
Building Private Blockchains over Public Blockchains (PoP): An
Attribute-Based Access Control Approach

Dijiang Huang

Arizona State University

Tempe, Arizona

dijiang.huang@asu.edu

Chun-Jen Chung

Arizona State University

Tempe, Arizona

cchung20@asu.edu

Qiuxiang Dong

Arizona State University

Tempe, Arizona, USA

qiuxiang.dong@asu.edu

Jim Luo

US Naval Research Lab

Washington DC, USA

jim.luo@nrl.navy.mil

Myong Kang

US Naval Research Lab

Washington DC, USA

myong.kang@nrl.navy.mil

ABSTRACT
Blockchain technology is increasingly being adopted as a trusted

platform to support business functions including trusted and verifi-

able transactions, tracking, and validation. However, most business

use-cases require privacy and confidentiality for data and transac-

tions. As a result, businesses are forced to choose private blockchain

solutions and unable to take full advantage of the capabilities, bene-

fits and infrastructure of public blockchain systems. To address this

issue, we present an Attribute-Based Encryption (ABE) security

solution built on a private-over-public (PoP) blockchain approach.

The policy based distributed operation of ABE conforms well to

the blockchain concept. The cross-chain PoP approach provides

the benefits from both public blockchains and private blockchains.

Businesses will be able to restrict access, maintain privacy, and im-

prove performance while still being able to leverage the distributed

trust of public blockchains. This paper present the ABE-based secu-

rity framework and protocol for securing data, transactions as well

as smart contracts. Security analysis and performance evaluation

show the proposed solution to be effective, efficient and practical. It

can greatly reduce the cost and complexity for businesses compared

to running isolated private blockchain solutions.

KEYWORDS
Blockchain, Smart Contract, Data Privacy, Access Control, Attribute-

Based Encryption

ACM Reference Format:
Dijiang Huang, Chun-Jen Chung, Qiuxiang Dong, Jim Luo, and Myong

Kang. 2019. Building Private Blockchains over Public Blockchains (PoP):

An Attribute-Based Access Control Approach. In Proceedings of ACM SAC
Conference (SAC’19). ACM, New York, NY, USA, Article 4, 9 pages. https:

//doi.org/https://doi.org/10.1145/3297280.3297317

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC’19, April 8-12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04. . .$15.00.
https://doi.org/https://doi.org/10.1145/3297280.3297317

1 INTRODUCTION
Cross-chain functionality aims to combine the best features of dif-

ferent blockchain systems [12], both private and public, for the

purposes of exchanging value across disconnected ecosystems. Rip-

ple [2] has made notable strides to this effect, with Inter-ledger

already testing transactions across multiple ledgers simultaneously

in different currencies. ZCash [8] provides privacy protection for

Bitcoin [13] users. Hawk [10] and Ekiden [4] have been proposed

using off-chain approaches to provide data privacy protection. How-

ever, none of existing solutions clearly addressed the problem of

applying access control policies to enforce data privacy protection

on transaction secrets. For example, when using smart contract

solutions, e.g. Ethereum [5], for procurement in supply-chain, trans-

action parameters such as product name, quantity, price, purchasing

terms, shipping options, address, etc. could all be sensitive business

secrets. They should be only viewable for relevant stakeholders.

Hyperledger [3] addresses this problem by relying on a trust au-

thority approach to build permission groups for data access con-

trol. However, data access has to be predefined. It is not suitable

for complex and dynamic businesses logic that require dynamic

access control. Moreover, traditional infrastructure-based data ac-

cess control model, e.g., Role-Based Access Control (RBAC) [16],

is incompatible with the distributed nature of blockchain opera-

tions where transaction data are mobile and shared by multiple

blockchain participants.

To address the data access control and privacy protection is-

sues in public blockchain, e.g., Ethereum, we propose a distributed

Attribute-Based Encryption (ABE) solution applied to private block-

chains over Public blockchains (PoP blockchain, PoP block, or PoP

for short) approach. The PoP architecture is presented in Figure

1, where we use ABE-protected state channel and attach multiple

private blockchains on a public blockchain. The PoP approach for

deploying our ABE solution provides the best of both worlds. Ap-

plying ABE on an off-chain basis means it can interoperate with the

public blockchain without interference. Private blockchains trans-

actions can be much less computationally intensive and provide

superior performance [9] since they do not have to be verified by all

participants. Businesses are able to choose the private blockchain

solution that best suits their needs independently from the public

blockchain. Each private blockchain can be viewed as a protected

state channel. The integrity of a private blockchain can be validated

355

https://doi.org/https://doi.org/10.1145/3297280.3297317
https://doi.org/https://doi.org/10.1145/3297280.3297317
https://doi.org/https://doi.org/10.1145/3297280.3297317
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3297280.3297317&domain=pdf&date_stamp=2019-04-08

Public Block Chain

Private Block Chains

Public-Private Interfacing Blocks (Blackbox)

Protected smart
contact generated

transactions.

Legends:

Plaintext

Ciphertext
protected by
different
data access
policies

Figure 1: Illustration of PoP blockchain Architecture.

and checked in ciphertext and in aggregate by all public blockchain

participants. The public blockchain infrastructure is leveraged to

provide validation and immutability for the entirety of the private

blockchain state channel. This can take the form of the final pri-

vate blockchain transaction result, or a hash of the entire private

blockchain. Therefore, distributed trust on the publich chain is not

necessary for the private blockchain. At the same time, ABE pro-

vides data privacy for the private blockchain state channel. Only

participants with the appropriate permissions and corresponding

ABE attribute private keys can view and validate their relevant

blocks in the private block chain. It provides the benefits of private

block chains in terms of privacy without requiring the deployment

of trusted nodes or multiple verification nodes. It essentially mini-

mizes the entry cost businesses in adopting blockchain solutions.

In summary, the presented PoP solution has the following main

contributions:

• We design a decentralized trust model for key management

of ABE-based data access control. Using this approach, we

can incorporate access control policies into ciphertext to

protect content of smart contracts.

• We design a privacy preserving messaging protocol to allow

private blockchain participants to interact with the smart

contract that can generate a private blockchain. We illustrate

how to use this protocol based on a supply-chain procure-

ment application.

• We design two smart contracts: PPP to establish attribute

based security trust model and ppSCM to provide secure

data access control based on ABE scheme.

• We provide a comprehensive security and performance anal-

ysis based on the presented PPP scheme. The presented so-

lution is practical that can significantly reduce the effort and

cost to establish dedicated and isolated private blockchains.

The rest of this paper is arranged as follows: Section 2 describes

system and models that serve as foundation for this presented solu-

tion, and a supply-chain based blockchain solution is highlighted in

this section; Section 3.1 presents the details of the proposed PoP so-

lution; the performance evaluation is presented in Section 4; finally,

we conclude the work in Section 5.

2 SYSTEM AND MODELS
2.1 BCT for supply-chain
To illustrate the presented solution, in Figure 2, we present a supply

chain example based on Block-Chain Technology (BCT), which

involves multiple parties, i.e., suppliers, buyers, carriers, IoT Com-

panies, and banks. In the figure, the middle box maintains the

constructed blockchains. The potential of having all the informa-

tion written in a Blockchain allows the creation of an authoritative

record that can be used to automatically establish smart contracts.

Without such an authoritative record, smart contracts written on a

Blockchain could hardly be executed, because parties need to agree

on data and information that, like smart contracts themselves, are

agreed to by a whole network through a consensus mechanism. The

one-layer Blockchain solution sees as such a fully integrated and

automated trade network where documents and goods are trans-

parently identified and tracked along the supply chain. Because

the information is registered on a distributed database, it makes

it tamper-resistant and fosters greater trust in the trade network.

The left side of the figure present a purchase related transaction

by using Ethereum’s Decentralized App (DApp) [1] solution and

it involves 4 main procedures based on supply-chain operation

procedures:

Order Processing: The order-processing workflow starts with a

PO from the buyer. Within the blockchain, once created, the PO is

time-stamped and can become a valid document whose clauses can

be executed only if valid, due to the programming features of smart

contracts. Assuming delivery documents can also be registered on it,

the metadata of the invoice, PO and bill of lading could be matched

automatically due to the smart contracts feature, which ensures

consistency between price and quantity in all three documents

(i.e. three-way-match), permitting an automated and fast invoice

approval. The entire history of the transactions offers perfect audi-

bility, and trust between parties is provided by the immutability of

the data entered in a Blockchain.

Shipment: IoT-based tracking capability is a critical component

for this procedure. Keeping track of the material flow at each step,

along with the corresponding paper flow, is a major undertaking

that requires manual processes that are subject to human error,

loss, damage or even theft and fraud. In such a Blockchain-based

IoT, there is the possibility of maintaining product information, its

history, product revisions, warranty details and end of life, trans-

forming the Blockchain into a distributed and trusted blockchain.

Invoicing: Blockchain-based services can register the invoice-

related information on a Blockchain in order to avoid duplicates and

fraud across the network. As explained by [7], each invoice would be

distributed across the network, hashed and time-stamped in order

to create a unique identifier. If a supplier tried to sell same invoice

again through the network, that invoice would indicate a previous

instance of financing to all parties, and the double financing would

be avoided. The integration with the payment system is given by

the ability of smart contracts to take control over an asset registered

on a Blockchain (e.g. crypto-cash) and automatically trigger the

payment.

Payment: Developed to create a purely peer-to-peer version of

electronic cash to allow online payments, payments are the first

application of BCT. With the use of Bitcoin or similar cryptocurren-

cies in a B2B scenario, buyer and supplier could transact without

any intermediaries (e.g. banks) and with very small transaction

fees. Blockchain solutions could create more efficient payment pro-

cesses between banks, eliminating the need for each institution to

maintain and reconcile their own ledger.

356

Supplier Buyer

Bill of
Lading
(BoL)

Invoice

Payment

Supplier Buyer

Automated invoicing and approval

IoT

Supplier Buyer

Supplier(s)

Carrier(s) Bank(s)IoT com.

Buyer B

Supplier
A

One Purchase

Profile of
Purchase history

and asset
tracking

Smart Contract Initialization

Shipment

Invoicing

Public Parameters &
Policy (PPP) setup

IoT

Key generation/distribution

Traded product
(IoT/Edge-based tracking)

Trade documents/ asset tocket

Financing
decitions

Legends:

Tracking

IoT

Safe
Payment

(SF)

Purchase
Order
(PO)

Smart
Contract
Initiation

(SCI)

Public
Parameters

& Policy
(PPP)

Smart Contract (DAPP)

Order Processing

Supplier Buyer

Supplier Buyer

Supplier Buyer

Payment

IoT

Inventory

Smart Contract (DAPP)

Smart
Contract
Initiation

(SCI)

Smart Contract
Security Policy and

credential Setup

Contract initiation &
Establishment

Start purchasing

Buyer s commitment
(similar to the letter of
credential from a bank,

however it is guaranteed
with real reserved

currency)

Proof of delivery and good
condition of products

Automated approval &
reconciliation

Payment for the suppliers
(the completion of the

smart contract)

Illustration

Carrier

Blockchain

Blockchain Generation

Ledger/database update

Privacy-Preserving Smart Contract
Messages and Actions

Start and end of a private
blockchain

Payment proof ZCash

 ZCash

Use Payment Channel (PC)

Buyer(s)

PC

PC

PC

Figure 2: A supply chain scenario using IoT devices, block chain, and data encryption protections.

The above described smart contract is based on traditional supply-

chain procurement procedures [7]. However, it does not provide

privacy protection for transaction contents processed by smart

contracts. In order to provide data privacy protection, we present

two additional modules that are incorporated into original supply-

chain procedures: (a) Smart contract initialization: it sets up the

initial smart contract credentials such as agreed data access control

policies for each step of smart contract and initiates the off-chain

operation, in which we start a private blockchain at this point.

(b) Payment proof : PoP is a hybrid blockchain solution, in which

private block chains are interfaced into public chains. Moreover,

the private chain can also incorporate public blockchain evidence

into the private blockchain. The addition of the payment proof

procedure is to utilize the payment channel [14] feature of public

blockchains to prove the buyer has sufficient money to pay for the

purchased product. The buyer first pays for the product to a Escrow

account, and once the product is landed, the cashed money will be

delivered to the supplier to close the blockchain-based purchase.

In the presented model, both IoT companies and Banks play a

crucial role. Relying on IoT companies’ tracking capability, Banks

can use the traceability nature of blockchains. By gaining access

control to protected business transaction data, Banks can monitor

the healthiness of business entities for credit evaluation loan deci-

sion making. Due to the page limits, this research focuses on the

data privacy protection and skips the details of Banks and IoT com-

panies involved smart contract and blockchain related activities.

2.2 Smart Contract
Ethereum smart contract is to build a decentralized application to

create a blockchain with a build-in Turing complete programming

language. Therefore, smart contract means is defined to be a cryp-

tographic “boxes" that contain value and only unlock it if certain

conditions are met. The same as a transaction, a smart contract will

also be stored in the blockchain and can be retrieved by its address

and integrity can be guaranteed as well. To trigger a smart contract

is just like a remote processor call. The input would be included

in the transaction. That is, smart contract creation, smart contract

function call and smart contract destroy are all included in a trans-

action. With smart contract, one can express logics such as “only

after April 17th, 2018, can the document be sent to A". The smart

contract is running in an Ethereum Virtual Machine (EVM), and

the smart contract involved user interactions and data processing

modules are usually running by the DApp.

In the presented supply-chain example shown in Figure 2, there

are two smart contracts involved: (1) public blockchain smart con-
tract: the smart contract on the right side box includes multiple

stake holders providing supply-chain services to settle down a PPP

(Public Parameters and Policies). A PPP describes what encryption

public parameters will be used for data privacy protection, who

357

may serve as a trusted party for data access control management

for running private blockchains, and what security policies to be en-

forced in the private blockchain. We can treat a PPP as a “template”

that can be reused to build a private blockchain. Thus, multiple

PPPs can be generated for different use cases of private blockchains.

(2) Private blockchain smart contract: the second smart contract on

the left side box in Figure 2 represents a one purchase between a

supplier and a buyer. In addition, an IoT company can be involved

to provide product tracking and inventory.

2.3 Attribute-Based Encryption (ABE) Enabled
ABAC

In the literature, a large numbers of Attribute-Based Encryption

(ABE) solutions have been proposed. In this paper, we propose an

extended Lewko’s scheme [11] by adding distributed trust man-

agement to allow multiple parties to collaboratively establish the

trust and distribute secret keys. The following described federated

Authority Setup and Federated KeyGen protocols are newly pro-

posed. The details of the extended Lewko’s approach is presented

in Appendix A. Due to the page limit, interested reader can refer

to Lewko’s [11] for security proofs. Our approach has the follow-

ing salient features compared to existing blockchain data privacy

protection solutions:

• It is distributed and mobile, i.e., every participant in the sys-

tem can serve as a trust authority to issue attributes and

corresponding private keys for private blockchain partici-

pants; the access control policy is associated with ciphertext,

which can be freely shared among blockchain stakeholders

without needing an access control infrastructure for data

management.

• It is federated, i.e., attributes can be shared among private

blockchain participants. This also means that the scheme

allows a coalition to be established for a private blockchain

for attributes and corresponding private keys generation.

The coalition can prevent single point failure issue as well

resisting to n − 1 collusion problem, where n is the size of

the coalition.

• It provides interoperability feature, i.e., attributes and corre-

sponding private keys generated from different trust authori-

ties can be used together to form a data access control policy.

For example, Alice can use her own generate private key for

attribute A1 and another attribute A2, which is generated

by Bob to decrypt a data protected by data access policy

enforced by the policy {A1 AND A2}.

A typical security policy should include multiple descriptive

terms (i.e., attributes) such as:

P1 = The pricing and quantity can be accessed by

the supplier and the buyer.

In this policy, ‘pricing’ and ‘quantity’ are accessing objects, and

‘supplier’ and ‘buyer’ are attributes describing accessing subjects.

These attributes can be used as public encryption keys. In each

block created by the private blockchain, data are encrypted by

using one or multiple data access policies.

The policy P1 is presented as a tree structure in Figure 3, which

is called Policy Tree (PT). A PT is constructed by attributes at

Buyer

AND

Supplier

S1 S2

S (KEK)
Encrypt

Encrypt

Price &
Quantity

K (DEK)

PPP:
Defines

Attributes

Policy

Trusted
authorities

Generate &
Assign Keys

access
Crypto parameters

Figure 3: Attribute (or Policy) based access control setup.

the leaves and intermediate nodes are logical gates. Using secret

sharing scheme, a tree-root level secret s can be used as a Key-

Encrypting-Key (KEK) to protect at symmetric key K as the Data

Encrypting-Key (DEK) to protect data such as the values of price

and quantity. The smart contract generated PPP defines attributes

and policies for a particular application, and trusted parties, and

crypto parameters used for key generation and encryption in the

private blockchain.

The following ABE functions are used in the presented ABAC

data protection models, and their detailed constructions are pre-

sented in Appendix A.

Global Parameters Setup(λ) → GP : The Global Parameters

(GP) can be established in advance by a well-known organization,

e.g., in the supply-chain industry. Since the GP is publicly known,

it is not critical for which party to generate the GP. The organi-

zation selects a composite bilinear group G or order N = p1p2p3.

GP = {N ,д1,H : {0, 1}∗ → G}, where д1 is a generator of group

Gp1
and the hash functionH is mapping function that maps a global

identifier to an element of group G. This algorithm might be run

multiple times by different entities so as to generate multiple can-

didate global parameters in the candidate public parameters and

policies (PPP). □
Authority Setup(GP) → MPK ,MSK : Each blockchain partici-

pant can serve as a trusted authority for key generation. Based on

the GP, they need to choose and publish a set of public parameters,

i.e., a master public keyMPK , which can be later used for private

key generation. For each attributeAi that is managed by the author-

ity, the authority j chooses randomly αi ,yi ∈ ZN and publishes

MPKj = {e(д1,д1)
αi ,д

yi
1
,∀i} as the public key. The corresponding

master private key isMSKj = {αi ,yi ∀i}. □

Federated Authority Setup(GP ,AAS) → ˆMPK , ˆMSK : Using
Lewko’s scheme, each authority can generate a private key for a

given attribute. However, for each attribute, it requires every user

to derive their private keys from the same authority. Thus, the au-

thority must be fully trusted. To relax this requirement, we need to

involve multiple authorities for private key generation to prevent

single point failure issue. If there are n federated authorities, then

this scheme is resistant to n − 1 authority collusion problem. The

federated authority setup algorithm is run when multiple attribute

authorities need to generate the public key and private key for their

shared attribute(s). For simplicity, we assume there are n attribute

authorities in the set AAS , i.e., AAS = {AA1,AA2, · · · ,AAn }. AAi
will generate αi ,yi ∈ ZN . Each AAi will generate an individual

master private keyMSKi = {αi ,yi∀i}. AAi−1 will send the individ-

ual master public key to AAi as:

358

MPKi−1→i = {e(д1,д1)
∑i
j=2

α j−1 ,д

∑i
j=2

yj−1

1
},

AAi will calculate

MPKi→i+1 = (e(д1,д1)
∑i
j=2

α j−1)αi , (д

∑i
j=2

yj−1

1
)yi .

The final federated master public key and private key for an

attribute is defined as follows:

ˆMPK = {e(д1,д1)
∑n
j=1

α j ,д

∑n
j=1

yj
1

},

ˆMSK = {

n∑
j=1

α j ,
n∑
j=1

yj }.

□
Encrypt(M, (A, ρ),GP , {MPK}, ˆMPK) → CT : M is a message,

A is an n × ℓ access matrix and ρ maps its rows to attributes. For

each row in A, the algorithm chooses a random number rx ∈ ZN .

A random vector w ∈ Zℓ
N with 0 being the first entry is chosen

randomly. ωx denotes Ax ·ω. The data owner chooses s ∈ ZN and

a vector v ∈ Zℓ
N randomly where s is its first entry. λx = Ax · v

with Ax being the xth row of the matrix A. The ciphertext is as
follows:

CT =< C0,C1,x ,C2,x ,C3,x >, where

C0 = Me(д1,д1)
s ,C1,x = e(д1,д1)

λx e(д1,д1)
αρ (x)rx ,

C2,x = д
rx
1
,C3,x = д

yρ (x)rx
1

дωx
1
,∀x .

CT is the ciphertext of DEK, which is used to encrypt data object

o in the blockchain protocol. In this encryption protocol, the en-

cryptor needs to identify which master public key parameters are

used for each involved attribute. Later, a decryptor can use private

keys generated from corresponding public keys. □
KeyGen(GID, i, {MSK},GP) → SKi,GID : In PoP, the GID can

be an address that is used to identify the blockchain participant. For

a global identifier GID with attribute i belonging to an authority,

the authority generates the following private key

SKi,GID = д
αi
1
H (GID)yi .

Using the KeyGen scheme, an authority can generate private keys

for other blockchain participants. □
FederatedKeyGen(GID, i, {MSK}, ˆMSK ,GP) → SKi,GID : The

federated key generation algorithm is run when multiple attribute

authorities need to generate the private key for an attribute shared

among multiple users. Assume that AAS = {AA1,AA2, · · · ,AAn }.
AAi will generate д

αi
1
H (GID)yi . AAi−1 will send AAi the private

key component:

SKi−1→i = д

∑i
j=2

α j−1

1
H (GID)

∑i
j=2

yj−1 ,

then, AAi will calculate

SKi = (д

∑i
j=2

α j−1

1
)αi (H (GID)

∑i
j=2

yj−1)yi .

The final secret key of the shared attribute for the user GID is as

follows.

SKi,GID = д

∑n
j=1

α j
1

H (GID)
∑n
j=1

yj .

□

Decrypt(CT , {SKi,GID },GP) → M : Assume that the ciphertext

is encrypted under an access matrix (A, ρ). If the decrypt holds the
private key {SKρ(x),GID } for a subset of rows Ax of A satisfying

that (1, 0, · · · , 0) is in the span of these rows, then the plaintext

messageM can be obtained in the following way.

C1,x · e(H (GID),C3,x)/e(SKρ(x),GID ,C2,x)

= e(д1,д1)
λx e(H (GID),д1)

ωx .

The decryptor chooses constants cx ∈ ZN so that

∑
x cxAx =

(1, 0, · · · , 0) and computes∏
x
(e(д1,д1)

λx e(H (GID),д1)
ωx)cx = e(д1,д1)

s .

To verify the transaction including encrypted data, the decryption

algorithm will be called. □

2.4 Security Model
PoP assumes that blockchain participants are curious, selfishness,

and greedy, and they want to learn business secrets incorporated

into blockchains. They may collude to share their secrets to gain ad-

ditional data access capabilities that should not be assigned to them.

Moreover, they may drop off from blockchain creating procedure

to take the goods without paying for it.

3 POP SYSTEM MODELS
3.1 Access System Construction

Definition 1 (Contract). A smart contract C is defined by a
procedure C = {T } that specifies a set of interdependent transactions
among contract subjects (or participants) in group G. □

Definition 2 (Transaction). A transaction defines a sequential
atomic data actions {a} ∈ A = {read,write, chanдe}, and each
action a is restricted by a privilege α(a,T) : P(a,T) 7→ Sa,T , where
the privilege α(a,T) are defined by capabilities such as {can, cannot,
restricted by/to} of the action a in the transaction T . The privilege
is described in the security policy P(a,T), and the privilege can be
mapped/translated to Sa,T denoting the subset of subjects in the overall
participating group G. □

Definition 3 (Subject). A subject s ∈ S or G (here S is a sub-
set of subjects and G is the overall group includes all the subjects)
is an entity involved in smart contract that can perform actions,
and each subject has a data access privilege described by a policy
P(s) : ∪∀(a,T)↣sP(a,T), in which ∪∀(a,T)↣s denotes the union for
all action and transaction pair (a,T) it involves (↣ is an “involve” op-
erator) the subject s . It is the collection of policies for a smart contract
involving the subject s . Here, we denote P(s) = ∪∀(a,T)↣sP(s,a)
and P(s,a) is the data privacy policy for action a. Correspondingly,
P(S), P(S,a) are defined for S as a subset of subjects. □

Definition 4 (Object). An objecto ∈ O represents a data (or a file,
a piece of information) that subjects want to access to perform actions
such as read, write and change. The access policy to an object o for a
smart contract P = {T } is represented as P(o) = ∪∀(a,T)↣oP(o,a),
which represents the collection of data access policies involved with
all actions on an object o. □

359

Definition 5 (Data Access Capability). The following access
policies are defined:
T : s → o |{a }:∗ : in transaction T , subject s can operate ac-

tion(s) {a} limited by condition ∗ on object
o under access policies P(o,a) ⊆ P(s,a);

T : S → o |{a }:∗ : in transaction T , subset of subject S can op-
erate action(s) {a} limited by condition ∗

on object o under access policies P(o,a) ⊆
P(S,a);

where ∗ is a condition to confine action(s) such as in a transaction T
or in a contract C . □

3.2 Privacy-Preserving Messaging Protocol
(PPMP)

Goal: For a given smart contract transaction T , one or a set of

subject(s) S ⊆ G can perform an action a, where P(S,a) , P(S̄,a),
in which the collective privilege (e.g., by colluding) of set S̄ cannot

satisfy the privilege given by subset S . This means that the data

access policy P(S,a) can only be satisfied by the subgroup of par-

ticipants in S . Thus, the PPMP protocol describes the data access

privilege that only a subset of participants S can perform an action

a ∈ {read,write, chanдe} in a transaction T . □
Messages: In order to implement the access control privilege

associated to an action in a smart contract, we use cryptographic

approaches. Let’s define three cryptographic enforcement opera-

tions:

c = {Encryption(E),Decryption(D), Siдnature(Sig)},

which can be applied to an action a in the smart contract transaction

to enforce a security policy P for one or multiple subject(s).

For an or multiple action(s) {a} in a transaction T , a PPMP mes-

sage is defined as:

PPMP(T , {a},P, c, s,o) = T : s → o |{a }:P,c ; (1)

or

PPMP(T , {a},P, c, S,o) = T : S → o |{a }:P,c . (2)

Based on the above definition, the PPMP protocol is actually the

implementation of data access capabilities defined in Definition

5 through conditions enforced by cryptographic operations c =
{E,D, Siд}.

3.3 Smart Contract Protocols
In this section, we present two smart contract protocols presented

in the supply-chain example of Figure 2, namely, PPP contract and

ppSCM (privacy-preserving Scheme) contract.

3.3.1 PPP Contract. Shown in Contract 1 in Appendix A.1, PPP is

a smart contract created by an initiator on the public blockchain.

The initiator could be a Trusted Authority who wants to negoti-

ate attributes, global public parameters and policies with all other

participants for using attribute-based encryption scheme and policy-

based access control in a private blockchain. An attribute authority

needs to call function join in the PPP first to join the negotiation

and insert their attributes into the smart contract. The smart con-

tract will form policies to be negotiated based on the inputs from all

joined parties. The negotiation is a voting process on the collected

policies and allow each joined party to vote at most once to select

their preferred policy.

3.3.2 Privacy-preserving scheme (ppSCM) Contract. ppSCM con-

tract is shown in Contract 2 in Appendix A.2, which is a smart

contract created by a supplier on a dedicated private blockchain. It

uses the negotiated policy from PPP on public blockchain to create

a contract for transactions involving supplier, buyer and carrier on

the new created permission-based private blockchain. The permis-

sion to access the private blockchain is controlled by the access

control policy.

ppSCM will maintain purchase orders and invoices for the same

buyer and supplier on a dedicated private blockchain. The data in

purchase orders and invoices are protected by the selected access

policy from PPP . Only the parties with appropriated attributes can

query or update the data via transactions.

When a buyer would like to purchase products from a sup-

plier, the supplier deploys ppSCM smart contract exclusively for

the buyer’s account. The buyer then put the purchase order on

the supplier’s ppSCM with product name and quantity by calling

sendOrder function. Through an event, so-called OrderSend , the
supplier could receive the order data and process it.

After received the purchase order, the supplier looks for the best

shipping price on the carrier’s smart contract. He then sends the

order price and shipment price to the buyer by calling sendPrice
and the buyer receives this through the event called PriceSent .

The buyer performs the safe payment of the grand total (order

price + shipment price) through the smart contract in the public

blockchain by the Saf epaySent() event in the ppSCM . These coins

go to the smart contract account and wait there until the delivery.

After safe payment, the supplier sends the invoice with delivery

date and some other data to the buyer by calling sentInovice . The
buyer receives the invoice data through the event called InvoiceSent .

The carrier, after delivery the order to the buyer, marks the

order as delivered on the ppSCM smart contract by calling delivery
function. The event OrderDelivery then call a smart contract in

the public blockchain payout the supplier for the order and payout

the Courier for the shipment.

3.4 Policy-Based Data Privacy Protection

Trust Profile
Policy-based

Key Distribution
Private Smart

Contract
Public Smart

Contract

PPP Repository

Figure 4: Trust and policy management Procedure.
3.4.1 PPP: Public Parameters and Policies. As shown the PoP ex-

ample in Figure 2, we can abstract the In the PoP’s trust and policy

management procedure in Figure 4. For each private blockchain

construction, we need to set up or choose a trust profile, i.e., either

derived from a public smart contract to generate a PPP or reuse a

previously establish PPP. A PPP is built based on the following data

structure:

• D1: A set of Global Parameters (GP, see the global parameter
setup) provides the global parameters that all ABE users need

to use for key generation, encryption, and decryption.

360

• D2: An array of identities of authorities ({GID}) and their

associate public parameters {MPK} and/or federated public

parameters ˆMPK , and each parameter associated attributes

{MPK}, ˆMPK → {A}. The mapping between public parame-

ters and attributes allow each private blockchain participant

to select which public parameters to use in the ABE Encrypt
procedure.

• D3: A set of policy examples that can be used for each of

smart contract transaction during the private blockchain

construction.

PPP is built using smart contract over public blockchain (see

Contract 1), and thus they are searchable. A public directory service

can be used to store established PPP. For convenience, each PPP can

be reused as a template for a new private blockchain construction.

TheGID is a public blockchain address, which is usually generated

from a self-created public key. in D2, exposing GID will not reveal

the real blockchain participant’s identity. In many real business

scenario, suppliers may prefer to expose their real identity for

easier key management procedure after the PPP establishment. In

addition, when creating a new private blockchain, the participant

can initiate an update smart contract to update the authority list

and associated attributes, which can be implemented using the PPP

creation smart contract (see Contract 1).

3.4.2 Private KeyDistribution. Once a PPP is determined and trusted

authorities are known, a private key distribution procedure is con-

ducted as an off-chain procedure. The key distribution can be initi-

ated by either a private blockchain participant or a trust authority.

Using existing public key exchange protocols can allow the par-

ticipants to derive private keys corresponding to each assigned

attribute. Some of the attributes may need to get a capability cer-

tificate from a trusted authority when applying for a private key. A

capability certificate is usually a digitally signed document to prove

the requester has the capability to conduct a business function, e.g.,

professional certificates, bank certificates, business type certificates,

etc. Each certificate should be digitally signed by wellknown cer-

tificate issuers on requestor’s GID. Then, the trusted authorities

can use KenGen or Federated KeyGen to generate private keys

for distribution. The key distribution is an off-chain procedure and

can be done offline. Any existing public key or shared key-based

key distribution schemes can used, in which details are omitted in

this paper.

3.4.3 Data Object Encryption and Decryption. The data access

protocol is specified in PPMP protocol. The data object opera-

tion diagram is presented in Figure 5. Both DApp (a web-based

app) and smart contract (running within an Ethereum Virtual Ma-

chine (EVM)) run locally on a user’s site, and the ABE encryp-

tion/decryption engine is also interfaced to the DApp locally. The

encryption and decryption are performed between the DApp and

the blockchain, and encryption/decryption engine.

In this project, we consider the data object granularity is deter-

mined by access control policies. Using the same data access control

policy provided in Section 2.3: P1=The pricing and quantity can be
accessed by the supplier and the buyer. P1 is an example to specify

the data protection when creating the PO. The PPMP message will

be used by DApp, which runs an ABE encryption and decryption

DApp Smart Contract
Encryption &

Decryption Engine
Plaintext

EVMWeb

LocalPPMP protocols
P2P1

PO Block

Private Blockchain

Figure 5: Data object encryption and decryption.

engine to create the PO blockchain block. Thus (2) can be written

as:

PPMP(T , {a},P, c, s,o)

= TPO : {buyer , supplier } → price&quantity |create :P1,E .

PO should also contain an address information for shipment. If the

data access policy is P2=The shipment address information can be
accessed by the buyer and the carrier., then the PPMP message can

be:

PPMP(T , {a},P, c, s,o)

= TPO : {buyer , carrier } → shippinд address |create :P2,E .

The PO example presents two data access control policies P1 and

P2 are involved, and thus on the blockchain, there should be at

least two transactions corresponding to P1 and P2, respectively.

The granularity of encrypted block on the blockchain is determined

by using the same data access control policy without needing to

create two different DEKs. Technically, we can combine P1 and P2

as one policies, however, there is no way to use one DEK to protect

the data content to fulfill both of them. Other crypto actions such as

decryption can be similarly created based on the PO example. We

note that the crypto currency involved functions can be achieved

by using public blockchain’s payment channel approach [14]. Due

to page limits, we do not provide details in this paper.

4 POP OPERATION AND PERFORMANCE
ANALYSIS

4.1 Complexity Analysis
The following table summarizes the complexity of the algorithms

of the proposed scheme. Here, only computation performed on

each individual attribute authority will be counted. Therefore, the

complexity of (setup, federated setup) and (key generation, feder-

ated key generation) is the same. Thus, we only show Setup and

KeyGen to represent these two. E and P represents exponentiation

Table 1: Computation Complexity Comparison in terms of
the Number of Pairing Operations

Schemes Complexity

Setup 2 |Ui |
KeyGen 2 |S |
Encrypt 5nE + 1

Decrypt 2nP + nE

and pairing respectively. Ui indicates the set of attributes managed

by a certain attribute authority. S represents the set of attributes

assigned to a user. n is the number of rows of the linear secret shar-

ing matrix used in the encryption and decryption algorithm. The

numerical evaluation of the presented ABE scheme is presented

361

in Appendix ??, in which it shows the involved computations are

at million seconds level and they can be done easily for modern

computers.

4.2 Security Analysis
The proposed ABE scheme is based on Lewko’s scheme from [11].

For interested readers, please refer to Lewko’s work for security

proof, in which the scheme is secure against both multiple (fewer

than n − 1) trusted authority collusion attack and collusion among

users. We extend Lewko’s scheme from single authority setup and

key management to Federated Authority Setup and Federated
KeyGen. The remaining work we need to do is to prove the feder-

ated setup and key generation algorithm does not cause security

issue and break the collusion problem provided by Lewko’s scheme.

Basically, if an adversary wants to compromise the system during

the federated setup and private key generation, what he/she wants

to obtain is the value of

∑n
j=1

α j and
∑n
j=1

yj . Because the discrete

logarithm problem is difficult in terms of a prime group that is

big, the adversary cannot obtain each individual value α j and yj .
The only way to do this is attribute authority collusion. However,

it is only when all of the attribute authority collude together can

the private secret get leaked. Therefore, if the number of colluding

attribute authority isn−1 or fewer than that, our proposed federated

algorithms are resistant against collusion attacks.

4.3 Comparison with Previous Work
Several existing projects, e.g., Hyperledger [3], R3CEV’s Corda [18],

and the Gem Health network [15] provide private blockchain solu-

tion for business. The idea of cross-chain functionality is to enjoy

the benefits from both public and private blockchains, in which

solutions bent on delivering cross-chain functionality mean that

many of the existing obstacles currently governing the exchange

of value will gradually fade. In effect, cross-chain functionality

could gather together the best features of blockchains [12], both

private and public for the purposes of exchanging value across dis-

connected ecosystems. Ripple [2] has already made notable strides

to this effect, with Interledger already testing transactions across

multiple ledgers simultaneously in different currencies. ZCash [8]

provides privacy protection for Bitcoin [13] users. Hawk [10] and

Ekiden [4] have been proposed using off-chain approaches to pro-

vide data privacy protection. However, none of existing solutions

clearly addressed how to apply access control policies to enforce

data privacy protection on transaction secrets.

The following Table 2 summarizes the main feature comparisons

with existing several major privacy-preserving solutions.

Table 2: Blockchain Feature Comparison
Solution Protect Method Compu. Type Access

Policy

PoP smart con-

tract

off-chain execu-

tion & ABE

Medium no

limit

Yes

Hawk

[10]

smart con-

tract

off-chain execu-

tion & on-chain

zkSNARK

heavy no

limit

No

Ekiden

[4]

smart con-

tract

off-chain Hard-

ware Tee

low no

limit

No

Maxwell

[6]

amount on-chain n/a Bitcoin No

ZeroCash

[17]

identity on-chain n/a Bitcoin No

5 CONCLUSION
In this paper, we presented a blockchain solution on how to build

private blockchains over public blockchain, called PoP. A set of

messaging and smart contract protocols are also presented to illus-

trate privacy-preserving functions of PoP. We use a supply-chain

procurement procedure example to illustrate how PoP works.

Blockchain technologies for supply-chain and other business

functions are emerging research and development areas. This pre-

sented work may lead to many research and development directions

for the next step. First, more functional-rich policy-based access

control solutions should be considered. The existing solution is

based on Lewko’s solution. Other features such as attribute and

user’s revocation should be considered; policy/attributes expiration

should be also considered that allow more automatic policy-based

access control features, etc. Second, the presented smart contracts

only focus on PPP establishment and procurement. Other smart

contracts such as cancellation/revocation of a contract should be

also investigated. Third, we briefly discussed on how to use IoT

device and how Bank can monitor blockchain based transactions to

allow them to decide business loan credibility of business parties.

More in-depth investigation is required in our future work.

ACKNOWLEDGMENT
All authors are gratefully thankful for research grants from Naval

Research Lab N00173-15-G017, National Science Foundation âĂŞ US

DGE-1723440, OAC-1642031, SaTC-1528099, and National Science

Foundation âĂŞ China 61628201 and 61571375.

REFERENCES
[1] Andreas Bogner, Mathieu Chanson, and Arne Meeuw. 2016. A decentralised

sharing app running a smart contract on the ethereum blockchain. In Proceedings
of the 6th International Conference on the Internet of Things. ACM, 177–178.

[2] Vitalik Buterin. 2016. Chain interoperability. (2016).

[3] Christian Cachin. 2016. Architecture of the Hyperledger blockchain fabric. In

Workshop on Distributed Cryptocurrencies and Consensus Ledgers.
[4] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2018. Ekiden: A Platform

for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract

Execution. arXiv preprint arXiv:1804.05141 (2018).
[5] Ethereum. 2018. Ethereum Project. available at https://www.ethereum.org/.

(2018).

[6] G. Maxwell. 2018. Project gmaxwell. available at https://github.com/gmaxwell.

(2018).

[7] Erik Hofmann, Urs Magnus Strewe, and Nicola Bosia. 2017. Supply Chain Finance
and Blockchain Technology: The Case of Reverse Securitisation. Springer.

[8] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash
protocol specification. Technical Report. Tech. rep. 2016-1.10. Zerocoin Electric

Coin Company.

[9] Rami Khalil and Arthur Gervais. 2017. Revive: Rebalancing off-blockchain pay-

ment networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 439–453.

[10] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving

smart contracts. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 839–
858.

[11] Allison Lewko and BrentWaters. 2011. Decentralizing attribute-based encryption.

InAnnual International Conference on the Theory andApplications of Cryptographic
Techniques. Springer, 568–588.

[12] Joe Liebkind. 2018. Public vs Private Blockchains: Challenges

and Gaps. available at https://www.investopedia.com/news/

public-vs-private-blockchains-challenges-and-gaps/. (2018).

[13] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[14] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments. draft version 0.5 9 (2016), 14.
[15] J Prisco. 2016. The Blockchain for healthcare: Gem launches GemHealth Network

with Philips Blockchain Lab. Bitcoin Magazine (2016).

362

https://www.ethereum.org/
https://github.com/gmaxwell
https://www.investopedia.com/news/public-vs-private-blockchains-challenges-and-gaps/
https://www.investopedia.com/news/public-vs-private-blockchains-challenges-and-gaps/

[16] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.

Role-based access control models. Computer 29, 2 (1996), 38–47.
[17] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on.
IEEE, 459–474.

[18] Eric Wall and Gustaf Malm. 2016. Using blockchain technology and smart

contracts to create a distributed securities depository. (2016).

A SMART CONTRACT SUDO CODES
In this appendix, we present sudo codes of two smart contract

protocols presented in the supply-chain example of Figure 2, namely,

PPP contract and ppSCM contract.

A.1 Pseudo-code of PPP Contract
The PPP contract is created by an initiator on the public blockchain.

An attribute authority needs to call function join in the PPP first

to join the negotiation and insert their attributes into the smart

contract. The smart contract will form policies to be negotiated

based on the inputs from all joined parties. The negotiation is a

voting process on the collected policies and allow each joined party

to vote at most once to select their preferred policy.

Contract 1 Pseudo-code of PPP Contract

1: struct AA = {. . .} ▷ Define Attribute Authority

2: AAS = {AA1, . . . ,AAn } ▷ Address of each joined AA
3: struct P = {. . . , count} ▷ Define Policy and their count

4: PS = {P1, . . . , Pn } ▷ A set of policy to be negotiated

5: function PPP(P p)
6: PS .push(new P(p)) ▷ Initiator create a new policy

7: function Join(Attribute attr)
8: ▷ Initiator grants a new AA to join the negotiation

9: require(isAllow(msд.sender)
10: require(msд.sender < AAS)
11: AAS .push(new AA(msд.sender ,attr))
12: if (AA.attributes < PS) then
13: add AA.attributes to PS
14: function Vote(P p)
15: require((msд.sender ∈ AAS)
16: require(not isVoted(addr_AA))
17: PS .find(p).count++

18: function getPolicies()

19: require(msд.sender ∈ AAS)
20: Policies = ∅

21: for each p ∈ PS do
22: Policies .push(p)

23: return Policies
24: function getPPP()

25: require(msд.sender ∈ AAS)
26: return PS .findMaxVote()

A.2 Pseudo-code of ppSCM Contract
The ppSCM contract is created by a supplier on a dedicated pri-

vate blockchain. It uses the negotiated policy from PPP on public

blockchain to create a contract for transactions involving supplier,

buyer and carrier on the new created permission-based private

blockchain. The permission to access the private blockchain is con-

trolled by the access control policy. ppSCM will maintain purchase

orders and invoices for the same buyer and supplier on a dedicated

private blockchain. The data in purchase orders and invoices are

protected by the selected access policy from PPP . Only the par-

ties with appropriated attributes can query or update the data via

transactions.

Contract 2 Pseudo-code of ppSCM Contract

1: address addr_Seller , addr_Buyer
2: struct PO = {дoods,quantity,number ,price, sa f epay, shipment}
▷ Purchase Order Data

3: struct Shipment = {courier ,price, sa f epay,payer ,date}
4: struct Invoice = {orderno, invoiceno}
5: AccessPolicy = ∅

6: Orders = ∅, Invoices = ∅

7: orderseq = 0, invoiceseq = 0

8: function ppSCM(address buyerAddr , Policy AccP)
9: ▷ Initialize contract by a seller

10: addr_Seller = sender
11: addr_Buyder = buyerAddr
12: AccessPolicy = AccP

13: function sendOrder(string дood , unit quantity)
14: ▷ Buyer send a PO to the seller

15: require(msд.sender == addr_Buyer)
16: Orders .push(new PO(дood , quantity, orderseq++))
17: OrderSent()

18: function sendPrice(PO po, unit priceP , unit priceS)
19: ▷ Seller send prices (order and shipment) to buyer

20: require(msд.sender == addr_Seller)
21: require(isValid(po))
22: po.price = priceP
23: po.shipment .price = priceS
24: PriceSent()

25: function sendSafepay(PO po)
26: ▷ Buyer send safe payment to seller

27: require(msд.sender == addr_Buyer)
28: require(isValid(po))
29: SafepaySent()

30: function sendInvoice(PO po, unit date , address courier)
31: ▷ Seller send invoice to Buyer and trigger the shipment

32: require(msд.sender == addr_Seller)
33: require(isValid(po))
34: Invoices .push(new Invoice(po.number , invoiceseq++))
35: po.shipment .date = date
36: po.shipment .courier = courier
37: InvoiceSent()

38: function delivery(unit invoiceno, unit timestamp)
39: ▷ Courier delivers the goods and trigger the payment

40: require(isValid(Invoices[invoiceno]))

41: po = PO[Invoices[invoiceno].orderno]
42: require(po.shipment .courier ==msд.sender)
43: OrderDelivered()

363

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

