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Abstract

This article presents the Quotient Hash Table (QHT) a new data structure for duplicate detection in unbounded
streams. QHTs stem from a corrected analysis of streaming quotient filters (SQFs), resulting in a 33% reduction in
memory usage for equal performance. We provide a new and thorough analysis of both algorithms, with results of
interest to other existing constructions.

We also introduce an optimised version of our new data structure dubbed Queued QHT with Duplicates (QQHTD).
Finally we discuss the effect of adversarial inputs for hash-based duplicate filters similar to QHT.

1 Introduction and Motivation

We consider in this paper the following problem: given a pos-
sibly infinite stream of symbols, detect whether a given sym-
bol appeared somewhere in the stream. It turns out that in-
stances of this duplicate detection problem arise naturally in
many applications: backup systems [11] or Web caches [10],
search engine databases or click counting in web advertise-
ment [16] , retrieval algorithms [3], data stream management
systems [1], or even cryptographic contexts where nonce-
reuse is problematic1 [15].

It is generally not possible to store the whole stream in
memory, therefore practical solutions to this problem must
somehow trade off memory for accuracy. The special case of
a single duplicate has a known optimal solution [13, 14], but
to the best of the authors knowledge no such results exists
for detecting all duplicates in an unbounded stream.

Several algorithms were proposed to address this specific
question, which we discuss below. Of particular interest to
our investigation are Streaming Quotient Filter (SQF), as
described by Dutta et al. in [8]. We point out several cru-
cial mistakes in the original analysis of SQF, and in doing
so highlight that a more efficient data structure can be con-
structed along the same lines. We flesh out such a data
structure, which we call the Quotient Hash Table (QHT),
and provide a thorough analysis of both SQF and QHT. This
analysis is our main contribution. QHT itself is not optimal
and can be further improved: we describe such an improve-
ment, dubbed Queued QHT with Duplicates (QQHT), and
benchmark our new algorithms against popular alternatives.

2 Preliminaries and related work

2.1 Duplicate Detection

Let E = (e1, . . . , en, . . . ) be a (possibly infinite) sequence of
elements ei ∈ Γ, and write U = |Γ|. An element ei from E
is a duplicate if ∃ej ∈ E, j < i such as ej = ei. Otherwise,
ei is unseen.2

The duplicate detection problem is the question of find-
ing all duplicates in a stream E.3 We recall the following
well-known result:

Theorem 2.1. Assume that each ei is sampled uniformly at
random from Γ. Then perfect detection requires U memory

bits.

Proof. A perfect duplicate filter must be able to store all
streams Ei = (e1, . . . , en), i.e. must be able to store any
subset of Γ, which we denote by P(Γ). Given that there are
|P(Γ)| = 2|Γ| = 2U of them, according to information theory
any such filter requires at least log2(|P(Γ)|) = log2(2

U ) = U
bits of storage.

Because of this result, perfect duplicate detection is often
out of reach when U is big — however probabilistic solutions
are often sufficient for many applications. Such algorithms
make errors: false positives (claiming a duplicate where there
isn’t) and false negative (missing a duplicate).

2.2 Filters

Definition 2.1 (Filter). A filter F over the memory M is
a tuple F = (S,Detect, Insert), where:

• S ∈ M is the current state

• Detect : Γ×M→ {DUPLICATE,UNSEEN}

• Insert : Γ×M→M

Here DUPLICATE corresponds to a guess that the pro-
vided element is duplicate, and UNSEEN that it is unseen.
Insert corresponds to an update of the filter’s memory state
after observing a new element. Here M models the amount
of memory (states) available to the algorithm.

In practice, Detect and Insert are often merged into a
single algorithm Stream← Insert ◦ Detect.

Definition 2.2 (False positive (resp. negative)). If, for an
unseen (resp. duplicate) element e, Detect(e) outputs DU-

PLICATE (resp. UNSEEN), e is called a false positive (resp.
negative).

Definition 2.3 (FPR, FNR). The false positive rate (FPR)
of a stream E is the frequency of false positive. The false
negative rate is similarly defined as the frequency of false
negatives.

We are interested in filters that whose FNR and FPR can
be kept low when M is bounded.

∗Part of this work was done while the author was visiting Ingenico Labs
1A nonce is a one-time use random number.
2Note that by definition e1 is always unseen.
3Note that this problem is equivalent to a dynamic formulation of the approximate set membership problem.
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2.3 Hash-based filters

Filters rely on hashing to efficiently answer the duplicate de-
tection problem. These filters are often a variation over the
well-known Bloom filters [2]. A Bloom filter uses an array
T of M bits, initially all set to 0. k hash functions hi are
also needed. Insertion of an element e is made by setting all
T [hi(e)] to 1. Detection of an element f is the AND of all
cells T [hi(f)]: if the AND value is 0, then emit UNSEEN,
otherwise emit DUPLICATE.

It is easy to see that this approach has a FNR of 0. How-
ever, as the stream grows, the FPR gets worse, and in the
limit of an infinite stream the FPR is 1. Many variants have
been proposed in the literature to compensate for this effect
[20], mostly by allowing deletion [5, 6], but doing so increases
the FNR.

Alternatively, other filters prefer to store fingerprints:
this is the rationale behind several recent constructions [8, 9].

For the data structures most interesting to our question,
we refer the reader to the algorithms described in [7, 9, 19,
8, 22].4

Other data structures, such as [4, 12] are not considered
in this paper, as they require an unbounded amount of mem-
ory as the stream grows.

2.4 Streaming Quotient Filter

One construction which we must describe at length is the
Streaming Quotient Filter (SQFs) [8]. Given an element e,
a certain fingerprint5 s(e) is stored in an array, at row h(e)
and a certain column amongst k. This array constitutes the
filter’s state.

The filter’s construction uses integers q, k, r r′ < r and
a hash function h : {0, 1}∗ → {0, 1}q+r . The filter’s state
is an array of 2q rows and k columns, each holding a σ-bit
element (with σ = r′ + ⌈log2(r + 1)⌉), or the special empty
symbol ⊥. The filter’s state is initially ⊥ in every cell.

Then, [8] describes Stream(e) as follows:

• Compute h(e). The q most significant bits of h(e) de-
fine hq

e, and the r least significant bits define hr
e.

• Let we be the Hamming weight of hr
e, and let hr′

e

be r′ bits deterministically chosen6 from hr
e. Let

s(e)← hr′

e ‖we where ‖ denotes concatenation.

• If s(e) is already stored in the row numbered hq
e, emit

DUPLICATE.

• Otherwise, store it in one empty cell of that row. If no
empty cell exists in the row, store s(e) in one random
cell of the row, replacing any fingerprint previously
stored there. Emit UNSEEN.

3 Revisiting SQF: Quotient Hash Table

SQF is introduced and analysed in [8]. However, a careful
reading reveals several crucial mistakes in that analysis. We
focus here on two of them that directly impact the claim
of SQF near-optimality. Note that here, as in the rest of
this paper, hash functions are modelled as pseudo-random
functions.

1. Cells in the filter’s state are not independent: in par-
ticular, in every row, non-empty cells hold different
values (by design);

2. Terms in geometric sums of order > 1 cannot be ne-
glected.

Taking these effects into account (see Sections 4.1 and 4.2),

and using the same approximation than [8] used7,
(2r
r

)

≈
4r√
πr

, we get the following asymptotic formulae for the FNR

and FPR

FPR∞ ≈
k

2r′
√
πr

FNR∞ ≈ 1− k

2r′
√
πr

that disagree with [8] — most importantly, the error rates do
not decrease to 0, contrarily to what was claimed. Interest-
ingly, the suggested parameters (r = 2, k = 4, r′ = r/2 = 1)
indeed achieve an FNR of 0 — but also an FPR of 1.8

Further more, there is redundancy between the Hamming

weight we of hr
e and the reduced remainder hr′

e . For in-

stance, if hr′

e contains at least one bit set to 1, we know
that we 6= 0. Intuitively this means SQF is wasteful, and
we could expect to avoid collisions in the filter’s state by
using a better adjusted encoding: this intuition happens to
be correct as shown in Section 4.4.

Finally, since the state table contains 2q rows, with k cell
each, the total memory required by an SQF is M = 2qkσ.

3.1 Full-size Hashing, Memory Adjust-
ments

Our first observation is that SQF’s fingerprint scheme (a
hash and a Hamming weight) can be fruitfully replaced by a
single hash function of the same size. Not only does this sim-
plify the theoretical analysis, it also provides a much more
efficient use of the available space. We also use more flexible
hash functions, that give much more flexibility in adjusting
the total memory M of the filter. Combining these two ef-
fects, we obtain Algorithm 1 which we call Quotient Hash
Table (QHT).

Algorithm 1 QHT Setup and Stream

1: function Setup(M,σ, k) ⊲ M > σk and 0 < k ≤ 2σ

2: Let N ← ⌊M/(k · σ)⌋.
3: Choose a hash function h over [0, N − 1]
4: Choose a hash function s over [0, 2σ − 1]
5: Let T be a N ×k array with σ-bit cells, initialized to
⊥.

1: function Stream(e)
2: for each cell bi in row T [h(e)] do

3: if bi = s(e) then

4: return DUPLICATE

5: Let b∅ be the first empty cell in row T [h(e)].
6: if b∅ does not exist then

7: b∅
$← T [h(e)]

8: Store s(e) in bucket b∅
9: return UNSEEN

4Cuckoo filters [9] requires a minimal adaptation for unbounded streams: in the original paper, failure is emitted after some number of
relocations; we just discard the failure. Theoretical analysis of this new structure is not addressed in this paper.

5[8] refers to them as “signatures”, but we shun this term to avoid any claim of cryptographic properties.
6E.g., the r′ least significant bits of hr

e .
7Even though not mentioned in [8], the approximation (stemming from Catalan numbers) is only asmptotatically valid, but computations

show that the approximation is correct even for small values of r, such as the ones used in practical applications.
8With these values, only 4 distinct fingerprints exist, and they can all be stored in the 4 cells per row. When the filter is full, any duplicate

will be reported as such, hence a FNR of 0. But every new element will also be reported as duplicate, hence a FPR of 1.
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3.2 Empty Cells

SQF and QHT as described above make essential use of the
“empty” cells in T . The need for this feature is present
for all fingerprint-based structures including Cuckoo filters
[9].9 However, a low-level implementation cannot rely on
the availability of such a special value. Our options are to
initialise all cells to 0 and either

1. treat 0 as a fingerprint;

2. if an element has a fingerprint of 0, reassign its finger-
print to 1;

3. while an element has a fingerprint 0, compute a new
fingerprint based on some deterministic scheme.

The first option is at a risk of a high false positive rate, even
for small streams: when a new element, whose fingerprint
is 0, should be stored in an empty bucket, it is instead dis-
missed as a duplicate. More specifically, before the filter is
completely filled, a new element has probability at least 1

S
to be false positive, which leads to a high number of false
positive at the beginning of any stream.

The second option is significantly faster than the third10,
which on the other hand has better statistical properties,
making the analysis simpler. While the second option was
preferred by [9] in their implementation11, we retain the
slower, but easier to analyse option.

3.3 Semi-sorting

The technique of semi-sorting was introduced in [9] to shave
some extra storage. The idea is as follows: treating empty
cells as buckets containing the “0” fingerprint, for each row,
sort the cells by their fingerprints, and then encode the result
as a number.

As an example, for s = 4 and k = 4 there are only 3,876
possible sorted states, which can be encoded using 12 bits,
as opposed to the 16 bits required to store four 4-bit finger-
prints.

3.4 Comparison with Hash Tables

As the name implies, QHT are related to hash tables. In-
deed, a hash table is a QHT, wherein the number of rows
is equal to 1. In particular, QHT cannot have worse per-
formances than such structures, and bear similarities with
so-called compaction techniques [21].

4 Error Rate Analysis

4.1 False Positive Rate

Consider a QHT with N rows, k buckets per row, and s-bits
fingerprints. For simplicity, further assume that no bucket is
empty (which is true after some time), and that the stream
is sampled uniformly at random from Γ.

Theorem 4.1. For a QHT of N rows, k buckets per row
and S possible fingerprints, as the number of insertions goes
to infinity, the FPR goes to k/S. Moreover the probability
that an unseen element inserted after m other elements trig-

gers a false positive is FPm =
k

S

(

1−
[

1− 1

Nk

]m)

.

Proof. An element e is a false positive if and only if e has not
been encountered yet, but Detect(e) = DUPLICATE. This
event is triggered by the presence, in the filter, of another

element e′ with a hash and fingerprint colliding with those
of e. e′ is called a false duplicate, and if e′ is still in the filter
when e arrives, we refer to the event as a hard collision.

Our first remark is that the only false duplicate that may
create a hard collision with e is the last false duplicate in-
serted before e arrives: let us assume that e1, e2 are false
duplicates, and that e1 arrives before e2. When we insert e2
in the filter, e1 is either still in the filter or has been evicted.

• If e1 has been evicted, then e1 will not hardly collide
with e.

• If e1 is still in the filter, then e2 will be claimed as a
duplicate and dismissed.

However, if we look at the table T storing all fingerprints,
dismissing e2 is strictly equivalent to replacing e1 by e2.
Consequently, every false duplicate is erased by any new
false duplicate, and only the last false duplicate can cause a
hard collision. As a result, we will only focus on the proba-
bility that the last false duplicate (before e arrives) causes a
hard collision.

Let us assume that the last false duplicate appears at po-
sition i of the stream E = {e1, e2, . . . , em, e}, in other words,
ei is the last false duplicate in the stream before e.

Now, ei has to remain in the filter until e arrives, even
though new elements are added. Let us suppose that ele-
ment ej , i < j ≤ m, does not evict ei from the filter. For ei
to be evicted, the following conditions must be true:

• h(ej) = h(ei)

• s(ej) is different from all the other fingerprints stored
in the row T [h(ej)] (knowing that one of the buckets
contains s(ei))

• s(ej) is inserted into the bucket in which s(ei) is stored

Since we know that ei is the last false duplicate, we cannot
simultaneously have h(ej) = h(ei) and s(ej) = s(ei). As
such, the first two conditions are not independent. Let Phs

be the probability that these two conditions are satisfied.
Given that ei is the last false positive, there are only NS−1
possibilities for the couple (h(ej), s(ej)). Moreover, among
these NS−1 states, only S−1 verify the first condition, and
among these S−1 states, only S−k verify the second condi-
tion. Finally, Phs = S−k

NS−1
. If we assign the last event to the

probability Pselection, we immediately get Pselection = 1
k
.

Finally, the probability P¬evict of ei not being evicted by
ej is P¬evict = 1−PhsPselection and: P¬evict = 1− S−k

k(NS−1)

Now, ei has to avoid eviction by every element before
e arrives, i.e. by all elements ei+1, . . . , em, which happens

with probability P (hc)i = (P¬evict)
m−i.

At that point, we know the probability that a hard colli-
sion happens when the last false duplicate has been inserted
at position i.

The probability of any element e′ being a false dupli-
cate is Pfd = 1

N
1
S

. In the stream E = (e1, . . . , em, e), the
last false duplicate is em with probability Pfd; it is em−1

with probability (1− Pfd)Pfd; and em−k with probability

(1− Pfd)
k Pfd. The probability that the next element will

result in a false positive after m elements are inserted, is
equal to the probability that the last false duplicate is not

9Other constructions do not face this issue, including SBF [7] and b_DBF [19]: in these schemes, 0 always codes for absence.
10The third option needs, on average, S

S−1
hash computations for each insertion, whereas the second option only needs 1.

11https://github.com/efficient/cuckoofilter/blob/aac6569cf30f0dfcf39edec1799fc3f8d6f594da/src/cuckoofilter.h
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evicted. Thus the probability FPm that a false positive hap-
pens after m elements are inserted is

FPm =
m
∑

j=1

(ej is the last false duplicate ×

ej is not evicted until e arrives)

=
m
∑

j=1

(1− Pfd)
m−j Pfd × P (hc)j

=
m
∑

j=1

(1− Pfd)
m−j Pfd

(

1− S − k

k(NS − 1)

)m−j

= Pfd

1−
[

(1− Pfd)
(

1− S−k
k(NS−1)

)]m

1− (1− Pfd)
(

1− S−k
k(NS−1)

)

=
1

NS

1−
[

(

1− 1
NS

)

(

1− S−k
k(NS−1)

)]m

1−
(

1− 1
NS

)

(

1− S−k
k(NS−1)

)

=
1−

[

1− S−k
(NS−1)k

− 1
NS

+ S−k
kNS(NS−1)

]m

1 + NS(S−k)
(NS−1)k

− 1
k

S−k
NS−1

=
1−

[

1− 1
NS
− S−k

NSk

]m

1 + S−k
k

=
k

S

(

1−
[

1− 1

Nk

]m)

We now have the probability that a new element e, inserted
after m insertions, is detected as a false positive.

Assuming the stream is of size n, and noting FPRn its
false positive rate, we get that FPRn is equal to the averages

of all FPm of its stream, i.e., FPRn =
1

n

n
∑

m=1

FPm. Given

that lim
m→∞

FPm =
k

S
and using Cesàro’s mean properties,

we get, as one could have expected, FPRn −−−−→
n→∞

k
S

.

Thanks to the expression of FPm, we can see that the
more rows there are, the slower the FPR reaches its asymp-
totic (saturated) value.

A similar phenomenon can be observed with the Stable
Bloom Filter [7]12: adding rows will only decrease the FPR
to a certain point. An other structure adapted to streaming
data we found, the block decaying Bloom Filter [19], oper-
ates on a sliding window and therefore did not use the same
False Positive definition as the one we did13.

4.1.1 Application to SQF

One should be tempted to directly apply this result to an
SQF. However, as pointed out earlier, in an SQF fingerprints
are correlated and therefore not equiprobable14 .

However, for an optimal SQF, fingerprints are equiprob-
able so the analysis above holds for optimal SQFs. In the
general case, the authors of [8] have approximated the prob-
ability of fingerprint collision in an SQF with 1

2r′
√
πr

. Re-

placing 1
S

with this probability in our analysis, we get an

approximate asymptotic FPR of k

2r
′√

πr
for SQFs, as an-

nounced in Section 3.

4.2 False Negative Rate

Theorem 4.2. For a QHT of N rows, k buckets per row,
and S different fingerprints, assuming U ≫ N , then as the

number of insertions goes to infinity, FNR∞ = 1− k

S
.

Proof. Assume that e is a duplicate, we denote by ek the last
element in the stream such that ei = e. Following the same
reasoning as for the FPR, ei will trigger a false negative if
and only if ei is removed from the filter before e arrives, and
if any false duplicate of e, inserted between the removal of
ei and e, is deleted before e arrives.

Let us assume that ei is deleted at time j (this happens
with probability PDel

i,j ) by something else than a false dupli-
cate. Using similar arguments than in the previous section,

we have PDel
i,j =

(

1− S−k
k(NS−1)

)j−i−1
S−k

k(NS−1)
.

The probability that all false duplicates, inserted after
time j, are deleted before e arrives is 1− FPn−j .

Let a = S−k
k(NS−1)

, b = k
S

and c = 1− 1
Nk

, and denote by

FNi,m the probability, in a stream E = (e1, . . . , em, e) where
the last duplicate of e is inserted at i, that ei is deleted before
e arrives and no false positive persists until e,

FNi,m =
m
∑

j=i+1

PDel
i,j (1 − FPm−j)

=
m
∑

j=i+1

(1− a)j−i−1 a
(

1− b
(

1− cm−j
))

= a (1− b)
m
∑

j=i+1

[

(1− a)j−i−1
]

+ ab
m
∑

j=i+1

[

(1− a)j−i−1 cm−j
]

Given that 1− a 6= c, we get:

FNi,m = (1− b)
(

1− (1− a)m−i
)

+ ab
(1− a)m−i − cm−i

1− a− c

The probability FNm of e to be a false negative is then
m
∑

i=1

Pdup,i · FNi,m, where Pdup,i is the probability that the

last duplicate already seen is ei, so Pdup,i =
(

U−1
U

)m−i
1
U

.

We obtain the probability FNm that the (m + 1)th ele-
ment e of the stream will be a false negative:

FNm =
m
∑

i=1

Pdup,i · FNi,m

For a stream of n elements, the false negative rate FNRn

is defined as the average error probability: FNRn =
1
n

∑n
m=1 FNm

12In a Stable Bloom Filter, the FPR is bounded by



1 −





1

1 + 1
P (1/K−1/m)





Max



K

, where m is the number of rows, and K, P , Max

are diverse filter parameters. We clearly see that a higher number of rows will only decrease the FPR down to a certain point, but no further.
13More precisely, their definition false positive definition is restrained to the sliding window. So an element is a false positive if is not

already present in the sliding window, and yet marked as a duplicate.
14For example, consider the SQF with the parameters r = 3, r′ = 1. Only the hash hr

1 = 000 will lead to the fingerprint 000, whereas both
hashes hr

2 = 001 and hr
3 = 010 will lead to the fingerprint 001.
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We show, in Appendix B, that for FNR∞ = lim
n→∞

FNRn,

FNR∞ = 1− b− 1− b

U − (U − 1)(1 − a)

+
ab

(1− a− c)(U − (U − 1)(1 − a))

− ab

(1− a− c)(U − (U − 1)c)

A not obvious consequence of the above expression for FNR
is that when N increases, which corresponds to using more
memory, it is possible to achieve an arbitrary small error
rate.15 At some point however, the memory is so large that
every stream element can be stored, and there is no need for
probabilistic data structures anymore. In practice we expect
memory to be a limited resource, so this situation is unlikely
to present itself.

Finally, assuming U ≫ Nk (or even U ≫ N), i.e., that
there are more distinct elements in the stream that what the
filter is able to store, we get the limit rate of 1− b, which is
FNR∞ ≈ 1− k

S
.

Note that FNR∞ +FPR∞ = 1.
The value of FNR∞ also gives (using the same correc-

tions as for the FPR in Section 4.1.1) the FNR for SQF.

4.3 Error Rate and Filter Saturation

Claim 4.1. The asymptotic relation FNR∞ +FPR∞ = 1
is universal (as long as U ≫ M) amongst hash-based du-
plicate detection filters and is the result of the filter’s sat-
uration. Furthermore, when a filter reaches saturation, it
behaves similarly, from the error rate point of view, to a
filter answering DUPLICATE at random (we will call such
filters random filters).

Proof. In order to see this, first note that random filters
always verify the relation FNR+FPR = 1. Given that a
random filter will return DUPLICATE with a probability of
p, an unseen element will be classified as DUPLICATE with
probability p, and a duplicate will be classified as UNSEEN

with probability 1− p, hence the result.
Now, on infinite streams with infinitely many different

elements, filters are saturated with information. Given that
a filter can only store at most one element per bit (cf. Sec-
tion 2.1), thus a filter of size M can remember at most
M elements. However, after fM insertions (with f ≫ 1),
the filter remembers at most a tiny fraction 1

f
≪ 1 of the

stream. Having reached its saturated state, the filter has
an extremely tiny probability 1

f
≈ 0 of correctly guessing

whether the incoming element is a duplicate or not, given
what the filter actually knows about the stream. For this
reason, the best strategy of a saturated filter is almost in-
distinguishable from a random strategy, i.e. randomly out-
putting DUPLICATE. When the stream grows indefinitely,
the filter becomes asymptotically equivalent to a random fil-
ter.

Furthermore, in practical cases, we observe that dupli-
cate filters are equivalent to a specific kind of random fil-
ters: they answer DUPLICATE with some fixed probability
p, p depending on the filter’s nature and its parameters (i.e.,
p does not change with time).

Interpretation The interpretation of these results could
suggest that streaming filters are useless: they need more
memory than a random filter, despite being asymptotically
equivalent. However, this is only true because of our hy-
potheses and definitions: we define a false negative to be a
duplicate element claimed as unseen by the filter. However,
after some amount of time, it is often acceptable that the
element may be considered as unseen again: for instance a
nonce is theoretically unique, but in practice after a reason-
able amount of time nonce reuse is not a vulnerability. For
this reason, adapting false positive and false negative to slid-
ing windows may be relevant here. Moreover, we assumed
that all elements of the stream had the same probability of
occurrence. In practice, this hypothesis is not always cor-
rect, and as we will see in Section 6, filters operating on real
data perform significantly better than random filters, and
resist better to saturation.

4.4 Comparing QHT to SQF

Let us compare the memory required for a QHT to reach the
same error rates than an SQF.

Given that both FPR and FNR depend only on k, N and
S, imposing the equality on these parameters ensures that
both filters have exactly the same FPR and FNR.

Note that S is not a user-chosen parameter, but rather a
consequence of other parameters.

Theorem 4.3. For exactly the same FPR and FNR, a QHT
requires 33% fewer memory than an SQF.

The proof is made through the following subsections.

4.4.1 Deriving S from Filters Parameters

For a QHT, S is derived from the number of bits of the fin-
gerprint s, with the straightforward relation16 : S = 2s. For
an SQF, however, the relation is more complicated.

When r and r′ are fixed, for any element e, let hr
e be

decomposed as hr
e = hr′

e ‖f , where hr′

e is the r′-bits word
used in the fingerprint, h being the r − r′ remaining bits
of hr

e. For ω(·) the Hamming weight function, we have

s(e) = hr′‖ω(hr
e). Yet ω(hr

e) = ω(hr′

e ) + ω(f). We know

that ω(hr′

e ) is entirely dependent on hr′

e , which is already

used in the fingerprint. Thus, if we fix hr′

e , there are only
r − r′ + 1 possible values for ω(f) and thus for ω(hr

e).

Given that hr′

e can have 2r
′

different values, we get that

SSQF = 2r
′ · (r − r′ + 1).

4.4.2 Comparing Required Memory

For QHTs, we have the relation MQHT = NQHTkQHTs.
For SQF, the formula is rather MSQF = NSQFkSQF(r

′ +
⌈log2(r+1)⌉) (because fingerprints occupy r′+⌈log2(r+1)⌉
bits).

Given that NQHT = NSQF and kQHT = kSQF, the ratio
MQHT

MSQF
is:

MQHT

MSQF
=

NQHTkQHTs

NSQFkSQF(r′ + ⌈log2(r + 1)⌉)
=

s

r′ + ⌈log2(r + 1)⌉

Given that s = ⌈log2(SQHT)⌉ = ⌈log2(SSQF)⌉ = ⌈log2(2r
′ ·

(r − r′ + 1))⌉, we have

MQHT

MSQF
=
⌈log2(2r

′

(r − r′ + 1))⌉
r′ + ⌈log2(r + 1)⌉

=
r′ + ⌈log2(r − r′ + 1)⌉

r′ + ⌈log2(r + 1)⌉
15This fact is straightforward but requires the substitution of a, b, c by their full expression, before taking the limit.
16If we are on a system without the empty feature (see Section 3.2, then S = 2s − 1. For an SQF, one can just assign the empty value to

one of the unassigned fingerprints.
17Their optimal choice of parameters also includes setting k = 4. However, setting r = 2 and r′ = 1 imposes S = 4, so that setting k = 4

results in an FPR of 1: after some time the filter systematically responds DUPLICATE. Using e.g. k = 3 avoids this.
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Using the recommended settings in [8]17 (r = 2, r′ = 1) the

ratio becomes
MQHT

MSQF
= 2

3
, which concludes the proof.

4.5 Parameter Tuning

As noted in Section 4.2, no matter the choice of the param-
eters we have FNR+FPR = 1: any particular parameters
choice will be a trade off between good FPR and good FNR
performance, at least asymptotically. However, when the
stream is small enough, one may choose parameters that
will maximally delay saturation.

We know that M = Nk log2(S), so plugging this into the
FPR formula gives

FPRm =
k

S

(

1−
[

1− 1

kN

]m)

=
k

S

(

1−
[

1− log2(S)

M

]m)

Which means that, for fixed M and k
S

(i.e. for a fixed
memory amount and a fixed asymptotic FPR), log2(S) must
be as small as possible in order to keep the FPR low for as
long as possible.

For instance, assume that we want an asymptotic FPR
of 25%. The potential values for the couple (k, S) are (1, 4),
(2, 8), (3, 16) and so on (leading respectively to s = 2, 3, 4).
Because of the above relation, we know that setting k =
1, s = 2 will yield the best saturation resistance for the FPR.

In order to test this heuristic, we compared several QHT
of approximately 65,536 bits, with the same ratio k

S
, but

a different value for S. We took streams of 100,000 ele-
ments (well under saturation value for this amount of mem-
ory), from an alphabet of 220 elements. Each element of
the stream was uniformly randomly selected, leading to a
stream with about 4.6% of duplicate elements. We averaged
the results on 10 runs.

We observe in Table 1 that filters with a small value of
S do indeed perform better than filters with a bigger value
of S, which concludes the experiment.

Table 1: Error rates of QHTs with the same asymptotic FPR
S = 4 S = 8 S = 16 S = 32 S = 64

FPR (%) 22.57 23.25 23.53 23.62 23.50
FNR (%) 35.89 44.24 50.77 54.55 58.73

FPR+FNR 58.45 67.49 74.30 78.17 82.23

5 Further improvements: QQHTD

5.1 Keeping Track of Duplicates

In Algorithm 1, we do not insert anything if the element
is detected as a duplicate. However, following [9]’s example,
we can insert it anyway, resulting in a structure we call QHT
with Duplicates, or QHTD. We briefly discuss its properties.

As we showed previously, the asymptotic FPR of a QHT
is k

S
, which was expected: each cell stores k distinct fin-

gerprints, the probability that one of them matches the fin-
gerprint of a unique element is logically k

S
. Similarly, in

QHTD each cell stores k fingerprints, not necessarily dis-
tinct. The probability that at least one of these finger-
prints is the same than the one of an unseen element is

FPRQHTD = 1−
(

1− 1
S

)k
. Given the results of Section 4.3,

the asymptotic FNR of QHTD is
(

1− 1
S

)k
.

5.2 Queuing Buckets for a Better Sliding
Window

One caveat of the QHT (and QHTD) is the fact that at
any insertion, any element of the row is equally likely to be
evicted: if this allows an easy FPR and FNR derivation, it
makes it functioning a bit counter intuitive. As a matter of
fact, one would expect a filter to first forget about the oldest
elements before forgetting about the newest ones. Indeed,
this behaviour matches the need of a filter operating on a
sliding window, without taking into account oldest elements.

The solution we provide for QHT is to order the buckets
of a given cell in a FIFO queue, which means that instead
of selecting a random bucket in the cell for insertion, one
will append the fingerprint to the end of the queue, and
pop the first element (so that the size of the queue remains
constant). Combined with QHTD improvement, this yields
Algorithm 2.

Algorithm 2 Queued Quotient Hash Table with Duplicates’
(QQHTD) Stream

1: for each element e ∈ E do

2: result ← UNSEEN

3: Quotient of e: h(e); Fingerprint of e: s(e).
4: for each bucket bi in the queue T [h(e)] do

5: if (entry in bi) = s(e) then

6: result ← DUPLICATE

7: break

8: Pop the first element of the queue T [h(e)] and ap-
pend s(e) at the end of same queue

9: return result

Note that classical queues (i.e. doubly chained lists) are
not suited for our use, as chains require extra storage bits for
pointers. Thus, we create an array of k elements, in which
we manually move every element at each “pop”. When k is
small (typically less than 5, which it usually is), the added
overhead is not significant.

Finally, note that a QQHTD with one bucket par cell
is equivalent to its QHT counterpart. However, with more
buckets per cell, QQHTDs offer a noticeable improvement
over QHTs on real data streams (see Appendix A).

6 Benchmarks

6.1 Comparison of QHT to Other Filters

We used streams of 150,000,000 elements, on filters of size
ranging from 10 kb to 8 Mb. In any case the filters are
too small to keep track of the whole stream, and we will see
that filters do reach saturation. We used 2 artificial streams,
for which the elements where randomly generated from an
alphabet of 224 and 227 elements respectively, leading to a
duplicate rate of about 88% and 38% respectively. We also
used a real dataset of URLs visited by a crawling robot, ex-
tracted from the April 2018 CommonCrawl’s dump [17] The
source code is available from on BitBucket.18.

The filters, so their asymptotic FPR was as close as pos-
sible to the arbitrary value of 25%, are:

• SQF, 1 bucket per row, r = 2 and r′ = 1

• QHT, 1 bucket per row, 3 bits per fingerprint. This
specific QHT is equivalent to a QQHTD with the same
parameters, so we do not include the latter in the
benchmark.

• Cuckoo Filter[9], cells containing 1 element of 3 bits
each

18https://bitbucket.org/team_qht/qht/src/master
19Our benchmarks actually obtained an asymptotic FPR of around 28%, without us being able to find bugs in our implementation.
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Table 2: Error rate (multiplied by 100) on streams of 150,000,000 elements
Stream (duplicate %) Memory (bits) SQF QHT

QQHTD
Cuckoo SBF A2 b_DBF

Real (10.3 %)

8e+06 51.25 43.78 66.48 54.08 58.94 45.22
1e+06 55.18 48.38 68.96 57.17 62.12 45.30
100,000 58.21 52.22 71.83 59.44 64.88 59.39
10,000 66.45 58.75 78.86 76.29 66.42 99.77

Artificial (88.82 %)

8e+06 86.49 82.76 96.94 97.79 88.06 99.96
1e+06 98.27 97.80 99.60 99.74 98.49 99.96
100,000 99.78 99.79 99.96 99.98 99.84 99.96
10,000 99.97 99.97 100.02 99.99 100.00 99.98

Artificial (39.79 %)

8e+06 96.51 95.37 99.21 99.40 96.86 99.99
1e+06 99.56 99.42 99.91 99.91 99.60 99.99
100,000 99.94 99.95 100.00 99.99 99.96 99.98
10,000 100.00 100.00 100.00 100.00 99.99 100.00

• Stable Bloom Filter (SBF) [7], 2 bits per cell, 2 hash
functions, targeted FPR of 0.0219

• A2 Filter[22], targeted FPR of 0.1 on the sliding win-
dow.

• Block-Decaying Bloom Filter (b_DBF)[19], sliding
window of 6000 elements.

Results, averaged on 5 runs, are given in Table 2. Note
that, for better readability, the error rates have been multi-
plied by 100 in the table. Further more, we recall that the
error rate, being defined as E = FPR+FNR, is bounded
by 0 below and 2 above, 1 being the error rate of a random
filter. A filter can have worse results than random; for in-
stance a filter which is always wrong has an error rate of
2.

As we can see in Table 2, QHT (or QQHTD) are ex-
tremely competitive and resist very well to saturation; they
also appear to be the most competitive on the real stream.
b_DBF are efficient, but reach very quickly their saturation.
A more detailed analysis of their FPR (see Appendix A)
shows that even though their FPR is close to 0, they get an
FNR close to 1. Moreover, as we see in Section 6.2, they are
significantly slower, which can be a bottleneck for critical
applications. Further more, not only are QHT/QQHTD the
most efficient filter on both real and artificial streams, they
are also very easily tunable, and any asymptotic FPR rate is
very simply achievable. This is not the case of other filters,
such as A2 or b_DBF, which require careful tuning.

6.2 Speed Comparison

We also benchmarked the speed of every filter on real-time
detection, on a laptop with Intel i7. We used the same fil-
ters as in the previous subsection, with a memory of 1 Mb,
on a stream of 150,000,000 elements. We averaged, on these
filters, the time needed for Insert◦Detect to execute for each
element. Results are shown in Table 3. We observe that
safe for SQF, QHT is 6 times as fast as any other filter, and
10 times as fast as b_DBF. Even SQF is 50% slower than
QHT. Even with additional features, QQHTD are also faster
than SQF by a large magin, because fingerprint derivation is
more costly in the latter. As a conclusion, we observe that
QQHTD are most suited filters for high-speed analysis.

7 Adversarial Resistance

Now, despite the good performances of QQHTD on normal
streams, one may not always assume that the stream is “nor-
mal”: there may be an attacker trying to fool the filter. For
instance if the filter must detect duplicates in order to avoid

an attack (nonce requirements), then the question of adver-
sarial resistance is primordial.

We can model an adversarial system in which an attacker
has a knowledge of the output of Stream (i.e., whether the
element is classified as DUPLICATE or UNSEEN), but no
knowledge of the internal memory state M. Thus the at-
tacker is able to carry an adaptive attack, by choosing the
next element to send to the filter as a function of all pre-
vious insertions. In this adversarial game, the attacker can
send an arbitrary stream to the filter, and is allowed to get
the result of Stream for every element. Then, at her conve-
nience, the attacker goes into the second phase of the game,
in which she has two possible actions:

• Send an unseen element that will be a false positive
with high probability (false positive attack);

• Send a duplicate element that will be a false negative
with high probability (false negative attack).

Theorem 7.1. No filter can resist a false negative attack.

Proof. We craft false negatives in Ω(M) steps (M being
the filter’s memory size). Let us remind that no struc-
ture can remember more than one element per memory
bit. For this reason, the structure can remember at most
M different elements. Consequently, if the attacker gener-
ates a stream of random unseen elements, then on average
each element will stay for M insertions in the filter’s mem-
ory. More generally, after hM insertions (for some rational
h ≥ 1), an element is forgotten with probability at least
Pforgot = 1− (1− 1

M
)hM ≃ 1− e−h. Thus an attacker sim-

ply generates Ω(M) unique elements before sending the first
element again. M can even be estimated via saturation (see
Section 4.3). Given that CPU time is cheaper than mem-
ory requirements, the attacker keeps her advantage over any
filter of any size.

Theorem 7.2. Assuming the existence of one-way func-
tions, QHT can resist a false positive attack.

Proof. Following [18] we replace all hash functions by one-
way hash functions, and apply a (secret) one-way permuta-
tion on incoming elements, then classically store the results
in the filter. Because of the permutation, the attacker gains
no advantage in adaptively choosing the elements, thus loos-
ing her advantage.

As a conclusion, QHTs are adapted to contexts where low
false positives are crucial, such as white-list email filtering.
Note however that this is the case of most filters, as long as
they rely on hash functions (and so can apply [18]).

7



Table 3: Average amount of time (in µs) required for one iteration of Stream on each filter with 1 Mb of memory
Filter SQF QHT QQHTD Cuckoo SBF A2 b_DBF
Time 0.423 0.288 0.330 2.464 1.578 1.280 2.565

8 Conclusion

This paper introduces a new duplicate detection filter, QHT,
and its variant QHTD. QHTs achieve a better utilization
of the available space, and as such are more efficient than
existing filters. Moreover, QHTD have more efficiency for
detecting duplicates in a real dataset.

We showed that, for an infinite stream with an infinite
number of unseen elements, the number of rows is less impor-
tant than the fingerprint space, and the number of buckets
per row. Moreover, we proved that all filters, having reached
saturation, are not more efficient than random filters, and
as such, a benchmarking of stream filters should only focus
on the pre-saturation state, with small streams.

Even though QHTs are significantly more efficient than
other structures in the literature, we do not know if these
filters are optimal: are there other filters having an optimal
resilience to saturation? Future work also includes exam-
ining the theoretical resistance to saturation of QQHTDs,
and a finer examination of the QHT/QQHTD behaviour on
a sliding window.

A Tables of error rates for various
streams

Table 4 gives the error rates (FPR and FNR) used to derive
Table 2.

B Deriving FNR∞

This derivation was removed from Section 4.2 for bet-

ter readability. We know that FNRn =
1

n

n
∑

m=1

FNm =

1

n

n
∑

m=1

m
∑

i=1

Pdup,i · FNi,m, so

FNRn =
1

n

n
∑

m=1

m
∑

i=1

(

U − 1

U

)m−i 1

U

[

(1− b)

(

1− (1 − a)m−i
)

+ ab
(1 − a)m−i − cm−i

1− a− c

]

Expanding,

FNRn =
1

nU

n
∑

m=1

[

(1− b)
m
∑

i=1

(

U − 1

U

)m−i

+(1− b)
m
∑

i=1

(

U − 1

U
· (1 − a)

)m−i

+
ab

1− a − c

m
∑

i=1

(

U − 1

U
(1 − a)

)m−i

+
ab

1− a − c

m
∑

i=1

(

U − 1

U
c

)m−i
]

FNRn =
1

nU

n
∑

m=1

[

(1− b)
1− (1− 1/U)m

1/U

+(1− b)
1− ((1 − 1/U)(1 − a))m

1− (1− a)(U − 1)/U

+
ab

1− a− c

1− ((1 − 1/U)(1 − a))m

1− (1− a)(U − 1)/U

− ab

1− a− c

1− ((1 − 1/U)c)m

1− c(U − 1)/U

]

Given that FNR∞ = lim
n→∞

FNRn, using Cesàro’s mean

we get:

FNR∞ = 1− b− 1− b

U − (U − 1)(1 − a)

+
ab

(1 − a − c)(U − (U − 1)(1 − a))

− ab

(1 − a − c)(U − (U − 1)c)

Which concludes the proof.

C Comparison of QHT and QQHTD

In this appendix, we explore the difference between a QHT
and a QQHTD with the same parameters, on the same
stream. We took filters of 65,536 bits each, on streams of
100,000 elements each. One stream issued from our ‘real’
dataset (10.32% of duplicates), the other a random uniform
stream on an alphabet of 220 elements (4.62% of duplicates).
Results are given in 5.

We observe that while QQHTD offer no advantage on ar-
tificial streams, their performance (relative to the QHT) are
noticeably better, which empirically validates the optimiza-
tions.
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