a molecular system at runtime, detect when the heartbeat signal from the moni-
tored system stops, and alarm to trigger its recovery.

The design of an MWT is an ambitious goal. Monitoring for the absence of an event is especially
difficult in the molecular domain. Detecting the non-occurrence of an expected event is often not
yet possible for components that execute outside the laboratory such as in vivo applications. For
example, some of the most promising planned molecular systems involve drug delivery to tumors.
For such systems, runtime monitoring and detection of faults must take place in the same molecular
environment as the programmed system itself. Additional challenges to detecting faults at runtime
in molecular programmed systems include the facts that the behavior of molecular systems is
probabilistic; the components are nanoscale, so runtime observation is non-trivial; there are very
many components, so scalability is a problem; and the components are fault-prone, so any fault
that can occur probably will occur in a significant number of components.

The main contribution of this article is the requirements specification, design, and verification
of an MWT for molecular programming applications. This contribution includes the following
features:
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(1) We develop a goal-based model and formally verify the requirements for an MWT using
the Isabelle proof assistant [46].

(2) Our MWT is designed as a chemical reaction network, a well-understood mathematical
model [1, 2] that is suitable for automatic compilation into DNA implementations [53,
54].

(3) Our MWT detects heartbeat failures at runtime and alarms accordingly.
(4) Our MWT’s timing functions are carried out by stochastic delay ladders, introduced here,

that are provably reliable, both for detecting failures and for avoiding false alarms.
(5) In addition to alarming, our MWT can trigger the recovery of a monitored system.
(6) Our MWT is automatically reusable rather than having to be discarded after a single

failure.
(7) Our MWT is tested with a specific monitored system, a molecular oscillator widely used

as a benchmark, modified to produce a heartbeat. Two very different types of oscillator
failure can interrupt this heartbeat.

(8) Our MWT is embedded with oscillators at two widely separated ranges of size, with end-
to-end behavior verified and validated at these scales using model checking [7, 33] and
simulation, respectively.

(9) These verifications demonstrate that our MWT performs correctly with the oscillators,
enabling them to recover correctly from both types of failure.

Earlier versions of our MWT were reported in References [20, 22]. The version reported here has a
different architecture and improved functionality. Regarding the above list of features, the earlier
versions had goal-based models as in feature (1), but these were hand-verified. The earlier versions
had features (2) and (3) and rudimentary, inexplicit versions of feature (4). The present article’s
use of the Isabelle proof assistant in feature (1), its systematic treatment of the delay ladders in
feature (4), and all aspects of features (5) through (9) are new work. This article describes an MWT
re-designed to be reusable, embeddable with the system it monitors, and capable of triggering a
monitored system’s recovery at runtime.

A broader contribution of the article is to demonstrate the new use of software engineering
techniques and tools to create and verify the requirements and design for a programmable safety
mechanism, the MWT, that will be needed for future molecular systems such as biocompatible
drug delivery nanodevices. We have sought to make the development approach that we use gen-
eral enough to guide future molecular design work on additional safety mechanisms. We claim
that software engineering helps achieve molecular programmed systems that are safe for use in a
dynamic and only partially understood physical environment and show in our results the benefits
of a software engineering approach to creating new molecular systems.

The rest of the article is organized as follows. Section 2 describes the goal-oriented requirements
analysis and machine-checked refinement proofs for the MWT. Section 3 presents the chemical
reaction network design models to achieve these capabilities. Section 4 shows how simulation,
probabilistic model checking, and mathematical proofs are used to validate and verify the design.
Section 5 describes related work, and Section 6 gives concluding remarks.

2 REQUIREMENTS

In this section, we describe a requirements engineering process for programmed molecular sys-
tems and use it to develop the requirements for a runtime fault detection device called a Molecular
Watchdog Timer (MWT). We first describe informally the high-level requirements for the new sys-
tem to be built. We then describe the iterative process by which the requirements were formally
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Fig. 1. Context diagram.

specified, analyzed, corrected, refined, and verified as our understanding of what was needed im-
proved. Lastly, we discuss how the interplay between requirements and design contributed to the
incremental improvement of the requirements. This ongoing process made the requirements sig-
nificantly more complete, accurate, and realistic (i.e., feasible to implement in DNA).

Despite the difficulty of “getting the requirements right” for a new molecular device, our use of
requirements engineering techniques in molecular programming is novel. We show how engag-
ing in goal-oriented requirements engineering can benefit the design of programmed molecular
systems, especially by finding and solving problems early in development.

Figure 1 shows a context diagram [60] for the MWT. The Monitored System sends a regular
signal (labeled “Heartbeat”) to the MWT. The MWT processes this signal and outputs an Alarm to
an external observer or system if the signal has stopped.

2.1 Goal Modeling

We used a goal-oriented requirements engineering approach that we based on van Lamsweerde’s
KAOS [60] and introduced in References [40, 41] to specify and analyze the MWT system goals.
Goal-oriented techniques support systematic and incremental refinement from informal descrip-
tions to formal specification of properties for simulation and model checking.

We first performed goal modeling to understand what was needed to achieve an MWT. A goal
model is an AND/OR graph in which the top-level node describes the high-level functional re-
quirement of the system-to-be and the leaf nodes are the subgoals whose collective satisfaction
implies satisfaction of the top-level goal. The goals are specified as goals to ACHIEVE, MAINTAIN,
or AVOID various conditions in view of the domain properties (such as physical laws governing
molecular interactions). An AND node is satisfied provided that its children nodes are satisfied.
An OR node shows alternative refinements of a node. Our goal model’s nodes are all AND nodes.

The AND refinement of high-level goals and the graphical presentation of the results is suf-
ficiently intuitive to be useful in our discussions with molecular biologists. It also allows both
top-down and bottom-up development of the hierarchical tree as understanding improves. The
logical underpinnings of KAOS support formal analysis and clean traceability between the textual
descriptions of the goals and the formal specification of the goal model.

Our high-level goal is that at runtime the MWT shall issue an alarm if and only if the monitored
system does not provide a heartbeat within a specified time. Figure 2 shows the goal model for
the MWT. The top-level goal, Achieve [Alarm iff no Heartbeat provided within t time], describes
the intent of the system-to-be. That goal is AND-refined into two subgoals, such that it can be
satisfied if both of the two second-level goals are met. The subgoals are further refined until each
leaf goal can be assigned to an agent (discussed in Section 3). An agent is a system component
with responsibility for satisfying the goal(s) assigned to it [60].

The MWT’s client can use the alarm signal output by the MWT either as an externally observ-
able alarm that notifies the client when the heartbeat stops or as a recovery trigger prompting the
initiation of some recovery action when the heartbeat stops. The first usage scenario is intended
for scientific observations where the alarm signal might, for example, be a fluorescent molecule
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Fig. 2. Goal model.

visible to a human technician. The second scenario is useful when the MWT is monitoring an
adjacent molecular system that is capable of autonomous recovery and is a focus of this work.

2.2 Environmental Assumptions

Environmental assumptions are statements about the system’s operational context that are ac-
cepted as true by the developers [59]. The proposed MWT will be made of DNA strands and will
operate, both literally and figuratively, in a fluid, molecular environment. For satisfaction of the
subgoals to imply that the parent goal is satisfied, we must make certain assumptions about the
operational environment. For example, we assume that the chemical solution in which the MWT
operates is well mixed. Other environmental assumptions needed to prove the satisfiability of the
top-level goal are that the heartbeat species, H , is intrinsically ephemeral, meaning that it will not
persist and will decay over time; that the number of H molecules in the heartbeat pulse is in a
certain range; and that no molecules in the environment other than the heartbeats interact with
the MWT.

If these environmental assumptions are false or cease to be true, then the validity of the solution
may be at risk. We will see in the following how the process of formalizing the leaf goals, proving
that the leaf goals implied the top-level goal, and verifying the design forced us to revisit and revise
several of our original environmental assumptions.

2.3 Goal Formalization

For every goal, we needed both a natural language description and a formal specification. We
specified the goals in continuous stochastic logic (CSL) [5] because of its availability in the model
checking tool that we use and because it handles the continuous time Markov chains (CTMCs) [1,
2] that form the semantics of our chemical reaction networks (described in Section 3). Formally
specifying the goals and assumptions enabled us to prove that the satisfaction of the lower-level
goals, together with the stated assumptions, implies the satisfaction of the higher-level goals.
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The complete CSL specifications for the goal model appear in the table in the Supplemental
Material. For each node in the goal model, the table there shows (1) the name of the node, (2) the
formal specification of the node in CSL, and (3) the agent-assigned responsibility for each leaf
goal. The goals are ordered breadth first following Figure 2. As an example, the leaf goal Achieve

[Alarm if Threshold for some time] has the CSL specificationP≥1�[ThH ⇒ P≥1−η4�≤wth
(Alarm ∨

¬ThH )] and is assigned to the Threshold Filter as described in Section 3.
We proved that the goals, together with the specified environmental assumptions and facts and

parameter values in their specified ranges, satisfy the top-level goal. This proof was carried out
manually and iteratively during the development of the goal model.

2.4 Obstacle Analysis

The MWT must work safely and with high reliability to detect and recover from faults in the
molecular applications for which it is intended, such as bio-sensing and medical therapeutics.
A major challenge in developing the MWT was determining accurately the requirements for a
feasible system that could operate in the molecular environment. To do this, we needed to analyze
whether the stated goals could be realistically satisfied in this stochastic and dynamic setting.

To investigate feasibility, we used KAOS’s obstacle analysis extensively [11, 60, 61]. An obstacle
to a goal is a precondition for that goal’s non-satisfaction [60]. Given a goal model in which A and
B are the AND subgoals of parent goal C, an obstacle for C is a state of affairs in which A and B
are true and C is false.

Obstacle analysis identifies ways in which the goals might fail to be satisfied (i.e., obstacles to
satisfaction), assesses the likelihoods and impacts of the obstacles, and investigates how to resolve

them. We found in previous work on DNA nanopliers that the early analysis of obstacles to satis-
fying the goals worked well in helping find and remedy missing and unrealistic requirements in
the programmed molecular system [41].

Most of the obstacles for the MWT were subtle and found manually while proving that subgoals
satisfied their parent goal. The process of proving the satisfiability of the formal CSL goals repeat-
edly revealed both additional cases and uncertainties that could be introduced by the stochastic
behavior. Gaps and errors in the goal model often were due to the non-deterministic, asynchronous
nature of reactions, to the very large number of molecular agents operating in parallel, and to the
physical environment in which the MWT operates. Model-based mathematical analysis, simula-
tion with the MATLAB extension, SimBiology, and probabilistic model-checking with PRISM [32],
as described in the following, helped us assess the likelihood and impact of candidate obstacles.

Representative examples of obstacles we found in the early version of the MWT were previously
reported in Reference [22]. These include:

Incorrect agent. We initially assigned a binary counting device introduced in Reference [27] to
be the clock agent responsible for detecting the absence of a heartbeat. However, simulation in
SimBiology revealed that this device did not satisfy our specification. It was designed to work in a
setting in which it is assumed that all reactions are “fast” or “slow,’ and that all fast reactions occur
before all slow reactions. The stochastic (and more realistic) model on which we work violates this
assumption, allowing slow reactions to interfere with the clock’s function. Over time, the accu-
mulation of such violations leads to failure of the clock. To resolve this, we assigned responsibility
for that goal to a new agent in which the delay is instead achieved by a programmed cascade of
interactions.

Missing property. In refining a goal into two subgoals, we had to introduce the domain property
that it takes a positive amount of time to detect a heartbeat. This is because the detection occurs
via the chemical interaction of the heartbeat molecules with the molecular component that
detects missing heartbeats. The subgoals did not satisfy the goal without this domain property.
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This obstacle was resolved by introducing a “grace period” before heartbeat detection is required.
When we initially failed to propagate the addition of the grace period backup to the parent goal,
model checking with PRISM detected the omission, and it was corrected.

Incorrect initialization. Model checking revealed a failure mode that can occur just after the
MWT begins execution. The initial intent was that operation of the MWT begin at time zero, i.e.,
when the MWT was “poured into the test tube.” However, as specified, the MWT could violate
this intent by alarming before the monitored system had a chance to send a heartbeat. To resolve
this, we added a new CSL property to the high-level goal specifying that the alarm must remain
off for a period of time after initialization. This new goal propagated through the goal diagram to
create a new leaf-goal, Achieve [Initialize to Reset], specifying that the timer must be considered to
be in a reset stage at initialization. Together with the leaf goal Achieve [Threshold Delay if Reset],
this implies that the alarm will not be active upon initialization. We proved manually that the
implication holds after the change and confirmed using PRISM that a model with an alarm in the
initial state satisfies the goals.

Obstacle analysis helped identify missing requirements, explore design alternatives, and find
idealized environmental assumptions that had to be weakened to conform to physical realities.
The obstacle analysis process was on-going and a major contributor to de-idealizing the goals for
the MWT into requirements that were feasible for implementation in a programmed molecular
system operating in a chemical “soup.” During the obstacle analysis, we experienced extensive
back-and-forth interweaving between the requirements and the design. This iterative, incremental
nature of the modeling and analysis effort is typical of complex systems [62] and often described
in terms of “twin peaks” [47].

Related work on specifying goals in uncertain environments formalizes the required degree
of goal satisfaction, as in Reference [37], or the required probability of goal satisfaction, as in
Reference [10]. However, molecular systems such as the MWT may have more than 1010 individual
components in solution, so failures with any significant probability probably will occur in many
individual components. The system must nevertheless be robust enough to operate correctly (to
alarm or not to alarm) with probability approaching 1, even in the presence of some component
failures. The watchdog timer design must be one in which we have confidence that, if the system
it is monitoring fails, the MWT will detect and notify us, and that if the MWT notifies us that the
monitored system has failed, then we can trust its accuracy.

2.5 Verifying the Goal Model

After the goal model was stabilized, we re-proved its internal correctness (the fact that the leaf
goals imply the top-level goal) with the aid of the Isabelle proof assistant [45, 46]. In order to max-
imize the use of Isabelle’s automated features and the readability of the result, we used a hybrid
of human mathematics and automated theorem proving. Specifically, we formulated a list of eight
CSL lemmas that are relatively simple (especially, not burdened with specific parameters of our
design) and capture the higher-order logical aspects of our goals that are not readily amenable to
automation. After proving these lemmas succinctly and transparently in Section 3.2 of the Supple-
mental Material, we used Isabelle in Section 4 of the Supplemental Material to prove that, given
these lemmas, the goal model is internally correct.

The verification of the goal model is reported completely in the Supplemental Material.
More specifically, every CSL operator defines a state formula, so we represent CSL operators

in Isabelle as paramatrized functions from CTMC states to the set {true, false}. For example, we
can supply the P� operator with probability and time parameters α and t and a component CSL
formula ϕ; the result is the CSL formula P≥α�≤tϕ, which can take on the values true or false at
different CTMC states.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 2, Article 6. Pub. date: March 2019.



6:8 S. J. Ellis et al.

Fig. 3. High-level design.

We define rules for logical connectives in CSL using lambda expressions. For example, given
two CSL formulae ϕ andψ , we define conjunction as

ϕ ∧ψ = λx ϕ (x ) ∧ψ (x ).

That is, ϕ ∧ψ is a single function that returns true if both ϕ andψ are true for the given argument.
In combination with the operator definitions discussed previously, logical connectives like this are
sufficient to encode arbitrary CSL statements and implications in Isabelle.

To construct a verified proof using this formalism in Isabelle, we provide a sequence of inter-
mediate goals that link our assumptions and other known statements with our final goal. For each
step in this proof, we provide Isabelle with assumptions and lemmas to reference and with proof
methods to apply. Isabelle’s powerful Sledgehammer tool [43, 48] automated significant parts of
this process, making it easier to supply the correct facts and methods and take larger steps.

3 DESIGN

The goal-oriented requirements refinement and analysis described previously assigns responsibil-
ity for achieving the MWT’s leaf goals to two system agents: the Absence Detector component and
the Threshold Filter component, which outputs an Alarm signal. Figure 3 shows the high-level de-
sign with these two components. The connectors among the components reflect the intended flow
of information from detection of individual heartbeats or their absences, to determining whether
the incidence of faults exceeds a programmed threshold and issuing an alarm signal when that
threshold is exceeded. We describe the mapping of leaf goals in the goal model to the components
responsible for them and the detailed modeling of the components in the following.

3.1 Chemical Reaction Networks as a Programming Language

Our MWT design uses the language of chemical reaction networks (CRNs), which are abstract
models of molecular processes in well-mixed solutions.1 All CRNs in this article are stochastic

CRNs, which model processes in which the presence or absence of very small numbers of certain
types of molecules (e.g., a single copy of a viral genome in a living cell) may be significant. We
henceforth omit “stochastic” from the terminology.

The CRN model, which goes back at least to 1940 [17], has three desirable features. First, it is
mathematically simple. A CRN is a finite collection of reactions, each of which has a simple form,

such asA +C
r−→ 2B +C , where the speciesA, B, andC , are abstract types of molecules and the rate

constant r is a positive real number representing the “propensity” of an A and a C that encounter
one another to react, thereby being replaced by two Bs and aC in the solution. A species that, like
the speciesC here, appears on both sides of a reaction is called a catalyst of the reaction. Catalysts
are extremely important in biochemical processes, and they are extremely useful in our MWT
construction. A state of a CRN is a vector specifying the number of each species present, and the
dynamics of the CRN proceed as a continuous time Markov process with rates derived from the
rate constants [1–3].

1This expository subsection is adapted from Reference [22].
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A second feature of CRNs is that they are very general. Every algorithm can, in at least one
sense, be efficiently simulated by a CRN [53].

A third desirable feature of CRNs, discovered recently, is that they can be implemented in a
uniform way using DNA strand displacement reactions [54]. This is fortuitous, because dynamic
systems in DNA nanotechnology, including DNA walkers and logic circuits, are typically imple-
mented using DNA strand displacement reactions [52, 65]. The details of strand displacement re-
actions are not needed for this article, but it is relevant to note that they are relatively easy to
implement in the laboratory and that they are easy to specify. There is a programming language,
DSD, in which a large, expressive class of such reactions can be specified and compiled into abstract
DNA sequences [36, 50]. CRNs have recently been used as a higher-level programming language
that can be compiled into DSD [6, 14].

3.2 Stochastic Delay Ladders

The timing functions in our MWT are carried out by stochastic delay ladders (or simply ladders),
which are CRNs introduced here having very predictable behaviors. The simplest type of ladder
is a k + 1-rung unary ladder, which consists of species X0, . . . ,Xk and the 2k reactions

Xi
u−→ Xi+1 (0 ≤ i < k ),

Xi
r−→ X0 (0 < i ≤ k ).

(1)

We call X0, . . . ,Xk the rungs, u the upward rate constant, r the reset rate constant, and k the height

of this ladder. The ladder is “unary,” because each of its reactions has only one molecule on its
left-hand side. The ladder is initialized with all its population on the bottom rung, i.e., a positive
integer p instances of the species X0 and no instances of Xi for 0 < i ≤ k . Over time, members
of this population “try to climb” the ladder, sometimes going up from one rung to the next and
sometimes falling all the way back to the bottom rung. (This is a CRN implementation of the “frog
in the well” Markov process [3].) The total population p of the ladder remains fixed throughout
these climbing attempts.

Because the ladder Equation (1) is unary, its kinetic behavior is linear. This implies that a ladder
with population p behaves exactly like an aggregate of p statistically independent ladders with
population 1. (Most CRNs have nonlinear behavior and thus cannot be decomposed into indepen-
dent, single-molecule nanodevices in this manner.) Since p is usually large (and often very large),
this statistical independence enables us to predict with high confidence how long it will take (as a
function of p, u, r , and k) for a given fraction of the population to simultaneously occupy the top
rung of the ladder.

In practice, the rate at which reactions occur is governed more by catalysts than by rate con-
stants. Thus, instead of the unary ladder Equation (1), we introduce catalyzed ladders of the form

Xi +U
1−→ Xi+1 +U (0 ≤ i < k ),

Xi + R
1−→ X0 + R (0 < i ≤ k ).

(2)

The kinetics of stochastic CRNs make Equation (2) very similar to Equation (1). For example, if
#Xi (t ) is the number of Xi molecules at time t and u (t ) is the concentration ofU molecules at time
t (i.e., u (t ) = #U (t )/V , where V is the volume of the solution), then at time t the first reaction in
Equation (1) takes place at rate u#Xi (t ), while the first reaction in Equation (2) takes place at rate
u (t )#Xi (t ). In particular, if u (t ) = u and r (t ) = r are constant, then the unary ladder Equation (1)
and the catalyzed ladder Equation (2) have identical statistical behaviors. Moreover, even if u (t )
and r (t ) fluctuate, but do so independently of the ladder’s rung populations, the catalyzed ladder
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Equation (2) enjoys the same decomposability into independent, population-1 ladders as the unary
ladder Equation (1).

When controlling reaction rates by catalysts in the above manner, one often takes the rate con-
stants to be 1, as we have done in Equation (2). In this case, the rate constants are omitted from
the notation and assumed to be 1, as we do in the following.

It is now straightforward to specify the two main components of our MWT.

3.3 Absence Detector

This component detects when a heartbeat signal has not been present for a specified period of time.
The heartbeat is a “pulse” of a specific molecular speciesH that is expected to be periodically output
by the molecular application that is being monitored by the MWT. If the heartbeat is not detected
by the MWT for an extended period of time, then we can conclude that the molecular application
being monitored has failed. The Absence Detector is assigned responsibility for achieving the
leaf goals Avoid [Hdet when Heartbeat is not present], Achieve [Hdet when Heartbeat is present],
Achieve [Initialize to Reset], Achieve [Reset if Hdet], Achieve [Threshold Delay if Reset], and Achieve

[Threshold if Hdet is absent] as shown in Figure 2.
The Absence Detector component consists of the catalyzed ladder

Li +U → Li+1 +U (0 ≤ i < k ),

Li + H → L0 + H (0 < i ≤ k ).

We also write Y for the top rung Lk of this ladder to emphasize its special role as the upward
catalyst for the Threshold Filter described in the following.

3.4 Threshold Filter

This component detects when a target number of individual instances of the Absence Detector
have reached the Lk state. The Threshold Filter trips an alarm if and only if enough Absence
Detectors are in the Lk state to overcome the constant number of instances of the reset catalyst
R of the Threshold Filter. The Threshold Filter is assigned responsibility for the leaf goals Avoid

[Alarm if Reset], Achieve [Alarm if Threshold for some time], and Avoid [Alarm until first Threshold].
The Threshold Filter consists of the catalyzed ladder

Ti + Y → Ti+1 + Y (0 ≤ i < k ),

Ti + R → T0 + R (0 < i ≤ k ).

We also write D for the top rungTk of the Threshold Filter. This species D is the alarm species of
the MWT. It is used by external modules to trigger a response. In previous work [22], we described
a simple, one-time, Alarm response produced by amplifying the alarm molecular species. In this
article, we will present a more powerful response, namely a Recovery component, after introducing
a monitored system in Section 4.2.

4 DESIGN VERIFICATION

Formal design analysis provides some assurance that the behavior specified in the design matches
the system’s intended behavior. We must ensure that with very high probability when there is a
heartbeat, the MWT does not alarm, and that with very high probability when there is no heartbeat,
the MWT quickly alarms.

In this section, we first describe the analysis and verification techniques used to verify the design
of the MWT and report the verification results. We check that the MWT works for a very long time
in normal conditions (i.e., when the heartbeat from the monitored system is present) and show via
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quantitative simulation that the MWT alarms as quickly as the client needs (indicated via the initial
parameter values) when the heartbeat from the external system disappears.

We then demonstrate the functionality of the MWT by introducing a specific example of a sys-
tem that needs to be monitored at runtime and verifying that its heartbeat behavior is correct.
We connect the CRN model of the monitored system to that of the MWT and verify the correct
functioning of the composed system. Finally, we describe how we extended the existing system
to enable the MWT to not only detect the monitored system’s failure at runtime, i.e., the absence
of the expected heartbeat pulse, but also to trigger the monitored system’s runtime recovery, and
how we verified this additional capability.

4.1 Verifying the MWT Design

To check the correctness and robustness of the MWT design, we followed an incremental process
of simulation of the CRN model for sanity checks and selection of likely parameter value ranges,
followed by model checking of the CSL leaf goals on the CRN model across those parameter values.
We also injected faults that had been previously discovered by analytical reasoning to confirm that
the model checkers found them. To recap, the agents to which the leaf subgoals in the goal model
are assigned—the Absence Detector and the Threshold Filter—are described in the CRN high-level
programming language. The properties to be checked against the CRN model are the CSL formal
specification of the leaf goals.

CRN input to verification tools. A strength of CRN as a language for molecular programming is
that a CRN model can be readily imported into MATLAB’s SimBiology package, allowing simu-
lations to be run on it. We used SimBiology to understand the behavior and performance of our
models and to debug them.

A CRN model can also be used as input into the probabilistic model checker PRISM [32], used
previously to analyze molecular systems, e.g., in References [31, 33]. We used PRISM to verify that
the MWT design satisfied the CSL properties derived from the goal model. The MWT model takes a
number of parameters ranging from rate constants (of DNA reactions) to the length of the absence
detector ladders (which are DNA strands). The parametrized design allowed us to automate testing
across ranges of parameter values for optimization and verification.

Parameters. The values of the client parameters are specified by the client and depend on the
system being monitored. For example, how quickly a heartbeat failure must be detected will vary
among different applications. Additionally, there are modeling parameters that were needed to
verify the realizability of the specified goals. An example is the number of each species of mole-
cule represented in a particular model. The values for these parameters vary as the design space
is explored. Their correct representations emerge from the formal analysis, mathematical proofs
that satisfaction of the subgoals given the environmental assumptions satisfy the root goal, simula-
tion of the composed system (monitored component and MWT), and the model checking results.
Correct parametrization of the models was time-consuming and incremental. We used custom
MATLAB scripts to generate models of arbitrary parameters that could integrate with the model
checkers. These scripts along with some features provided by PRISM automated the exploration
of the parameter space to discover models that provably satisfied our requirements.

Reusable MWT. Making the MWT reusable enables the composed system (monitored system
and MWT) to recover from faults and then continue execution autonomously, without outside
intervention. This is important if the MWT is to be used in vivo, for example. If the MWT is
not reusable, then even if the monitored system recovers, it is no longer being monitored. The
technical difficulty in moving from a throw-away MWT (one-time use) to a reusable MWT was
the creation of a design for which the initial condition (the set of values for the parameters) could be
restored autonomously. At initialization, we thus configured the MWT to begin with the majority
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of rung molecules in the lower rungs of the ladder. When a heartbeat is detected, the absence
detector enters this reset state again. This resets the MWT for reuse. We validated via simulation
in SimBiology that the MWT is reusable rather than needing to be discarded after a single use.
After having alarmed, it is reset when the monitored system begins issuing heartbeats again.

4.2 Verifying the Interaction of the MWT with a Monitored System

The question that underlies the verification of the interaction of the MWT with a monitored system
is, “Could any such composed molecular system satisfy the assumptions we make on it and be used
productively?” Given current model-checking limits, we verify the interaction at two very different
molecular population scales, both of which are in realistic ranges of molecular counts.

First, we verify using simulation and probabilistic model checking that the interaction of an ab-
stract monitored system with the MWT is correct with respect to the requirements and show that
the assumptions we make on this hypothetical monitored system are realistic. This first version
operates on an abstract signal received from a hypothetical monitored system. We simulate using
SimBiology and model-check using PRISM that the MWT transforms the absence of a heartbeat
signal into an alarm signal correctly. The size for which we can model-check it is small, with
molecular counts up to 5. For example, 5 Absence Detectors produced a CTMC with over 150,000
states, while 10 Absence Detectors produced a CTMC with over 9 million states.

Second, we validate by simulation the correct interaction of an example monitored system with
the MWT and show that the assumptions made on this specific monitored system are realistic. We
first introduce an example of a monitored system and verify its correctness, using simulation and
model checking. This entails verifying that the presence or absence of its heartbeat is correlated to
the monitored system’s health or failure. The example monitored system cannot be model-checked
for all possible values of its parameters due to the size of the possible space; however, we simulated
it with up to a total species population count of 100,000.

Introducing a system to be monitored. To demonstrate the capabilities of the MWT design, we
used it to monitor the health of a standard molecular system, namely an oscillator. Chemical os-
cillators occur widely in nature, so are important, and synthetic molecular oscillators previously
have been used as benchmarks in multiple projects, e.g., References [6, 15, 16, 23, 26, 35]. See Sec-
tion 5 for more information. Another advantage of selecting the oscillator is that we could readily
extend it to output a heartbeat (to test the normal case) and cause it to cease output of a heartbeat
(to test the failure cases).

We used the Lotka-Volterra Three-phase Oscillator [12], which employs three species A, B, and
C. Each of the three species corresponds to a single phase of the oscillator. The oscillator is initial-
ized with the molecular count of one of the three species being high and the molecular counts of
the other two species being low. After initialization, the oscillator will cycle between the phases
following the order A to B to C and then back to A. As an example, consider the following case. If A
is dominating and B and C have similar molecular counts, then reaction Equations (3) and (5) in the
following equations are equally likely to occur. However, when reaction Equation (3) or reaction
Equation (5) fires, the rates of all the reactions change, increasing the rate of reaction Equation (3)
and decreasing the rate of reaction Equation (5). This continues until B is dominating, completing
the transition to phase B. A similar sequence of events occurs for each phase transition.

We extended the CRN model for the stochastic three-phase oscillator with a heartbeat interface
that produces a heartbeat (H) when the oscillator is healthy. A heartbeat interface is required to
use the MWT to monitor the oscillator. The CRN for the oscillator plus its heartbeat interface is

A + B
k−→ 2B + H , (3)
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B +C
k−→ 2C, (4)

C +A
k−→ 2A, (5)

H
k2−−→ ∅. (6)

To be useful, the heartbeat interface must cover all possible failure modes. In a stochastic setting,
there are two possible faults in the oscillator that cause it to fail. First, if any of the three species A,
B, or C has a molecular count of zero, the oscillations will stop and the oscillator will fail. Second,
if the oscillator spends a large amount of time with all three species near a state of equilibrium,
the oscillations will become negligible and desultory and the oscillator fail. While the oscillator is
working correctly, a large number of H molecules will be created as reaction Equation (3) occurs.
For this interface to be correct, it must produce fewer heartbeats in the case of a fault. For the first
fault, if any of the three oscillator species has a count of zero, all oscillator reactions will quickly
have a rate of 0, causing a stop in the production of heartbeat molecules. For the second fault, if
all three oscillator species are in equilibrium, then the H species will fall to a roughly constant
amount low enough to cause the Absence Detector to activate.

Checking correlation of heartbeat with oscillator’s state. In “real-world” scenarios, it is the moni-
tored system’s responsibility to provide a correct heartbeat, meaning that the MWT assumes that
the heartbeat accurately reflects the normal or failed state of the monitored system. However, to
confirm that the MWT operates correctly and robustly, we had to first confirm that the oscillator
outputs a correct heartbeat. We thus had to check (1) that the oscillator’s health correlates with
the presence (healthy) or absence (unhealthy) of heartbeat molecules at its interface, and (2) that
the MWT’s behavior correlates with the presence or absence of heartbeat molecules over a period
of time at its interface with the monitored system.

A state of the monitored system can be healthy or unhealthy. Informally, in a healthy state, a
heartbeat will be sent within a reasonable time or the state will quickly become unhealthy. In an
unhealthy state, no heartbeat will be sent within a reasonable time or the state will quickly become
healthy. We define a state to be healthy at time t as A, B, C > 0 AND (A − B)2 + (B −C )2 + (C −
A)2 > τ , where τ is defined to ensure that the oscillator is deemed unhealthy if its species counts
approach equilibrium.

The three properties to be verified are:
Achieve [Produce heartbeats while healthy]

P≥1[�(healthy⇒ P≥1−δ1
[�≤t1 ((hbHigh ∨ ¬healthy)])]

Avoid [Produce heartbeats while unhealthy],

P≥1[�(¬healthy⇒ P≥1−δ2
[�≤t2 (P≥1−δ3

[hbLowW (P≥1−δ4
[�≤t3 healthy])])])],

Heartbeat decays

P≥1[�(hbHigh⇒ P1−δ5
[�≤t4¬hbHigh])].

We simulated in SimBiology the oscillator and heartbeat interface with a range of initial counts
of A, B, and C up to 1000 (e.g., 80% in A, 10% in B and C) and an initial count of 0 for H, and
checked that these three properties held in the simulations. The simulations demonstrated that
the presence or absence of a heartbeat correlates with the health of the oscillator in both of the
two failure modes. Using a CTMC model of the oscillator with total population of 200, we then
verified in PRISM that the oscillator plus heartbeat interface satisfied the goals. The model checker
verified true for the three CSL properties above.
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Fig. 4. A simulation of the oscillator with the heartbeat interface.

Figure 4 shows a simulation of the oscillator for the first failure mode, in which one of the
species counts went to 0. Since no oscillations could occur, heartbeats ceased to be produced by
the oscillator.

4.3 MWT Triggers Oscillator’s Runtime Recovery

A system is more robust if it can autonomously recover from a failure. Beyond detecting and
reporting the failure of the monitored system, we also sought to use the MWT’s Alarm signal
to trigger autonomous recovery in a monitored system after it has failed. To demonstrate this,
we constructed a recovery component that, upon receiving the MWT’s Alarm, will recover the
oscillator from either of its failure modes.

The CRN for the oscillator’s recovery module is

D +A
k−→ D + B, (7)

D + B
k−→ D +C, (8)

D +C
k2−−→ D +A, (9)

where the third reaction has a different rate from the other two.
These reactions are triggered by the presence of the MWT Alarm component’s output signal

(the D’s) produced when the MWT detects that the oscillator has failed. In both the case where
the oscillator fails due to running out of the species A, B, or C, and the case where it fails because
it reached an equilibrium state (an equal number of A’s, B’s, and C’s) such that heartbeats stop,
these reactions will recover the oscillator. The recovery “jump-starts” the oscillator and, when the
heartbeat starts up again, the Alarm signal (the D’s) fade away. To check the correct behavior
of the recovery capability, we ran simulations with populations of 100 to 1,000 molecules for the
oscillator and varying percentages of D molecules. The MWT’s Alarm signal correctly triggered
the oscillator recovery.
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Fig. 5. A simulation of the MWT detecting the oscillator’s failure and triggering its recovery.

Figure 5 shows a single stochastic simulation of the composed system. Initially, the oscillator
works and produces heartbeats. During this time, the absence-detected signal remains low. How-
ever, once the oscillator fails and the heartbeats stop, the absence is quickly detected and the
recovery signal is released to trigger the oscillator to recover. Shortly after the recovery signal is
turned on, the oscillator begins normal operation again.

Generalizing to other applications. Usage of the MWT is intended to be broad. The MWT is
designed to work with any molecular system that needs to be monitored for the absence of a
heartbeat, meaning that it is independent of how the heartbeats are input to it. The oscillator
provides an example of how, given a heartbeat interface from a client-monitored system specified
as a rate at which heartbeats are produced and in what quantity, we can construct an MWT to
monitor it.

To use our MWT to monitor a system, the client-monitored system (here, the oscillator) de-
scribes what it needs the MWT to do by specifying a polytope, that is a multi-dimensional space,
defined by four parameters. The four client-provided parameters are: u, the minimum time be-
tween a heartbeat and an alarm; v , the maximum time between a heartbeat and an alarm; ε , the
probability of error allowed by the u delay; and δ , the probability of error in achieving thev delay.
For example, a client might specify that the MWT should allow a minimum of 10s and a maximum
of 20s after a heartbeat before an alarm, and it must achieve these time bounds with probabilities
of 95% for both. Thus, u is 10, v is 20, and ε and δ are 5%. The client also specifies the minimum
and maximum size of the heartbeat pulse. If the client gives us parameter values from within this
space, then we will provide a design model for an MWT that satisfies the goal diagram.

There are other, internally generated (rather than client-defined) parameters that formalize the
goal diagram’s constraints. For example, ε is broken into two internally generated parameters
to enable the goal proofs. Thus, in addition to the four client-provided parameters, there are 22
internally generated parameters specifying probability and timing constraints. These are listed in
the Supplemental Material.

4.4 Mapping to Molecules

We have designed and verified our MWT at the CRN level of abstraction, but it is useful to es-
timate the feasibility of actually implementing our design in DNA. For this purpose we used the
compiler reported in a very recent paper by Badelt et al. [6]. Using this compiler and its encoding
of the translation scheme of Chen et al. [14], we compiled the CRN for a small MWT and oscillator
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into DNA strands. The MWT has a four-rung Absence Detector ladder and a five-rung Thresh-
old Detector ladder and includes the three recovery reactions. As reported in the Supplemental
Material, this MWT alone compiles to 122 distinct DNA strands. The combination of this MWT
with the CRN for the three-phase oscillator (modified to include heartbeat production) compiles
to 147 distinct DNA strands. DNA strand displacement systems of this size are already feasible for
laboratory implementation. For example, Qian and Winfree [51] reported the successful imple-
mentation of a 130-strand DNA displacement device. Larger MWTs (ones with longer stochastic
delay ladders) will be feasible in the near future.

4.5 Discussion

To summarize, the MWT is a programmable, molecular safety mechanism. In the creation of the
design for the MWT, this article has proposed a new use of software engineering techniques and
tools in a development process that can be applied more generally to create other molecular sys-
tems. The goal-oriented requirements engineering process described in Section 2 systematically
develops the requirements for a molecular programmed system, using continuous stochastic logic
(CSL) to specify the requirements (leaf goals) and to verify the goal refinement with machine-
checkable proofs. The assignment of requirements to the components’ designs responsible for
achieving them is described in Section 3. The designs are formally specified as stochastic chemical
reaction networks (CRNs). CRNs recently have become widely used to specify programmed molec-
ular systems, since compilers now exist from CRNs into lower-level (DNA-strand-level) designs
and from there into molecules. Modeling the designs as CRNs supports both simulation and veri-
fication, and both MATLAB’s SimBiology and the PRISM probabilistic model checker accept CRN
input. This section has described the simulation and verification of the MWT, first as a stand-alone
device; second, when connected to a device, such as the oscillator, that needs to be monitored for
a failure event; and third, when connected to a device that needs to be triggered by the MWT to
also recover from its failure event at runtime.

5 RELATED WORK

In this section, we briefly describe additional related work in molecular design software, model
checking, and molecular oscillators.

Molecular design software. Other design tools for DNA computational devices exist but operate at
a very detailed design level. Two open-source software tools are CaDNAno [19] and CANDO [28].
They are widely used to design, debug, and optimize the stability and physical properties (torque,
flexibility, energy wells) of two-dimensional and three-dimensional DNA origami structures and
operate at a much lower level than our design considerations here.

Model checking. In related work, Kwiatkowska and Thachuk described the probabilistic verifica-
tion of CRNs for biological systems using the probabilistic model checker PRISM [33]. Their work
showed the benefits of probabilistic model checking for molecular systems and informed our work
for the MWT. PRISM interfaces with Visual DSD, a design tool for DNA strand displacement [36].

For large systems, including molecular ones, there is a disconnect between the size of the model
that can be automatically checked and the system. One of the problems we face is how to prune
the model such that we can do meaningful model checking. Pavese, Barberman, and Uchitel de-
scribed how to develop partial explorations of a system model automatically [49]. Their technique
has promise for use in molecular programs that we hope to explore. Since many molecular pro-
grams deal with extremely large, if not infinite, state spaces, probabilistic model checking on partial
system explorations might provide bounds on the reliability of a molecular system that is too large
to model check.
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Stochastic models for systems often have distributions that are empirically determined or only
partially known. Moreover, small differences between stochastic models’ parameter values and
their real-world counterparts can change the results of verification. Meedeniya et al. have used
Monte Carlo simulations to generate a reliability evaluation of a probabilistic model of an an-
tilock brake system with uncertain parameters [42]. Su, Chen, Feng, and Rosenblum recently ex-
tended previous work by Su and Rosenblum [57] on perturbations in model-checking parameters
in discrete-time Markov chains to allow model checking on time-bounded CTMCs with imprecise
values for transition rates [56]. Since molecular systems have imprecise reaction rates, determin-
ing the effects of parameter variance on the models is important, and the applicability of their
approaches to programmed molecular systems merits investigation.

More broadly, there has been significant recent progress in modeling biological or chemical
systems. Yordanov et al. formalized and encoded DNA computing to allow use of Satisfiability
Modulo Theories (SMT) [64]. Fisher, Harel, and Henzinger performed computational modeling of
biological systems as reactive systems [24]. Hetherington et al. and Sumner et al. composed an
advanced computational model of a biological system from sub-models describing its different as-
pects [25, 58]. David et al. created translators to convert SimBiology models for biological systems
into CTMCs for stochastic model checking or into ODEs for simulation [16].

Molecular oscillators. Hori and Murray, in a recent paper on synthetic biochemical oscillators,
stated that, “The reliable engineering of oscillators is an important milestone towards robust syn-
thesis of more complex dynamical circuits in synthetic biology” [26]. Gene regulatory networks,
for example, use oscillators, and Fern et al. recently reported the use of timer circuits to precisely
coordinate chemical events in vitro [23]. Three-phase oscillators seem to have been first reported
in Reference [34] and more recently in References [12, 13, 35]. The Two-phase Lotka-Volterra Os-
cillator also has been studied in the context of DNA strand displacement in References [35, 54].
Ballarini, Mardare, and Mura and Ballarini and Guerriero presented analyses of the three-phase
oscillator using PRISM and described both of the failures modes that our MWT design success-
fully detects [8, 9]. Srinivas et al. recently implemented in DNA a new oscillator specified by CRNs
using a compiler they created to translate the CRNs into DNA strands [55].

6 CONCLUSION

Monitoring the health of programmed molecular systems at runtime is critically important. Envi-
sioned applications such as biocompatible diagnostic systems and smart-drug therapy systems will
need such monitoring capabilities to operate safely. Using goal-oriented requirements engineer-
ing, machine-checked proofs, reaction network modeling, stochastic simulation, and probabilistic
model checking, we have designed and verified an MWT that can monitor a molecular system at
runtime, detect when the heartbeat signal from the monitored system stops, and alarm to trig-
ger its recovery. The MWT is modular, designed to operate correctly in the probabilistic chemical
environment, and robust to failure-prone components. Using chemical reaction networks as a pro-
gramming language, we have implemented both the MWT and a monitored system (a molecular
oscillator) as chemical reaction networks. We have demonstrated the MWT’s capabilities by show-
ing that the MWT reliably detects failures of the oscillator and triggers its recovery at runtime.

Many other programmed molecular systems will be needed and developed in the future. The
MWT is an example of a cybermolecular system, a molecular programmed system that senses
and controls its environment, including other molecular systems. Cybermolecular systems and
bio-compatible computing devices are moving rapidly from the laboratory to widespread usage
in daily life. We hope that our software-engineering-inspired approach to designing and verifying
the molecular watchdog timer can assist in the future design of predictable and safe molecular
systems.
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