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ABSTRACT

The ability to accurately understand opinionated content is crit-
ical for a large set of applications. Models targeting at learning
from such content should overcome the inherent difficulties of the
data. We propose a novel hybrid neural network embedded in a
deep learning framework that can be used for sentiment classifica-
tion. Our method consists of an independent set of feed forward
learning models that are able to identify rich linguistic patterns
through recurrent semantic trees. We evaluate our method in four
sentiment classification problems that include both binary and
multi-class classification tasks. Moreover, we compare our model’s
prediction accuracy with state-of-the-art methods. We observe that
our method outperforms the alternative approaches. The strengths
of the proposed approach are due to i) a novel Convolutional Neu-
ral Network which can be employed autonomously or as part of a
greater framework, ii) a hybrid framework which consists of a set
of independent blocks that propagates information and improve
the classification task.
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1 INTRODUCTION

Online content like user opinionated reviews, contains informa-
tion that if exploited appropriately may provide commercial and
research value. Assigning sentiment to sentences (or phrases) is a
trivial task in most cases. Trying to assess the sentiment for a large
piece of text (like a product review) however, might be a little bit
more challenging. This is mainly because language might include a
mixed distribution of sentiment.

In this paper, in order to alleviate the above limitation, we in-
troduce a convolution to the widely used recurrent deep learning
model. The contributions of this paper can be summarized in
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Figure 1: Model Architecture.

the following points. a) We introduce a Deep Hybrid Neural Net-
work for modeling opinionated content. b) We introduce a Neural
Network Hyper-Parameter that joins mixed content motifs. c) We
experiment over a set of known datasets and demonstrate how our
proposed approaches outperform the state-of-the-art. d) We share
our deep learning model in Python/Tensorflow with the community
in order to promote the research efforts in the field.

2 OUR METHOD (HYCOR)

Some principles of our method (Hybrid Convolution Recurrent
Neural Network) were inspired byt_he work of [1], [2], and [3].

Overview. HyCoR is organized into three feed forward blocks. In
the first “sentence level” block (see Fig 1(a)) we use a multi-filter
convolution layer to transform word embeddings into sentence
embeddings. In the second “document level” block (Fig 1(b)) we
feed the sentence embeddings into a modified Bi-directional LSTM
recurrent neural network. Next a classical layer employs a number
of output predictions. These predictions are the partial sentiment
classifications of a candidate opinion. Finally in the third block
“prediction level" (Fig 1(c)) we forward the partial predictions into an
appropriate discrete classifier that merges all partial predictions. Fig
1 illustrates the model architecture and the corresponding blocks.

2.1 Global Sentence Embedding

The NN layers that we use are the following:

Look-up Table Layer A look-up table is created after we define
the vocabulary size |V| of the corpus and the embedding size d of
the word vectors. This table Wgy |y ) is a matrix of parameters to
be learned [4].
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Figure 2: The BLSTM implementation and the separate out-
put predictions that we exploit.

Convolution Layer We begin in this layer with a tokenized sen-
tence of length z which has previously been transformed into a
matrix of word vectors of dimensionality d.

Non-Linear Layer We employ the partial global sentence embed-
ding c* and apply the tanh non linear function in order to explore
more complicated classification patterns. The result produces the
vector pk with dimension d. Finally we concatenate all pk vectors
to produce a global sentence embedding x;. Vector x; with size
n - d (n the number of convolutional filters) stands for the global
sentence embedding which along with the 7 sentences an opinion
consists of we forward to the next step of the neural network. This
block is responsible for converting a sequence of word embeddings
into a sentence embedding for every sentence in an opinion. Since
sentence embeddings include language patterns that are explored
by the convolution filters w? we force the optimization algorithm
through back-propagation to best tune up these filters over all
the map of patterns the convolution layers include. Thus our con-
volution architecture becomes sensitive to dynamically exploring
language patterns that apart from the classification task it also
provides better word embeddings.

2.2 Exploiting Semantic Embeddings

In this phase our network receives a sequence of global sentence em-
beddings. We forward them to a modified Bi-directional recurrent
structure that creates two independent trees.

Bi-Directional Unit Given an input sequence x = (x1,---,XT)
a standard recurrent neural network (RNN) computes the hidden
vector sequence h = (h1, - - -, ht) and the output vector sequence y =
(y1,- - -, y1)- We exploit each layer’s sequential output separately.
Next we construct a vector consisting of an array of predictions
from these outputs which form a classical layer. We employ a hyper-
parameter named “output window size" that immediately affects
the classical layer’s vector length. Fig 2 presents the Bi-Directional
[5] (LSTM [6]) implementation in our network.

Classical Layer A number of output predictions from the RNN
structure consists the input basis of a classical layer. We exploit
these output predictions evenly from both directions. We refer to
this number as “output window size" € [0, 1]. This layer produces
the final vector §j € A that is forwarded next for normalization and
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Figure 3: The Implementation of the Classical Layer and its
role to the overall classification task. Each output prediction
layer (?t,ﬁt) encompasses two parts of information. One
local and one global. As we move on to the terminal states,
global information increases, and local diminishes.

prediction. Fig 3 depicts how the classical layer is implemented
and portrays its role at the overall classification task. In this block
we materialize two operations. First we explore the sequential de-
pendency sentences provide via the “global sentence embeddings".
Second via the classical layer and the “output window size" we
grasp both “local" and “global" predictions all together.

3 EXPERIMENTS

3.1 Preprocessing & Datasets

Reproducibility Note. All source code that is required to run
the following experiments is available at the following link: https:
//github.com/unic-ailab/hycor-sac

For the experiments, we focus on the following corpora.
SST-1: Stanford Sentiment Treebank! - Movie reviews with one
sentence per review provided with fine-grained labels (very positive,
positive, neutral, negative, very negative). For the purposes of this
study we assembled sentences into opinions and created custom
train/test datasets.
SST-2, SST-3: The SST-1 dataset transformed into binary labels with
the neutral labels removed and the respective three classes dataset
(positive, neutral, negative).
PG-1: A Pricegrabber? dataset used in [2]. The dataset consists of
customer reviews on consumer products. Each opinion is evaluated
upon fine-grained labels (see above).
PG-1b, PG-2b, PG-3b: The equivalent balanced PG-1, binary bal-
anced and three classes balanced dataset respectively.
PG-2, PG-3: The equivalent binary PG-1 dataset and three classes
dataset respectively. CR: Customer reviews> of various products
(phones, cameras e.t.c.). The task is to predict positive/negative
labels [7]
MR: Movie reviews with one opinion per review. Classification

involves detecting positive/negative reviews?.

!https://nlp.stanford.edu/sentiment/
Zhttps://github.com/ailabunic/datasets
Shttps://www2.cs.uic.edu/~liub/FBS/sentiment-analysis.html
“http://www.cs.cornell.edu/people/pabo/movie-review-data/
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Table 1: Datasets characteristics and Preprocessing settings

‘ CR MR PG.2 PG.2b SST.2 PG.3 PG.3b SST.3 PG.1 PG.1b SST.1

Opinions|1724 10662 3682 498 9614 3860 650 11855 3860 650 11855
Sentences / Opin| 2 7 4 3 4 4 4 4 4 4 5
Words / Sentence| 100 52 163 137 52 163 137 52 163 137 52

Vocabulary 4736 19661 8958 3027 17162 9273 3729 19073 9273 3729 19073

Input Size| Avg Max Avg Avg Max Avg Avg Max Avg Avg Max
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Figure 4: Generalization of the proposed HyCoR, MuFiCo
and the competitor BLSTM, CNN, DidaxTo (A pattern-based
unsupervised method [2]) models on the experimental
datasets. (a) binary evaluation, (b) three classes evaluation,
(c) Fine grained evaluation (multiple classes)

Table 1 presents the basic characteristics of each dataset along
with prepossessing settings.

3.2 Sentiment Classification

In this part we evaluate our model’s performance on a sentiment
analysis task. From Figs 4(a), (b) and (c), we notice that the pro-
posed models, HyCoR and MuFiCo, present better generalization
over the rest of the approaches in almost all cases (8 out of 11).
We attribute this superior performance of the neural models over
the DidaxTo in the inherent nature of neural models to discover
language patterns that correlate with one of the classes. Regard-
ing the comparison against the BLSTM and CNN we observe that
only the BLSTM presented slightly better performance at the MR
and SST.2 datasets. In all other datasets and experiments the pro-
posed models outperformed their neural counterparts. Moreover
as we move on from binary to fine-grained classification we notice
that the generalization difference between the proposed methods
and the alternatives is more evident. This observation indicates
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that HyCoR and MuFiCo present better sensitivity as we move to
fine-grained classification.

3.3 Holistic vs Cumulative Content

At this section we explore how the dynamic characteristics of the
classical layer (see related paragraph at section 2.2) may provide
additional features to the operability of the HyCoR Model. In order
to accomplish the above task we employ the binary and the fine-
grained datasets of Table 1, the proposed HyCoR model and we
experiment on the “output window size" hyper-parameter.

Table 2: Holistic/Cumulative content identification over a
set of different datasets & output window size values.

output
window CR MR PG2 PGz2b SST2 SST-1 PG.1 PG.1b
size

0 69.60% 71.07% 93.16% 75.20% 74.16% 32.81% 64.90% 38.92%
0.25 65.80% 69.72% 93.16% 75.20% 74.16% 31.22% 64.90% 38.92%
0.5 66.20% 68.40% 92.38% 77.40% 72.14% 31.13% 65.08% 37.85%
0.75  66.79% 71.00% 93.11% 79.40% 73.25% 33.94% 66.74% 39.85%
1 66.73% 68.82% 93.30% 74.00% 72.95% 32.39% 66.22% 38.77%

Table 2 provides insight over the cumulative/holistic nature of
a content, since arithmetic values can help locate the exact point
that reveals the nature of that content. We observe the following:
CR dataset present cumulative content since the best performance
is observed when output window is 0. Similar conclusions can be
drawn on the MR and SST.2 datasets. What we observe over the
binary PG.2, PG.2b datasets and the fine-grained PG.1, PG.1b is that
the content is holistic in most cases, since the best performance is
performed in values that are > 0.5.
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