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ABSTRACT
Long pipelines need good branch predictors to keep the pipeline
running. Current branch predictors are optimized for the average
case, which might not be a good fit for real-time systems and worst-
case execution time analysis.

This paper presents a time-predictable branch predictor co-designed
with the associated worst-case execution time analysis. The branch
predictor uses a fully-associative cache to track branch outcomes
and destination addresses. The fully-associative cache avoids any
false sharing of entries between branches. Therefore, we can ana-
lyze program scopes that contain a number of branches lower than
or equal to the number of branches in the prediction table. Experi-
mental results show that the worst-case execution time bounds of
programs using the proposed predictor are lower than using static
branch predictors at a moderate hardware cost.

CCS CONCEPTS
•Computer systems organization→Embedded systems;Em-
bedded systems;
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1 INTRODUCTION
Many features of state-of-the-art microprocessors improve the av-
erage case performance, but are hard to model for worst-case exe-
cution time (WCET) analysis [23]. Some features may even result
in higher WCET bounds than when not using them. Branch pre-
diction is one of those features. It is important in longer processor
pipelines to speculate over branches, in order to keep the functional
units busy. The challenge for general purpose processors is to keep
the misprediction rate low in the average case. A misprediction
is then considered just a performance reduction. However, this is
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not appropriate for real-time systems for which we need to model
processor features for their worst-case behavior.

In a branch predictor that is optimized for the average case, two
branches might map to the same entry in the branch prediction
table and conflict with each other at run-time. In the average case
this is just annoying and a possible reduction of performance. For
real-time systems, conflicts are a considerable issue as the aim is to
have safe and tight WCET bounds.

This paper presents a branch predictor especially designed to
enable tight WCET analysis. The predictor consists of a fully-
associative prediction table that includes the full address of the
branch as tag memory. Therefore, no two branches can share one
entry. With that fully-associative table we can use a simple scope-
based WCET analysis to determine if all branches at some program
scope fit into the branch prediction table. When all branches fit into
the branch prediction table, we can model each loop exit branch in-
dividually for this scope. Basically, after the first iteration of a loop,
the loop exit branch will be predicted correctly for the remaining
iterations of the loop (except the loop exit at the last iteration).

We have implemented the branch predictor in hardware in an
FPGA to explore the feasibility of using a fully-associative table.
Besides storing the branch address as tag memory, the table also
contains the branch target address. Therefore, a correctly predicted
branch is executed in a single cycle independent of being taken
or not. We have integrated the model of this branch predictor and
the scope-based analysis in the WCET analysis tool Heptane [10].
We consider this as one example of co-design of time-predictable
hardware with WCET analysis.

The hardware implementation shows that a fully-associative
table is feasible for up to 64 entries. In that case, the hardware
consumption is about 20 % of a Patmos RISC style processor. When
connecting the branch predictor to the Patmos processor it is, not
even with 128 entries, dominating the (hardware) critical path.

Results from this WCET analysis on Mälardalen and Polybench
benchmarks show that the proposed predictor never results in
worse WCET bounds than the initial Patmos static branch predictor.
Results also show that depending on the loop shapes generated by
the compiler, the gap between the two predictors differ a lot (much
higher for do-while loops than for for loops, for which the gain
is negligible). Results also show that software-emulated floating
point operations introduce a lot of spurious branches that call for
a larger branch prediction table than hardware-supported integer
operations.

A number of WCET-oriented analyses of branch predictors have
been designed in the past [2, 4, 7, 9, 14, 16, 18]. These works aim
at analyzing existing predictors, designed for the average-case. In
contrast to these works, the proposed predictor is designed with
predictability in mind, and is co-designed with the associated anal-
ysis.
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The main contributions of this paper are:
• the design of a time-predictable branch predictor,
• the co-designed static scope-based analysis, by cooperation
between different research domains,

• experimental evaluation of the hardware cost of the proposed
predictor,

• experimental evaluation of the reduction of WCET bounds
using the proposed predictor compared to basic static branch
prediction, and analysis of the impact of loop shapes on the
reduction.

This paper is organized as follows. Section 2 surveys relatedwork.
Section 3 describes the proposed time-predictable branch predictor
and its different variations. Section 4 presents the associated scope-
based static WCET analysis technique. Section 5 analyzes the worst-
case behavior of the proposed branch predictor. Finally, Section 6
concludes and gives directions for future work.

2 BACKGROUND AND RELATEDWORK
Branch prediction techniques help performing control flow spec-
ulation by predicting the outcome of branch instructions. If the
prediction is correct, then execution proceeds without interruption,
whereas for incorrect predictions, the speculatively executed in-
structions have to be cancelled, incurring a time penalty. If branch
prediction is not modeled, WCET estimation tools must conser-
vatively assume that all branches are mispredicted, resulting in
overestimations.

Branch prediction can be either static or dynamic. Static scheme
associate a fixed prediction for every branch (e.g. backward edges
always assumed taken, or compiler-guided). Dynamic predictors
predict the branch outcome dynamically based on the past execu-
tion history. The first dynamic technique proposed is called local
branch prediction. This scheme uses a branch prediction table in-
dexed by the lower bits of the program counter. Each entry contains
a k-bit saturated counter representing the last predictions. Global
schemes exploit correlation between branches. Global schemes use
a single shift register, called branch history register to record the
outcomes of n most recent branches. As in local schemes, there is a
global branch prediction table in which the predictions are stored.
The various global schemes differ from each other in the way the
prediction table is looked up when a branch is encountered.

Static branch predictors are easy to analyze. However, for compiler-
directed static prediction, the compiler has to statically determine
the direction of the branch to be predicted to minimize WCET esti-
mates (see [3, 5]). In addition, the performance of static predictors
like backward taken, forward not taken are highly influenced by the
compiler code generation, raising the issue of code generation, in
particular basic block re-ordering, for obtaining as low as possible
WCET estimates [17].

Dynamic branch predictors are less predictable and harder to
analyze than static branch predictors, as observed in [8] and [6]. For
dynamic cases, the analysis has to determine both if there is a hit in
the prediction table and the actual contents of the prediction table.
The first work was on local dynamic branch predictors [7]. Static
analysis of dynamic branch predictors were proposed in [2, 16],
with some restrictions to keep the analysis tractable: absence of
conflicts in the prediction table for [2], consideration of conflicts in

[16], but only one bit counters to keep the analysis complexity low.
Compared to the above-mentioned studies, the main contribution
of the work presented in [4] is a precise modeling of misprediction
penalties, that depend on the direction of the branches. The work
presented in [14] releases these restrictions through the provision
of a framework for the analysis of a large set of global branch
predictors used in embedded processors. Experimental results using
this framework however show that the complexity of models can
be significant, in particular when increasing the number of bits in
the prediction table or the branch history length. A framework for
the static analyses of branch target buffers was presented in [9].
Their analyses are based on abstract interpretation, and are shown
to be able to successfully analyze a panel of non trivial branch
target buffers. More recently, a technique to support longer branch
history length was proposed in [18] at the price of reasonable loss
of precision.

In this study, in contrast to existing works whose objective is to
analyze increasingly complex dynamic branch predictors, originally
designed for the average-case, our focus is on the design of a simple
and easy to analyze branch predictor, optimized for the worst-case.

3 BRANCH PREDICTION DESIGN
3.1 Hardware Assumptions
For the rest of the paper we assume a classic RISC style processor
with 5 pipeline stages: fetch, decode, execute, memory, and write-
back. Figure 1 shows such a pipeline organization, already with a
branch prediction unit attached. In that pipeline each instruction
has a total latency of 5 clock cycles, but due to pipelining (if there
are no stalls) each instruction takes effectively one clock cycle. The
added branch predictor is shown as BP1, BP2, and BP3, as it spans
the first three pipeline stages.

We consider conditional branches, simply called branches for
the rest of the paper, where the condition is a comparison between
two register values. It is also common to encode branch targets
as offsets from the current address, which is held in the program
counter (PC).

A branch instruction may be split into three different steps:
(1) evaluate the condition, (2) compute the branch target, and
(3) change the program flow to the branch target if the branch
is taken. A branch instruction is fetched in the first stage. In the
decode stage, besides decoding the branch instruction, the two reg-
ister values used to evaluate the branch condition are loaded from
the register file and the branch target address is computed. In the
execution stage, the branch condition is computed. If evaluated
to true, the target address is loaded into the PC. If the condition
evaluates to false, the pipeline continues to execute in program
order.

While the branch instruction moves through the pipeline, the
following sequential instructions are fetched and decoded. If the
branch is taken, the following instructions are replaced by a bubble
(nop instructions). This behavior results in different execution times
for a branch if taken or not. If not taken, it is only one clock cycle; if
taken, it is three clock cycles in our example pipeline. This behavior
is also called statically predict not-taken.
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Figure 1: Branch prediction unit for a RISC pipeline.

3.2 Classic (Local) Branch Prediction
A standard local branch predictor uses a table recording estimations
of if a branch is taken or not taken. This table is also called branch
history table as it records the history of branch outcomes. In the
simplest case this table contains a single bit per entry, and the table
is indexed with the lower bits of the PC. The table contains no
tags, as in caches, as reading a wrong entry may “just” result in a
performance penalty, but the program executes correctly. When
the branch instruction reaches the execution stage, the branch
outcome is compared with the prediction. When it is different from
the prediction, branch predictor flushes the two instructions in the
pipeline, sets the PC to the correct target, and updates the branch
history table. Using more than one bit for prediction can add some
hysteresis to the predictor to avoid changing the prediction back
and forth when executing an inner loop several times.

Besides estimating if a branch is taken or not, the branch target
address needs to be computed as well. In a standard 5-stage RISC
pipeline this can be performed in the decode or execution stage.
Therefore, even on a correctly predicted branch a taken branch
takes two clock cycles. Therefore, a branch history table can be
extended to also include the target address of a taken branch.1
Again, if two different branches map to the same entry in the table,
a branch might branch to a wrong destination. This can be detected
in the execution stage and corrected. This results also in “just” a
performance penalty.

3.3 A Time-predictable Branch Predictor
In contrast to the classic predictor presented above, the base idea
here is to build a branch predictor that is an easy target for WCET
analysis. Existing predictors use a prediction table without tags,
thus different branches can alias to the same entry. In case of alias-
ing, the predicted outcome of the branch is wrong, but this only
hurts performance. For WCET analysis, aliasing is a source of pes-
simismwhen estimating the worst-case outcome of branches (if two
branches map to the same entry, the analysis has to consider the
worst-case situation). Moreover, detecting the presence of aliasing
is a complex and time consuming task. Therefore, our predictor
will tag each entry in the prediction table. Furthermore, to avoid

1All target addresses of every branch are known at compile time

conflict misses we aim at a high associativity (for the scope of this
paper the prediction table will be fully-associative).

In its default configuration, the proposed branch predictor will
use a branch target buffer (BTB) that is fully-associative, and stores
in each entry:

• the address of the branch instruction in the tag memory, to
avoid aliasing;

• the branch target address; and
• the branch outcome estimation (as one bit or as a two-bit
saturating counter).

The BTB stores all conditional branches, and the replacement policy
for the BTB is FIFO2 (First-In First-Out). As the BTB contains a tag
entry for the branch, aliasing of two different branches is completely
avoided. Unconditional branches are not stored in the BTB. In the
following, the term branch refers to conditional branches only.

Branch prediction is performed at the fetch stage, by looking for
the current PC in the BTB. In case of amiss in the BTB (meaning the
instruction is not a branch or the branch is not yet in the BTB), the
pipeline proceeds normally (i.e. the pipeline proceeds with the next
instructions in sequence). In case of a hit, the branch history bits
and the branch target address are used to determine if and where
to branch. In case the prediction bits outcome is taken, then the
pipeline is filled at the fetch stage with the branch target address,
else the pipeline proceeds normally.

On a miss in the BTB, the BTB is updated for a branch instruc-
tion in the execution stage. The execution stage also checks if the
prediction was correct, updates the BTB accordingly, and triggers a
fetch from the correct address if the prediction was wrong.

3.4 Variations
3.4.1 1-bit history. In this variation, the BTB stores a history of

one bit used to predict the direction of a branch when found in the
BTB (predict not taken (NT) if zero, predict taken (T) if one). The
prediction bit is flipped in case of wrong prediction, as depicted
below.

2The analysis presented in this paper is not limited to a BTB using FIFO replacement.
It applies to any replacement policy for which the following property holds: if the BTB
contains X ≤ N values, with N the BTB size, no access to one of the X values will
evict any of them (all values will stay in the BTB).



SAC ’19, April 8–12, 2019, Limassol, Cyprus M. Shoeberl et al.

Predict
NT
0

Predict
T
1

Taken (T)

Not Taken (NT)

NT T

3.4.2 2-bits history. This second variation uses a 2-bits history
to predict the outcome of every branch, as depicted below. When
the history bits are 00 or 01 (respectively 10 and 11) the branch is
predicted not taken (respectively taken).
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4 TIMING ANALYSIS
The proposed branch predictor allows a scope-based WCET anal-
ysis. Assuming properly nested loops, the analysis for each loop
determines if all branches belonging to the loop scope are guar-
anteed to stay in the BTB, in order to determine the number of
correctly predicted loop exit instructions. The analysis is aware
of loop nesting to provide tight estimates, and supports elaborate
models of misprediction penalties.

4.1 Assumptions and Notations
Our analysis applies to programs amenable to static WCET analysis
(see Section 5.1 for the exact restrictions imposed by the static
WCET estimation tool used in the experimental evaluation). The
branch prediction analysis needs properly nested loops. Different
shapes of loops are supported, according to the following three
criteria on the conditional test to exit the loop:

• test executed before or after the loop body;
• test branches outside or inside the loop;
• test located at an address immediately before or not immedi-
ately before the start of the loop body.

The analysis is detailed for the following two loop shapes, de-
scribed below and depicted in Figure 2. These two loop shapes are
representative of the most common cases found in compiled code.
The analysis implementation supports all loop shapes correspond-
ing to any combination of loop shape criteria.

• Figure 2a: conditional test executed after the loop body, branch-
ing inside the loop, conditional test not immediately before
the loop body;

• Figure 2b: conditional test executed before the loop body,
branching outside the loop, conditional test immediately be-
fore the loop body.

The following notations are used in the analysis description:
• f req_execl is the loop bound of loop l (maximum number of
times the body is executed). The conditional branch is thus
executed f req_execl times for loop shape 1 (Figure 2a), and
f req_execl + 1 for loop shape 2 (Figure 2b). The bound is
local (it counts the maximum number of iterations for each
entry in the loop, not the cumulated value for all entries).

(a) Loop shape 1: test after body,
branch inside, test not immedi-
ately before body

(b) Loop shape 2: test before
body, branch outside, test not im-
mediately before body

Figure 2: Considered loop shapes

Table 1: Notations for prediction outcome categories

Branch taken Branch not taken

BTB miss nTmiss nNT
miss

BTB hit, predict taken nTдood nNT
bad

BTB hit, predict not taken nTbad nNT
дood

• The scope of a loop, scope(l), is defined as the number of
distinct branches inside the loop, plus the loop conditional
branch itself. By definition it includes all branches contained
in functions called (directly or indirectly) from the loop body.

• antecedents(l) refers to all loops including l until the outer-
most one (all direct and indirect parents, considering func-
tion calls).

• Maximum total number of times loop l is entered/exited:

ηl = Πp∈antecedents(l ) f req_execp

• Maximum total number of entries into the loop l guaranteed
to fit in the BTB:

δl = (Πp∈antecedents(l ) |scope(p)≤BT B f req_execp )

These definitions hold for all considered loop shapes.
The analysis provides for the conditional branch of every loop

l the total number of times the branch falls into the categories
listed in Table 1. In the text of the analysis, the categorization of a
branch is a pair (X,Y), with X the prediction (miss, good, bad) and
Y the actual branch direction (T,NT ). The corresponding number
of occurrences in each category is denoted nYX . For example, nTдood
denotes the number of times a branch is predicted taken and is
actually taken at runtime. This categorization of branches is fine
grain, to allow precise modeling of misprediction penalties such
as in [4]. Note that our analysis currently focuses on loop exit
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branches, leaving the analysis of the other conditional branches for
future work.

We hereafter detail the analysis for loop shape 1 and 2. For space
considerations, we only give detailed description of the analysis for
loop shape 1 (Figure 2a) and do not describe all the details for the
other loop shape.

4.2 Analysis for Loop Shape from Figure 2a
For this loop shape, the branching behavior for each execution of
loop l is T ... T (repeated f req_execl − 1 times) NT. This pattern T
... T NT is repeated several times when l is included in other loops.

For a given loop l , the number of times the branch is correctly
predicted or mispredicted depends on how many branches in the
loop scope are guaranteed to fit in the BTB, as defined by scope(l).

4.2.1 Case 1: branches are not guaranteed to fit inside the BTB.
If scope(l) > BTB, branches executed in the scope of loop l are
not guaranteed to stay in the BTB once loaded. However, we can
guarantee a BTB miss only for loop l once. This is because there
may exist conditional branches that are not loop branches (i.e.
conditional constructs) whose execution depends on input data,
making it hard to ensure that a loop branch is always evicted from
the BTB.

With the loop shape we are focusing on (see Figure 2a), the very
first entry of the loop conditional branch is taken, and results in a
BTB miss. It is thus categorized as (miss,T). The following iterations,
last iterations excluded, are also taken. Since it cannot be guaranteed
that the loop branch for these iterations is evicted from the BTB,
the most pessimistic situation has to be considered. Assuming that
a misprediction is the worst-case, the following iterations are then
conservatively considered mispredicted (category (bad,T)). Then
each last iteration of the loop are not-taken and thus predicted
correctly (category (good,NT)).

The number of occurrences in each category is then as follows
(only non zero counts are listed from now on):

• nTmiss = 1
• nNT

дood = ηl

• nTbad = (f req_execl − 1) ∗ ηl − 1

4.2.2 Case 2: branches are guaranteed to fit in the BTB. When
scope(l) ≤ BTB, it means that all branches in the scope of the loop
stay in the BTB after first loaded. In the following, we give for the
two branch predictor configurations:

• The categorization for all first executions of the loop (the
first iteration of a loop might be executed several times in
the presence of loop nesting),

• The categorization of the next iterations of the loop (last
iteration excluded),

• The categorization of the last iterations of the loop.
The analysis is detailed for the two variations of the predictor

(1-bit history and 2-bit history).

Configuration with 1-bit history.
• First iterations. Apart from the very first entry in the loop,
which is a BTB miss, all entries are mispredictions (category
(bad,T)). For the δl entries that, by definition of δl , stay in
the BTB once loaded, the prediction bit is 0, because the last

prediction for the branch (last iteration) was T and the actual
outcome was NT. Thus the prediction bit was flipped to 0 and
the entry is mispredicted (category (bad,T)). For the ηl − δl
that are not guaranteed to stay in the BTB, the branches are
conservatively classified as mispredicted, resulting in a the
category (bad,T) (it cannot be guaranteed they stay in the
BTB, and cannot be guaranteed to be evicted from the BTB).

• Next (f req_execl − 2) ∗ηl iterations. For these branches, the
prediction bit is 1 (predicted T) and the branch is T. Thus
they are predicted correctly (category (good,T)).

• Last iterations (executed ηl times). The prediction bit is 1
(T) and the branch is not taken, thus a misprediction and a
change of the prediction bit to 0 (category (bad,NT)).

• Total:
– nTmiss = 1
– nTbad = ηl − 1
– nNT

bad = ηl
– nTдood = (f req_execl − 2) ∗ ηl

Configuration with 2-bit history.

• First iterations. Similarly to the 1-bit history predictor, the
ηl −δl that are not guaranteed to stay in the BTB are conser-
vatively classified as mispredicted (category (bad,T)). Regard-
ing the δl executions that stay in the BTB across executions
of the loop, the 2-bit history now allows all of them to be
correctly predicted (category (good,T)), because the previous
branch to exit the loop changed the prediction bits from 11
to 10. When re-entering the loop again, the prediction is T
and the branch is T .

• Next (f req_execl − 2) ∗ηl iterations. The prediction bits are
11 (predict T) and the branch is T, the prediction is therefore
correct (category (good,T)).

• Last iterations (executed ηl times). The prediction bits are
11 (predict T) and the branch is NT, thus the branches are
mispredicted (category (bad,NT)).

• Total:
– nTmiss = 1
– nNT

bad = ηl
– nTbad = ηl − δl − 1
– nTдood = δl + (f req_execl − 2) ∗ ηl

4.3 Analysis for Loop Shape from Figure 2b
For this loop shape, the branching behavior for each entry of loop l
is NT ... NT (repeated f req_execl times) T. This pattern NT ... NT T
is repeated when l is included in outer loops. Similarly to the other
loop shape, the result of the analysis depends on whether or not
the BTB is big enough to store the loops branches.

4.3.1 Case 1: branches are not guaranteed to fit inside the BTB.
If the scope is larger that the BTB, for all the two variations (1-bit
history and 2-bit history) we have:

• nNT
miss = 1

• nTbad = ηl
• nNT

bad = (f req_execl ) ∗ ηl − 1
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4.3.2 Case 2: branches are guaranteed to fit in BTB. In case the
scope fits in the BTB, we have, for 1-bit history (details omitted for
space consideration):

• nNT
miss = 1

• nTbad = 2 ∗ ηl − 1
• nNT

дood = (f req_execl − 1) ∗ ηl
Then, for a 2-bits history we have:
• nNT

miss = 1
• nTbad = ηl
• nNT

bad = ηl − δl − 1
• nNT

дood = δl + (f req_execl − 1) ∗ ηl

4.4 WCET Calculation with IPET
The classical IPET (Implicit Path Enumeration Technique [13])
formulation computes WCET estimates using an Integer Linear
Programming (ILP). IPET reflects the program structure and the
possible execution flows using a set of linear constraints. An upper
bound of the program’s WCET is obtained by maximizing the ob-
jective function

∑
i ∈BasicBlocks Ti ∗ fi .Ti is the timing information

of basic block i , that integrates the effects of micro-architecture.
Frequency fi , a variable in the ILP system, to be instantiated by
the ILP solver, corresponds to the number of times basic block i is
executed along (one of) the longest path(s). A value of 0 means that
the block is not on the critical path.

We have extended IPET to include the timing penalties of branch
prediction (gains if the penalty is negative) by adding a binary
variable isexl to the basic block l containing the loop branch. isexl
is set to 0 if the node is not on the critical path (if fl = 0), and 1 if
it is (if fl , 0).

To model this if-then-else scenario in ILP (isexl = 0 if fl = 0),
there exist several ways depending on the used solver. For example,
with IBM CPLEX we can use indicator constraints (see equation
(1)) whereas in the open-source LPSolve solver we can use a Big-
M notation (see equation (2)). The choice of a BigM value might
be difficult as this value must be bigger than any other integer in
the system to solve. One could choose the maximum integer the
solving computer can deal with. In our experiments (see details in
Section 5.1), we use CPLEX with the indicator constraints.

∀l ∈ loopbranches; isexl = 0 → fl = 0 (1)

∀l ∈ loopbranches;
0 × isnotexl + 1 × isexl ≤ fl ≤ 1 × isnotexl + BiдM × isexl

(2)

A new term is then added to the objective function, representing
the penalty for each loop branch l , according to the branch classifi-
cation from Table 1. Let us denote by tYX the penalty corresponding
to the branch category (X,Y), with X the prediction (miss, good, bad)
and the actual branch direction (T, NT ). The new term added is:∑

nYX × tYX × isexl

5 EXPERIMENTAL EVALUATION
This paper has presented a co-designed solution for time-predictable
branch prediction with (a) a hardware design optimized for WCET

Logic cells Registers Fmax

4 entries 146 124 210 MHz
8 entries 288 245 184 MHz
16 entries 573 486 171 MHz
32 entries 1138 967 151 MHz
64 entries 2275 1928 133 MHz
128 entries 4524 3849 117 MHz

Patmos core 9437 4384 80 MHz
Table 2: Resource consumption and maximum frequency
for different branch predictor configurations.

analysis and (b) a WCET analysis specific for this hardware de-
sign. This section includes an evaluation of our design through
a comparison of WCETs for the proposed branch predictors with
other hardware designs (a static backward taken forward not taken
predictor and the static predictor of the Patmos processor [20, 22]).
We voluntarily do not include any more complex branch predic-
tor, because state-of-the-art branch predictors are not designed for
predictability and therefore are hard to analyze statically. Experi-
ments were performed on standard WCET benchmarks from the
Mälardalen benchmark suite [15] and Polybench benchmark suite.

5.1 Experimental Setup
Hardware Implementation. We have implemented the proposed

branch predictor targeting the Patmos processor [20, 21]. For the im-
plementation, we use the hardware construction language Chisel [1].
Chisel allows to generate a C++ based tester and Verilog code for
synthesis. Besides the branch predictor we implemented a simula-
tion of the first three stages of RISC style processor pipeline (fetch,
decode, and execute) to drive the branch predictor. The simplified
processor simulation serves as a testbed for functional verification
of the branch predictor. The simplified pipeline is also synthesiz-
able and we report on resource consumption and maximum clock
frequency when targeting an FPGA.

We are interested in how expensive the fully-associative, single
cycle lookup is. When an entry matching the current PC is found,
the result may update the PC, depending on the branch prediction.
Therefore, the critical path starts from the PC register output, is
fanned out ton comperators for an associativity ofn, the comperator
outputs are then encoded to find one possible match, and an n port
multiplexer gives the result, which may update the PC register. As
we aim for a single cycle branch predictor, this operation cannot
be pipelined. Furthermore, as we aim for a fully-associative table,
the table needs to be implemented in dedicated registers instead of
an on-chip memory.

We have synthesized the branch predictor for an Altera/Intel
Cyclon IV FPGA with the Quartus Prime 16.1 Light edition. Table 2
shows the result of the resource consumption (logic cells, registers)
and the maximum clocking frequency, for different configurations.
The last row shows for a comparison the resource consumption
and maximum frequency of a Patmos processor. The results show
that single cycle lookup BTB with up to 128 entries can be im-
plemented. However the larger the BTB, the higher the branch



A Time-predictable Branch Predictor SAC ’19, April 8–12, 2019, Limassol, Cyprus

Figure 3: Gain in % over a “pessimistic predictor” with
Mälardalen benchmark suite and a 16 entries BTB (loop
shape 1)

Table 3: Modification of branch timing as compared to pre-
dict not taken

Branch taken Branch not taken

BTB miss 2 0
BTB hit, predict taken -2 2
BTB hit, predict not taken 2 0

prediction hardware cost comparatively to the base Patmos proces-
sor. A fully-associative BTB with 16 entries is used by default in
the experimental evaluation.

Patmos implements the classic 5-stages pipeline and includes
by default the static branch predictor (statically predict not-taken)
described in Section 3.1. According to the structure of the Patmos
pipeline, the timing penalties of branches for the proposed branch
predictor as compared to the Patmos static predictor are given in
Table 3.

Compilation and WCET Analysis. The analyzed programs were
compiled with LLVM for the Patmos processor [19]. the programs
were compiled with no optimization (compiler option -O0), except
the -loop-rotate flag for half of the experiments, that allow to have,

Figure 4: Gain in % over a “pessimistic predictor” with Poly-
bench benchmark suite and a 16 entries BTB (loop shape 1)

when the optimization is applicable, the exit test of loops executed
after the loop body. A default optimization level of -O0 is used for
two main reasons. First, optimizing code is not current practice in
safety critical domain, because compilers have to be certified, and
compiler optimizations make certification complex if the compiler
implements aggressive optimization passes [11]. Second, WCET
estimation requires loop bounds to be known, and loop bounds are
easier to estimate at source code level (either using static analysis
or provided through annotations). Many optimizations change loop
bounds, requiring traceability of loop bounds within the compiler
when bounds are given at the source code level [12]. Optimization -
loop-rotate has impact on the shape of loops, transforming almost all
loops of shape 1 (Figure 2a) to shape 2 (Figure 2b) without changing
the loop bound (except the −1 required in a do-while construct).

We have implemented the scope-based analysis in the Heptane
static WCET estimation tool [10]. Heptane, like most static WCET
analysis tools, imposes a set of constraints on code: no function
pointers, no indirect jumps through jump tables, a single entry per
loop.

Heptane was modified to support the Patmos instruction set.
The analysis of the micro-architecture of Patmos in Heptane being
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Figure 5: Number of mispredictions with Mälardalen bench-
mark suite and a 16 entries BTB – logarithmic scale (loop
shape 1)

incomplete at the time this paper is written, it is assumed that
the Patmos pipeline and memory hierarchy is efficient enough to
execute an instruction every clock cycle. Loop bounds are given
through annotations.

5.2 Experimental Results
5.2.1 Results for loop shape 1 from Figure 2a. Figures 3 and

4 present the gain in percentage on the WCET when using the
two variations of the proposed branch predictor, as compared with
a pessimistic predictor for which all branches are systematically
assumed mispredicted (penalty of 2 cycles per branch). The higher
the gain, the better the predictor.

Three baselines are used to evaluate the quality of our design:
(1) Perfect branch prediction (noted perfect in the figure)
(2) The Patmos original static branch predictor described in

Section 3.1 (statically predict not-taken)
(3) The simple backward taken, forward not taken static branch

predictor (BTFNT in the figures). For this predictor, we added
a delay of 1 clock cycle per conditional branch, required to
know if the instruction is a branch, to compute the branch
address, and to detect the branch direction. This knowledge
is available at the decode stage only.

Figure 6: Number of mispredictions Polybench benchmark
suite and a 16 entries BTB – logarithmic scale (loop shape 1)

Results show that in general WCETs estimates when using the
proposed branch predictors are smaller than with the default Pat-
mos predictor. Compared to BTFNT, the proposed predictors are
sometimes better, sometimes worse; our predictors have a more
regular behavior than BTFNT.

One can notice that in some benchmarks from the Mälardalen
benchmark suite, branch prediction does result in any improvement.
The cause of this behavior is the small number of iterations in many
of these benchmarks (for example 3 inminver). In this situation, the
cost of the initial BTB miss (or misprediction when re-entering the
same loop several times) outweights the gains when re-executing
the branch again a too small number of times.

The proposed branch predictor performs better on the Polybench
benchmarks than on the Mädardalen benchmarks. This comes from
the Polybench benchmarks have loops with a much larger number
of iterations than in the Mälardalen benchmarks. Having loops with
large loop bounds makes the prediction close to perfect branch
prediction, since misses and mispredictions are paid only at startup
and when entering a loop several times in the application lifetime;
all the branches in the large number of iterations are predicted
correctly.

The 2-bit history configuration results in almost all situations
in smaller WCET estimates than when using 1-bit history. This is
because when exiting a loop inside a loop nest, the prediction is
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Figure 7: Gain in % over a “pessimistic predictor” with
Mälardalen benchmark suite and a 16 entries BTB (loop
shape 2)

correct when re-entering the loop again (provided that all branches
fit in the BTB).

There are however some exceptions, when the 1-bit history out-
performs the 2-bit history (Mälardalen benchmark fibcall). In this
benchmark, there is no loop nest (one single loop in the code, iterat-
ing 30 times). There is one extra misprediction for the 2-bit counter
configuration, because the counter needs two iterations to reach
state "predict taken" (one more than the 1-bit history configuration).
In other terms, the 2-bit predictor takes longer to warm-up than the
1-bit predictor. The number of loop iterations being moderate, and
the cost of a misprediction being larger than the gain for a correct
prediction, the impact on the WCET is noticeable.

Figures 5 and 6 give a different view of the same set of experi-
ments, by showing now the absolute number of mispredictions (the
lower the better). Since the percentage of mispredicted branches
is low as compared to the pessimistic baseline, the figures are pre-
sented using a logarithmic scale. One can notice that some bench-
marks from the Mälardalen benchmark suite have a low estimated
number of mispredictions (minmax, insertsort). This comes from
two factors: (i) these benchmarks do not contain nested loops, thus
once the predictor is warmed-up, it will always issue correct pre-
dictions; (ii) BTB misses are not depicted in the figure, only branch
mispredictions.

Figure 8: Gain in % over a “pessimistic predictor” with Poly-
bench benchmark suite and a 16 entries BTB (loop shape 2)

The results show that, although the number of mispredictions
from Figure 4 looked low, there are actually a non negligible number
of mispredictions for the Polybench benchmarks. However, since
these benchmarks are compute-intensive (the WCET is dominated
by calculations, not by branches) the impact of misprediction on
WCETs is limited.

5.2.2 Results for loop shape 2 from Figure 2b. This second set of
experiments is again for a BTB with 16 entries, but now operates on
loops with mostly the second loop shape. Figures 7 and 8 depict the
WCETs for the Mälardalen and Polybench benchmarks respectively.

The results show that for this loop shape the difference of gain
of the proposed predictors as compared to the Patmos default pre-
diction exists but is small. This comes from the conjunction of two
factors: (i) the shape of loops in the benchmarks (mostly for loops,
almost no do while loop); (ii) the code generated by default by the
compiler, that makes Patmos original predictor perform well in the
worst-case.
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5.2.3 Experiments for floating point values. In the above experi-
ments, the Polybench benchmarks were configured to operate on
integer values. We performed the same set of experiments when
configuring them with double precision floating point values. Since
in Patmos floating point operations are emulated in software, we
observed an increase of the number of branches per loop, caused
by the floating point emulation functions. The loop scopes were
significantly increased, requiring a larger BTB to benefit from the
branch predictor. I.e., 64 entries in the BTB are required to reach
similar gains than using integer values.

6 CONCLUSION
This paper has presented a time-predictable branch predictor co-
designed with the associated worst-case execution time analysis.
The branch predictor uses a fully-associative cache to track condi-
tional branch outcomes and destination addresses. The prediction
table entries are tagged with the branch address to avoid false
sharing of entries between branches. The design of the branch pre-
dictor allows the definition of a simple scope-based static analysis
of the branch predictor. Experimental results show that although
the design of the predictor and analysis are simple in order to be
predictable, the impact of the branch predictor on worst-case ex-
ecution time bounds is positive, specially for the predictor with a
2-bit history. However, we noticed that the benefit brought by the
predictor highly depends on the code generated by the compiler.

As future work, one direction is to make our analysis more
precise by identifying the branches that are guaranteed to be evicted
from the branch predictor in a loop. Another extension of the work
is to study the impact of different structures for the branch predictor
table (set-associative instead of fully-associative) on misprediction
rates and worst-case execution time bounds.
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