Real-Time Programming with GNAT:
Specialised Kernels versus POSIX Threads

Juan A.dela Puentel, JoséF. Ruizl, and Jesus M. Gonzélez-Barahonaz,
1Universidad Politécnica de Madrid

2Universidad Carlos III de Madrid
E-mail: jpuentee@dit.upm.es, jfruizedit.upm.es, jgb@computer.org

Abstract

The fact that most of the GNAT ports are based on non real-
time operating systems leads to a reduced usability for
developing real-time systems. Otherwise, existing ports
over real-time operating systems are excessively complex,
since GNAT uses only a reduced set of their functionality,
and with a very specific semantic. This paper describes the
implementation of a low-level tasking support for the GNAT
run-time. In order to achieve a predictable real-time
behaviour we have developed a very simple library, built to
fit only the GNAT tasking requirements. We have also
designed a bare machine kernel which provides the
minimum environment needed by the upper layers.

Keywords: Ada-95, GNAI, run-time system, real-time
kernels

1. Introduction

The development of GNAT was a decisive step towards the
widespread availability of an efficient, high quality
compiling environment to Ada programmers. The fact that
GNAT is free software is of great interest for researchers,
since it allows new developments from existing source
code.

Although GNAT provides an effective, high quality
compiling environment for Ada 95, its usability for real-
time systems development is limited, as most of the GNAT
ports are based on mnon real-time operating .systems.
Although all GNAT ports implement most of the Annex C
and D functionality, many important features, such as true
pre-emptive priority scheduling, monotonic time, ceiling
locking, and kernel metrics, are not provided as specified in
the LRM. As a result, most GNAT implementations cannot
be used to program real-time systems with a predictable
behaviour.

Ada Letters, June 1999

Page 73

Looking at GNAT ports over real-time operating
systems, we can cite RTEMS[8], a free real-time executive
with a POSIX interface and support for multiprocessor
systems. But it has been designed for a generic use, and
there is a big overhead and an excessive complexity when
using it as low-level support for the GNAT tasking system.

The most common way of implementing GNARL! is on
top of native threads (usually POSIX threads or Pthreads
for short) for the given architecture. But GNAT tasking
implementation is very complete and specific, and when
implementing GNARL on top of Pthreads there is a high
overhead motivated by the similar level of abstraction of
Ada tasks and Pthreads[4]. Aside from the loss of
performance, it increases the complexity, leading to a
difficult measuring and bounding of the kernel metrics.
Indeed, in the case of many embedded systems a full-
blown implementation of Pthreads is usually considered to
be too expensive, and then the existence of a reduced and
simple thread support could be of great help.

Therefore, our purpose is to develop a very simple and
efficient real-time support for the GNAT tasking system,
adapted to its requirements. By not requiring support for
the more complex thread features, this approach permits an
implementation with very tight efficiency and timing
predictability requirements. The library that implements
the low level tasking (we call our library' JTK from Jose’s
Tasking Kernel) provides GNARL semantics and is written
in Ada®. The kemel that interacts with the underlying
hardware is written in C, with a small amount of assembly
code.

Our intention is to provide a freely available test-bed for
experimentation in language, compiler, and run-time
support for developers of real-fime embedded systems.

1. GNU Ada Runtime Library.
2_ About 1000 lines of code, not including test programs.

Volurne XIX, Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F329607.334742&domain=pdf&date_stamp=1999-06-01

This i%a first implementation to explore the validity of this
approach.

This paper is targeted on the real-time community.
There is a previous paper[9] that describes more deeply the
main design goals and implementation choices of JTK
from a wider point of view.

The remainder of this paper is organized as follows.
Section 2 is a brief overview of the JTK architecture and its
integration with GNARL. Section 3 explains the main
implementation details of JTK and how they are
implemented. Section 4 shows some performance results to
endorse the feasibility of our approach. Section 5
concludes with a summary of assessments, comments and
possible future work of this implementation.

2. The architecture of JTK

One of the goals of the GNARL development was to
provide an easily portable implementation, by means of a
layered design. Each layer provides all of the tasking-
related services required by the next higher layer through a
procedural interface. The architecture independent
components are clearly separated from the machine
dependent parts by means of a well defined interface,
called GNULLI'[1].

Therefore, the replacement of the lower-level tasking
implementation can be carried out in a very straightforward
manner. There are two ways of implementing a new run-
time system using this interface:

* A GNULLI interface can be built for an already existing
thread library. This is the most common approach to
building new non real-time GNAT ports. This is also the
way the RTEMS and VxWorks ports have been built.

This approach has clear advantages: most real-time
operating systems have a POSIX.1c compliant interface,
and it is currently well known how to build a GNULLI
on top of Pthreads. However, it is neither efficient nor
clear for two main reasons: First, the Pthread interface is
often built as a library which masks the native thread
interface for the operating system. And second, the
GNAT run-time library already provides a lot of support
for tasks, and implementing the high level part of
GNARL on top of Pthreads induces abstraction
inversion which causes inefficiency in the
implementation.

* The other way to build a real-time GNARL is to
implement a minimum kernel for task support with a

1. GNU Lower-Level Interface.

Ada Letters, June 1999

Page 74

GNULL interface, which does not make use of any
thread mechanism from the underlying operating
system. We believe that this approach, although harder
to implement, leads to more efficient and predictable
run-time support. Since GNARL provides most of the
functionality needed for tasking, only the missing, lower
level functions, have to be implemented, which results
in a comparatively small executive.

At the lowest level, we have developed a very simple
kernel that offers the functionality that a minimal real-time
operating system should provide. It has also been designed
to fit Ada tasks semantics as tightly as possible. In order to
provide an easily predictable environment, this kemel has
been designed with this objective in mind, from hardware
up. Therefore it operates in a single virtual address space
(no paging), it does not have a file system, and the only
devices supported are a timer and a serial port. These
simplifications eliminate unpredictable time delays due to
page faults, waiting for completion of IO, and I/O
completion interrupt processing[2].

Ada 95 Application Program
[Timer Service
GNU Ada Run-Time Layer
GNU Lower-Level Layer
JTK Library
Minimum Kernel

Bare ix86 Machine

Figure 1. Structure of the developed GNAT
tasking system.

JTK offers a priority driven scheduler with pre-emption.
It has a FIFO queue for each priority level in order to
provide for scalability. Tasks run until they are blocked or
until another task with a higher priority becomes ready to
execute.

It also provides two basic synchronization methods:
mutual exclusion and conditional synchronization. For
mutual exclusion two kinds of mutex objects are provided:
one operating as a simple binary semaphore, and the other
one using the Immediate Priority Ceiling Protocol, which
offers the possibility for read and write locking. For
conditional synchronization, JTK implements condition
variables, which are used by the timer and protected
objects.

The lower level task objects, as well as the scheduler,
have been defined as tagged objects, so there is an easy and
clean way of extending the implementation with new
scheduling policies. There are different scheduling

Volume XIX, Number 2

schemes in the literature, none of them fitting all the
different kinds of applications. Therefore we-have tried to
establish a flexible framework to allow the user to
implement the scheduling policy that is really needed.

3. Implementation

When thinking about developing a real-time application,
one of the most difficult aspects is bounding the worst-case
execution time (WCET). To obtain analytically a tight
measurement of this value, two issues are very important:
to have access to the source code (application, run-time
libraries and operating system) and to work with an
implementation as simple as.possible. Since we are
working with GNAT the source code is accessible (our
libraries and kernel are also free software), and simplicity
is the most important issue that we have had in mind in our
design.

The low-level task management exerts a high influence
on the overall behaviour of the whole system. Tasks change
their execution states frequently and it is important to
perform these actions in a predictable and efficient manner.
In our implementation the ready tasks are kept in a queue
sorted by priorities. When a task enters or exits the ready
state, the system must insert or remove the task from the
ready queue. All ready queue operations are executed in
fast, bounded time, without need for search loops. In our
library the kemel and tasks run in the same address space.
It allows task switching to be very fast, and climinates the
need for system call traps.

Signal management is an important issue for improving
Pthreads behaviour. GNARL has a very specific way of
managing signals[7], similar in many senses to the way
used by Pthreads. What happens is that GNARL does
almost all the job on its own, and uses the low level support
in a minimal mode. Since Pthread does not offer the
possibility of a reduced use there is a lot of redundant and
complex processing that obscures the measurement of the
kernel metrics. Our approach is to notify the GNARL layer
of the occurrence of the signal and let this layer process the
signal_ All the low-level management has been reduced to a
minimum. There is a table with a one-to-one
correspondence between the waiting tasks and their related
signals, leading to a very simple and efficient signal
delivery model.

As for the timer support, we have modified the GNARL
layer so that only one timer request can be issued at a time
(using a timer server task). Therefore the underlying library
does not have to deal with more than one simultancous
request. This simplification leads to reducing the overhead
involved in managing different queues, and to an easier

Ada Letters, June 1999

Page 75

way of understanding what these layers do. This also
makes it easier to bound execution times. Moreover, the
way used to program the timer is very similar to the way it
is done in RT-Linux[10], achieving microsecond resolution
timers.

The implementation of Ada ATC (Asynchronous
Transfer of Control) in GNARL is based on per-thread
signals (when it is layered over Pthreads). If we are using
JTK for low-level support the design can be simplified. As
we have access to the saved state of the target task, and
consequently its program counter, we can change this state
to redirect control. The target task will begin the transfer of
control as soon as it is next scheduled to exccute.

4. Performance

To evaluate the performance of this implementation we
have tested two kinds of programs as a first attempt:

1. Two tasks which only perform context switches.
The times reported are averages taken over 100
000 iterations of each task.

2. Two tasks executing 100 loops inside which they
perform a select statement with a delay
alternative. The measurcments indicate the
amount of processor time that a third task could
use normalized to the maximum value obtained.
In this way, changing the value of the delay
alternative produces results which are of the same
amount.

The tests have been executed on the same machine
(Pentium II at 233 MHz). The measurements have been
taken over three different GNAT implementations:

1. GNAT 3.10p over JTK.

2. GNAT 3.10p over Linux, using the FSU
implementation of Pthreads.

3. GNAT 3.10p over DOS, using the FSU
implementation of Pthreads. :

Context switch time is a very important feature in real-
time systems, with a high influence on timing behaviour.
The notion of cheap concurrency has been around in
Pthreads and related works, which try to offer lightweight
processes. Figure 2 shows the results of the first test, from
which we can see that there is an increase of 170% of
efficiency in context switch time with respect to the Linux
implementation, and of 300% compared to the DOS
implementation.

Volume XIX, Number 2

3.5

31e &t et

\""&‘“"A

2,5 -

——JTK
—m— Pthreads over Linux
1.5 1 ~ge- Pthreads over DOS

time for context switch
(mlcroseconds)

I

0 —— ————————r
1 2 3 4 56 7 8 910
trial number

Figure 2. Time taken by a task context switch

1.2

0.8 1

——JTK
—— Pthreads over Linux

0.6 -

0.4

0.2 -

normalized free CPU utilizatlon

2 3 4 5 6 7 8 9 10

-k

trial number

Figure 3: Free CPU when using select statements with a delay alternative

Ada Letters, June 1999 Page 76 Volume XIX, Number 2

One aspect where we have tried to enhance is time
management. The second test is focused on showing a
measurement of this improvement. This test has not been
applied to the GNAT port that uses Pthreads over DOS
because it does not run well with priorities. In fact, the
DOS implementation has not a true pre-emptive priority
scheduling. Figure 3 displays the results of this test, which
show that there is an improvement of about 20% in the
amount of CPU time which is needed for the execution of
delay statements.

Efficiency is certainly an issue, but in real-time
applications predictability is the main problem. Figure 3
has not enough resolution to show this aspect, but from the
experiments that we have carried out we have measured a
difference between the best and the worst trial which is
about 350 times bigger on the Linux implementation than
on JTK.

5. Conclusion

We have shown that it is possible to significantly improve
the predictability and efficiency of tasking in GNAT by
designing a simple multitasking kernel which is directly
tailored to support the Ada 95 functionality. By eliminating
dependence on Pthreads, we have achieved a bare machine
implementation with a predictable execution timing. We
also have eliminated the very unpredictable delays due to
operating system processes. In summary, we believe that
true real-time programming in Ada 95 is a real possibility
with our approach.

Of course, since the POSIX interface and semantics are
not used, there is a loss in portability and generality. We
believe that is the price that has to be paid for improved

determinism and efficiency, which is the primary goal of
real-time systems.

The JTK library is available from:
fip://ftp.dit upm es/str/software/jtl/

and is covered by a modified GPL license. More
information about the JTK library can be consulted at:

http:/fwww.dit.upm.es/~jfruiz/jtk.html

Acknowledgments

This work has been partially supported by CICYT under
project TIC96-0614.

Ada Letters, June 1999

Page 77

References

(1] T.P. Baker and E.W. Giering, GNU Low-Level Interface
Definition. Technical Report, Florida State University, June
1993. Available by anonymous ftp from fip.cs.fsu.edu.

[2] TP. Baker, Frank Mueller and Viresh Rustagi, Experience
with a Prototype of the POSIX Minimal Realtime System
Profile, Proceedings of the 11th IEEE Workshop on Real-Time
Operating Systems and Software, May 1994,

[3] T.P. Baker, Dong-Ik Oh and Seung-Jin Moon, Low-Level Ada
Tasking Support for GNAT Performance and Portability
Improvements, Wadas '96 Proceedings, 1996.

[4] E.W. Giering and T.P. Baker, POSIX/Ada Realtime Bindings:
Description of Work in Progress, In Proceedings of the Ninth
Annual Washington Ada Symposium, ACM, July 1992,

[S1Dong-lk Oh and TP. Baker, Gmu Ada'95 Tasking
Implementation: Real-Time Features and Optimization, In
Proceedings of the 1997 Workshop of Languages, Compilers
and Tools for Real-Time Systems (LCT-RTS), Las Vegas,
Nevada, 1997.

[6] Dong-Tk Oh and T.P. Baker, Optimization of Ada’95 Tasking
Constructs, T¥iada’97, St. Louis, Missouri, 1997.

[7] Dong-Ik Oh, T.P. Baker and Seung-Jin Moon, The GNARL
Implementation of POSIX/Ada Signal Services, In Ada-
Europe’96 Proceedings, pages 276-286.

[8]1 On-Line Applications Research Corporation, RTEMS
Applications C User’s Guide, Sep 1997, hup//
WWW,gnatrtems.com.

[9] José F. Ruiz and Jesiis M. Gonz4lez-Barahona, Implementing
a New Low-Level Tasking Support for the GNAT Runtime
System, In Ada-Europe’'99 Proceedings, Santander, Spain,
June 1999.

[10]V. Yodaiken, The RT-Linux Approach to Hard Real-Time.

Available at htipz//rtlinux.cs.nmt edw/~rtlinuxwhitepaper/
short.html.

© ACM 1999 1-58113-177-1/99/0008...§5.00

Volurme XIX, Number 2

