
Real-Time Programming with GNAT: 
Specialised Kernels versus POSIX Threads 

Juan  A.  de la  P n ~ t c  1, Jos~ F. R u i z  l, and  Jesds  M.  Gon~_Alez-Barahona 2, 

l U n i v e r s i d a d  P o l i t t c n i c a  de  M a d r i d  

2Univers idad  Car los  III  de  M a d r i d  

E-maJh jpuente@dit, upm. es, j fruiz@dit, upm. es, jgb@computer, orq 

Abstract  

The fact that most o f  the GNAT ports are based on non real- 
time operating systema leads to a reduced usability for  
developing real-time systems. Otherwise, existing ports 
over real-time operating systems are excessively complex, 
since GNAT uses only a reduced set of  their functionality, 
and with a very specific semantic. This paper describes the 
implementation o f  a low-level tusking support for  the GNAT 
run-time. In order to achieve a predictable real-time 
behaviour we have developed a very simple library, built to 

f i t  only the GNAT tasking requirements. We have also 
designed a bare machine kernel which provides the 
minimum environment needed by the upper layers. 

Keywords: Ada-95, GNAT, run-time system, real-time 
kernels 

1. Introduction 

The development of  GNAT was a decisive step towards the 
widespread availability of  an efficient, high quality 
compiling environment to Ada pregrammers. The fact that 
GNAT is free software is of great interest for researchers, 
since it allows new developments from existing source 
code. " 

Although GNAT provides an effective, high quality 
compiling environment for Ada 95, its usability for real- 
time systems development is limited, as most of  the GNAT 
ports are based on non real-time operating systems. 
Although all GNAT ports implement most of  the Annex C 
and D functionality, many important features, such as true 
pre-emptive priority scheduling, monotonic time, ceiling 
locking, and kernel metrics, are not provided as specified in 
the LRM. As a result, most GNAT implementations cannot 
be used to program real-time systems with a predictable 
behaviour. 

Looldug at GNAT ports over real=time operating 
systems, we can cite RTEMS[8], a flee real-time executive 
with a POSIX interface and support for multiprocossor 
systems. But it has been designed for a generic use, and 
there is a big overhead and an excessive complexity when 
using it as low-level support for the GNAT tasking system. 

The most common way of  implementing GNARL 1 is on 
top of  native threads (usually POSIX threads or Pthreads 
for short) for the given architecture. But GNAT tasking 
implementation is very complete and specific, and when 
implementing GNARL on top of  Pthroads there is a high 
overhead motivated by the simi]ar level of  abstraction of  
Ada tasks and Pthreads[4]. Aside from the loss of  
performance, it increases the complexity, leading to a 
difficult measuring and bounding of the kernel metrics. 
Indeed, in the case of  many embedded systems a fidl- 
blown imple~nentation of  Pthreads is usually considered to 
be too expensive, and then the existence of a reduced and 
simple thread support could be of  great help. 

Therefore, our purpose is to develop a very simple and 
efficient real-time support for the GNAT tasking system, 
adapted to its requi~ments. By not requiring support for 
the more complex thread features, this approach permits an 
implementation with very tight efficiency and timing 
predictability requirements. The library that implements 
the low level tasking (we call our library'JTK from Jose's 
Tasking Kernel) provides GNARL semantics and is written 
in Ada 2. The kernel that interacts with the underlying 
hardware is written in C, with a small amount of  assembly 
code. 

Our intention is to provide a fleely available test-bed for 
experimentation in language, compiler, and run-time 
support for developers of  real-time embedded systems. 

1. GNU Ada Runt ime Library. 

2. About  1000 lines o f  code, not  includin S test programs. 

Ada Letters, June 1999 Page 73 Volume XIX, Number 2 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F329607.334742&domain=pdf&date_stamp=1999-06-01


This i~a  first implementation to explore the validity o f  this 
approach. 

This paper is targeted on the real-time community.  
There is a previous paper[9] that describes more deeply the 
main design goals and implementation choices o f  JTK 
from a wider point o f  view. 

The remainder o f  this paper  is organized as follows. 
Section 2 is a br ie f  overview of  the JTK architecture and its 
integration with GNARL. Section 3 explains the main 
implementation details o f  JTK and how they are 
implemented. Section 4 shows some performance results to 
endorse the feasibility o f  our approach. Section 5 
concludes with a s,wnmary o f  assessments, comments  and 
possible future work o f  this implementation. 

2. T h e  arch i t ec ture  o f  J T K  

One o f  the goals o f  the GNARL development  was to 
provide an easily portable implementation, by  means o f  a 
layered design. Each layer provides all o f  the tasking- 
related services required by  the next higher layer through a 
procedural  interface. The architecture independent 
components  are clearly separated Erom the machine 
dependent  parts by means o f  a well  defined interface, 
called GHULLI] [ I ] .  

Therefore,  the replacement o f  the lower-level tasking 
implemeutation can be carried out in a very  straightforward 
manner. There are two ways o f  implementing a new run- 
t ime system using this interface: 

• A GNULLI  interface can be built for  an already existing 
thread library. This is the most  common  approach to 
building new non real-time GNAT ports. This is also the 
way the RTEMS and VxWorks ports have been  built. 

This approach has clear advantages: most  real-time 
operating systems have a POSIX. lc  compliant interface, 
and it is currently well known how to build a GNULLI  
on top o f  Pthreads. However, it is neither efficient nor  
clear for  two main reasons: First, the Pthread interface is 
often built as a library which masks the native thread 
interface for the operating system. And second, the 
GNAT run-time library aheady provides a lot o f  support 
for tasks, and implementing the high level part o f  
GNARL on top o f  Pthreads induces abstraction 
inversion which causes inefficiency in the 
implementation. 

• The other way to build a real-time GNARL is to 
implement a minimum kernel for  task support with a 

I. GNU Lower-Level Interface. 

G N U LL interface, which does not make use o f  any 
thread mechanism f rom the underlying operating 
system. We believe that this approach, although harder 
to implement,  leads to more  efficient and  predictable 
run-time support. Since GNARL provides most o f  the 
functionality needed for tasking, only the missing, lower 
level functions, have to be implemented, which results 
in a comparatively small executive. 

At the lowest level, we have developed a very simple 
kernel that offers the functionality that a minimal ~al- t i tne 
operating system should provide. It has also been designed 
to fit Ada tasks semantics as tightly as possible. In order to 
provide an easily predictable environment, this kernel has 
been designed with this objective in mind, fi-om hardware 
up. Therefore  it operates in a single virtual address space 
(no paging), it does  not have a file system, and the only 
devices supported are a t imer and a serial port. These 
simplifications eliminate unpredictable t ime delays due to 
page faults, waiting for complet ion o f  I/O, and I/O 
completion interrupt proeessing[2]. 

Ada 95 Application Program 

l 1"truer Service 

GNU Ada Run-Time Layer 

GNU Lower-Level Layer 

JTK Library 

Minimum Kernel 

Bare ix86 Machine 

Rgure 1. Structure of the developed GNAT 
tasking system. 

JTK  offers a priority driven scheduler with pre-emption. 
It has a FIFO queue for each priority level in order to 
provide for scalability. Tasks run until they are blocked or 
until another task with a higher  priority becomes ready to 
execute. 

It also provides two basic synchronization methods: 
mutual exclusion and conditional synchron/zation. For 
mutual exclusion two kinds o f m u t e x  objects are provided: 
one operating as a simple binary semaphore, and the other 
one using the Immediate Priority Ceiling Protocol, which 
offers the possibility for  read and write locking. For 
conditional aynchronization, JTK implements condition 
variables, which are used by the t imer and protected 
objects. 

The lower level task objects, as well as the scheduler, 
have been defined as tagged objects, so there is an easy and 
clean way of  extending the implementation with new 
scheduling policies. There arc different scheduling 

Ada Letters, June 1999 Page 74 Volume X/X, Number 2 



schemes in the literature, none o f  them fitting all the 
different kinds o f  applications. Therefore we .have tried to 
establish a flexible framework to allow the user to 
implement the scheduling policy that is really needed. 

3. Implementation 

V4hen thinking about developing a real-time application, 
one of  the most  difficult aspects is bounding the worst-case 
execution t ime (WCET). To obtain analytically a tight 
measurement o f  this value, two issues are very impmmnt:  
to have access to the source code (application, run-time 
libraries and operating system) and to work with an 
implementation as simple as poss ib le .  Since we are 
working with GNAT the source code is accessible (our 
libraries and kernel are also free software), and simplicity 
is the most important issue that we have had in mind in our 
design. 

The low-level task management  exerts a high influence 
on the overall behaviour o f  the whole system. Tasks change 
their execution states frequently and it is important to 
perform these actions in a predictable and efficient manner. 
In our implementation the ready tasks are kept in a queue 
sorted by priorities. When a task enters or exits the ready 
state, the system must insert or remove the task from the 
ready queue. All ready queue operations are executed in 
fast, bounded time, without need for search loops. In our 
library the kernel and tasks run in the same address space. 
It allows task switching to be very fast, and eliminates the 
need for system call traps. 

Sitsnal management  is an important issue for improving 
Pthreads behaviour. GNARL has a very specific way o f  
managing signals[7], similar in many senses to the way 
used by Pthreads. What happens is that GNARL does 
almost all the job on its own, and uses the low level support 
in a minim~tl mode. Since Pthread does not offer the 
possibility o f  a reduced use there is a lot o f  redundant and 
complex processing that obscures the measurement o f  the 
kernel metrics. Our approach is to notify the GNARL layer 
o f  the occurrence o f  the signal and let this layer process the 
signal. All the low-level management  has been reduced to a 
minimum. There i s  a table with a one-to-one 
correspondence between the waiting tasks and their related 
signals, leading to a very simple and efficient signal 
delivery model. 

As for the timer support, we have modified the GNARL 
layer so that only one t imer request can be issued at a t ime 
(using a t imer server task). Therefore the underlying library 
does not have to deal with more than one simultaneous 
request. This simplification leads to reducing the overhead 
involved in managing different queues, and to an easier 

way o f  understanding what these layers do. This also 
makes it easier to bound execution times. Moreover, the 
way used to program the t imer is very similar to the way it 
is done in RT-Linux[10], achieving microsecond resolution 
t irrlers.  

The implementation of  Ada ATC (Asynchronous 
Transfer o f  Control) in GNARL is based on per-thread 
signals (when it is layered over Pthreads). I f  we are using 
JTK for low-level support the design can be simplified_ As 
we have access to the saved state o f  the target task, and 
consequently its program counter, we can change this state 
to redirect control. The target task will begin the transfer o f  
control as soon as it is next scheduled to execute. 

4. Performance 

To evaluate the performance o f  this implementation we 
have tested two kinds o f  programs as a first attempt: 

1. Two tasks which only perform context switches. 
The limes reported are averages taken over 100 
000 iterations o f  each task. 

2. Two tasks executing 100 loops inside which they 
perform a select statement with a delay 
alternative. The measurements indicate the 
amount o f  processor time that a third task could 
use normalized to the max imum value oblained. 
In this way, changing the value o f  the delay 
alternative produces results which are o f  the same 
amount. 

The tests have been executed on the same machine 
(Pentium II  at 233 MHz).  The measurements have been 
taken over three different GNAT implementations: 

1. GNAT 3.10p over JTK. 

2. GNAT 3.10p over Linux, using the FSU 
implementation o f  Pthreads. 

3. GNAT 3.10p over DOS, using the FSU 
implementation o f  P thr~ds .  

Context sw/tch time is a very important feature in real- 
lime systems, with a high influence on timing behaviour. 
The notion o f  cheap concurrency has been around in 
PthreadS and related works, which fry to offer lightweight 
processes. Figure 2 shows the results o f  the first test, from 
w h i c h  we can see that there is an increase o f  170% of  
efficiency in context switch time with respect to the Linux 
implementation, and o f  300% compared to the DOS 
implementation. 

Ada Letters, June 1999 Page 75 Volume )(IX, Number 2 



3.5 

• ~ , .  2.s 
o'J 

¢J, = Z  
0 o e 1.5 
• . -  U 

t im  

(D  " - "  1 

E 
º "  0.5 

0 
1 2 3 4 5 6 7 8 9 10 

t r i a l  n u m b e r  

¢ JTK 

Pthreads over Linux 

~ Rhreads over DOS 

F i g u r e  2. T ime  taken  b y  a task  c o n t e x t  s w i t c h  

1.2 

= m  

"~  0.8 

(.1 
0.6 

" ~  0.4 

m 

(g 0.2 
E 
L - -  

O 
C 

1 2 3 4 5 6 7 8 9 10 

tr ial  n u m b e r  

I I Rhreads over Linux 

F igu re  3: Free CPU w h e n  u s i n g  se lec t  s t a t e m e n t s  w i t h  a de lay  a l te rna t i ve  

Ada Letters, June 1999 Page 76 Volume XiX, N u m b e r  2 



One aspect where we have tried to enhance is t ime 
management .  The second test is focused on showing a 
measurement  o f  this improvement.  This test has not been 
applied to the GNAT port that uses Pthreads over  DOS 
because it does not run well with priorities. In fact, the 
DOS implementation has not a true pre-emptive priority 
scheduling. Figure 3 displays the results o f  this test, which 
show that there is an improvement  o f  about 20% in the 
amount o f  CPU timc which is needed for  the execution o f  
delay statements. 

Efficiency is certainly an issue, but in real-time 
applications predictability is the mairl problem. Figure 3 
has not enough resolution to show this aspect, but f rom the 
experiments that we have carried out we have measured a 
difference between the best  and the worst  trial which is 
about 350 times bigger on the Lmux implementation than 
on JTK. 

5. Conclus ion 

We have shown that it is possible to significantly improve 
the predictability and efficiency o f  tasking in GNAT by 
desim~ing a simple multitasking kernel which is directly 
tailored to support the Ada 95 functionality. By  eliminating 
dependence on Pthreads, we have achieved a bare machine 
implementation with a predictable execution timing. We 
also have eliminated the very unpredictable delays due to 
operating system processes. In 8ummm'y, we believe that 
true real-time programming in Ada 95 is a real possibility 
with our approach. 

O f  course, since the POSIX interface and semantics are 
not used, there is a loss in portability and generality. We 
believe that is the price that has to be paid for improved 
determinism and efficiency, which is the pr imary goal o f  
real=time systems. 

The JTK library is available from: 

tip:l/tip, dit.upm.es/sU/soflware/jtld 

and is covered by  a modified GPL license. More  
information about the JTK library can be consulted at: 

http ://www. dit .upm.es/-j  fruiz/jtk.html 

R e f e r e n c e s  

[I] T.P. Baker and E.W. Gierin~ GNU Low-Level Interface 
Definition. Technical Report, Florida State University, June 
1993. Available by anonymous tip from flp.cs.fsu.edu. 

[2] T.P. Baker, Frank Mueller and Viresh Rustagi, Experience 
with a Prototype of  the POSIX Minimal Realtime System 
Profile, Proceedings of the l l th IEEE Workshop on Real.Time 
Opera•ng ~/stems and Software, May 1994. 

[3] T.P. Baker, Dong-lk Oh and Seung-Jin Moon, Low-Level Ada 
Tasking Support for GNAT Performance and Portability 
Improvements, Wadas "96 Proceedings, 1996. 

[4] E.W. Giering and T.P. Baker, POSIX/Ada Realfime Bindings: 
Description of Work in Progress, In Proceedinga of the Ninth 
Annual Washington Ada 5Symposium, ACM, July 1992. 

[5] Dong-Ik Oh and T.P.  Baker, Gnu Ada'95 Tasking 
Implementation: Real-Time Features and Optimization, In 
Proceedings of the 1997 Workshop of Languages, Compilers 
and Tool,¢ for Real-Time Systema (LCT-RTS), Las Velds, 
Nevada, 1997. 

[6] Dong-lk Oh and T.P. Baker, Optimization of  Ada'9$ Tasking 
Constructs, Triada'97, St. Louis, Missouri, 199% 

[7] Dong-Ik Oh, T.P. Baker and Seung-Jin Moon, The GNARL 
Implementation of POSIX/Ada Signal Services, In Ada- 
Europe'96Proceedings, pages 276-286. 

[8] On-Line Applications Research Corporation, RTEMS 
Applications C User's Guide, Sep 1997, hnp'Jl 
www. gnalrtems.com. 

[9] Jos6 F. Ruiz and Jes6s M. GonzAlez-Barahona, Implementing 
a New Low-Level Tasking Support for the GNAT Runtime 
System, In Aria-Europe'99 Proceedings, Santander, Spain, 
June 1999. 

[10IV. Yodaiken, The RT-Limut Approach to Hard Real-Tune. 
Available at http://rtlimm.cs.nmt.edu/--rtlinuxwhitepaper/ 
short.hint. 

© ACM 1999 1-56113-177-119910006...$5.00 

Acknowledgments  

This work has been partially supported by CICYT under 
project TIC96-0614.  

Ada Letters, June 1999 Page 77 Volume XIX, Number 2 


