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ABSTRACT 
In this paper1, we propose a security methodology that automates 
the process of security zone specification and high-level network 
security requirements elicitation. We define a set of formalized 
rules derived from the principles of complete mediation, least 
privileges and the Clark-Wilson lite formal model making our 
approach traceable and verifiable. We implemented the 
methodology in Answer Set Programming to automatically 
compute an optimal network security zone model considering the 
cost of the security solution. A use case study of an e-commerce 
enterprise network infrastructure illustrates our methodology. 
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1 INTRODUCTION 

Network security is a broad topic to address at multiple layers. 
Indeed, securing a network covers controlling physical access to 
allow only authorized devices to communicate through the 
network, controlling and protecting data flows and protecting end 
systems from being compromised [19,20]. Nevertheless, 
strengthening the security increases also the price of the network 
accordingly. Thereby, a compromise between security and price 
should be established and organizations/industries are seeking 
cost-effective security solutions that protect networks against 
malicious attacks while meeting the business requirements.   

In this context, network security requirement engineering is a 
key activity since bad network security requirements can lead to 
ineffective and costly security or worth security holes in network 
security design [1]. However, the requirement engineering 
research community has neglected network security in spite of its 
vital importance. As a result, current security requirement 
engineering methodologies don’t provide good support to derive 
network security requirements [6–8]. Thus, a methodology 
suitable to network security is mandatory. 

The current practice for eliciting and analyzing early network 
security requirements is driven by network zoning [10]. Network 
zoning (a.k.a. network segmentation) is a key defense-in-depth 
strategy that segregates and protects key company assets and 
limits lateral movements of attackers across corporate network in 
case of intrusion. Partitioning networks is also effective in 
reducing the scope of audits for regulations. Security zones 
represent different trust levels, which exhibit the criticality of the 
systems within the zones. Each security zone constitutes a logical 
grouping of security entities that are subject to similar protection 
requirements (e.g., data confidentiality and integrity, access 
control, audit, etc.).  Determining security zones and respective 
trust levels is a preliminary step for security architects to derive 
other network security requirements such physical access, 
dataflow control and protection, and end-systems protection 
[27,28]. 
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In the literature, several research works and best practice 
approaches propose various zone classification schemes and 
patterns [10,21,27]. Nevertheless, this process takes place in an 
ad-hoc manner and do not integrate a rigorous approach to specify 
security zones and rules governing zones interactions. Being 
manual, the design of security zones depends only on the 
expertise of the architects who may forget some details while 
specifying the zone model, which will impact the quality of 
derived network security requirements [5]. As part of the 
IREHDO2 research project, we conducted interviews of senior 
security requirements engineers that revealed network security 
architects are looking for a methodological approach to, at least, 
consolidate the network security architectures they propose. 
Indeed, the task of verifying and validating the network security 
requirements with regards to business security requirements is 
tedious and challenging [12]. How to ensure that the proposed 
network zoning is correct and cost-effective? How to ensure that 
no network security requirement is missing or irrelevant?  

In this paper, we describe a methodology that automates parts 
of the process of eliciting security zones and derived network 
security requirements by using a set of formalized rules derived 
from three well-established security principles (complete 
mediation, least privileges and the Clark-Wilson lite formal 
security model), thereby leaving less space to human errors. We 
implemented the rules in Answer Set Programming (ASP [14]) 
and provide a tool that automates the calculation cost-optimal 
security zone models. We illustrate our methodology using an 
example case study of e-commerce enterprise network 
infrastructure. 

The rest of the article is structured as follows. In section 2, we 
describe the example case study. Section 3 presents the concepts 
related to our approach. Section 4 presents the steps in our zone 
modelling methodology. Section 5 illustrates our methodology by 
applying it to an e-commerce scenario. Section 6 deals with 
related works. Finally, we conclude our work and propose future 
research directions in section 7. 

2 E-COMMERCE ENTERPRISE 
NETWORK CASE STUDY 

 We consider an e-commerce enterprise network case study [2] as 
a running example (Figure 1). In brief, the initial network 
architecture (see Figure 1(a)) consists of web server, DNS server, 
application server, database server, and accountability server.  The 
employees are distinguished as administrators and standard users, 
who can connect to the network through LAN or WIFI. If the 
employees are outside the enterprise, they can remotely connect to 
the enterprise network. Finally, when the clients visit the 
enterprise, they are allowed to connect to the web through a 
dedicated WIFI network. 

The accountability server is highly critical as it manages the 
financial information of the company (e.g., salaries of employers). 
The web server hosts the e-commerce web site. Therefore, it is 
also critical because a deny of service attack will highly impact 
the business of the company. Finally, the web server requires 
interactions with the application and database servers to provide 

the e-commerce service. Consequently, they are also highly 
important assets for the business especially the database for which 
data integrity is primordial. 

The network security requirements engineers of the company 
propose the security architecture in Figure 1(b) (and described in 
[2]). The solution reflects some best practice guidelines by 
defining some zones such as DMZ zone, user’s zones, etc. For 
instance, the accountability server is isolated in a separate zone as 
it is highly critical. However, it is not clear on how the architects 
concluded to this solution? This approach requires additional 
arguments to demonstrate the solution meets the elicited risks. In 
addition, this diagram does not deal with the cost-effectiveness 
ratio of this solution. We believe that a formal approach justifying 
the transition from the problem to the solution is required for a 
traceable and verifiable security zone specification process. 

 

Figure 1. E-commerce example case study [2] 

3 PROPOSED METHODOLOGY 
CONCEPTS 

In this section, we present the main concepts to develop our 
methodology. 

3.1 Analysing the risk for the enterprise 

We mainly consider three main elements: security domains, 
agents and security zones. A security domain represents the 
organizational authority which controls and manages the entities 
(i.e., servers, software, data, users, etc.) that belong to it. We call 
these entities as agents. Furthermore, a security domain can be 
refined into sub-domains highlighting different policies or 
situations within the same organization. In our scenario, there are 
two domains: the enterprise domain and the rest of the world 
named Internet. The enterprise domain is itself divided into two 
sub-domains (see Figure 2): the internal sub-domain that consists 
in the assets within enterprise premises and the external sub-
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domain containing remote employees working outside the 
premises of the enterprise.  

We assume the functional requirements have been elicited 
using an agent-based approach (such as User Requirements 
Notation [18] or Socio-Technical Security Modeling Language 
[11]). Agents are concrete entities (represented by circles with a 
straight line) that have or are assigned to objectives (depicted by 
squares within circles attached to agents). Agents with same 
characteristics can be abstracted with the notion of role (noted by 
a circle with a circle with a curve, e.g., remote users). However, 
we have augmented the notation to differentiate two categories of 
agents/roles. System agents (represented by pink circles) refer to 
entities under direct control such as software/hardware systems 
that are developed and/or maintained by the enterprise. 
Environment agents (represented by violet circles) are not under 
direct control and refer to humans or some off-the-shelf software.  

Finally, security zones constitute logical grouping of agents 
with common protection requirements. As a consequence, our 
methodology mainly aims at grouping agents within security 
zones managed in security domains and eliciting the related 
security requirements.  

 
Enterprise domain

Internet domain 

Inside Enterprise subdomain

Outside Enterprise 
subdomain

Provide access 
to the                

e-commerce     
web site

Manage 
accountability of 

the enterprise

Provide 
functionalities of 
the e-commerce     

web site

Store clients’ 
accounts and 

purchases

Provide list of 
products and 

their price

Provide IP 
address of                    
web server

Remote
Users

DNS 
Server

Web 
Server

Accountability 
Server

Local
Users

Application 
Server

Database 
ServerClients

Visitors Administrator

 

Figure 2. Sample of functional requirements 

We consider that some external risk analysis has assessed 
security domains and agents to provide domain control capability, 
trust of environment agents and criticality of system agents. 
Security domain control capability describes the maturity of an 
enterprise to deploy security controls and/or its capability to 
control a given environment. In our scenario, the enterprise inside 
sub-domain refers to the office premises of the e-commerce 
organization that is physically secured. We consider also that the 
enterprise is mature with well-trained employees. Thus, this sub 
domain is well controlled. The outside sub domain consists in 
employees working from their home using laptops provided by 
the office. Then, it is less controlled. The Internet domain being 
outside the control of the enterprise is uncontrolled. 

Environment agents are given a trust level, which specifies the 
degree of the trustworthiness over the expected behavior of 
environment agents in a given context. For instance, in our use 

case, the administrator is highly trusted because this person is 
well-known and qualified. Local employees are only trusted 
because this role refers to more people. Visitors are partially 
trusted because they are known people and the reception staff 
verifies the visitor's identity card which must be surrendered in 
exchange for a wearable badge.  

Finally, system agents are evaluated based on their criticality 
levels. Criticality level determines the sensitivity to threats and the 
risk impact of system agents’ goals on the overall business. For 
instance, ‘providing access to the e-commerce web site’ is critical 
for the business of the enterprise. Thus, the web server, which is 
assigned to this goal, is critical too. The DNS and the application 
servers have the same criticality as the web server because the risk 
is the same if one of them cannot achieve its associated goal. The 
database server is highly critical. On one side, its goal ‘provide 
list of products and their price’ is only critical. On the other side, 
the goal ‘store clients’ accounts and purchase’ is highly critical 
because a threat on this goal will have a strong impact on the 
reputation of the enterprise. Finally, the accountability server is 
vital because it can lead to bankruptcy if the enterprise can’t 
manage its accountability. 

3.2 The three core security principles 

We construct our methodology based on three well established 
principles. First of all, the principle of complete mediation [26] 
stipulates controlling every accesses. Applying to the context of 
network security zones, it means that ‘every data flows between 
zones must be controlled by a security mechanism’. The principle 
of least privileges [26] requires to limit users to access only what 
is necessary for their legitimate purpose. We translate this 
principle in the context of network security zoning as ‘a user can 
access a zone only if he is granting access to all the services 
within the zone’. Here we map the services level privileges to the 
network level privileges. This limit the propagation of an attack 
on a service to only the zone.  

Finally, formal models of integrity foster to avoid critical 
systems to consume untrusted/fake information. We employ also 
the concept of integrity to unify capability, trust and criticality to 
facilitate the integration of risk analysis concepts to our network 
requirement analysis context.  

First, integrity of an agent reflects the assurance of an expected 
behavior. This fits with the concept of trust related to environment 
agents. The more trust the enterprise can have on an entity, the 
more it expects a given agent’s behavior, and hence, the more 
integrity it believes the agent has. As consequence, the trust 
assessment can be transformed into a maximum integrity value 
representing an assumption. Similarly, system agents’ criticality 
can be expressed as a required integrity. Critical goals are 
required to be achieved; hence, it is a required behavior of the 
assigned system agent. It means criticality corresponds to the 
minimum integrity value required for a system agent. For 
instance, the accountability server being vital requires a high level 
of integrity while the web server, which is considered critical only 
for business, requires less integrity. Finally, the integrity of a 
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security domain correlates with the maximum integrity an 
enterprise can achieve with its control capability.  

As a consequence, we assume the existence of some utility 
functions (Figure 3) that maps the control capability labels of 
domains, criticality and trust levels of agents into a unified scale 
of integrity values. Figure 3 shows an example assumed for rest of 
the paper.  

Unifying risk and trust within the concept of integrity allows 
us also to integrate formal integrity security models with security 
zone modelling design principles to address the risks pertaining to 
traffic flows and information assurance. There exists several 
models of integrity such as Biba [3], Clark-Wilson [9], which 
propose abstract solutions to preserve the integrity of information 
flows. These models are widely used in current operating systems 
for improving the integrity protection of the information flows in 
inter-process communications (e.g., Microsoft Windows Integrity 
Mechanism [22]). We have chosen to adapt the model of Clark-
Wilson lite [29] (lighter version of Clark-Wilson model) for 
verifying the integrity property of traffic flows traversing multiple 
zones because this model explicitly considers information flows 
and then is more suitable to network data flows analysis. 

 

Domain Control capability Integrity 

Enterprise internal sub-domain Highly restricted 5 

Enterprise external sub-domain Less controlled 2 

Internet Uncontrolled 1 

System agents Criticality Integrity 

WEB server Critical 3 

DNS server Critical 3 

APP sever Critical 3 

Database server Highly Critical 4 

Accountability server Vital 5 

Environment agents Trust Integrity 

Admin user Highly trusted 4 

Local users Trusted 3 

Visitors Partially trusted 2 

Remote users Partially trusted 2 

Client users Not trusted 1  

Figure 3. Integrity values of domains and agents for the 
example case study 

The main idea of the integrity models is as follows. Entities 
take decisions based on input information (e.g. a program 
executes an algorithm based on its inputs). If input information is 
wrong, then the decision can be wrong too. Therefore, critical 
systems must read information with high levels of integrity only 
(i.e. high level of assurance) while non critical systems are not 
subject to such constraint. In CW-lite model, all information 
flowing from low integrity subjects to high integrity subjects must 
be filtered. Here, the integrity filters correspond to integrity 
validation procedures that sanitize information or block it. For 
instance, in network security analysis context, an integrity 
validation filter can be a web application firewall that checks SQL 
statements or URL formats. Integrity models complete the 
principle of complete mediation by checking the content of flows. 

CW-lite model places the integrity validation filters at the 
receiving subject’s side and express the information flow control 
as follows (Figure 4): “if a subject s receives an information flow 
from a subject si at interface I, then either there is an integrity 
validation filter at interface I or the integrity level of si is greater 
or equal to the integrity of subject s”.  

 

Figure 4. CW-lite security filtering rule [29] 

4 OUR PROPOSED METHODOLOGY 
Our zone modelling methodology (see Figure 5) is divided into 
two main steps: (1) Determining the security zones and integrity 
validation filters and (2) Identifying data flows integrity 
requirements and data flows access control filters.  

The initial input of the first step is the set of security domains, 
the set of agents, the integrity levels of domains and agents, and 
the data flows between agents. As a result of step1, our process 
computes the security zones and the integrity validation filters. 
Then, the security architect provides additional information about 
the media of communication (i.e., the networks) between zones 
and launches the second step. The final result is a set of network 
security requirements that are a set security zones, integrity 
validation filters, agents’ integrity requirements, access control 
filters, and integrity data flow protection requirements. For 
implementation, we formalized step1 and step2 in Answer Set 
Programming (ASP) [14]. ASP is a declarative logic based 
approach that facilitates the solving of difficult search problems 
by computing answer sets through stable model semantics. We 
defined the rules at each step and the ASP solver determines the 
set solutions (called answers) that are compliant with the rules and 
the input. This makes our process traceable and verifiable. 

FINAL	OUTPUT	
(Zone	modelling	Answer	set)	

STEP1	(ASP)	

STEP2	(ASP)	

ADDITIONAL	STEP2	INPUT	
(medium	of	communication)	

Network	security	requirements	
	Security	zones,	Actual	integrity	
levels	of	zones	and	agents,	
Integrity	validation	filters,	

Access	control	filters,	data	flow	
integrity	requirements	

STEP1	OUTPUT	
	(Security	zones,	Actual	integrity	

levels	zones	and	agents,	
Integrity	validation	filters)	Step1	output	Parser	

(python)	

INITIAL	INPUT	
(Domains,	agents,	integrity	levels,	flows)	

 

Figure 5. Our zone modelling methodology approach overview 

In the following, we discuss in detail the modelling rules at 
step1 and step2. The implementation of our zone modelling 
solution will be discussed separately in section 5. 
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4.1 Step 1: Specifying zones and filtered flows 

The main goal of this step is specifying zones and identifying 
integrity validation filters. The process starts with a system as a 
set of domains, zones and agents and we represent it as follows: 
S = <DOMAIN, ZONE, AGENT, FLOW, INSIDED

Z, INSIDED
A, 

INSIDEZ
A, Int, Intmax, Intmin, Intactual, AgentServer, AgentClient> 

Where: 
§ DOMAIN is the set of security domains. 
§ ZONE is the set of security zones. 
§ AGENT is the set of agents, named after entities.  

AGENT = ENV_AGENT È SYST_AGENT with 
ENV_AGENT and SYST_AGENT being the set of 
environment and system agents such that ENV_AGENT Ç 
SYST_AGENT=Æ. 

§ AgentServer: AGENT → {TRUE, FALSE} states if an agent 
is a server (e.g., web server). 

§ AgentClient: AGENT → {TRUE, FALSE} states if an agent 
is a client (e.g., browser). 

§ FLOW Í AGENT ´ AGENT, is the set of allowed flows 
of information. 

§ INSIDED
z Í ZONE ´ DOMAIN is a relation that states a 

zone is inside a domain. 
§ INSIDED

A Í AGENT ´ DOMAIN is a relation that states 
an agent is inside a domain. 

§ INSIDEZ
A Í AGENT ´ ZONE is a relation that states an 

agent is inside a zone. 
§ Int: DOMAIN ® ℕ returns the integrity level of a security 

domain. This value is directly derived from the control 
capability value. 

§ Intmax: ZONE È AGENT → ℕ returns the maximum 
integrity of a zone or an agent. For environment agents, 
this value is directly derived from their trust value. 

§ Intmin: AGENT → ℕ returns the minimum integrity level of 
an agent. For system agents, this value is directly derived 
from the criticality value. 

§ Intactual: ZONE È AGENT → ℕ returns the actual integrity 
of a zone or an agent, which are the final integrity values 
computed at the end of the process. 

§ integrity-validation-filter(a:AGENT,f:FLOW,val1:ℕ,val2:ℕ) 
states integrity validation requirements such that integrity-
validation-filter(a, f, val1, val2) means some integrity 
protection mechanism at agent a must sanitize dataflow f 
with an integrity level of val1 to achieve a data assurance 
level of val2. 

In other words, Int, Intmax and Intmin represent the integrity 
mapping functions (Figure 3). Accordingly, we define the rules of 
step1 as follows: 
 
RULE 1: Every agent is inside a domain. 
∀a ∈ AGENT, ∃ d ∈ DOMAIN | (a,d) ∈ INSIDED

A 
 
RULE 2: Every security domain contains at least one security 
zone. 

∀d ∈ DOMAIN, card({z | z ∈ ZONE, (z, d) ∈ INSIDED
Z}) ≥ 1 

 
RULE 3: The maximum integrity level of a security zone is equal 
to the integrity level of the domain. This is because, a domain 
controls zone and therefore we cannot have more assurance on a 
zone than the controlling domain. 
∀d ∈ DOMAIN, ∀z ∈ ZONE, (d, z) ∈ INSIDED

Z
   Þ

                       Intmax(z) = Int(d) 

 
RULE 4:  Similar to Rule 3, the maximum integrity level of an 
agent is equal to the integrity level of domain. 
∀d ∈ DOMAIN, ∀ a∈ AGENT, (a, d) ∈ INSIDED

A  Þ           
Intactual(a) ≤ Int(d) 
 
RULE 5: The actual integrity of a zone cannot be greater than its 
maximum integrity. 
∀z ∈ ZONE, Intactual(z) ≤ Intmax(z) 
 
RULE 6: The actual integrity of agents must be between the 
maximum and the minimum integrity levels of the agents. 
∀a ∈ AGENT, Intmin(a) ≤ Intactual(a) ≤  Intmax(a) 
 
RULE 7: The actual integrity levels of an agent are same as that 
of its residing zone. 
∀a∈ AGENT, ∀z ∈ ZONE, (a,z) ∈ INSIDEZ

A, Þ
                                  Intactual (a) = Intactual(z) 

 
RULE 8 - CW-Lite:  The actual integrity levels of the interacting 
agents must adhere to the CW-lite integrity rule. In this way, an 
agent cannot have access to lower integrity information. 
∀a1,a2 ∈ AGENT, (a1, a2)∈ FLOW Λ

                                                                         ¬integrity-validation-filter(a2,flow(a1,a2),                           
intactual(a1), intactual(a2)) Þ  Intactual(a1) ≥ Intactual(a2) 
 
RULE 9 – Principle of complete mediation:  Server agents and 
client agents cannot reside in same zone. Because, as per the zone 
modelling design principles, intra-zone interactions are usually 
not analyzed. With reference the security design principle of 
complete mediation rule, every access to every object must be 
validated [26]. Therefore, if server and client reside in the same 
zone there will be a conflict. 
∀c,s ∈ AGENT, ∀z1,z2 ∈ ZONE, (c, z1) ∈ INSIDEZ

A,          
(s, z2) ∈ INSIDEZ

A, AgentServer (s), AgentClient (c)Þ z1≠z2 
 
RULE 10 – Principle of least privileges:  The least privileges 
principle aims at minimizing the permissions of users to the 
minimum required for accomplishing their tasks [26]. From a 
network perspective, a client agent can send flows in a security 
zone only if he can send flows to all the server agents within that 
zone.  In this way, we map network level privileges to services 
level privileges. Indeed, server agents will be grouped in zones 
according to users’ privileges. 
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∀c,s1,s2 ∈ AGENT, AgentClient(c), AgentServer(s1), AgentServer(s2), 
∀z1,z2 ∈ ZONE, (s1, z1) ∈ INSIDEZ

A, (s2, z2) ∈ INSIDEZ
A, 

(c,s1) ∈ FLOW, (c,s2) Ï FLOW Þ z1≠z2 

4.2 Step2: Specifying integrity requirements for the 
communication medium between zones 

At the end of step1, the set of zones along with the integrity 
validation filters are determined. Step2 addresses the security 
issues related to inter-zone interactions, i.e., the protection of data 
flows through the network communication media (e.g., 
wired/wireless networks, etc.,) that connect the computed zones. 
The main goal of this step is to protect the integrity of data flows 
when traversing untrusted media of communication. Suitably, we 
complete our system model as follows: 
S = <DOMAIN, ZONE, AGENT, FLOW, MEDIUM, INSIDED

z, 
INSIDED

A, INSIDEZ
A, INSIDED

M, CONNECT, Int, Intmax, 
Intactual>,  
Where: 
§ MEDIUM is the set of media of communication. 
§ INSIDED

M Í MEDIUM ´ DOMAIN is a relation, which 
states that a medium of communication is in a domain. 

§ CONNECT Í MEDIUM ´ ZONE is a relation, which 
states that a zone is connected to a medium of 
communication. 

§ Intmax: ZONE È AGENT È MEDIUM → ℕ returns the 
maximum integrity level of a security zone, agent or 
medium of communication. 

§ Intactual: ZONE È AGENT È MEDIUM → ℕ returns the 
actual integrity level of a security zone, agent or medium 
of communication. 

§ PATH Í FLOW ´ (ZONE È MEDIUM) ´ (ZONE È 
MEDIUM), is a relation that stores where flows are 
transiting with the constraint that (f, e1, e2) ∈ PATH Þ 
(e1,e2) ∈ CONNECT ∨ (e1,e2) ∈ CONNECT. For 
instance, (f,m,z) ∈ PATH means that flow f transits 
between medium m to zone z. 

§ access-control-filter(c:CONNECT,f:FLOW) states access 
control requirements so that access-control-filter(c,f) 
means flow f must be permitted at connection point c. 

§ dataflow-integrity-protection(f: FLOW, e: ZONE È 
MEDIUM, value: ℕ) states dataflow protection 
requirements such that dataflow-integrity-
protection(f,e,val) means some protection mechanism must 
be applied on dataflow f over zone or medium e to preserve 
an integrity level of val. 

Similar to domains, zones, and agent, a medium of 
communication m has two integrity levels: Intmin(m), and 
Intactual(m). Accordingly, we add new rules to include constraints 
on media of communication: 
 
RULE 11: Every zone must be connected to a medium of 
communication. 
∀z ∈ ZONE, ∃ m ∈ MEDIUM, (m, z) ∈ CONNECT. 
 

RULE 12: At each zone, there must be an access control filter 
that permits allowed flow of information. Not explicitly allowed 
flows are denied by default. 
∀ (f, e1, e2) ∈ PATH, e1 ∈ MEDIUM ∧	e2 ∈ ZONE Þ                                                             

access-control-filter((e1,e2), f) 
And respectively: 
∀ (f, e1, e2) ∈ PATH, e1 ∈ ZONE ∧	e2 ∈ MEDIUM Þ  

access-control-filter((e2,e1), f) 
 
RULE 13: The actual integrity level of a medium of 
communication is equal to the minimum value between the 
integrity level of its domain, the initial trust of the medium (i.e., 
its maximum integrity), and the actual integrity levels of the 
connected zones. 
∀ m ∈ MEDIUM, Intactual(m) = min({Int(d) | d ∈ DOMAIN, 
(m,d)∈ INSIDED

M} È {Intmax(m)} È {Intactual(z) | z ∈ ZONE, 
(m,z) ∈ CONNECT}) 
 
RULE 14:  A flow that transits over a medium or a zone, requires 
an integrity protection, if the integrity level of the medium or the 
zone is lower than the level of integrity of the flow. 
∀(a1,a2) ∈ FLOW, ∀ e1,e2 ∈ ZONE È MEDIUM |  
(flow(a1,a2), e1, e2) ∈ PATH,  
min(intactual(a1), intactual(a2))  > intactual(e1) Þ data-flow-integrity-
protection(flow(a1,a2),e1,min(intactual(a1), intactual(a2))). 
Respectively: 
∀(a1,a2) ∈ FLOW, ∀ e1,e2 ∈ ZONE È MEDIUM |  
(flow(a1,a2), e1, e2) ∈ PATH,  
min(intactual(a1), intactual(a2))  > intactual(e2) Þ data-flow-integrity-
protection(flow(a1,a2),e2,min(intactual(a1), intactual(a2))). 

5 IMPLEMENTATION  
We implemented our methodology in ASP using the Clingo solver 
[15] and Python. In this section, we describe the security zone 
calculation of the scenario using our methodology by detailing 
each step of the process. 

5.1 Step1 – Eliciting security zones and 
integrity validation filter requirements 

5.1.1 Step1 input  
At step1, the initial knowledge on the system concerning the 
agents, domains and their integrities needs to be provided as input. 
Figure 6 shows the graphical view.  

In the example case study, we have considered a total of two 
domains. The enterprise domain is under the control of the e-
commerce enterprise, while the Internet domain corresponds to 
the public domain, which is uncontrolled. The enterprise domain 
has two sub-domains. The inside enterprise sub-domain may refer 
to the office premises of the e-commerce organization that is 
physically secured. The outside sub domain consists in employees 
working from their home using laptops provided by the office. By 
applying the utility function described in Figure 3, these control 
capabilities are transformed into integrity values.  
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Figure 6. Step 1 – input 

The integrity levels of system agents (depicted in triangular 
shapes) correspond to the minimum level of integrity that should 
be maintained in terms of security assurance. Likewise, the 
integrity levels of environment agents (depicted in inverted 
triangular shapes) correspond to the maximum level of integrity, 
which is expected as guaranteed. These integrity values are also 
determined based on the utility function in Figure 3. Finally, the 
initial input includes the list of permitted data flows between 
agents regarding the business objectives. Table 1 lists a sample of 
the data flows considered in the example case study. E.g., role 
adminUser must be able to send data flows to agent 
accountabilityServer. 

Table 1. Step 1 input – sample of permitted data flows 

Flow(adminUser,accountabilityServer) 
Flow(localUsers,accountabilityServer) 
Flow(remoteUsers,accountabilityServer) 
Flow(accountabilityServer,adminUser) 
Flow(accountabilityServer,localUsers) 
Flow(accountabilityServer,remoteUsers) 

5.1.2 Step1 output 
Our tool automatically computes the security zones and the 
integrity validation filters according to the rules listed in section 
4.1 (see Figure 7). The Clingo ASP solver can produce many 
solutions (i.e. zone models), which can equally satisfy all the 
rules. However, their costs of implementation can vary. From a 
broad view, the implementation cost is the summation of the cost 
of implementing the network security requirements to preserve the 
actual integrity levels of each zones and of upholding the integrity 
verification filtering requirements. 

The tool determines the optimized solution using the ASP 
optimization statement minimize, to find the solution with 
minimal cost. Figure 8 depicts an example of cost formula where 
the Clingo solver searches for an optimal answer set that 
minimizes the sum of all values of entities’ integrity levels (i.e., 
sum of actual integrity values of agents and integrity to be 
guaranteed by integrity validation filters). The cost calculus can 
vary for different organizations based on their logistics study 
similar to the varying cost effects of the Design Assurance Levels 
[24]. Thus, this cost formula is just an example and another cost 

computation formula more suitable to a specific organization can 
be specified. 
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Figure 7. Step 1 – output 

 

Figure 8. Example of a cost-based optimization rule 

We executed our tool 30 times on a Mac Book Pro (2.8 GHz 
Core i7, 16GB RAM) and configured the solver to use 4 threads 
in parallel. The execution times to calculate the optimal solution 
based on our cost optimization rule varied between 5.8 seconds 
and 7.6 seconds.  

Our zone model is abstract and design independent therefore 
does not restrict the technical solutions. It specifies a total of 8 
zones with 6 inside the enterprise network, and 2 zones outside. It 
is interesting to note that our tool obtained the same zones as the 
proposed case study (Figure 1(b)).  

Table 2. Step 1 output – Sample of IVF requirements 

IVF(accountabilityServer, 
      flow(localUsers,accountabilityServer), 
      sanitize(3,5)) 
IVF(accountabilityServer, 
     flow(remoteUsers,accountabilityServer), 
     sanitize(2,5)) 
IVF(accountabilityServer, 
      flow(adminUser, accountabilityServer), 
      sanitize(4,5)) 

 
Our tool cannot classify the zone types like DMZ, restricted, 

etc. However, integrity values of zones provide zone integrity 
requirements. The resulting calculated integrity levels attached to 
zones also apply to all the agents within the zones. These integrity 
levels have to be interpreted as the pre-requisite requirements to 
achieve at minimum by the future security implementation related 
to software development processes, code practices, software 
verification and validation, etc. Indeed, in practice, there already 
exist code assurance level standards such as the DALs for aircraft 
systems requirements [4]. The higher the DAL is, the higher the 
assurance activities and design verification methods are 
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demanded. In our methodology context, the actual integrity levels 
of system agents exhibit similar characteristics as DALs. 

Additionally, the tool identifies integrity validation filters 
(IVF) attached to agents. They are depicted by yellow squares in 
Figure 7. A sample from the set of IVF rules automatically 
generated by our tool is given in Table 2. For instance,  
IVF(accountabilityServer,flow(localUsers,accountabilityServer), 
sanitize(3,5)) is a requirement stating that there must be a data 
flow integrity validation procedure at agent accountabilityServer 
that sanitizes the data flows sent by localUsers. The input data 
flows sent by the localUsers are expected to satisfy integrity level 
3 and the integrity validation process must check these data flows 
to guarantee they conform to constraints of integrity level 5. 
Interpretation of such integrity validation requirement, i.e. what 
means validation to conform integrity level 5, can be carried out 
on the basis of dedicated documents such as the specification for 
data assurance levels by EUROCONTROL [13]. Suitably, this 
IVF requirement might be implemented by a security mechanism 
such as a web application firewall that checks for SQL 
injection/viruses/etc. Thus, as mentioned in Figure 5, at the end of 
Step1, the security architect obtains the list of security zones, the 
integrity values of agents and zones and integrity validation filters 
requirements. 

5.2 STEP 2 – Eliciting access control and data flow 
protection filters requirements 

5.2.1 Step2 input 
Before running step2, the security architect must complete the 
output of step1 by providing additional information about the 
media of communication. The input information concerning 
media of communication includes the integrity values of the 
media, the domain in which the media belong to, and finally, the 
zones connected to them (the white clouds and the black lines in 
Figure 9).  

In our example scenario, we assumed three media of 
communication: Private access, Public Access and Internet 
Access. The integrity value attached to a medium of 
communication represents the level of trust one can have about 
the packets transmitted by the medium. As consequence, this 
integrity value depends on the assurance level of the users that can 
connect to it. The integrity value will be calculated as the 
minimum between the integrity value of the domain and the 
connected zones. We also allow the security architect to specify 
an initial integrity value that represents the risk that unexpected 
users or attackers have access to the medium. For instance, it is 
easier to physically access a wireless network than a wired 
network. Also, it is easier for unwanted users to connect a device 
to an Ethernet socket in the reception lounge of a building (since 
many unknown people can enter in this place) than in a restricted 
area of this building. In this way, our methodology can integrate a 
second risk analysis phase dedicated to assess the difficulty to 
physically connect to networks. Figure 10 shows an example of 
the integrity levels of the media. They are calculated based on the 
restricted levels of the medium considered in our example 
scenario. As mentioned in Figure 5, our tool takes two sets of 

input information at step2: the result of step1, and the media of 
communication with the associated integrity values when 
explicitly specified. 
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Figure 9. Step 2 - input 

 

Figure 10. Example of medium integrity levels 

5.2.2 Step2 – final output.  
For the execution of step2, we developed a separate python code 
that parses the output of step1 and calculates all the paths of every 
data flows in regards with the consolidated input information at 
step2. The output of the python code is then re-injected in the 
ASP solver to compute the final output of step2, i.e., access 
control filter (ACF) and data flow integrity protection 
requirements. Figure 11 depicts the graphical representation of the 
final network security requirements after step2.  

The access control filter requirements (ACF) are defined at 
the interfaces of each zone in order to control all the inter-zone 
communications. They are depicted by blue squares in Figure 11. 
These requirements describe the list of permitted flows that are 
given as input at step1. Data flows not explicitly stated in an ACF 
requirement are denied. Table 3 shows a sample of the generated 
ACF requirements. For instance, the requirement statement 
ACF(connectedTO( publicAccess,2), flow(dnsServer, visitors)) 
indicates that there must be an ACF at the interconnection point 
between medium of communication publicAccess and security 
zone2 that permits data flows from the dnsServer to visitors. 
Depending on the security design choices, these ACFs may be 
implemented by one or more access control mechanisms such as 
firewalls, application gateways, etc. 
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Figure 11. Step 2 output – final network security requirements 

Finally, the tool produces data flow integrity requirements 
representing security protection needs attached to data flows while 
transiting over a medium or a zone (see Table 4). For instance, 
requirement dataFlowIntegrityRequirement(flow(databaseServer, 
adminUser), privateAccess,4) states that the data flows from 
databaseServer to adminUser must be protected over medium of 
communication privateAccess to ensure the data flows maintain 
integrity level 4. Different integrity mechanisms such as digital 
signatures can implement these requirements. 

Table 3. Sample of Access Control Filter requirements 

ACF(connectedTO(publicAccess,2), 
    flow(dnsServer,visitors)) 
ACF(connectedTO(publicAccess,2), 
    flow(webServer,visitors)) 
ACF(connectedTO(publicAccess,2), 
    flow(visitors,dnsServer)) 
ACF(connectedTO(publicAccess,2), 
    flow(visitors,webServer)) 
ACF(connectedTO(publicAccess,7), 
    flow(dnsServer,visitors)) 
ACF(connectedTO(publicAccess,7), 
    flow(webServer,visitors)) 
ACF(connectedTO(publicAccess,7), 
    flow(visitors,dnsServer)) 
ACF(connectedTO(publicAccess,7), 
    flow(visitors,webServer)) 

Table 4. Sample of data flow integrity requirements 

dataFlowIntegrityRequirement( 
   flow(databaseServer,adminUser), 
   privateAccess,4) 
dataFlowIntegrityRequirement( 
   flow(appServer,adminUser), 
   privateAccess,4) 
dataFlowIntegrityRequirement( 
   flow(appServer,localUsers), 
   privateAccess,3) 

6 RELATED WORKS 
Most of the related works come from industrial/government 
sectors [10,21,27], which provide best practice guidelines and 
generic patterns for building secured networks. These guidelines 
propose some generic zone categories as well as predefined inter 
and intra zone interactions rules. For instance, the British 
Columbia model [21] describes seven zones and allows 
communication inside the zones and only between adjacent zones. 
Secure Arc [27] defines eight zones.  It also introduces a parallel 
cross-zones segmentation concept, called silos. Communications 
are allowed only between adjacent zones and within the same silo, 
or between adjacent silos within the same zone. The aim is to 
limit the interaction between zones to only dedicated traffic even 
though they are adjacent to each other. However, these documents 
are only guidelines and must be manually adapted. As a 
consequence, they don’t support security architects in validating 
their own network security requirements.  

The academic community has published only few works 
concerning network security zones. Gontarczyk et al. [16] 
proposed a standard blue-print that includes three classes of 
security zone (no physical measures, limited physical measures, 
and strong physical measures). It also provides a classifier to 
guide the deployment of systems/applications. However, this is a 
high level guideline that must be manually adapted by the security 
architects. Furthermore, the classifier is ambiguous (e.g. some 
systems can be placed in any of the zones). They also don’t 
consider other network security requirements. Ramasamy et al 
[25] proposed a bottom-up approach for discovering the security 
zone classification of devices in an existing enterprise network. 
Although this work does not deal with eliciting network security 
requirements, it complements our top-down approach. Several 
works [17,23] take an existing network security zone model and 
perform risk analysis using different methods to determine the 
efficiency of security zones. In the same way, they do not serve 
the purpose of eliciting high-level network security requirements 
and cannot be compared to our work. However, they can be used 
to refine the high-level security requirements calculated by our 
approach in later stages. Finally, as far as we known, none of the 
related works consider the notion of cost of network security 
zones. 

7 CONCLUSION AND FUTURE WORK 
Network security zone modelling is a well-known approach that 
contributes to the defense-in-depth strategy from the network 
security perspective. However, no rigorous approach formally 
supports this process. In this article, we proposed a zone 
modelling methodology based on three security principles: 
complete mediation, least privileges and Clark-Wilson lite formal 
model. We defined a set of formal rules as well as the list of initial 
integrity levels values computed based on risk impact, which 
makes our methodology approach traceable and verifiable. The 
whole process has been implemented to automate the security 
zones computation. It produces a set of network security 
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requirements: security zones, integrity validation filters, access 
control filters, and data flow integrity requirements. We illustrated 
the use of this methodology through an e-commerce use case 
scenario. 

Our future works are two folded. First, we plan to formally 
integrate this work in a global security requirements engineering 
process to get traceability from business level security objectives 
to network design level requirements. Secondly, we want to 
investigate the refinement of the high-level network security 
requirements produced by our current work. As an example, IVF 
attached to agents may require to be refined due to design 
constraints. For instance, it might be impossible to enforce the 
IVF on the accountabilityServer for technical constraints. In this 
case, the initial security requirements needs to be refined by 
introducing new security agents (e.g., network security proxies) to 
achieve the IVF, similar to the final zone model in the case study 
[2]. In parallel, we would like to extend our security zone 
modelling approach to consider the confidentiality and availability 
requirements. Access control filters, defined by our methodology, 
partially address confidentiality requirements only. We intend to 
explicitly integrate formal confidentiality models.  
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