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Abstract

Object detection in videos is an important task in computer vision for various appli-
cations such as object tracking, video summarization and video search. Although
great progress has been made in improving the accuracy of object detection in
recent years due to the rise of deep neural networks, the state-of-the-art algorithms
are highly computationally intensive. In order to address this challenge, we make
two important observations in the context of videos: (i) Objects often occupy only a
small fraction of the area in each video frame, and (ii) There is a high likelihood of
strong temporal correlation between consecutive frames. Based on these observa-
tions, we propose Pack and Detect (PaD), an approach to reduce the computational
requirements of object detection in videos. In PaD, only selected video frames
called anchor frames are processed at full size. In the frames that lie between
anchor frames (inter-anchor frames), regions of interest (ROIs) are identified based
on the detections in the previous frame. We propose an algorithm to pack the ROIs
of each inter-anchor frame together into a reduced-size frame. The computational
requirements of the detector are reduced due to the lower size of the input. In order
to maintain the accuracy of object detection, the proposed algorithm expands the
ROIs greedily to provide additional background around each object to the detector.
PaD can use any underlying neural network architecture to process the full-size
and reduced-size frames. Experiments using the ImageNet video object detection
dataset indicate that PaD can potentially reduce the number of FLOPS required for
a frame by 4×. This leads to an overall increase in throughput of 1.25× on a 2.1
GHz Intel Xeon server with a NVIDIA Titan X GPU at the cost of 1.1% drop in
accuracy.

Keywords Object Detection · Neural Network · Temporal Correlation · Object occupancy ·
Region-of-Interest packing
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1 Introduction

The task of object detection in videos (17; 47; 18; 16; 46; 45; 3; 31; 24; 39) has been gaining attention
in recent years. It serves as an important preprocessing task for object tracking and for several
other video processing tasks such as video summarization and video search. Many object detection
applications require video frames to be processed in real-time in resource-constrained environments.
It is thus imperative to design systems that can detect objects in videos accurately, but also in a
computationally efficient manner.

Still-image object detection has been studied extensively in the past. The accuracy and speed of still-
image object detection have improved by leaps and bounds in recent years due to advances in deep
convolutional neural networks (CNN). Recent CNN-based object detectors include Faster-RCNN
(37), SSD (25), YOLO (34; 35; 36) and RFCN(4). These still-image object detectors can be extended
for object detection in videos by using them on a per-frame basis. However, this is inefficient as
there is a strong temporal correlation between frames in a video. This temporal redundancy can be
leveraged either to improve the accuracy or speed of object detection. In the recent past, there have
been several attempts to improve the accuracy of object detection in videos by either integrating the
bounding boxes (17; 18; 10; 40) or features (16; 46; 45; 12) across frames. However, there has not
been enough attention on leveraging this temporal redundancy to improve speed. Some exceptions to
this norm are (47; 3; 31; 24; 39). In this work, we propose a method, Pack and Detect (PaD), for fast
object detection in videos that can work with any underlying object detector.

PaD leverages two key opportunities in the context of object detection in videos. First, the objects of
interest often occupy only a small fraction of an image. Second, there is a strong correlation between
successive frames in a video. In PaD, only selected frames called anchor frames are passed in their
entirety to the underlying object detector. In frames that lie between anchor frames (inter-anchor
frames), the detections from the previous frame are used to identify ROIs in the image where an
object could potentially be located. The ROIs are packed in a reduced-size image that is fed into the
detector, resulting in lower computational requirements.

We propose a ROI packing algorithm based on the following criteria:

1. Each ROI is expanded to provide as much background context as possible to maintain the
accuracy of the detector.

2. There is minimal loss of resolution and no change in aspect ratio to maintain the accuracy
of the detector.

3. Each object is present in a unique ROI.

4. The space in the reduced-size frame is used as efficiently as possible.

We evaluate PaD by implementing it on top of the SSD300 object detector and evaluating it with the
ImageNet video object detection dataset. Our results indicate that PaD reduces the FLOP count for
reduced-size frames by around 4×. Overall, PaD achieves 1.25× increase in throughput with only a
1.1% drop in accuracy.

2 Related Work

Object Detection in Videos

The temporal redundancy present in videos has been exploited before to improve the accuracy and
speed of object detection. In (17; 18; 10; 40), the aggregation of information from neighbouring
frames is done at the bounding box level to improve accuracy. In (17), per-frame object detection
is combined with multi-context suppression, motion-guided propagation and object tracking to
improve detection accuracy. In (10; 40), non-maximum suppression is done over bags of frames.
In (16; 46; 45; 12), integration of the CNN features across neighbouring frames is used to improve
accuracy. In (16), a CNN is combined with a Long Short Term Memory (LSTM) to obtain temporal
features for object detection. In (46; 45; 12), the features from neighbouring frames are aggregated
together using optical flow information to improve feature quality. These methods (17; 18; 10; 40; 16)
pose large computation requirements, making them often unsuitable for real-time processing.
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On the other hand, (47; 3; 31; 24; 39) are relatively faster methods aimed at object detection in videos.
The methods in (3; 24; 39) are faster by virtue of using a faster still-image object detector or an
efficient backbone network. In (47), the feature maps from selected anchor frames are transferred to
neighbouring frames by warping them with optical flow information, leading to reduced computation.
In (31), neighbouring frames are subtracted to give rise to a sparse input that is processed with a
sparsity-aware hardware accelerator (8) to achieve computational savings.

PaD differs vastly from the prior methods proposed to speed-up video object detection. PaD can be
used alongside previous methods such as (47) and on top of existing efficient object detectors that
operate on a per-frame basis (3; 24; 39). Moreover, PaD does not require any specialized hardware
accelerator like in (31) to obtain computational savings.

Efficient Neural Networks

Several efforts have attempted to reduce the computational requirements of neural networks. Quan-
tization with retraining was shown to improve the efficiency of neural network implementations
in (42). Deep compression (9) combined pruning, trained quantization and weight compression and
demonstrated large speedups on a custom hardware accelator (8). Subsequent efforts have explored
structured sparsity (43) by pruning filters (26; 43; 7; 29; 22; 11) of a CNN. MobileNet (13) replaces
the standard convolution with a combination of depth-wise and point-wise convolution to reduce
computation. SqueezeNet (14) uses network architecture modifications to reduce the number of
computations and memory. Scalable-effort classifiers reduce computational requirements by first
using lower-complexity classifiers to process an input and subsequently using higher-accuracy classi-
fiers only when needed (41). A similar approach is taken by Big-Little networks (32). Conditional
computation (2) selectively activates certain parts of the network depending on the input. The policy
for deciding which parts of the network to activate is learnt using reinforcement learning. Dynamic
deep neural networks (D2NN) (23) work in a similar manner to conditional computation and turn
on/off regions of the network using reinforcement learning. DyVEDeep (6) reduces computations in
neural networks dynamically by using three strategies - saturation prediction and early termination,
significance driven selective sampling and similarity-based feature map approximation.

The above methods focus on modifications to the network to reduce computations and achieve
speedup. In this work, we take a complementary approach and compress the inputs that we feed into
the network. Hence, PaD is orthogonal to most existing techniques and can be used in combination
with them.

Visual Attention Mechanism

Inspired by human vision, there have been several attempts (20; 33; 30; 1; 19; 15) to reduce com-
putation by processing an image as a sequence of glimpses rather than as a whole. The notion of a
foveal glimpse is somewhat similar to the idea of ROI discussed here. However, there are several
important differences. A foveal glimpse is a high resolution crop of an important region in the image
that is crucial to the task at hand. In our work, we pack all the ROIs together in a single frame and
do not process them sequentially. Further, the location of ROIs is inferred from the detections in
the previous frame in a video and does not need an attention mechanism. Also, a foveal glimpse
obtains crops by extracting pixels close to the location target at high resolution and pixels far from
the location target at low resolution. We do not employ multi-resolution processing. Hence, our work,
although inspired from the notion of foveal attention is considerably different.

Multiple Object Tracking

Object detection in video is a precursor to the problem of multiple object tracking. Once the objects
are detected in the video, the detections are linked together to form a track. This problem is studied
separately from the object detection problem in the literature. The ImageNet VID dataset used in this
work does not have ground truth labels to measure the tracking metrics. In the MOT challenge (27),
the detections that are input to the tracker are provided with the dataset. Several popular trackers
such as (21; 44; 28; 38) have garnered attention through the challenge. While the use of detection
and tracking to complement each other to improve accuracy or speed is possible, it is not well studied
in the literature. In (5), the detection and tracking have been used in a complementary fashion to
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Figure 1: Histogram of object occupancy ratio

Figure 2: Histogram of Intersection over Union (IoU) of regions containing objects between consecu-
tive frames

improve the accuracy. In future work, we will explore the potential of combining detection and
tracking to improve speed.

3 Motivation

3.1 Occupancy of objects in frames

PaD leverages the hypothesis that the objects of interest occupy only a small fraction of the area in
the frame. We support this hypothesis using statistics from a popular video dataset. Figure 1 is a
histogram of the object occupancy ratio in the ImageNet VID validation set containing 555 videos
with 176126 frames. From the figure, we see that the objects occupy only 22.7% of the frame on
average. In a vast majority of the frames, the objects occupy less than 30% of the frame.

3.2 Temporal correlation of object locations across frames

It is well known that successive frames in a video are likely to be highly correlated. We illustrate this
through a statistical analysis of the ImageNet VID validation set. Figure 2 presents a histogram of
the object occupancy area Intersection over Union (IoU) statistics between consecutive frames in
the dataset. In the figure we can clearly see a sharp peak close to 1. On average, the IoU of areas
containing objects between consecutive frames is 94.4%.
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Figure 3: Overall Architecture of PaD

4 Pack-and-Detect: Approach and Algorithms

4.1 Overview

An overview of the PaD approach is presented in Figure 3. Full-sized video frames are processed at
regular intervals (by designating the first of every d frames as an anchor frame). In other frames, ROIs
are identified based on the locations of the detections from the previous frame. Only detections with
a minimum confidence threshold τ are taken into consideration. An ROI packing algorithm attempts
to pack the ROIs into a reduced-size frame. If the packing is successful, then the reduced-size frame
is processed instead, giving rise to computational savings. Once the reduced-size frame is processed
using the CNN detector, the object locations are mapped back to the original frame. However, if
the packing is not successful, then the frame is processed at full size, incurring an overhead due
to checking whether ROI packing is possible. We demonstrate that this tradeoff is often favorable,
resulting in a net improvement in the speed of object detection.

4.2 ROI packing algorithm

Figure 4 describes the ROI packing algorithm. As a first step in the algorithm, we construct a graph
where nodes represent ROIs and an edge connects two nodes if the corresponding ROIs intersect. We
find all connected components of this graph. We then find the enclosing bounding box over the union
of ROIs in each connected component. We iterate the connected components algorithm until the final
bounding boxes do not overlap. This constraint is important because if two bounding boxes overlap,
then parts of the same object could be present two or more times in the packed frame. Once the
number and size of the bounding boxes are decided, the layout of the bounding boxes is determined
by using the algorithm presented in Figure 5. Once the layout is decided, a check is done to see
whether the bounding boxes can fit in the layout. If it is not possible to fit the bounding boxes in the
layout, the image is processed at full size.

If the bounding boxes can be fit in the layout, a post-processing step is performed as described
below. Our experiments indicated that neural network based object detectors are often overfit to the
background context of the object to be detected. Consequently, the accuracy of the object detector
degrades if there is no background context. To address this challenge, we extend each bounding box
to provide as much context as possible to the detector. The algorithm for extending the bounding
boxes works as follows. We decide whether to first extend the boxes horizontally or vertically. For the
sake of discussion, let us assume that the choice is to first extend all the bounding boxes horizontally.
We find all the bounding boxes that could potentially intersect when extended horizontally. We
extend all bounding boxes horizontally until the layout size is reached or the bounding boxes start
intersecting with each other. Then, we repeat the same procedure in the other dimension. Once
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Procedure to pack the ROI’s of an image to form a lower sized image

Find all connected components in a graph where the nodes
are the bounding boxes of the ROI’s and two nodes are
connected if the corresponding bounding boxes intersect

Find the enclosing bounding box around the union of bounding boxes
in each connected component and form new set of bounding boxes.

Do the new set
of bounding

boxes intersect?

Decide on the layout of the bounding
boxes in the lower sized output image

Check which pairs of bounding boxes can potentially intersect
when expanded in either the horizontal or vertical direction.

Decide whether to extend horizontally or vertically first

Extend the bounding boxes simultaneously in each dimension in
order until the lower sized output is completely filled in that di-

mension or the bounding boxes start intersecting with each other

Extract patches from the original image according
to the final bounding boxes and place them in the
lower sized image according to the decided layout

No

Y es

Figure 4: Flowchart illustrating the overall flow of the ROI packing algorithm. Please refer to figure
7 to observe the results of the ROI packing algorithm

the final bounding boxes are decided, the corresponding regions in the image are extracted and the
reduced-size frame is composed according to the determined layout.

5 Experimental Methodology

The ImageNet object detection dataset (DET) is a dataset comprising 200 classes of objects that form
a subset of the ImageNet 1000 classes. Further, the ImageNet video object detection dataset (VID)
comprises of 30 classes of objects from among the DET 200 classes. The ImageNet video object
detection (VID) dataset was the most appropriate choice for illustrating the results of our work. The
ImageNet VID training set has 3862 video snippets and the ImageNet VID validation set has 555
video snippets. 53539 frames from the DET dataset comprising only of the classes from the VID
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Procedure to decide the layout of the image and whether
to extend each bounding box horizontally or vertically first.

Is the largest
dimension of all

the bounding
boxes height of
a bounding box?

Similar set of
steps as the yes

condition (Symmet-
rically opposite)

Decide to extend all bounding boxes horizontally first

switch(no. of bounding boxes)

Single BBOX fills
the entire image

Place the 2
BBOX’s horizon-
tally by their side

The BBOX with
the largest height

is placed in a
separate column

and the other two
bounding boxes are

placed vertically
stacked horizontal
to the first BBOX

BBOX with the
largest height

and 3rd largest
height are placed

in the first column
stacked vertically.

BBOX’s with
2nd largest and

4th largest height
are placed in the
second column

stacked vertically.

No

Y es

1 2
3 4

Figure 5: Flowchart detailing the layout procedure. Please refer to figure 7 to observe the results of
the layout procedure. The cases with 1,2 and 4 non-overlapping bounding boxes have been illustrated
in figure 7
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Dataset No. of classes No. of video snippets No. of frames selected
DET training set 200 N/A 53539
VID training set 30 3862 57834

VID validation set 30 555 176126

Figure 6: Details of the ImageNet DET and ImageNet VID dataset

dataset and 57834 frames from the VID training set were combined to form the final training set in
our experiments.

The SSD300 (25) object detector operated on a per-frame basis was used as the baseline for our work.
The SSD300 object detector uses VGG16 as feature extractor. The SSD300 pretrained model on the
DET dataset was further trained on our training set for 210k iterations with a learning rate of 10−3

for the first 80000 iterations, 10−4 for the next 40000 iterations and 10−5 for the rest of the training.
This SSD300 trained model gave a mAP score of 70.6 on the VID validation set. Further, this model
has a network throughput of 47 fps and a overall throughput (including standard pre-processing time)
of 18 fps.

The SSD300 network processes images at 300 × 300 as the name suggests. However, closer
observation of the network suggested that the same network can process 150× 150 images as well
by stopping processing at the penultimate layer. Hence, we use the same SSD300 network to process
both full-size and reduced-size images. In all our experiments, the full size s1 is 300 and the reduced
size s2 is 150. When a 150 × 150 sized image is passed on to the SSD300 network, processing
is configured to stop at the penultimate layer. All the experiments were performed using the SSD
Caffe framework running on a 2.1 GHz Intel Xeon CPU with a Nvidia TITAN X GPU. In all the
experiments, the batch size was 1 to emulate a real-time processing scenario. The detection threshold
τ used to select ROIs was fixed at 0.2 in our experiments unless explicitly specified otherwise.

6 Experimental Results

Results from sample videos

We show results on processing some sample videos with PaD. Figure 7 provides sample detections
with our ROI-packing algorithm. The first column shows frame i. The second column shows the
ROI-packed reduced-size frame i+ 1 with the detections. The third column shows the original frame
i + 1 with detections mapped from ROI-packed frame i + 1. For this experiment, the confidence
threshold τ for selecting a detection as an ROI for the next frame was set to 0.3 for the sake of
illustration. All bounding boxes with a minimum threshold of 0.2 are shown in the figure.

In Figure 8, we plot the per-frame time as well as the cumulative time for processing a sample video
using PaD and the baseline. It can be seen that processing the lower sized frame of 150 × 150
is almost 3× faster. When ROI packing fails, there is a slight overhead incurred which is visible
towards the end of the video in Figure 8(a). Also, we see that some frames require almost no time for
processing. This is because the previous frame had no detections. Overall, from Figure 8(b), we note
that processing the video using PaD requires almost 8s lesser time than the baseline.

Results over the entire dataset

PaD was run with a inter-anchor distance d = 5 and s2 = 150. In Figure 9, we plot the histogram of
average per-frame processing time on a video-by-video basis. In other words, the average time taken
per frame was obtained for each video and is plotted as a histogram across videos. From the figure,
we can clearly see that the average time taken to process a frame is lower using PaD for more videos
than the baseline. The average per-frame speedup is around 1.25× and the FLOP reduction on the
average is 32%. The average overhead incurred for ROI-packing is around 9% of the total time taken.
The mAP score drops by 1.1% (from 70.6 to 69.5).
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Frame i ROI-packed frame i+ 1 Frame i+ 1

Figure 7: Sample set of consecutive frames processed with the ROI packing mechanism. The first
column shows frame i. The second column shows the ROI packed frame i+ 1 with the detections.
The third column shows the original frame i+ 1 with detections transformed from ROI packed frame
i+ 1. For this experiment, the confidence threshold for selecting a detection as an ROI for the next
frame is chosen as 0.3 for the sake of illustration. All bounding boxes with a minimum threshold of
0.2 are shown in the figure.
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(a) (b)

Figure 8: (a)Time taken per frame for processing a sample video (b)Cumulative time taken processing
a sample video

Figure 9: Histogram of average per-frame processing time on a video-by-video basis

Comparison with a naive ROI-packing algorithm

In order to illustrate the benefits of our ROI-packing algorithm discussed in section 4, we compare
the accuracy drop when compared with a naive ROI-packing algorithm.

The naive ROI-packing algorithm can accommodate upto four ROIs just like the sophisticated method.
If there are more than four objects in the frame, the frame is processed at full size. Otherwise, the
bounding box surrounding each frame is extended by a factor of 1.2× and is treated as an ROI. If
there is only one object, the ROI surrounding the bounding box is rescaled to size s2 × s2 and is
processed by the detector. If there are two objects, the lower sized frame is divided into two columns
of size s2 × s2

2 . The two ROIs are rescaled to the appropriate sizes and laid out on the lower sized
frame. In the case of three or four objects, the lower sized frame is divided into four regions in two
columns and two rows of size s2

2 × s2
2 . In the case of three ROIs, the ROIs will be rescaled to occupy

three of the four regions in the frame and the fourth region will be left blank. In the case four ROIs,
the ROIs will be rescaled and fit to these four regions. We do not perform a greedy expansion of the
RoIs to provide additional background context. Instead, the ROIs are just expanded by a constant
factor of 1.2× and rescaled to appropriate size.

PaD’s ROI packing method with inter-anchor distance d = 5 gave a mAP score of 69.5. With the
same parameter setting, the naive ROI packing algorithm gave a mAP score of 56.8. This clearly
illustrates the need for an ROI-packing algorithm that preserves the scale and aspect ratio of the ROIs
and provides as much background context as possible.
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7 Conclusion and Future Work

Still-image object detection has improved by leaps and bounds in recent years due to the success in
training and deploying neural networks. However, the opportunities that are available in the context
of videos have not been fully exploited. Neural networks are in general very compute-intensive. In
this work, we use the opportunities available in the context of videos to speed up and reduce the
amount of computation in neural network based object detectors. In the proposed method, called PaD,
the full-sized input is only processed in selected anchor frames. In the inter-anchor frames, ROIs are
identified based on the locations of objects in the previous frame. These ROIs are packed together in
a reduced-size frame that is fed to the CNN object detector. The ROI packing algorithm needs to
ensure that the scales and aspect ratios of the objects are preserved and enough background context is
provided. With this setup, we observed 1.25× speedup with 1.1% drop in accuracy on the ImageNet
VID validation set. Further, the time taken to process a lower sized frame is almost 3× lesser and the
FLOP count reduces by 4×.

As part of future work, we plan to incorporate a motion model to obtain the ROIs in the current frame.
Incorporating a motion model could also help extend this framework to larger batch sizes. Also, it is
possible to use two different models or networks to process larger sized and smaller sized frames.
This will help reduce the accuracy drop but will in turn increase the memory footprint. There is an
overhead incurred in checking whether the ROIs can fit in the lower sized frame. Currently, we select
anchor frames at regular intervals. However, information on whether ROIs were packed successfully
in previous frames can help us decide how frequently we select anchor frames. Thus, another line of
future work is a dynamic mechanism for selecting anchor frames in order to reduce the overhead. It
would be interesting to test PaD in more resource constrained platforms like mobile GPUs and CPUs.
We expect the benefits to be more pronounced in such platforms.
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DSAI) and Center for Computational Brain Research (CCBR) for supporting this research.

References
[1] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual

attention. arXiv preprint arXiv:1412.7755, 2014.

[2] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computa-
tion in neural networks for faster models. CoRR, abs/1511.06297, 2015.

[3] Xingyu Chen, Zhengxing Wu, and Junzhi Yu. TSSD: temporal single-shot object detection
based on attention-aware LSTM. CoRR, abs/1803.00197, 2018.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully
convolutional networks. In Advances in neural information processing systems, pages 379–387,
2016.

[5] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and track to detect.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3038–3046, 2017.

[6] Sanjay Ganapathy, Swagath Venkataramani, Balaraman Ravindran, and Anand Raghunathan.
Dyvedeep: Dynamic variable effort deep neural networks. CoRR, abs/1704.01137, 2017.

[7] Jia Guo and Miodrag Potkonjak. Pruning filters and classes: Towards on-device customization
of convolutional neural networks. In Proceedings of the 1st International Workshop on Deep
Learning for Mobile Systems and Applications, EMDL ’17, pages 13–17, New York, NY, USA,
2017. ACM.

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. Eie: Efficient inference engine on compressed deep neural network. In Proceedings
of the 43rd International Symposium on Computer Architecture, ISCA ’16, pages 243–254,
Piscataway, NJ, USA, 2016. IEEE Press.

11



[9] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015.

[10] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh,
Honghui Shi, Jianan Li, Shuicheng Yan, and Thomas S Huang. Seq-nms for video object
detection. arXiv preprint arXiv:1602.08465, 2016.

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. CoRR, abs/1707.06168, 2017.

[12] Congrui Hetang, Hongwei Qin, Shaohui Liu, and Junjie Yan. Impression network for video
object detection. CoRR, abs/1712.05896, 2017.

[13] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[14] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016.

[15] Samira Ebrahimi Kahou, Vincent Michalski, and Roland Memisevic. Ratm: recurrent attentive
tracking model. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, pages 1613–
1622, 2015.

[16] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan, Xihui Liu, and Xiaogang
Wang. Object detection in videos with tubelet proposal networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), volume 2, page 7, 2017.

[17] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong Zhang, Zhe
Wang, Ruohui Wang, Xiaogang Wang, and Wanli Ouyang. T-CNN: tubelets with convolutional
neural networks for object detection from videos. CoRR, abs/1604.02532, 2016.

[18] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Object detection from video
tubelets with convolutional neural networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[19] Adam Kosiorek, Alex Bewley, and Ingmar Posner. Hierarchical attentive recurrent tracking. In
Advances in Neural Information Processing Systems, pages 3053–3061, 2017.

[20] Hugo Larochelle and Geoffrey E Hinton. Learning to combine foveal glimpses with a third-order
boltzmann machine. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1243–1251.
Curran Associates, Inc., 2010.

[21] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. Learning by tracking: Siamese
cnn for robust target association. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 33–40, 2016.

[22] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. CoRR, abs/1608.08710, 2016.

[23] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution. CoRR, abs/1701.00299, 2017.

[24] Mason Liu and Menglong Zhu. Mobile video object detection with temporally-aware feature
maps. CoRR, abs/1711.06368, 2017.

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European conference on
computer vision, pages 21–37. Springer, 2016.

[26] J. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network
compression. In 2017 IEEE International Conference on Computer Vision (ICCV), volume 00,
pages 5068–5076, Oct. 2018.

12



[27] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. Mot16: A
benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831, 2016.

[28] Anton Milan, Seyed Hamid Rezatofighi, Anthony R Dick, Ian D Reid, and Konrad Schindler.
Online multi-target tracking using recurrent neural networks. In AAAI, volume 2, page 4, 2017.

[29] Deepak Mittal, Shweta Bhardwaj, Mitesh M. Khapra, and Balaraman Ravindran. Recovering
from random pruning: On the plasticity of deep convolutional neural networks. In Eighteenth
IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.

[30] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of
visual attention. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pages 2204–2212, Cambridge, MA, USA, 2014. MIT
Press.

[31] Bowen Pan, Wuwei Lin, Xiaolin Fang, Chaoqin Huang, Bolei Zhou, and Cewu Lu. Recurrent
residual module for fast inference in videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1536–1545, 2018.

[32] E. Park, D. Kim, S. Kim, Y. D. Kim, G. Kim, S. Yoon, and S. Yoo. Big/little deep neural
network for ultra low power inference. In 2015 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 124–132, Oct 2015.

[33] Marc’Aurelio Ranzato. On learning where to look. CoRR, abs/1405.5488, 2014.

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 779–788, June 2016.

[35] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6517–6525, July 2017.

[36] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767,
2018.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 91–99. Curran Associates, Inc., 2015.

[38] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Tracking the untrackable: Learning
to track multiple cues with long-term dependencies. arXiv preprint arXiv:1701.01909, 4(5):6,
2017.

[39] Mohammad Javad Shafiee, Brendan Chywl, Francis Li, and Alexander Wong. Fast YOLO:
A fast you only look once system for real-time embedded object detection in video. CoRR,
abs/1709.05943, 2017.

[40] Peng Tang, Chunyu Wang, Xinggang Wang, Wenyu Liu, Wenjun Zeng, and Jingdong Wang.
Object detection in videos by short and long range object linking. CoRR, abs/1801.09823, 2018.

[41] Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed Shoaib. Scalable-effort
classifiers for energy-efficient machine learning. In Proceedings of the 52nd Annual Design
Automation Conference, page 67. ACM, 2015.

[42] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. Axnn: energy-
efficient neuromorphic systems using approximate computing. In Proceedings of the 2014
international symposium on Low power electronics and design, pages 27–32. ACM, 2014.

[43] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 2074–2082. Curran
Associates, Inc., 2016.

13



[44] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to track: Online multi-object tracking
by decision making. In Proceedings of the IEEE international conference on computer vision,
pages 4705–4713, 2015.

[45] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high performance video object
detection. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[46] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature aggregation
for video object detection. In Proceedings of the IEEE International Conference on Computer
Vision, volume 3, 2017.

[47] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow for video
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, page 3, 2017.

14


	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Occupancy of objects in frames
	3.2 Temporal correlation of object locations across frames

	4 Pack-and-Detect: Approach and Algorithms
	4.1 Overview
	4.2 ROI packing algorithm

	5 Experimental Methodology
	6 Experimental Results
	7 Conclusion and Future Work

