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ABSTRACT
Recommender systems have become indispensable for several Web
sites, helping users deal with big amounts of data. They are capable
of analyzing user/item interactions taking place on-line, and provide
each user with a list of suggestions sorted by relevance. Items with
the same or very close relevance, however, may occupy different
positions in the ranking and may be exposed to completely different
levels of attention. This promotes unfair treatment and can only be
addressed by a long term strategy.

Variational Autoencoders (VAEs) were recently proposed as the
state-of-the-art for collaborative filtering recommendations, but
as every other approach, they generate homogeneous prediction
scores among the highest positions. In this paper, we propose incor-
porating randomness in the regular operation of VAEs in order to
increase the fairness (mitigate the position bias) in multiple rounds
of recommendation. We argue that adding a noise component when
sampling values from VAE’s latent representation provides long
term fairness, despite of a tolerable decrease in ranking quality
(NDCG). We calculate the trade-off between unfairness and NDCG
when introducing 4 different noise distributions.

The solution has proved to be a very practical one and the results
point for a clear positive effect of turning recommendation far more
fair, despite some small NDCG loss in Movie Lens, Netflix and MSD
datasets. In our best scenario, the unfairness was reduced by 76%
despite a decrease of 5% in the quality of ranking.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Fairness in Ranking; Variational Autoencoder; Collaborative Filter-
ing; Recommendation Systems; Position Bias

1 INTRODUCTION
Recommender systems are ubiquitous nowadays, and can affect
many aspects of life: from listening music to employment. The most
popular approach for implementing them is Collaborative Filtering
(CF), which assumes similarity between users as a matter of how
they interact with a collection of items, i.e. how they share similar
patterns in their previous experiences. This is taken as the basis for
predicting the probabilities (scores) of a user interacting with each
unseen item according to his/her preference.

In most cases, suggestions are presented as an ordered list from
which one item is selected. However users usually pay more at-
tention in the first positions, and the level of attention decreases
as the position in the ranking gets higher1. In a situation where
the greatest estimated probabilities are quite close or equal to each
other, the system needs to arrange them in a proper order and
necessarily present high scores in high positions. This promotes
an unfair result that can only be mitigated in the long term, by
changing the position of items in sequential rounds of ranking [5].

Autoencoder-based CF solutions usually take the sparse set of
ratings each user gave to items as the input data. The information
is encoded in a latent space as nonlinear combinations of the in-
put [23], and the predictions of unrated items are then obtained
from this new representation space back to the original input di-
mension, through the decoding phase.

Variational Autoencoders (VAE) were recently presented as the
state-of-the-art for the CF task. With a multinomial likelihood gen-
erative model and a controlled regularization parameter, Liang et
al. [17] demonstrates the possibility of estimating normal distribu-
tion parameters in the middle layer of theMLP, that enriches the rat-
ing data representation and outperforms previous neural network
based approaches. The situation requires drawing samples from the
inferred distributions in order to propagate values to the decoder,
but it is not a trivial task to take gradients when having a sampling
step. Kingma and Welling [13] proposed the reparametrization trick
in which the sampled values are reparametrized by incorporating
a normal distributed noise, so the gradient can back-propagate
through the sampled variable during the training.

The fact that VAE’s middle layer is learned as normal distribu-
tions has some advantages over standard autoencoders. Firstly, it
ensures tolerance to noisy inputs and avoids overfitting [14]. Its
ability to capture per-data-point variance provides also flexibility
for obtaining a generative model. By changing its inner layer values
along the range defined by their variances, it is possible to obtain
coherent different outputs for the same input.

1We’re here considering high position as having high index, and consequently lower
relevance in the rankings.
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Previous solutions based on VAE applied reparametrization trick 
during the training phase and considered only the mean values of 
the inner distributions in the test phase for obtaining deterministic 
results [17, 22]. In this paper, we propose incorporating the stochas-
tic component also in the test phase. We argue that the noisy effect 
will vary the output scores when having the same data as input, 
and that unfairness is reduced despite of a small decrease in the 
quality of the ranking in a simulated sequential recommendation 
session. The higher the variance of the new component, the greater 
the effect in the predicted scores, and consequently in the ranking 
order.

In a nutshell, the contributions of this work can be summarized 
as follows:

• We provide an analysis of incorporating a random compo-
nent in the regular operation of Variational Autoencoders
applied here in the task of CF, but that can be extended to
any other of its applications.

• To our knowledge, this is the first attempt to address the
position bias in rankings by incorporating the solution inside
the model instead of a post processing phase.

• The unfairness measurements decrease as the variance of the
normal distributed stochastic component increases despite
of a small reduction in the ranking quality, until an optimum
variance value.

2 FAIRNESS PROBLEM
When applying machine learning solutions to decision-making
situations it is crucial to have a fair treatment among the algorithm’s
targets (objects), as well as among the possible options available
for selection (subjects). In the case of classifiers, as for example
of an algorithm selecting students for entering the university, the
system must ensure that there is no bias in the output that would
promote unbalanced treatment among groups of students. In the
case of ranking solutions, for example when ranking drivers in an
online taxi platform, it is necessary to ensure that every equally
relevant option has equal opportunity of been presented to users.

In classification algorithms the quality of fair is usually tied
to avoiding discrimination against individual or group of users.
Fairness through awareness [8] ensures indifference to sensitive
attributes (e.g. age, gender, race) as a strategy for balancing the
output result. Hardt et al. [11] suggests that the rate of true positives
must be the same across all groups, providing equal oportunity. For
a wide list of definitions of fair classification the reader may refer
to [9].

When ranking items in a certain order, the ratio of protected
individuals that appear within a prefix of the ranking must be
above a given proportion, in order to satisfy statistical tests of
representativeness as described in [34]. The attention received by
the items in different positions in the ranking is also not the same:
items ranked in first positions are exposed to much more attention
than the lower ones. One possible solution to this is to re-rank items
after the scores were calculated in order balance opportunity [25].

The problem we tackle here is specifically of having a list to
be presented as a recommendation where the items in the first
positions have the same or very similar relevance. When it happens,
there is a decision to be made of which items are being top-ranked

and which are not. One possible solution to this situation was
proposed by Biega et al. [5], a mechanism called amortized fairness,
in which the position index is a proxy for the level of attention
an item is exposed, and the output of the prediction algorithm
corresponds to the relevance. Accumulated attention across a series
of rankings should be proportional to accumulated relevance as
indicating long term ranking fairness.

2.1 Amortized fairness
We follow [5] and formalize the problem defining: u1, . . . ,un as a
set of subjects to be ranked; ρ1, . . . , ρm as a sequence of rankings;
the position in the ranking as a proxy for for the level of attention
(a), and the score given by the model as a proxy for the relevance
(r ); r ji ∈ [0 . . . 1] as the normalized relevance score of subject ui in
ranking ρ j ; aji ∈ [0 . . . 1] as the normalized attention received by
subject ui in ranking ρ j . The accumulated attention across subjects
is defined as A, and the accumulated relevance across subjects as R.

In the core, we require that ranked subjects receive attention
that is proportional to their relevance in a series of rankings, as
defined in: ∑m
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From this perspective, the unfair position one item appears in a
single ranking can be compensated in the next ones when it changes
position, and the whole session contemplates long term fairness.

The unfairness can be measured as the distance between atten-
tion (A) and relevance (R) distributions. We propose normalizing
the calculation by the number of items and the number of rounds in
order to have its value independent of how many items and rounds
are applied in the experiment:
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1
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The act of reducing unfairness imply reduction in the ranking
quality. Discounted Cumulative Gain (DCG) is a standard for mea-
suring ranking quality and it gives emphasis on having higher
relevance scores at first positions:

DCG@k(r ) =
k∑
i=1

2r (i) − 1
loд2(i + 1)

. (3)

Where k stands for the size of the ranking analyzed. The DCG
value is then normalized by theDCGof the perfect ranking order, for
obtaining NDCG. The original ranking is ρ, and theNDCG−quality
is calculated for a new item positioning (ρ∗) as:

NDCG-quality@k(ρ, ρ∗) =
DCG@k(ρ∗)

DCG@k(ρ)
. (4)

When maintaining the original scores in the ranking and chang-
ing their positions, NDCG −quality can only be greater then 0 and
lower than 1. In the current experiment, however, the score values
change each round, and then the metric has a slightly different
interpretation compared to the original. A further discussion on
this is presented in section 5.



3 FAIRNESS-AWARE VARIATIONAL

AUTOENCODER
Autoencoders (AE) are designed to learn its parameters in order to
have the output as close as possible to the input, and to force the
middle layer as a dense representation of the data in a dimensional-
ity reduction fashion [12].

In the specific case of CF tasks, the set of ratings users gave to
each item are the input data propagated through the Multi Layer
Perceptron (MLP), so the middle layer will represent a dense version
of their preferences [23]. The estimation occurs when decoding
the hidden representation back to the original dimension, this time
containing probabilities values also for unseen items. The main
idea is estimating preference for unrated items based on rated ones,
the same way as in matrix factorization approaches [15] but in this
case applying nonlinear activation functions.

Variational Autoencoders (VAE) were proposed as being capable
to capture per-data-point variance when inferring normal distri-
butions in its hidden layer, as illustrated in Figure 1. This provides
better overall results in terms of generalization, and a richer repre-
sentation of the training data.

3.1 Encoder
VAEs are based on the idea of inferring a latent variable space
Z by approximating the intractable posterior pθ (zu |xu ). The true
posterior is approximated by a tractable fully factorized variational
distribution

q(zu ) = N(µµµu , diag{σσσ 2
u }). (5)

The idea is to minimize the Kullback-Leiber divergence between
both distributions KL(q(zu )| |p(zu |xu )) by optimizing parameters
{µµµu ,σσσ

2
u }.

The standard approach introduces a data dependent function
parametrized by ϕ with µϕ (xu ) and σϕ (xu ) as K dimension vectors
defined as

qϕ (zu |xu ) = N(µϕ (xu ), diag{σ 2
ϕ (xu )}). (6)

The inference model then outputs the variational parameters of
qϕ (zu |xu ) having xu as an input, which approximates the original
p(zu |xu ).

Minimize the divergence KL(q(zu )| |p(zu |xu )) is equivalent to
maximize the lower bound of the log marginal likelihood of the
data, also known as Evidence Lower Bound (ELBO), defined for a
single user u as:
logp(xu ;θ ) ≥ Eqϕ (zu |xu )[logpθ (xu |zu )] − KL(qϕ (zu |xu )| |p(zu )))

(7)
The first term can be interpreted as a reconstruction error while

the second as a regularization term forcing the variational posterior
qϕ (zu |xu ) to be near p(zu )2.

3.1.1 Reparametrization Trick. It is possible to sample zu ∼ qϕ
and perform gradient ascent to optimize ELBO, however taking
gradients through the sample process can be challenging. The
reparametrization trick [13] proposes sampling from a noise distri-
bution ϵ ∼ N(0, IK ) and reparametrize zu = µϕ (xu ) + ϵ ⊙ σϕ (xu ).

2Great part of the mathematics in this section is borrowed from [17]. The original
work mentions the parameter β for controlling the strength of regularization which
we do not discuss here but incorporate in our implementation.
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Figure 1: Variational Autoencoder

This way the gradient with respect to ϕ can propagate through the
sampled zu .

3.2 Decoder
We assume u ∈ 1, . . . ,U as index for users, and i ∈ 1, . . . , I as
index for items. In the case of implicit feedback the rating matrix
is X ∈ {0, 1}U×I . Each row represents the binary collection xu of
items user u interacted with. We define Iu = {i ∈ I |xu ,i = 1}.

The model considered as a reference is the Multinomial Vari-
arional Autoencoder (MVAE) from [17]. The generative process
assumes a Gaussian prior from where latent representation zu for
user u was sampled from. This representation has dimension K ,
zero mean and identity covariance matrix:

zu ∼ N(0, IK ). (8)

zu is transformed via a non-linear fθ and a softmax function to a
probability distribution over I items:

π (zu ) ∝ exp{ fθ (zu )}. (9)

Finally, xu is assumed to have been drawn from a multinomial
distribution with probability π (zu ):

xu ∼ Mult(Nu , π (zu )), (10)

with Nu =
∑
i xui . The likelihood for xu is:

logpθ (xu |zu ) =
∑
i
xui logπi (zu ). (11)

Typically, for the case of a user collection x , z = µϕ (x) is cal-
culated and through π (z) the probabilities for the whole set are
obtained. Unseen items are ranked according to the associated
probabilities.

3.3 Enhancing Fairness
We here propose incorporating the noise variable ϵ in the test phase
of VAE to enhance fairness in sequential rounds of recommenda-
tions. Different noise distributions are expected as generating direct
effect in the final ranking, depending on how frequently the latent
values vary around the mean inside the interval defined by the
variance. To measure this effect, we apply 4 different noise distri-
butions:



Table 1: Data description after filtering: Number of total ratings, users, items, the density of the rating matrix, the quantile
value corresponding to the maximum number of items 1/3 and 2/3 of users interacted with, and the amount of users taken in
the test phase.

Dataset #Ratings #Users #Items Density (%) 1/3 Quantile 2/3 Quantile Heldout Users
Movie Lens 9,990,682 136,677 20,720 0.353 24 63 10,000
Netflix 56,785,778 461,285 17,767 0.693 33 114 40,000
MSD 33,633,450 571,355 41,140 0.143 31 57 50,000

• Gaussian Noise (σ 2 = 0.5): The unfairness measurements
are supposed to decrease but not too much, due to the small
variance effect introduced by the noise. The same for NDCG.
The items should change position in the final ranking closely
to the original case when taking only the mean (µϕ ) into
account.

• Gaussian Noise (σ 2 = 1.0): The unfairness measurements
are supposed to decrease significantly, with the noise com-
ponent having the same variance as the one applied in the
training phase. As well as NDCG.

• Gaussian Noise (σ 2 = 2.0): The unfairness measurements
are supposed to decrease depending on the dataset, once the
variance is greater than the one used for training. The items
should change position each round more than in previous
cases. NDCG is supposed to decrease as well.

• Uniform Noise: Every value in the range defined by the
latent variance (σ 2

ϕ ) has the same probability in the sampling
process. This is proposed as a reference of exploring the
effect of variance independent of the mean.

4 EXPERIMENTS
The effect of incorporating randomness in the decoding phase of
VAEs is measured in 3 datasets:

MovieLens-20M3: Movie ratings collected from 1995 to 2015.
The data was converted to binary as in the case of implicit feedback.
Users who interacted with less than 5 movies were removed.

Netflix: Movie rating data collected from 1998 to 2005 [2]. The
data was also converted to binary and users who interacted with
less than 5 movies were also removed.

Million Song Dataset (MSD)4: Song listening data [4]. We re-
move users who listened to less than 200 songs and songs that were
listened by less than 20 users.

The filtered data description is summarized in Table 1. The train
was conducted with a batch size of 500, the validation batch size of
2000, and the rest of parameters as proposed by [17]. We separate
a group of heldout users to ensure the power of generalization,
as indicated in Table 1. The fθ is selected as an one-hidden Multi
Layer Perceptron [I −→ 600 −→ 200 −→ 600 −→ I ].

After training, DCG@100 is calculated once for each test set and
stored for posterior normalization. We select 1000 random users
among the heldout ones and evaluate the final ranking accord-
ing to DCG@100 and Unf airness@100 values for 100 rounds of
recommendation5.

3https://grouplens.org/datasets/movielens/
4http://millionsongdataset.com/tasteprofile/
5The code for reproducing the experiment is available at https://github.com/rcaborges/
variational-fairness.

We define 3 classes of users according to the quantity of items
they interacted with: (i) Sparse: Users who interacted with fewer
items. (ii) Regular : Users who interacted with between 1/3 and 2/3
of items in the distribution of number of items interactions. (iii)
Dedicated: Users who interacted with the highest portion of items.

5 RESULTS
The normal distribution with higher variance (N(0, 2.0)) presents
the higher compensation of unfairness for all dataset, as shown
in Table 2. The sparse users results are also unanimous among
all classes of users. In Table 4 the same results are presented but
normalized by the original unfairness value, when no noise is in-
corporated in the test. The greatest compensation was calculated
for the regular users from the MSD dataset, when the unfairness
was reduced to 23.7% of the original, a reduction of 76.3%.

A customized version of NDCG was proposed by Biega et al. [5]
for representing the relation between two DCGs calculated for the
same set of scores arranged in different and independent orders.
It is called NDCG − quality, and should be interpreted differently
from the original metric which normalizes DCGwith the ideal order
of scores. In this work the quality of ranking is also expressed as a
comparison between two independent rankings but this time they
can have even different score values. We maintain it as NDCG from
this point on.

NDCG@100 indicates the relation between the DCG for the
ranking obtained by applying noise distributions, normalized by
the original DCG obtained from regular operation of VAE. Both
calculated for the 100 top ranked items. The loss in the ranking
quality is small in the case of distribution N(0, 0.5) applied for
dedicated users in all datasets (Table 3). The complementary values
are indicate as 1-NDCG in Table 4.

In order to have a general idea about the results, we sum up both
relative values (Unfairness and 1-NDCG) for the top 100 items as
shown in Table 5. The lowest value indicate the greater combined
effect of increasing fairness and maintaining the ranking quality,
and it happens in the case of regular users of the MSD dataset.

In Figure 2, it is possible to notice that the highest original un-
fairness value was calculated for the MSD dataset. These are the
only ratings referred to music listening (MovieLens and Netflix
were extracted from movie watching activities), and comprehend
approximately twice the number of items than the other two. Its
density is also the lowest, a third part of the second highest.

A decreasing trend of both unfairness and NDCG is observed in
all datasets, and in all groups of users, as the variance of the normal
noise distributions increases, as one can see in Figures 3, 4 and 5.
When uniform noise is applied it increases again, and the results
become similar to N(0, 0.5).

https://grouplens.org/datasets/movielens/
http://millionsongdataset.com/tasteprofile/
https://github.com/rcaborges/variational-fairness
https://github.com/rcaborges/variational-fairness


Table 2: Unfairness@100 for 100 rounds of recommendation

Dataset Original N(0, 0.5) N(0, 1.0) N(0, 2.0) Uniform
Movie Lens 0.185 (0.054) 0.134 (0.048) 0.094 (0.037) 0.061 (0.019) 0.126 (0.047)
Movie Lens (Sparse) 0.181 (0.060) 0.120 (0.045) 0.078 (0.025) 0.052 (0.007) 0.111 (0.041)
Movie Lens (Regular) 0.174 (0.051) 0.123 (0.043) 0.085 (0.028) 0.058 (0.009) 0.116 (0.041)
Movie Lens (Dedicated) 0.194 (0.046) 0.154 (0.046) 0.116 (0.041) 0.074 (0.025) 0.148 (0.046)
Netflix 0.194 (0.045) 0.126 (0.043) 0.082 (0.031) 0.060 (0.014) 0.117 (0.041)
Netflix (Sparse) 0.197 (0.047) 0.111 (0.036) 0.067 (0.018) 0.054 (0.008) 0.101 (0.033)
Netflix (Regular) 0.188 (0.043) 0.120 (0.036) 0.077 (0.021) 0.058 (0.007) 0.111 (0.034)
Netflix (Dedicated) 0.200 (0.048) 0.151 (0.048) 0.108 (0.041) 0.069 (0.022) 0.143 (0.048)
MSD 0.242 (0.052) 0.171 (0.052) 0.112 (0.045) 0.061 (0.024) 0.160 (0.051)
MSD (Sparse) 0.248 (0.052) 0.163 (0.052) 0.099 (0.043) 0.054 (0.020) 0.151 (0.051)
MSD (Regular) 0.245 (0.050) 0.170 (0.050) 0.109 (0.042) 0.058 (0.020) 0.159 (0.049)
MSD (Dedicated) 0.241 (0.051) 0.185 (0.051) 0.131 (0.046) 0.072 (0.028) 0.175 (0.051)

Table 3: NDCG@100 for 100 rounds of recommendation

Dataset Original N(0, 0.5) N(0, 1.0) N(0, 2.0) Uniform
Movie Lens 1.000 (0.000) 0.996 (0.004) 0.984 (0.012) 0.944 (0.040) 0.994 (0.004)
Movie Lens (Sparse) 1.000 (0.000) 0.993 (0.004) 0.972 (0.011) 0.903 (0.033) 0.990 (0.005)
Movie Lens (Regular) 1.000 (0.000) 0.996 (0.002) 0.985 (0.008) 0.945 (0.023) 0.995 (0.023)
Movie Lens (Dedicated) 1.000 (0.000) 0.999 (0.001) 0.995 (0.003) 0.982 (0.011) 0.998 (0.001)
Netflix 1.000 (0.000) 0.996 (0.004) 0.987 (0.012) 0.955 (0.038) 0.995 (0.004)
Netflix (Sparse) 1.000 (0.000) 0.993 (0.003) 0.973 (0.010) 0.912 (0.023) 0.990 (0.004)
Netflix (Regular) 1.000 (0.000) 0.997 (0.002) 0.990 (0.006) 0.964 (0.017) 0.996 (0.002)
Netflix (Dedicated) 1.000 (0.000) 0.999 (0.001) 0.997 (0.003) 0.990 (0.008) 0.999 (0.001)
MSD 1.000 (0.000) 0.996 (0.002) 0.985 (0.007) 0.948 (0.022) 0.995 (0.003)
MSD (Sparse) 1.000 (0.000) 0.994 (0.002) 0.979 (0.006) 0.927 (0.017) 0.993 (0.002)
MSD (Regular) 1.000 (0.000) 0.996 (0.002) 0.985 (0.005) 0.947 (0.014) 0.995 (0.002)
MSD (Dedicated) 1.000 (0.000) 0.998 (0.001) 0.992 (0.004) 0.971 (0.012) 0.997 (0.002)

Table 4: Relative Unfairness@100 and NDCG@100

Unfairness@100 (%) 1-NDCG@100
Dataset N(0, 0.5) N(0, 1.0) N(0, 2.0) Uniform N(0, 0.5) N(0, 1.0) N(0, 2.0) Uniform
Movie Lens 0.724 0.508 0.330 0.681 0.004 0.016 0.056 0.006
Movie Lens (Sparse) 0.663 0.431 0.287 0.613 0.007 0.028 0.097 0.010
Movie Lens (Regular) 0.707 0.489 0.333 0.667 0.004 0.015 0.055 0.005
Movie Lens (Dedicated) 0.794 0.598 0.381 0.763 0.001 0.005 0.018 0.002
Netflix 0.649 0.423 0.309 0.603 0.004 0.013 0.045 0.005
Netflix (Sparse) 0.563 0.340 0.274 0.513 0.007 0.027 0.088 0.010
Netflix (Regular) 0.638 0.410 0.309 0.590 0.003 0.010 0.036 0.004
Netflix (Dedicated) 0.755 0.540 0.345 0.715 0.001 0.003 0.010 0.001
MSD 0.707 0.463 0.252 0.661 0.004 0.015 0.052 0.005
MSD (Sparse) 0.657 0.399 0.218 0.609 0.006 0.021 0.073 0.007
MSD (Regular) 0.694 0.445 0.237 0.649 0.004 0.015 0.053 0.005
MSD (Dedicated) 0.768 0.544 0.299 0.726 0.002 0.008 0.029 0.003

Table 5: Comparing noise distributions (Summation of relative Unfairness@100 and 1-NDCG@100)

Dataset N(0, 0.5) N(0, 1.0) N(0, 2.0) Uniform
Movie Lens 0.728 0.524 0.386 0.687
Movie Lens (Sparse) 0.670 0.459 0.384 0.623
Movie Lens (Regular) 0.711 0.504 0.388 0.672
Movie Lens (Dedicated) 0.795 0.603 0.399 0.765
Netflix 0.653 0.436 0.354 0.608
Netflix (Sparse) 0.570 0.367 0.362 0.523
Netflix (Regular) 0.641 0.420 0.345 0.594
Netflix (Dedicated) 0.756 0.543 0.355 0.716
MSD 0.711 0.478 0.304 0.666
MSD (Sparse) 0.663 0.420 0.291 0.616
MSD (Regular) 0.698 0.460 0.290 0.654
MSD (Dedicated) 0.770 0.552 0.328 0.729
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Figure 2: Unfairness and NDCG trade-offs before (original) and after applying four different noise distributions
(N(0, 0.5),N(0, 1.0),N(0, 2.0) and uniform) for 1k random users in MovieLens, Netflix and MSD test sets respectively.
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Figure 3: From left to right: sparse, regular and dedicated 1k random sampled users from the MovieLens test set.
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Figure 4: From left to right: sparse, regular and dedicated 1k random sampled users from the Netflix test set.
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Figure 5: From left to right: sparse, regular and dedicated 1k random sampled users from the MSD test set.



6 RELATED WORK
To facilitate users in their selection process, recommender systems 
provide suggestions on data items, which might be interesting for 
the respective users. Nowadays, recommendations have more broad 
applications, beyond products, like links (friends) recommendations 
[33], social-based recommendations [28], health-related recommen-
dations [29], open source software recommendations [16], diverse 
venue recommendations [10], or even recommendations for evolu-
tion measures [27]. For achieving efficiency, there are approaches 
that build user models for computing recommendations. For exam-
ple, [20] applies subspace clustering to organize users into clusters 
and employs these clusters, instead of a linear scan of the database, 
for making predictions.

6.1 Fairness in Recommender Systems
Fairness has emerged as an important category of analysis for ma-
chine learning systems in many application areas. By fairness, we 
typically mean lack of bias. It is not correct to assume that insights 
achieved via computations on data are unbiased simply because 
data was collected automatically or processing was performed al-
gorithmically. Bias may come from the algorithm, reflecting, for 
example, preferences of its designer, or from the actual data, for 
example, if a survey contains biased questions. In extending the 
concept of fairness to recommender systems, there is an essential 
tension between the goals of fairness and those of personalization.

Generally speaking, there are contexts in which equity across 
recommendation outcomes is a desirable goal. It is also the case 
that in some applications, fairness may be a multi-sided concept 
[6, 7], in which the impacts on multiple groups of individuals must 
be considered.

In recommender systems, fairness can have multiple viewpoints: 
like fairness for the recommended items [26], for the users [32], 
for group of users [19, 24] and for providers [18]. Especially, when 
considering group-based fairness, we can distinguish between de-
mographic parity [30], calibration-based fairness [26] and accuracy-
based fairness [3]. To the best of our knowledge, this is the first 
work focusing on achieving long term fairness, that is, on increasing 
fairness in multiple rounds of recommendations.

6.2 Multi-rounds Recommendations
Recommender algorithms designed for both single users and groups 
have been extensively studied. Typically, this category of algorithms 
focus mainly on one interaction of the user/group with the system. 
Instead, the case of a multi-round recommendation approach has 
received significantly less attention. [1] exploits users preferences 
to suggest sequences of songs. The method is built iteratively. First, 
it obtains a ranked list of songs, after excluding the songs of recently 
played artists. Next, the songs with the best preference scores are 
re-ranked: from a newly produced ranked list, the method removes 
the songs that at least one user gave rating below a threshold. 
Finally, users can adjust their ratings through a feedback phase. In a 
different domain, [21] suggests a sequence of artworks for a group 
of visitors in a museum. Focusing on maximizing the satisfaction 
of the proposed recommendations, while taking into consideration 
both time constraints and the artworks locations in the museum.

In our work, we target at algorithms that directly enhance fairness,
that has not been considered in previous approaches.

7 CONCLUSIONS
We demonstrate the effect of reducing ranking unfairness in col-
laborative filtering by introducing a stochastic component to the
sampling phase of a trained VAE model. The results point to a posi-
tive trade-off between promoting equal treatment among relevance-
equivalent items despite a small reduction in the ranking quality in
a sequence of recommendations, specially for the case of applying
a normal distributed noise with high variance.

By promoting random perturbations in the latent representation
of VAEs, we get as its output not exactly approximations of the
input, as in the case of classic autoencoders, but values generated
according to normal distributions estimated during the training
phase. The score given by each item changes at each round of
recommendation, and the amount it changes depend on the vari-
ance of the noise distribution. That is the reason why the solution
proposed here act in the long term as avoiding positional bias in
homogeneous scores.

The experiments were conducted with a simple neural network
architecture, which turn the solution reproducible in online plat-
forms. Instead of a post process procedure, we propose a solution
that is already incorporated in the normal operation of the model
and demands no extra computation.

Varying the latent space for obtaining different rankings should
also be useful for promoting diversity in the context of balanc-
ing exploration and exploitation in recommendations [31]. This
possibility will be addressed in future work.
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