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ABSTRACT

Many applications by design depend on costly trusted third-party
auditors. One such example is the industrial application case of
federated multi-disciplinary optimization (MDO), in which different
organizations contribute to a complex engineering design effort.
Although blockchain and distributed ledger technology (DLT) has
strong potential in reducing the dependence on such intermediaries,
the architectural complexity involved in designing a solution is
daunting.

In this paper, we analyze the architectural variants for decen-
tralized private data sharing while guaranteeing auditability and
non-repudiation of data access operations, as well availability of
the shared data. The architectural variants analyzed focus on at-
taining: (i) confidential data exchange, (ii) governing access to the
shared data, (iii) providing data access auditability, and (iv) data
validation or conflict resolution. We systematically enumerate archi-
tectural decisions at the levels of: storage, policy-based file access
control, data encryption methods, and auditability mechanisms for
private data.

The main contribution of this work is a comprehensive overview
of architectural variants for decentralized control of private en-
crypted data, and the involved trade-offs in terms of performance,
storage overhead, auditable trust and security. These findings are
validated in the context of the aforementioned industry case that
involves federated multi-disciplinary optimization (MDO).
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1 INTRODUCTION AND MOTIVATING CASE

The motivating application case of Noesis Solutions [29] involves
a multi-disciplinary optimization (MDO) process between engi-
neering teams that are distributed geographically, and are even
affiliated with different organizations. The federated MDO process
involves the optimization of airplane component designs, which
are safety-critical and highly confidential. Figure 1 illustrates how
an aircraft’s physical aspects are co-dependent and have to be opti-
mized in an iterative, multi-disciplinary process between different
organizations, each skilled in their respective disciplines, such as
structural stability or aerodynamics. For example, the exterior of
an engine’s physical structure is optimized based on the current
design of the propulsion system. Such a process is referred to as
a multi-interdisciplinary optimization (MDO) process [9, 20]. As
depicted in Figure 2, in an MDO process, the results of one task
have to be shared as input data to the optimization process of the
subsequent tasks.

Due to the safety-critical nature of these airplane component
designs, and the potential real-life consequences when things go
wrong, these organizations require guarantees in terms of non-
repudiation and logging of each action taken in the exchange, con-
sultation or modification of data. Current solutions rely extensively
on third-party auditors that provide services in terms of verification
of the validity of transferred data and the established data prove-
nance records (which signify the history and data lineage). These
auditors are critical to determine when parties are at fault, or for
providing proof when they did not meet contractual obligations,
such as managing time windows to provide optimization results.

The data sharing scheme involving trusted third-parties is sub-
optimal for three reasons: (i) the dependence on a third party may
be costly, (ii) manual validation exposes confidential data to trusted


https://doi.org/10.1145/3297280.3297316
https://doi.org/10.1145/3297280.3297316
https://doi.org/10.1145/3297280.3297316

SAC 19, April 8-12, 2019, Limassol, Cyprus

V. Reniers et al.

~
(7 Ve ™ 4 N\
S) t ng lift
I Lift
Aerodynamics .
C bered w
\ % o )
Ve
W | W”\ (l }~ ——
A I M\ \ H”\ H‘
A ‘\’uu M‘M W‘“MH il ”MV‘ ,,,,,,,,,,,
\ W‘
i) w
/’ ‘“II“ h
N A N e I I
AC: Aerodynamic Characteristics
SA: Static Analysis
DA: Dynamic Analysis
SV: Structural Vibration
N /

Figure 1: Multidisciplinary design and analysis [5]. Copyright © Ahmed Bayoumy
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Figure 2: Iterative MDO process, each discipline owned by a specialized engineering team.

third parties, and (iii) the overall efficiency is reduced due to manual
interference.

In avoiding trusted third parties, decentralized shared ledgers
(DLT) technologies and smart contracts (programs deployed and ex-
ecuted on the blockchain [33]) present major opportunities to solve
issues of non-repudiation by maintaining a tamper-proof log of
actions, and enable consensus-driven validation followed by audit
log creation. Furthermore, the shared data can be governed au-
tonomously by decentralized logic, thereby assuring data availabil-
ity through automated replication across for example blockchain
nodes themselves, or cloud storage platforms. Such decentralized
storage systems are considered a viable business application of
blockchain technologies. Several existing implementations already
accomplish some of these goals, such as Filecoin [21], Storj [1],
Siacoin [2] and NuCypher KMS [13].

Additionally, the enterprise nature of this case requires careful
consideration of requirements such as security and trust manage-
ment. The shared data’s level of confidentiality complicates mat-
ters when data log inconsistencies arise, towards which existing
work has focused on verifying data integrity on untrusted stor-
age platforms [34], and external data auditing while preserving
confidentiality and privacy [15, 17, 18].

However, the architectural complexity involved in devising a
suited ledger-based solution is substantial, and many non-trivial
architectural decisions have to be made in terms of storage, policy-
based file access control, data encryption methods, and auditability
mechanisms for private data.

In this paper, we systematically investigate several architectural
approaches to implement auditable blockchain-based private data
sharing, for example for adoption in the discussed MDO process.
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This effort is based on an extensive analysis of the key requirements
and an in-depth review of the current state of the art.

The remainder of the paper is structured as follows; Section 2
introduces the problem of confidential data sharing with access
audibility motivated by the industrial case of Noesis Solutions [29],
whereas Section 3 establishes the functional and non-functional
requirements. Sections 4, 5, and 6 then analyze and discuss the
architectural variants and trade-offs for respectively blockchain
data transfer and storage, file access control, and data validation.
Section 7 concludes the architectural decisions and trade-offs dis-
cussed.

2 PROBLEM STATEMENT

The sharing of confidential data between industry partners involved
in federated MDO, or a collaboration, is accompanied with a tremen-
dous administrative stream which involves signing non-disclosure
agreements (NDAs) and contracts at each step to respectively guar-
antee intellectual property and non-repudiation. The requirement
of non-repudiation applies to designs and results delivered and con-
sulted by all involved parties. In case of failure in the end product,
the fault (e.g. in the airplane design) should be traceable to the level
of individual parties without allowing any form of repudiation.

2.1 Current state of practice

Many individual solutions exist between the involved participants
to support their sharing of data using signed private keys to ascer-
tain the validity on the origin of data. Each company has individual
information systems storing copies of the data, which leads to
wide-spread fragmentation of data, which in turn hinders overall
traceability and access management.

Furthermore, inter-organizational solutions pose the risk of ei-
ther party claiming inconsistencies at their end, for example not
having received or read a file.

In practice, trusted third parties serve as an intermediary to
validate the access logs and confirm when the disputed data in fact
has been accessed or modified and by whom.

This scheme is sub-optimal for three reasons: (i) the dependence
on a third party may be costly and requires a level of trust of all
involved parties in the third party, (ii) manual validation exposes
confidential data to trusted third parties and leads to a complex
administrative overhead, due to the required drawing up of legal
contracts and NDAs, and (iii) since these are manual steps, the
overall efficiency is reduced.

2.2 Ledger-based architecture

Decentralized shared ledgers (DLTs) have the potential to safely es-
tablish a tamper-proof record of events without repudiation through
consensus-based integrity [33]. Furthermore, blockchain platforms
increasingly feature logic executed in decentralized virtual ma-
chines (e.g. Ethereum VM [32]) which can be used to coordinate
data exchange and access among parties.

The investigated blockchain architecture serves as a shared
ledger to track and share information among engineering teams,
eliminating data fragmentation, and enabling fault traceability.
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In the context of the motivational case, this means that parties
involved in the MDO process can observe and verify when parties
comply with their obligations to each other.

In the following section, we outline the required functional
requirements (e.g. data sharing), as well as the important non-
functional requirements related to data confidentiality, access non-
repudiation, availability and overall scalability.

3 REQUIREMENTS

We narrow the application objectives down into functional and
non-functional requirements, eliciting the former first:

F1 Private data sharing with access control. Data should
be shareable among specific parties and remains only acces-
sible to these designated parties.

F2 Logging data access with auditability. Any operation
on the file must be reported, including upload, download,
changes and visualizations. Audit logs are only accessible
among collaborating parties.

F3 Data validation and conflict resolution. Ensure that the
transferred file or the operation is correct, and if not, audit
validation can be external, or autonomous, ideally while
preserving data confidentiality.

Non-functional requirements:

NF1 Non-repudiation of data access. It is important that no
party can refute having seen, shared, accessed or modified
data. These non-repudiation requirements when fulfilled can
be used to back-up legal and signed commitments among the
parties (e.g. to participate in the MDO process, or to maintain
intellectual property rights).

NF2 Eliminating fragmented central systems and
trusted parties in which the cross-border collaborations
store their data, and whom guarantee the integrity and
confidentiality of the shared data.

NF3 Application scalability and availability through for
example off-chain storage [12], as results can be large and
heterogeneous with replication for availability.

Not listed are less stringent requirements on preserving iden-
tity privacy during participation in the network, transactions or
smart contracts [8, 19] applied in for example zkLedger [25] and
Monero [31].

The architectural analysis is structured as follows; Section 4
discusses architectures for blockchain data transfer with, or without,
storage (F1, NF2) while meeting with scalability and availability
requirements (NF3). Section 5 discusses identity and file access
control (F1), whereas Section 6 discusses data access auditability
(F2, NF1), and data validation (F3).

4 BLOCKCHAIN DATA EXCHANGE
ARCHITECTURES

We discuss three approaches for blockchain data exchange (NF2)
in Section 4.1, followed by Section 4.2 discussing approaches for
the decentralized management of stored data (e.g. assuring avail-
ability (NF3)).

The first data exchange architecture uses the blockchain to sim-
ply coordinate and record off-chain file transfers between parties.
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Figure 3: Coordinate an off-chain data transfer recorded on-
chain.

The second and third approach handle the file transfer via the
blockchain platform using respectively, its own peer-to-peer (P2P)
storage nodes, or centralized cloud storage platforms. Each ap-
proach comes with certain challenges in terms of non-repudiation
(NF1) and trustworthy logging of data access for auditability (F2),
as well as trade-offs on performance, storage and network traffic
overhead (NF3).

4.1 Blockchain data sharing architectures

4.1.1  Approach A: Off-chain data transfer and on-chain record. The
first approach simply uses the blockchain for tamper-proof book-
keeping of data exchanges, of which the logs are externally created
by the parties involved in the off-chain exchange process. It pro-
vides a solution with minimal adoption costs by not storing any of
the data shared, except for file hashes and parties’ digital signatures.
The proposed tactic achieves this using the shared ledger as part of
a handshake protocol to initiate a data transfer between parties.

Example. Figure 3 (i) depicts party A announcing to the
blockchain application that it is ready to transfer data D 4 to parties
B and C. Party A places the file hash onto the blockchain perma-
nently along with a list of intended parties, thereby announcing
that it is ready to transfer a file. Next in Figure 3 (ii), party B accepts
the transaction on chain, which is broadcast and stored perma-
nently in a block. What follows is (iii) the transfer of data from A
to B off-chain, the file is signed with party A’s secret key SK4, and
can be verified using his public key PK 4 by party B. Once party B
has received the file, he or she can match the file against the hash
published by party A on-chain (iv) and create a confirmation of
receipt (v).

Cheatable data transfer. This approach still presents two cases
where both parties can act maliciously [14]:

e Party B can receive the file without acknowledging receipt,
or claiming that the data is incorrect.
e Party A can send rubbish data.

In the former case, the contents of a transferred file can be vali-
dated by a trusted third party, since the file is signed using A’s public
key, and by also establishing a session key on-chain. However, this
approach exposes the potential confidential nature of the shared file
(F3). Gazzoni et al. [14] discuss both aforementioned scenarios of
malicious behavior, and a solution is proposed using third-parties

V. Reniers et al.
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Figure 4: On-chain data transfer with self-governed decen-
tralized storage.

without exposing the data by applying homomorphic hashing, the
latter of which is exceeding costly in terms of performance.

These non-repudiation challenges cannot be solved when using
off-chain transfer without trusted third-parties, therefore we discuss
two alternative approaches in which the data transfer is handled
by the blockchain itself.

4.1.2  Approach B: On-chain transfer and on-chain record. The
blockchain platform can alternatively coordinate the data transfer
itself and store the (pending) data on storage managed or hosted by
the blockchain. Figure 4 depicts such an architecture. In Figure 4
(i), an engineering team places input data and files to initiate the
MDO process, the data features access permissions and application-
specific metadata. The file hash is placed onto the blockchain along
with a location reference to its full contents stored onto blockchain-
governed storage nodes, as is common in for example Siacoin [2]
or Storj [1]. The blockchain application ensures data availability by
replication and periodically applying a consensus-based proof-of-
retrievability (PoR) algorithm [1, 2, 21, 27, 33].

The advantage of the approach shown in Figure 4 is that the
blockchain platform handles the private data transfer, thus ensur-
ing that files are in fact transferred between entities followed by
trustworthy data log creation. Ultimately, if the transferred file is
not correct, a third-party or smart contract can confirm its validity.
In addition, the party which submitted a file will not be able to
refute that this was the file shared.

Limited data fragmentation and malicious nodes. In this scenario,
the file block hashes and their respective locations are public and
recorded on-chain. Consequently a party can collect the required
file blocks from the storage nodes himself. The storage nodes will
have to verify whether the requesting party does indeed have appro-
priate access permissions. However, when the file is partitioned into
a rather small number of blocks and fragmented among few nodes
Ny, and the nodes act maliciously they can choose to omit access
control and log creation on data access. Only when a file is parti-
tioned across a large enough set of storage nodes (e.g. Ny > (N/2)),
with N the total amount of storage nodes, can data access control
and log creation be implemented with confidence. Consequently,
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Figure 5: Blockchain application with governance of stored
data on cloud storage platforms.

a downside may be that a data transfer will involve significant
network traffic to numerous nodes.

Distributed blockchain data decryption. A solution allows min-
imal data partitioning by enforcing retrieval through consensus
among the nodes. For example, the stored file blocks are encrypted
client-side by the owner using a symmetric secret. The secret is then
encrypted by a public key belonging to the blockchain network.
The symmetric file key can only be decrypted after retrieval con-
sensus which gathers private key shares required for decryption,
followed by the distribution of these key shares to the requesting
party. The requesting party can then decrypt the file’s symmetric
key using the blockchain’s provided private key shares, similar to
CALYPSO [18]. Multiple private key shares and respective public
keys can be generated per party, or even per file to prevent re-use
and compromise.

Either approaches have their trade-offs, and alternatively we
present a solution using centralized storage.

4.1.3  Approach C: Blockchain governing cloud storage platforms.
An alternative approach to using blockchain nodes for data storage
and replication, as previously shown in Figure 4, the data itself can
be stored on a cloud storage platform, as shown in Figure 5. In such a
scenario, the blockchain application will have to ensure that the files
are potentially replicated across multiple cloud platforms to ensure
availability (i.e. multi-cloud storage). Cloud storage platforms are
inherently more available than P2P storage nodes managed by
the blockchain, therefore requiring less file replication and thus
minimizing storage overhead.

In dealing with the data access log challenge, potentially the
cloud storage platforms are trusted enough to incorporate such
data access and audit log creations for the blockchain application.
However, the blockchain platform can also impose its own file
access control requiring a retrieval consensus for decryption, as
previously briefly discussed.

4.1.4  Summary data exchange approaches. We have shown three
approaches to implement data exchange using blockchain, Table 1
elicits the access non-repudiation trade-offs for each approach,
whereas Table 2 elicits storage and network considerations. The
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Storage Access non-repudiation.

Off-chain transfer Requires 3rd-party for non-repudiation

of file transfer and receipt.

On-chain transfer

- Decentralized nodes ~ Requires partitioning or decryption
consensus among (n > N/2) for access
non-repudiation.

Requires decryption consensus for

retrieval (n > N/2).

- Centralized storage

Table 1: Storage architectures and access non-repudiation
trade-offs.

Storage Trade-offs

Off-chain

Saves storage space and network traffic.
No distributed preservation.

Peer-to-peer Significant data duplication for

availability and cross-node traffic.

BitTorrent/IPFS [6] Unincentivized storage by P2P
community risks availability.

Blockchain storage Participation reward (e.g. Filecoin [21])

Centralized

Cloud storage Minimal duplication due to inherent

high availability. Low latency.

Table 2: Storage architectures and considerations.

first approach A simply uses the blockchain application to coordi-
nate and log a data transfer. However, as shown there are major
challenges on assuring that the data was in fact sent or received
off-chain.

Alternatively to solve these issues of non-repudiation, the data
can be stored by either approach B in a decentralized manner on
storage nodes operated by the blockchain, or approach C central-
ized storage platforms managed by the blockchain. Storing the data
in a decentralized P2P storage system can require significant net-
work traffic to establish consensus on retrieval among a sufficient
set of nodes for trustworthy access logging. Alternatively, less net-
work traffic is involved when consensus is required to decrypt files,
allowing for fewer distributed file blocks, albeit still replicated for
availability. The latter approach C solves this hurdle by trusting
a number of cloud storage platforms which are inherently highly
available resulting in less storage overhead.

4.2 Decentralized management of storage

Not only files can be shared using the blockchain, but also trans-
action history can be recorded regarding on-going application-
specific (e.g. MDO) processes, the parties involved, and the results
exchanged in the respective process. Typically, data stored on-chain
are small key-value pairs, for example log records, access permis-
sions, or executable smart contracts.
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Large files are best kept off-chain to achieve scalability (NF3)
with the file hash and its location stored on-chain to verify file
integrity and maintain availability [12]. In practice, Siacoin [2],
Storj [1] and Filecoin [21] allow users to store files using the
blockchain in an encrypted and replicated manner. The file is par-
titioned into multiple segments, similarly to the BitTorrent [10]
protocol, and a hash of the segment is created. File block hashes are
stored onto the blockchain, whereas the actual blocks are stored
onto multiple nodes in an encrypted format. The nodes can be stor-
age nodes of the blockchain network itself, or for example a P2P file
system such as IPFS [6]. However, there is no financial incentive to
store files in IPFS as opposed to blockchain storage solutions such
as Filecoin [21] which reward data hosts with digital currency. File
hosting participants are typically required to lock currency in an
escrow account on-chain, which is lost when the participants lose
a file block replica. This escrow serves as a deterrent for suddenly
leaving the P2P storage network.

Blockchain storage solutions actively apply a proof-of-
retrievability (PoR) consensus algorithm to ensure availability of
the replicated file blocks across the storage nodes [27]. If a replica
disappears, it is duplicated in time to an available storage platform.
The PoR-algorithm does not require the entire file to be transferred
and extends upon provable data possession (PDP) algorithms which
samples portions of the data and establishes a proof that an un-
trusted storage node holds the data [3, 17].

In the next section we look at implementation challenges and
strategies concerning identity management and file access control.

5 FILE ACCESS CONTROL

Next to storage architectures, there are several architectural deci-
sions to implement (decentralized) data access control. Such access
control mechanisms allows for sharing private data (F1) and attain-
ing auditability for data access operations (NF1, F2). For example,
not every company should have access to the shared designs as
these may be confidential and business critical to individual par-
ticipants. In terms of auditability, we require file access control
as otherwise data can be retrieved directly since file hashes and
locations are publicly recorded on-chain.

5.1 Confidential data sharing

As it stands, contemporary blockchain storage platforms, such as
Siacoin [2], Storj [1], and Filecoin [21] do not allow private file shar-
ing among multiple parties. However, sharing access can naively be
done by the exchange of a symmetric key used to encrypt the file. A
simple private data sharing approach applied in practice encrypts
data or session keys once per entity using its respective public
key [34]. These identities are typically the public keys themselves
in for example Bitcoin [24] and Ethereum [32].

The work by Zyskind et al. [35] describes a decentralized
data management system which shares access to data hosted by
blockchain nodes. Whenever data is shared, the access permissions
are recorded on-chain for the specific parties. In addition, the ses-
sion key for a file can also be recorded publicly, however encrypted
with permitted parties’ public keys. Data retrieval is allowed after
a party sends its digital signature to the network, which can then
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create an audit log and provide the data when permitted. Alterna-
tively to sharing access to a symmetric key, in Shafagh et al. [28] a
tactic is implemented which shares private cloud data after proxy
re-encryption for the intended party. In essence, a data owner can
generate a re-encryption key based on another party’s public key,
which allows encrypted files intended for the data owner to become
decryptable by another party after re-encryption without exposing
private keys [4].

5.2 Permission- and identity-based data access
control

Considering the enterprise aspect of the application and its con-
fidentiality requirements (F1), ideally the blockchain platform is
permission-based, such as HyperLedger [7], instead of open plat-
forms such as Bitcoin [24] and Ethereum [32].

Identity management. Only designated identities can join and
participate in the blockchain network, which in our case can be
coordinated off-chain since the users are involved in an enterprise
collaboration. Ideally, data should only be visible on the blockchain
to those who have access to it or are involved in the policy.

Permission-based access. Along with the data stored there has to
be a permission-based access control mechanism which governs
data access. These permissions can be formulated as expressive
policies [23], or simply a list of read and write permissions for each
identity. These permissions, along with the access control logic, can
be handled on- and off-chain in a complementary fashion.

5.2.1 Off-chain encryption. Parties can be granted file access by
encrypting an additional file copy using its public key. Parties are re-
moved by removing their respective encrypted file copies, however
once the party has had access to the file it may have its own local
copy. A potential problem with the off-chain approach is that it
requires trust in the person who encrypted the data to be compliant
with the metadata of published permissions. Furthermore, creating
additional copies creates storage overhead, however a single file can
be encrypted for all parties, or ideally only the symmetric session
key. In addition, off-chain encryption by itself does not prevent
data access without audit log creation.

5.2.2  On-chain file access control. There are two approaches to
implement decentralized file access control; either when using de-
centralized storage and fragmenting the file sufficiently in Ny par-
titions, or by requiring decryption by the blockchain to read a file.
In the first approach, a file can only be retrieved if all of its N
fragments can be retrieved from Ny # Ny nodes, of which N, is
the replication factor. The consulted nodes can then after consen-
sus generate a data access log recorded on-chain. In the second
approach, on-chain decryption can be implemented by additional
encryption via a public-private key belonging to the blockchain
itself via distributed key generation (DKG) [16, 18]. The private
key can be fragmented into key shares and distributed among the
nodes, which can validate that the shares are in fact correct by
using publicly verifiable secret sharing (PVSS) schemes [18, 26] At
the time of file upload, the file or its symmetric key is encrypted
using the blockchain’s public key. The decrypted data can be re-
trieved after permission consensus, after which the nodes provide



Auditable Blockchain-based Private Data Sharing

a sufficient number of n out of m private key shares to the party
requesting retrieval if it indeed has permission-based access. Such
an approach is applied in CALYPSO [18], a blockchain for sharing
encrypted data with auditability. Trade-offs can be made between
performance and the level of trust in the network depending on
the ratio between Nf % Ny and the number of nodes N, or similarly
to the required number of keys Nj and the total nodes N.

5.3 Dynamic file access permissions

Access permissions can also change when parties leave or join
the file access group (or policy) over time, requiring an update to
the listed permissions on-chain, as well as altering any original
encrypted files or session keys if needed to prevent unauthorized
access. It is best practice to also encrypt files client-side by the
owner or parties’ shared keys to prevent unwarranted access by
the network in case of malicious network collusion, however this
also hinders dynamic file access to a degree as we will show.

5.3.1 Access for new members. Suppose a new party is granted
access to a given file, we can update the permissions and naively
either re-encrypt the file or its session key with the party’s public
key, which requires network traffic to update the files. However, we
can also leave existing files unaltered via proxy re-encryption [4];
we can share the data owner’s public key encrypted files by letting
the owner generate a re-encryption key based on its private key
and the new member’s public key, which allows decryption of files
intended originally for e.g. A by the new member. Parties retain data
access by using their original re-encryption keys while granting
a new member instant access. The proxy re-encryption keys are
preferably held by the blockchain network to easily revoke access
at a later point in time.

5.3.2 Access revocation. In this case when using proxy re-
encryption, the re-encryption key intended for the party who’s
access is being revoked simply has to be forgotten by the network.
Alternatively, if there’s a single re-encryption key for all parties in
the access policy, this key will have to be renewed excluding the
revoked party, a procedure which requires the data owner to be on-
line. Removing the key is enforceable if it is partitioned sufficiently
enough across Ny key management nodes to prevent malicious
network collusion. Furthermore, it is best practice to use multiple
key pairs, ideally one for each file fragment, file, or one for each
group. It is important to also re-encrypt stored data appropriately
when a user’s access is revoked and has previously obtained keys
to unread files, or the corresponding encrypted symmetric file keys.
Table 3 summarizes the file access control approaches and their
trade-offs on file duplication and fragmentation versus consensus
to (proxy) decrypt and distributed key management.

5.3.3 Sufficient fragmentation. On-chain file decryption for access
non-repudiation does not need to be applied when a file is suffi-
ciently fragmented across nodes Ny * Ny in comparison to N, which
verify access permissions on-chain. The file can then be encrypted
using a session key, encrypted by the parties’ public key, which
does however require still altering the key files when a party joins
or leaves.
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Static access Trade-offs

Enc. PKysers

Requires high N of single file for
access non-repudiation.

Requires low Ny and high Ny of file
with consensus for proxy decryption
and access non-repudiation.

Enc PKygers +
PKnet

Dynamic access

Enc. PKysers

Requires re-encryption of file blocks
with high Ny against collusion.
Requires high Ni and consensus to
decrypt, ideally key-pair per file or
fragment, however low Ny.

Enc. PKowner +
Proxy decrypt

Table 3: Encryption methods for file access control.

6 PRIVATE DATA AUDITABILITY

Auditability is comprised of (a) publicly verifiable data correctness
and (b) private data access auditing. Public verification is a require-
ment as to allow the network to establish consensus on correctness
at, for example, the levels of: (i) shared confidential data correctness,
(ii) integrity auditing, however also (iii) validating or enforcing a
correct sequence of application-specific operations. The verification
process ideally does not expose any confidential properties during
the evaluation.

In terms of data correctness, we already discussed for the off-
chain transfer case that malicious behavior is possible as party B
can claim to have received no file or an incorrect file, or party A
did not actually send a file at all. In terms of data integrity auditing,
file blocks may be compromised due to untrusted nodes, or even
by the sender when confidential files in an unencrypted format do
not match the hashes recorded on-chain.

6.1 Auditability and log creation

Traditionally, external trusted third parties are assigned as auditors
which gain access to the audit logs. However, in this case we can
also let the collaborating users gain access to the audit logs, which
can be decrypted using private key shares as to govern audit log
access control in a decentralized manner.

6.1.1  Data access auditability. File access control enforced by the
blockchain enables automatic log creation whenever someone ac-
cesses or alters data stored by the blockchain. In the decentralized
storage approach, file access can also be checked and logged by
individual storage nodes for their respective partitions. However,
the latter approach requires sufficient partitioning to attain trust-
worthy data access log creation. Cloud storage managed by the
blockchain for file transfer does however require decentralized file
access control on, an in fact, centralized storage for trustworthy
audit log creation. Alternatively when the centralized storage plat-
form is fully trusted it can also be allowed to generate audit logs
on-chain.

6.1.2  Public data integrity auditing. Typical data auditing solu-
tions focus on assuring that cloud storage platforms preserve the
integrity of files hosted [15, 30, 34]. These files hashes can be stored
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Validation tactic Trade-offs

- Trusted parties Exposes confidential data to trusted
intermediaries. Manual intervention
is costly and inefficient.

Sends data to trusted execution.
Prone to side-channel attacks.

Can only be applied on integers and

- Trusted environment

- Partial Homomorphic

Encryption (PHE) is somewhat efficient.
- Fully Homomorphic FHE signatures with public
Encryption (FHE) verification are very inefficient [14].

Table 4: Public validation of private data.

in a tamper-proof manner using the blockchain. However, publicly
verifying the correctness of encrypted private data poses several
challenges, for example when trying to match it with the unen-
crypted file’s hash recorded on-chain.

6.2 Private data validation

Data exchanged between parties can in certain cases be incorrect
when the sender sends a wrong file and disputes arise. In such
cases, automated or external resolution is required. In a worst-case
scenario the collaboration process is simply stopped. However,
typically this is solved by exposing the actual contents of the confi-
dential shared data to a trusted third party, e.g. a group manager or
a trusted execution environment.

6.2.1 Verification by sharing data access. ProvChain [22] is a
blockchain application which stores the history of operations on
data objects, and the lineage of these operations, typically referred
to as data provenance records. ProvChain allows auditors to gain
access to encrypted meta data on-chain for the verification of data
provenance records.

Trusted platform execution environments (e.g. Intel® SGX) can
also receive the private key and the encrypted data thereby allowing
the trusted execution environment to verify the file’s hash recorded
on-chain. This file hash can either reflect the hash of the unen-
crypted or encrypted file. The latter which can always be checked
without data leakage. Trusted execution can also serve to create
trusted audit logs on data access in for example untrusted cloud
storage environments [30]. Such execution environments however
are not flawless and can be prone to side-channel attacks.

6.2.2  Verification while preserving data confidentiality. Recent tech-
niques elicited in Table 4 allow public validation of private data
without affecting its confidential properties, for example via ho-
momorphic hashing and authenticators [14, 17], which however
remains rather impractical due to high computation costs. Other so-
lutions apply partially homomorphic encryption (PHE) to validate
encrypted numeric data (e.g. meta-data) from the application work-
flow without exposing the private contents [11]. Contemporary
blockchain solutions, such as zkLedger [25] and Monero [31], apply
PHE and zero-knowledge proofs to assure that for example the
output of currency spent is less or equal than the sum of received
input in previous transactions. Such algorithms work efficiently
for encrypted data holding numerical information, whereas for
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example homomorphic file integrity validation is highly inefficient
and currently impractical [14]. Alternatively within our case, pri-
vate data correctness can also be verified simply by exposing the
confidential data to other users involved in the collaboration by
revealing party A and B’s recorded session key, and granting access
to the specific file copy.

6.3 Transaction and private meta-data
validation

Data access logs also present the option to validate and control
the sequence of operations as they are executed. This requires
implementing application-specific rules on the order of transaction
and operations depending on the current state of the chain. For
example, read operations may only be executed when a file in fact
exists, or within the MDO case a party may not upload output
data twice without receiving any new input data, as it becomes
ambiguous to what data is now intended as input for the next
iteration step. Such logic can be implemented using smart contracts
on-chain, which can interpret meta-data from previous transactions
to determine (i) the MDO process ID, and (ii) previous MDO results
and thus the overall process state.

Such application-specific rules can be implemented within smart
contracts to for example validate meta-data that links outputs to
inputs. Such meta-data validation can be implemented in smart
contracts to preemptively detect any run-time errors by the network.
However, meta-data can also be encrypted to for example hide the
order of application-specific operations. These smart contracts can
then apply homomorphic encryption to validate meta-data without
exposing the data contents and lineage.

In the case of encrypted meta-data, Raziel [8] and Hawk [19] en-
able secure multi-party execution for smart contracts, which allows
code execution on encrypted inputs while keeping these inputs
confidential. However, computation costs increase depending on
the number of involved nodes, the complexity of the algorithm, and
the required security level, and therefore such techniques are more
suitable for permission-based ledgers.

7 CONCLUSION

We have systematically discussed the main architectural decisions
and trade-offs involved in the design of a decentralized platform
for managing and governing access to private encrypted data. By
leveraging distributed ledger technology (DLT) and smart contracts,
guarantees can be provided in terms of data availability and con-
sistency, and by employing consensus-based protocols audit and
access logs can be created that are non-repudiable. Such an archi-
tecture is highly compelling as it allows handing over control of a
valuable files (in an encrypted fashion) to a decentralized platform
while preserving its confidentiality, managing file access, and in the
end eliminating costly trusted third parties in auditing processes.

Regarding file storage, we argue in favor of either a strongly
decentralized P2P infrastructure, or a more centralized deploy-
ment (e.g. based on multi-cloud storage) that is managed by the
blockchain. Without the requirement for access non-repudiation,
centralized storage systems are a clear winner in terms of fast
latency, and minimal data duplication or fragmentation due to in-
herent high availability.
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We have identified complex trade-offs to avoid network collu-
sion by either fragmenting files in a P2P setup, or increasing the
required nodes to decrypt a file block by combining private key
shares. Such decentralized decryption requires careful file and key
management over time as parties leave and join the access policies.
In addition, file deletion after access revocation is not immediate
in a P2P environment and nodes are volatile and key refreshment
protocols are required.

Auditability also applies to auditing the validity of private data
and transactions, and this involves meta-data such as the order of
application-specific transactions (e.g. first upload, then download).
Our study highlights that private data validation can be achieved
using third-party verifiers, trusted execution, but also by leveraging
techniques such as homomorphic encryption and zero-knowledge
proofs. However, the performance and practical applicability of
such approaches are currently limited to the applied algorithm and
encrypted data.

The main contribution of our study is the systematic exploration
of approaches to accomplish auditability and decentralized private
data access control which is especially relevant in the context of
federated collaborations. In future work, we will further investigate
and quantify the nature of these trade-off through empirical eval-
uation. Additionally, we aim to work towards solutions to allow
dynamically exploiting these trade-offs between data duplication,
file and key fragmentation, and the achieved levels of trust and
performance.
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