
Tackling the Qubit Mapping Problem for NISQ-Era
Quantum Devices

Gushu Li
University of California

Santa Barbara, CA
gushuli@ece.ucsb.edu

Yufei Ding
University of California

Santa Barbara, CA
yufeiding@cs.ucsb.edu

Yuan Xie
University of California

Santa Barbara, CA
yuanxie@ece.ucsb.edu

Abstract
Due to little consideration in the hardware constraints, e.g.,
limited connections between physical qubits to enable two-
qubit gates, most quantum algorithms cannot be directly
executed on the Noisy Intermediate-Scale Quantum (NISQ)
devices. Dynamically remapping logical qubits to physical
qubits in the compiler is needed to enable the two-qubit
gates in the algorithm, which introduces additional oper-
ations and inevitably reduces the fidelity of the algorithm.
Previous solutions in finding such remapping suffer from
high complexity, poor initial mapping quality, and limited
flexibility and controllability.

To address these drawbacks mentioned above, this paper
proposes a SWAP-based BidiREctional heuristic search al-
gorithm (SABRE), which is applicable to NISQ devices with
arbitrary connections between qubits. By optimizing every
search attempt, globally optimizing the initial mapping using
a novel reverse traversal technique, introducing the decay
effect to enable the trade-off between the depth and the num-
ber of gates of the entire algorithm, SABRE outperforms
the best known algorithm with exponential speedup and
comparable or better results on various benchmarks.

CCS Concepts • Computer systems organization →
Quantum computing; •Hardware→Quantum compu-
tation; Emerging languages and compilers.

Keywords Quantum Computing; Qubit Mapping; NISQ

ACM Reference Format:
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Map-
ping Problem for NISQ-Era Quantum Devices. In 2019 Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS ’19), April 13–17, 2019, Providence, RI, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3297858.3304023

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304023

1 Introduction
Quantum Computing (QC) has been rapidly growing in the
last few decades because of its potential in various important
applications, including integer factorization [47], database
search [15], quantum simulation [36], etc. Recently, IBM,
Intel, and Google released their QC devices with 50, 49, and
72 qubits respectively [22, 23, 56]. IBM and Rigetti also pro-
vide cloud QC services [18, 40], allowing more people to
study real quantum hardware. We are expected to enter the
Noisy Intermediate-Scale Quantum (NISQ) era in the next
few years [39], when QC devices with dozens to hundreds of
qubits will be available. Though the number of qubits is insuf-
ficient for Quantum Error Correction (QEC), .it is expected
that these devices will be used to solve real-world problems
beyond the capability of available classical computers [5, 38].
However, there exists a gap between quantum software

and hardware due to technology constraints in the NISQ
era. When designing a quantum program based on the most
popular circuit model, it is always assumed that qubits and
quantum operations are perfect and any quantum-physics-
allowed operations can be applied. But on NISQ hardware,
the qubits have limited coherence time, and quantum op-
erations are not perfect. Furthermore, only a subset of the-
oretically possible quantum operations can be directly im-
plemented, which calls for a modification in the quantum
program to fit the target platform.

In this paper, we will focus on the qubit mapping problem
caused by limited two-qubit coupling on NISQ devices. Two-
qubit gates are one important type of quantum operations
applied on two qubits. They can create quantum entangle-
ment, an advantage that does not exist in classical computing.
Two-qubit gates can be applied to arbitrary two logical qubits
in a quantum algorithm but this assumption does not hold
with NISQ devices. When running a quantum program, the
logical qubits need to be mapped to the physical qubits (an
analogy in classical computation is register allocation). But
for the physical qubits on NISQ devices, one qubit can only
couple with its neighbor qubits directly. So that for a specific
mapping, two-qubit gates can only be applied to limited log-
ical qubit pairs, whose corresponding physical qubit pairs
support direct coupling. This makes a quantum circuit not
directly executable on NISQ devices.
As a result, circuit transformation is required to make

the circuit compatible with NISQ device during compilation.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1001

https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304023
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3297858.3304023&domain=pdf&date_stamp=2019-04-04

Based on a given quantum circuit and the coupling informa-
tion of the device, we need 1) an initial logical-to-physical
qubit mapping and 2) the intermediate mapping transition
which is able to remap the two logical qubits in a two-qubit
gate to two coupled physical qubits. The qubit mapping prob-
lem has been proved to be NP-Complete [49].
Previous solutions to this problem can be classified into

two types. One type is to formulate this issue into an equiv-
alent mathematical problem and then apply a solver [4, 6,
8, 30, 31, 34, 45, 46, 53, 54, 59]. These attempts suffer from
very long runtime and can only be applied to small size cases.
Moreover, general software solvers can not exploit the intrin-
sic feature of the quantum mapping problem. Another type
of approach is heuristic search [1, 3, 26, 27, 29, 42, 48, 58],
while most of them were developed on ideal 1D/2D lattice
model and not applicable to NISQ devices with more ir-
regular and restricted coupling connections. Some recent
works [19, 49, 61] targeting IBM chip architecture are able to
handle arbitrary coupling but they suffer from very long run-
time due to exhaustive mapping search, and their solutions
for initial mapping lack the ability of global optimization.
Moreover, none of them have the ability to control the gener-
ated circuit quality among multiple optimization objectives
to fit in NISQ devices with different characteristics.

In this paper, a SWAP-based BidiREctional heuristic sear-
ch algorithm, named SABRE, is proposed to solve this qubit
mapping problem and overcome the drawbacks mentioned
above. With the observation that many attempts in exhaus-
tive search can be redundant and effective mapping transi-
tion needs to start from the qubits in the two-qubit gates that
need to be executed, we design an optimized SWAP-based
heuristic search scheme in SABRE with significantly reduced
search space. Initial mapping has been proved to be very im-
portant in this problem since it can significantly affect the
final circuit quality [49, 61]. We present a novel reserve tra-
versal search technique in SABRE to naturally generate a
high-quality initial mapping through traversing a reverse
circuit, in which more consideration is given to those gates
at the beginning of the circuit without completely ignoring
the rest of the circuit. Moreover, we introduce a decay effect,
which will slightly increase our heuristic cost function val-
ues when evaluating overlapped SWAPs, to let SABRE tend
to select non-overlapped SWAPs. This optimization enables
the control of parallelism in the additional SWAPs and can
further generate different hardware-compliant circuits with
a trade-off between circuit depth and the number of gates.
SABRE is evaluated with various benchmarks on a latest

IBM 20-qubit chip model [18] compared with the best known
solution [61]. Experimental results show that SABRE is able
to find the optimal mapping for small benchmarks and the
number of additional gates is reduced by 91% or even fully
eliminated. For larger benchmarks, SABRE can demonstrate
exponential speedup against the previous solution and still
outperform it with around 10% reduction in the number of

additional gates on average with the assistance of the high-
quality initial mapping generated by our proposed method.
In some cases, the best known previous solution cannot
even finish execution due to exponential execution time and
memory requirement, while SABRE can still work with short
execution time and low memory usage. By tuning the decay
parameters in our algorithm, SABRE shows the ability to
control the generated circuit quality with about 8% variation
in generated circuit depth by varying the number of gates.

The major contributions of this paper can be summarized
as follows:

• We perform a comprehensive analysis on the short-
comings of previous solutions, and then summarize the
objectives and metrics that should be considered when
designing a heuristic solution for the qubit mapping
problem.

• We propose a SWAP-based search scheme which can
produce comparable results with exponential speedup
in the search complexity compared with previous ex-
haustive mappingsearch algorithms. This fast search
scheme ensures the scalability of SABRE to accommo-
date larger-size quantum devices in the NISQ era.

• We present a reverse traversal technique to enable
global optimization in the initial mapping solution by
leveraging the intrinsic reversibility in qubit mapping
problem. Our high-quality initial mapping can signifi-
cantly reduce the overhead in the generated circuit.

• By introducing a decay effect in the heuristic cost
function, we are able to generate different hardware-
compliant circuits by trading the number of gates
in the circuit against the circuit depth. This makes
SABRE applicable for NISQ devices with different char-
acteristics and optimization objectives.

The rest of this paper is organized as follows.We introduce
QC background information in Section 2 and then formu-
late the qubit mapping problem in Section 3. Our solution
SABRE is introduced in Section 4 and evaluated in Section 5.
Limitations and future research directions are discussed in
Section 6. Related works are summarized in Section 7 and
we finally conclude this paper in Section 8.

2 Background
In this section, we will give a brief introduction to QC. QC re-
search spans all technology stacks from high-level theory, al-
gorithm, to mid-level architecture and low-level physics [10,
13, 52]. We try to limit our discussion and only keep the nec-
essary content to help formulate and understand this qubit
mapping problem.

2.1 QC Software Basics
Among several existing QC theoretical models which are
mathematically equivalent, wewill focus on themost popular
quantum circuit model. We will start from the basic concepts,

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1002

q0

q1

q2

=

H T † T T †
T †

T H

T †
T

S

Figure 1. Example Quantum Circuit of Toffoli Gate

including quantum bit (qubit) and quantum operations, and
then establish quantum programs, which can be represented
using quantum circuits.

Qubit.Classical bit is the basic information unit which has
two deterministic states, ‘0’ and ‘1’. One qubit also has two
basis states, usually denoted as |0⟩ and |1⟩. Different from
classical bit, one qubit can be the linear combination of the
two basis states, which can be represented by |Ψ⟩ = α |0⟩ +
β |1⟩, where α , β ∈ C and |α |2 + |β |2 = 1. The state vector
is (α , β). Moreover, two or more qubits can be entangled.
The state of a two-qubit system can be represented by |Ψ⟩ =
α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩, whose state vector is
(α00,α01,α10,α11).

Quantum Operation. There are two types of quantum
operations. The first one is Quantum Gates, which are uni-
tary operations applied on qubits to modify the qubit states.
A single-qubit gate is applied on one qubit. For example,
Hadamard gate (denoted as H in a quantum circuit) is a
widely used single-qubit operation which can be represented
by a 2 × 2 matrix. Control-NOT (CNOT) gate is a two-qubit
operation, applied on two qubits simultaneously. It will flip
a target qubit based on a control qubit. The second type
is Measurement. We measure one qubit and the result can
be either |0⟩ or |1⟩ with the probability based on the state
vector.

Quantum Circuit. Quantum circuit is a diagram to rep-
resent a quantum program. Each line in the quantum circuit
represents one qubit and the operations are represented by
different blocks on the line. Figure 1 shows a quantum circuit
that decomposes the Toffoli gate [32] using only single- and
two-qubit gates. The three-qubit gate on the left is Toffoli
gate. It can be decomposed into a gate sequence on the right
side. One square represents a single-qubit gate and a line
connecting two qubits represents a CNOT gate. Barenco et
al. proved that arbitrary quantum circuit can be expressed by
compositions of a set of single-qubit gates and CNOT gate [2].
As a result, we only use single-qubit and CNOT gates, which
also compose the elementary gate set directly supported by
IBM quantum chips on cloud service, to construct quantum
circuits in this paper.

2.2 QC Hardware in the NISQ Era
There are several different candidate technologies to im-
plement QC on hardware, including superconducting quan-
tum circuit [25], ion trap [33], quantum dot [60], neutral
atom [43], etc. We will use superconducting quantum circuit,
which is currently the most promising technology, as an
example to introduce QC hardware model.

Q10 Q11

Q15

Q12

Q16 Q17

Q13 Q14

Q18 Q19

Q0 Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8 Q9

Two-qubit gate error rate: 3.00x10-2

Measurement error rate: 8.74x10-2

Single-qubit gate error rate: 4.43x10-3

Qubit Lifetime:
T1=87.29us, T2=54.43us

Chip Parameters on Average:

Figure 2. IBM Q20 Tokyo Information [18] (Vary over Time)

Figure 2 shows the information about IBM Q20 chip [18].
The lifetime of the qubits are about 50µs on average. The
average error rates are 4.43×10−3, 8.47×10−2, 3.00×10−2 for
single-qubit gate, measurement, and CNOT gate respectively.
The coupling graph is shown on the left. Two coupled qubits
are connected by a bidirectional arrow. The qubits are placed
on a planar geometry and couplers can only connect one
qubit to its neighboring qubits due to on-chip placement-
and-routing constraints. For example, Q0 is connected to
Q1 and Q5 through couplers, which means a CNOT gate
can be applied on qubit pair {Q0,Q1} and {Q0,Q5} in either
direction. However,Q0 is not directly connected withQ6 and
you cannot apply a CNOT gate on these two qubits directly.
John Preskill proposed this NISQ concept, referring to

quantum computers with the number of qubits ranging from
dozens to hundreds [39]. Quantum computers of such size
are expected to appear in the next few years. Due to limited
number of qubits in the NISQ era, all logical qubits in the
quantum circuit are directly implemented by physical qubits
without QEC. NISQ hardware is not as perfect as the model
used when we design a quantum program. In this paper, the
following three major limitations are considered:

1. Qubit Lifetime. A qubit can only retain its state for
a very short time. It may decay to another state or
interact with the environment and lose the original
quantum state. The coherence time of state-of-the-art
superconducting qubits can reach∼ 100 µs [18]. All the
computation must be accomplished within a fraction
of qubit coherence time, which sets an upper bound
on the number of sequential gates that can be applied
on qubits.

2. Operation Fidelity. Quantum operations applied to
the qubits can also introduce errors. For example, the
error rate for operations is reported to be around 10−3
for single-qubit gates, and 10−2 for two-qubit gates and
measurements [18, 24, 55]. Therefore, it is important to
minimize the number of gates in a quantum algorithm
to reduce the amount of error accumulated.

3. Qubits Coupling. A physical connection is required
when applying two-qubit gates, which means that
two-qubit gates can only be applied on two physically
nearby qubits. One popular coupling structure is the
2D Nearest Neighbor structure which fits in the planar
layout of qubits on state-of-the-art superconducting
quantum chips.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1003

q1

q2

q3

q4

(Q 1)

(Q 2)

(Q 3)

(Q 4)

q1

q2

q3

q4

(Q 1)

(Q 2)

(Q 3)

(Q 4)

(Q 2)

(Q 1)

(Q 3)

(Q 4)

Q1 Q2

Q3 Q4

q1

q2
=

(a)

(b)

Initial Mapping Updated Mapping

CNOT q1, q2
CNOT q3, q4
CNOT q2, q4
CNOT q2, q3
CNOT q3, q4
CNOT q1, q4

CNOT q1, q2
CNOT q3, q4
CNOT q2, q4
SWAP q1, q2
CNOT q2, q3
CNOT q3, q4
CNOT q1, q4

(c) (d)

Original Code Block
Updated Code Block

Figure 3. (a) SWAP Gate Decomposition, (b) Physical Qubit Coupling Graph Example,
(c) Original Quantum Circuit, (d) Updated Hardware-Compliant Quantum Circuit

3 Problem Analysis
In this section, we will illustrate the challenge of qubit map-
ping caused by the three limitations discussed above.We first
introduce qubit mapping problem with a small-size example.
Then we will discuss the design objectives and the metrics
used to evaluate our solution.

3.1 Problem in Qubit Mapping
We will use a small-size example to explain this qubit map-
ping problem. A 4-qubit device model is used as the hardware
platform (shown in Figure 3 (b)). Two-qubit gates are allowed
on the following physical qubit pairs:{Q1,Q2}, {Q2,Q4}, {Q4,
Q3}, {Q3,Q1} and not allowed on {Q1,Q4}, {Q2,Q3}.

Now suppose we have a small quantum circuit to be exe-
cuted on this 4-qubit device. This quantum circuit consists
of six CNOT gates (shown in Figure 3 (c)). We assume the
initial logical-to-physical qubits mapping is {q1 7→ Q1,q2 7→
Q2,q3 7→ Q3,q4 7→ Q4}. We can find that four of the six
CNOT gates can be directly executed, but the fourth and
the sixth CNOT gates (marked red in Figure 3 (c)) cannot be
executed because the corresponding qubit pairs are not con-
nected on the device. A perfect initial mapping to satisfy all
two-qubit gate dependencies does not exist in this example
and we need to change the qubit mapping during execution
and make all CNOT gates executable.

SWAP Qubit Mapping. Same as previous solutions, we
employ SWAP operations to change the qubit mapping by
exchanging the states between two qubits. It consists of three
CNOT gates (shown in Figure 3 (a)). We can employ multi-
ple SWAPs to move one logical qubit to arbitrary physical
qubit location. Even two qubits are not nearby on the quan-
tum device, we can still move them together and then apply
the two-qubit gate in the circuit. Figure 3 (d) shows that
the updated quantum circuit is now executable after we in-
sert one SWAP operation between q1 and q2 after the third
CNOT gates. The first three CNOT gates can be executed
under initial mapping. After the inserted SWAP, mapping
is updated to {q1 7→ Q2,q2 7→ Q1,q3 7→ Q3,q4 7→ Q4}. All
three remaining CNOT gates now can be executed under
this updated mapping.

Other Methods. Prior work also tried to employ other
circuit transformation methods [49] like ’Reverse’ or ’Bridge’
because of the asymmetric connection hardware model from

IBM’s 5-qubit and 16-qubit chips [18]. On those chips, CNOT
gate is only allowed in one direction even if two physical
qubits are connected on the chip. Fortunately, physical ex-
periments have shown that the connection between super-
conducting qubits can be symmetric [9] and on IBM’s lat-
est 20-qubit chip [18, 50], CNOT gate can be applied on
either direction between any connected qubit pair. Since the
difficulty from the asymmetric connection is overcome by
technology advance, we will focus on the latest symmet-
ric coupling model and only consider inserting SWAPs for
mapping change.

By introducing additional SWAPs in the quantum circuit,
we can solve all the two-qubit gate dependencies and gen-
erate a hardware-compliant circuit without changing the
original functionality. However, due to limitations of NISQ
devices, inserting SWAPs in the quantum circuit will also
cause the following problems:

1. The number of operations in the circuit is increased.
Since the operations are imperfect and will introduce
noise, the overall error rate will increase.

2. The circuit depth may also be increased, which means
the total execution timewill be increased and toomuch
error can be accumulated due to qubit decoherence.

If we compare the original circuit and the updated circuit
in Figure 3 (c) and (d), the number of gates increases from 6
to 9 and the circuit depth increases from 5 to 8. Additional
SWAPs will bring significant overhead in terms of fidelity
and execution time. As a result, we hope to minimize the
number of additional SWAPs in order to reduce the overall
error rate and total execution time. We formally define the
qubit mapping problem as follows:

Definition: Given an input quantum circuit and the cou-
pling graph of a quantum device, find an initial mapping
and the intermediate qubit mapping transition (by insert-
ing SWAPs) to satisfy all two-qubit constraints and try to
minimize the number of additional gates and circuit depth
in the final hardware-compliant circuit.

3.2 Objectives and Metrics
Since qubit mapping problem is NP-Complete [49], it is hard
to directly find the optimal solution. We will design a heuris-
tic algorithm trying to find a solution to this problem with
the following objectives:

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1004

1. Flexibility. NISQ devices may have an irregular cou-
pling design which can evolve over time. Our algo-
rithm should be able to deal with arbitrary symmetric
coupling cases for various benchmarks.

2. Fidelity.This objective comes from the imperfect quan-
tum operations. The error rate of a CNOT gate is high
and one SWAP even requires 3 CNOT gates. We target
to improve the overall fidelity by reducing the number
of quantum gates, especially two-qubit gates, of the
final hardware compliant circuit.

3. Parallelism. This objective comes from the limited
qubit lifetime. Inserting SWAPsmay increase the depth
of the circuit. If our algorithm can insert SWAPs that
can be executed in parallel and control the final circuit
depth, a deeper circuit will be allowed to execute on
hardware.

4. Scalability. Our algorithm targets to be scalable with
an acceptable execution time for NISQ devices which
contain dozens to hundreds of qubits. As the number
of qubits continues to increase beyond the scope of
NISQ in the future, QEC might be used, and the prob-
lem addressed in the paper turns into another one, as
discussed in other papers [16, 20, 28, 35].

Metrics. Our algorithm is evaluated by a set of bench-
marks of various sizes on IBM’s latest public superconduct-
ing chip model [18] to test the flexibility and scalability. The
metrics are the total number of gates and the circuit depth
in the generated hardware-compliant circuit.

Table 1. Definition of Notations used in this paper
Notation Definition
n number of logical qubits
q {1,2, · · · ,n } logical qubits in quantum circuit
д number of gates in the circuit
d depth of the circuit
N number of physical qubits
Q {1,2, · · · ,N } physical qubits on quantum device
G(V ,E) the coupling graph of the chip
D[][] the distance matrix of the physical qubits

D[i][j] is the distance between Qi ,Q j
π () a mapping from q {1,2, · · · ,n } to Q {1,2, · · · ,N }

π−1() a mapping from Q {1,2, · · · ,N } to q {1,2, · · · ,n }
F Front Layer, defined in Section 4.1
E Extended Set, defined in Section 4.4

4 Finding Initial Mapping and SWAPs
In this section, we will introduce our heuristic approach
SABRE step by step to illustrate how our design search
could overcome the shortcomings of previous work. We start
with preprocessing steps in Section 4.1 and the overview
of SABRE’s SWAP-based heuristic search algorithm in Sec-
tion 4.2. Then we use several examples to explain key design
decisions in SABRE in Section 4.3, followed by the heuristic

function design in Section 4.4. We summarize the notations
used in this paper in Table 1.

4.1 Preprocessing
Before our heuristic search, some preprocessing steps are
performed to prepare and initialize the required data.

Distance matrix computing. Given the coupling graph
G(V ,E) of a quantum device, we will first compute the All-
Pairs Shortest Path (APSP) by Floyd-Warshall algorithm [12]
to obtain the distance matrix D[][]. Each edge in the cou-
pling graph has distance of 1 because one SWAP is required
to exchange the two qubits of an edge. So that D[i][j] repre-
sents the minimum number of SWAPs required to move a
logical qubit from physical qubit Qi to Q j . The complexity
of this step is O(N 3), which is acceptable for NISQ devices
with hundreds of qubits.

Circuit DAG generation. We use a Directed Acyclic
Graph (DAG) to represent the execution constraints between
the two-qubit gates in a quantum circuit. The single qubit
gates are not considered here because they can always be
executed locally on one qubit without bringing dependencies
on other qubits. A two-qubit gate CNOT (qi ,qj) can be exe-
cuted only when all the previous two-qubit gates on qi or qj
have been executed. We traverse the entire quantum circuit
and construct a DAG to represent execution dependencies
with complexityO(д). An example is shown in Figure 4. The
DAG in the lower half is generated from the quantum circuit
above. For example, the gate д3 depends on gate д1 because
qubit q2 is in both д1 and д3 can not be executed before д1.
Front layer initialization. A front layer (denoted as F)

in this paper is defined as the set of all the two-qubit gates
which have no unexecuted predecessors in the DAG. These
gates can be executed instantly from a software perspective.
For a two-qubit gateCNOT (qi ,qj), it can be placed in the set
F when all previous gates on qi or qj have been executed. By
checking the generated DAG, we can select all vertices in the

q1

q2

q3

q4

q5

q6

H

H

H

Z

H

H

Z

g1

g2

g3

g4

g5

g6

g7

g8

…
…

O
r
ig

in
a

l C
ir

cu
it

G
e
n

e
ra

te
d

 D
A

G

g1

g2

g3

g4

g5

g6

g7

g8

…
…

Front Layer

q2

q3

q6

q4

q2

q3

q4

q1

q4

q5

Figure 4. Example of DAG Generation and Front Layer Ini-
tialization.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1005

Algorithm 1: SABRE’s SWAP-based Heuristic Search
Input: Front Layer F , Mapping π , Distance Matrix D,

Circuit DAG, Chip Coupling Graph G(V ,E)
Output: Inserted SWAPs, Final Mapping πf

1 while F is not empty do
2 Execute_дate_list = ∅ ;
3 for gate in F do
4 if gate can be executed on device then
5 Execute_дate_list .append(дate);
6 end
7 end
8 if Execute_дate_list , ∅ then
9 for gate in Execute_дate_list do

10 F .remove(дate);
11 obtain successor gates from DAG;
12 if successor gates’ dependencies are resolved

then
13 F .append(дate);
14 end
15 end
16 Continue;
17 else
18 score = [];
19 SWAP_candidate_list = Obtain_SWAPs(F ,G);
20 for SWAP in SWAP_candidate_list do
21 πtemp = π .update(SWAP);
22 score[SWAP] =

H(F ,DAG,πtemp ,D, SWAP);
23 end
24 Find the SWAP with minimal score;
25 π = π .update(SWAP);
26 end
27 end

graph with 0 indegree, which means the corresponding two-
qubit gates have no dependencies, to initialize F . In Figure 4,
the initial front layer contains д1 and д2 because they have
no predecessors.

Temporary initial mapping generation. SABRE does
not give the initial mapping at the preprocessing stage, but
a temporary initial mapping is still required to start our
heuristic search. We randomly generate an initial mapping
as a start point. Later in Section 4.3.2, we will finally update
this initial mapping at the end of SABRE.

4.2 SWAP-Based Heuristic Search
The preprocessing stage leads to the distance matrix D[][],
circuit DAG, initial F , and an initial mapping. In this section,
we introduce the complete SWAP-Based heuristic search
procedure.

Algorithm 1 shows the pseudo code of our search algo-
rithm for one traversal, which scans through the entire DAG
and inserts SWAPs to make all CNOT gates executable. Later
in Section 4.3.2, this procedure will be used multiple times
to update the initial mapping and improve the results. Gen-
erally, SABRE’s heuristic search will iterate until the front
layer F is empty, which means all the gates in the circuit
have been executed and the algorithm should stop. In each
iteration, it will first check if there are any gates in F that
can be directly executed on the chip. If so, it will execute
these gates, remove them from F , and then add new gates
to F if possible. Otherwise, it will try to search for SWAPs,
insert the SWAPs in the circuit, and update the mapping. A
detailed explanation of each step is listed as follows:

• Our heuristic search algorithm will first check if F is
empty. If so, all the two-qubit gates in the circuits have
been executed and we should finish our search algo-
rithm. Otherwise, it will initialize anExecute_дate_list
and try to add some gates from F to Execute_дate_list .

• To determine whether a gate should be added into
Execute_дate_list , SABRE’s search algorithm will ex-
tract the logical qubits, qi and qj , in the gate and use
the current mapping to find the corresponding physi-
cal qubitsQm ,Qn = π (qi),π (qj) on the chip. IfQm and
Qn are connected by an edge in the coupling graph G,
then this two-qubit gate on qi and qj can be executed
directly and will be added to Execute_дate_list .

• If Execute_дate_list is not empty, all gates in the list
are removed from F . After that, we will check the
successor gates of these executed gates. For a successor
CNOT gate on qi and qj , if there is no gate in F that is
applied on any of them, then logically this successor
gate is ready to be executed and we will add it to F .
After executing some gates and adding the successor
gates, we will go back to the beginning and the check
for the executable gates again.

• If Execute_дate_list is empty, all the gates in F can
be executed in software but not on hardware. SWAPs
need to be inserted to move the logical qubits in a
two-qubit gate close to each other.

• Instead of searching for a mapping, which will require
exponential time and space, we only search for SWAPs
associated with the qubits in F (in Section 4.3.1). Sup-
pose q1 is a target of a two-qubit gate in F now, we find
the corresponding physical qubit Qi = π (q1) inG and
then locate all its 5 neighbors Qi1, . . . ,Qi5. After that
we use reverse mapping to find the corresponding log-
ical qubits qi1, . . . ,qi5 = π−1(Qi1), . . . ,π

−1(Qi5). For
logical qubit pairs (q1,qi1), . . . , (q1,qi5), it is possible
to insert a SWAP between the two qubits in a qubit
pair since their corresponding physical qubits are con-
nected by an edge in the coupling graph, and two-qubit
gates between these two qubits are supported by the

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1006

hardware. The SWAPs on these qubit pairs will be
added to SWAP_candidate_list . We repeat the proce-
dure above for all the qubits involved in F .

• A heuristic cost function H is then used to rate each
SWAP in the SWAP_candidate_list . The SWAP with
the lowest score is selected to update the mapping π .
After that, the algorithm continues to check for exe-
cutable gates if F is not empty; otherwise, it terminates.

4.3 Key Design Decisions
Compared with previous solutions, SABRE features three
points to ensure the design objectives can be achieved. Three
corresponding examples are given to demonstrate the bene-
fits of our design decisions.

4.3.1 SWAP-Based Search Scheme.
Previous works usually employ mapping-based exhaustive
search to find the valid mapping transition with low over-
head [58, 61]. For example, Zulehner et al. search all possible
combination of SWAPs that can be applied concurrently to
minimize the output circuit depth and the number of addi-
tional SWAPs at the same time [61]. However, such exhaus-
tive search requiresO(exp(N)) time and space, which makes
the algorithms not applicable to larger-size NISQ devices (ex-
perimental results discussed in Section 5.2.2).
We observe that many SWAPs in the mapping-based ex-

haustive search can be redundant. Figure 5 shows an example
of how we reduce the search space and find the SWAP. Sup-
pose we have a 9-qubit device. The coupling graph and initial
mapping are shown on the right side. The program we need
to execute is on the left side. The first two CNOT gates are
in the front layer and ready to be executed. The third CNOT
needs to be executed after the first one due to the depen-
dency on q7. The first two gates cannot be executed directly
because their corresponding physical qubit pairs are not con-
nected. All qubits not involved in the front layer (q2, q4, q5,
q6, q9) are considered as low priority ones and any SWAPs
inside this low priority qubit set cannot help with resolving
dependencies in the front layer. Thus, only the SWAPs that
associate with at least one qubit in the front layer (the edges
marked red in Figure 5) are the candidate SWAPs .
For all the candidate SWAPs, we design a heuristic cost

function to help find the SWAP that can reduce the sum of
distances between each qubit pairs in the front layer. More-
over, we also enable look-ahead ability in the heuristic cost
function by considering the gates right after the front layer.
The detailed design of our heuristic cost function is in Sec-
tion 4.4. Here in this example in Figure 5, we can find that the
SWAP marked by a purple arrow is the best one. It can make
all the CNOT gates in the front layer executable and also
reduce the distance between q2 and q7, which are in a CNOT
gate right after the front layer. For the long-term gates far
away from the front layer, we temporarily do not consider
them because the mapping may vary significantly during

q2 q4

q1 q3

q5

q6

q7

q8q9

CNOT q1, q7
CNOT q3, q8
CNOT q2, q7

……

……

……

Ready to execute
(Front Layer)

Near-term gates
(Need to be considered)

Low priority qubits
Original Code:

Long-term gates
(Temporarily ignored)

Figure 5. Example of SWAP-Based Heuristic Search

execution and it is hard to estimate the cost accurately over
a long gate sequence without an exhaustive search.

Complexity Analysis. An upper bound of the computa-
tion complexity can be estimated by the worst case, in which
each two-qubit gate is satisfied individually. The problem is
resolved when all two-qubit gates have been satisfied. The
time complexity to satisfy one two-qubit gate is the multi-
plication of the time to evaluate a potential option in the
search space, the size of the largest possible search space,
and the maximum number of search steps per two-qubit
gate. The complexity of the heuristic cost function computa-
tion is O(N) (in Section 4.4). This SWAP-based search could
bring exponential speedup by reducing the search space from
O(exp(N)) to O(N) (in the worst case all the qubits are in-
volved in the front layer), which makes SABRE scalable to
larger size cases. Although it increases the number of search
steps because since multiple SWAPs may be needed for one
two-qubit gate, the benefit is still significant because we need,
at most, the diameter of the chip coupling graph (O(

√
N) for

2D layout) number of SWAPs to move two qubits together for
each two-qubit gate. In summary, our SWAP-based search
scheme can reduce the complexity fromO(exp(N)) to at most
O(N 2.5)for each two-qubit gate, which makes SABRE expo-
nentially faster as N increases.

4.3.2 Reverse Traversal for Initial Mapping.
It has been proved that initial mapping could have a huge
impact on the final result [49, 61]. However, no previous
solution could give an initial mapping with global consider-
ation. Siraichi et al. counted the number of coupled logical
qubits in the circuit for each logical qubit and tried to find a
match with the outdegree of the physical qubit in the cou-
pling graph with no temporal information considered [49].
Zulehner et al. determined the initial mapping by those two-
qubit gates at the beginning of the circuit without global
consideration [61].

Different from classical circuit or programs, quantum cir-
cuits are reversible. You can easily generate a reverse circuit
of the original circuit. The two-qubit gates in the reverse
circuit will be exactly the same with only the order reversed.
Figure 6 shows an example of the reverse circuit. The last
(first) CNOT gate in the original circuit will be the first (last)
CNOT gate in the reverse circuit on the same qubits. This
symmetry between the original circuit and the reverse circuit
creates a new opportunity for initial mapping optimization.
If we know the final mapping of a quantum circuit, we can

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1007

q1

q2

q3

q4

q5

q6

q1

q2

q3

q4

q5

q6

Original Circuit Reverse Circuit

In
itia

l M
a
p

p
in

g

F
in

a
l M

a
p

p
in

g

U
p

d
a

ted
 In

itia
l

M
a

p
p

in
g

Figure 6. Initial Mapping Update Using Reverse Traversal Technique

use this final mapping as the initial mapping to solve qubit
mapping problem for the reverse circuit on the same hard-
ware model. The final mapping of the reverse circuit can
be an initial mapping for the original circuit. This updated
initial mapping comes with better quality because all the
gates’ information is considered. The gates that are closer
to the beginning of the circuit will have more impact on
the initial mapping optimization. The gates far away from
the beginning have less impact but can still be considered
through these forward and backward traversals.
Based on this observation, we propose a novel reverse

traversal technique to generate high-quality initial mapping
with global information considered. Figure 6 illustrates the
procedure of this technique. We first randomly generate an
initial mapping and then apply our SWAP-based heuristic
search to traverse through the original circuit. The final
mapping obtained from this forward traversal will be used
as the initial mapping in the following reverse traversal.
We use the same SWAP-based search with only the circuit
reversed, and the original initial mapping will be updated to
the final mapping in the reverse traversal.

4.3.3 Trade-off between the Circuit Depth and the
Number of Gates.

When we insert SWAPs in the original quantum circuit,
there is a trade-off between these two metrics: the num-
ber of gates and the circuit depth (an analogy in classical
computation can be the trade-off between area and latency
in digital circuit design). Figure 7 shows an example. Sup-
pose there is a 9-qubit device and we have 2 CNOT gates
on {q1,q2}, {q3,q4} (marked by blue and green) to exe-
cute. The initial mapping is shown on the left side. We have
two different solutions with different optimization objec-
tives: 1) Depth First. By inserting 4 non-overlap SWAPs
on {q1,q5}, {q2,q9} {q3,q7}, and {q4,q8} (marked by 4 red
arrows) which can be executed simultaneously, we can sat-
isfy these 2 two-qubit gate dependencies with 4 additional
SWAPs, and the circuit depth increases by 1 SWAP. 2) Num-
ber of Gates First. {q2,q9} is first swapped and then two
qubit pairs {q2,q3} and {q4,q8} are swapped simultaneously.
The SWAP on {q2,q3} must be applied after the first SWAP
on {q2,q9} so that the circuit depth increases by 2 SWAPs,
but only 3 additional SWAPs are required to resolve all the
dependencies.

CNOT q1, q2
CNOT q3, q4Code: Inserted Code:

SWAP q2, q9
SWAP q1, q5
SWAP q4, q8
SWAP q3, q7

1) Depth First

2) Number of Gates First

Inserted Code:
SWAP q2, q9
SWAP q2, q3
SWAP q4, q8

Original Mapping:

Updated Mapping:

Updated Mapping:

q2 q4

q1 q3

q5

q6

q7

q8q9

q1 q2

q3

q4

q6

q5

q8

q8

q8

q7

q7 q7

q9 q9

q9

q1 q1

q2

q2q3

q3

q4

q4q5 q5

q6 q6

Figure 7. Example of Generated Circuits for Different Opti-
mization Objectives (a Trade-off between d and д)

The two solutions above showed an example of a trade-off
between d and д. To enable the control of such trade-off, a
decay effect is introduced in SABRE which makes our heuris-
tic search algorithm prone to selecting non-overlap SWAPs.
For example, after the SWAP on q2 and q9, the heuristic cost
function result for any SWAPs containing q2 or q9 will in-
crease slightly to let our search algorithm favor choosing
SWAPs containing other qubits.

In summary, these three design decisions bring exponen-
tial speedup for scalability, an high-quality initial mapping
solution, and the controllability between different optimiza-
tion objectives. These advantages ensure SABRE achieves
all the design objectives discussed in Section 3.2.

4.4 Design the Heuristic Cost Function
Asmentioned above, the objectives for heuristic cost function
are summarized as follows:

1. H should be able to indicate the SWAP that can move
the qubits in F closer to finally allow the physical
execution of the two-qubit gates in F .

2. Besides the two-qubit gates in F , the heuristic cost
function should be able to consider follow-up two-
qubit gates for more effective qubit movement.

3. It should be able to control the parallelism of inserted
SWAPs to enable the trade-off between gate count and
circuit depth mentioned in Section 4.3.3.

Nearest Neighbor Cost (NNC) function is used to con-
struct the basic heuristic function. Further optimization is
introduced later to achieve all the design objectives.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1008

4.4.1 Nearest Neighbor Cost Function.
NNC-based heuristic function has been widely used in pre-
vious research [42, 58, 61]. NNC is the minimal number of
SWAPs required to move two logical qubits adjacent to each
other on the quantum device. On ideal 1D/2D lattice hard-
ware models, NNC can be easily obtained from the coor-
dinates of the physical qubits while on NISQ devices with
irregular coupling, NNC is the length of the shortest path
between two physical qubits on the coupling graph, which
has already been obtained inD[][] during the preprocessing
stage (an offset -1 is ignored without affecting the result).
In our design, the summation of the distances between all
qubit pairs in F is the basic heuristic cost function (shown
in Equation 1). To evaluate the candidate SWAPs, the map-
ping π is temporarily changed by a SWAP and then Hbasic
is calculated. If Hbasic is small, it generally means the dis-
tances between the two qubits in the qubit pairs from F are
short, and this SWAP is more likely to make the gates in
F executable. The SWAP with the minimal Hbasic will be
selected.

Hbasic =
∑

дate ∈F

D[π (дate .q1)][π (дate .q2)] (1)

4.4.2 Look-Ahead Ability and Parallelism.
Although Hbasic is able to guide the heuristic search and
solve the qubit movement, it only considers the two-qubit
gates in F . However, a local qubit movement can affect not
only the gates in F but also the following gates. For the
example in Figure 3, the SWAP between q3 and q7 is a good
selection because it not only resolves the dependencies for
the gates in the front layer but also makes theq2 andq7 closer
in the following gate. Thus, we introduce the Extended Set E,
which contains some closet successors of the gates from F in
the DAG. The size of E is flexible, depending on how much
look-ahead ability we hope to have. A large E is not necessary
since the summation over E is only an inaccurate estimation
of the effect of a SWAP and the amount of computation will
also increase.
In the updated heuristic cost function, we sum over the

gates in both E and F to enable the look-ahead ability. Since E
and F are different sizes, we normalize the two summations
by the sizes of F and E respectively. Also, the gates in F
should have some priority since they need to be executed
before those in E. So that a weight parameterW , 0 ≤W < 1,
is added to reduce the effect of the second term.

In order to select SWAPs that can be executed in parallel,
a decay effect is introduced in the heuristic cost function.
If a qubit qi is involved in a SWAP recently, then its decay
parameter will increase by δ (decay(qi) = 1 + δ). This decay
parameter will let our heuristic search tend to select non-
overlap SWAPs and increase the parallelism in the generated
circuit. Moreover, by tuning the value of δ , we are able to
control the ‘willingness’ of our heuristic search to generate

different circuits with a trade-off between the number of
gates and circuit depth. The final version of our optimized
heuristic function is shown in Equation 2. The complexity
of this heuristic function is O(N) since all qubits appear in
F in the worst case. The size of E is not considered because
it will not be very large and is set to N in our evaluation.

H =max(decay(SWAP .q1),decay(SWAP .q2))

∗{
1
|F |

∑
дate ∈F

D[π (дate .q1)][π (дate .q2)]

+W ∗
1
|E |

∑
дate ∈E

D[π (дate .q1)][π (дate .q2)]}

(2)

5 Evaluation
In this section, we evaluate SABRE with a set of benchmarks
on the latest, reported hardware model based on the super-
conducting circuit technology.

Benchmarks. The benchmarks are selected from previ-
ous work [49, 61], including quantum programs from IBM’s
QISKit [19], some functions from RevLib [57], and some
algorithms compiled from Quipper [14] and ScaffCC [21].

HardwareModel.We use the coupling graph from IBM’s
latest Q20 Tokyo chip [18] (Figure 2). All the couplings are
symmetric and the CNOT gate is allowed in both directions
between each pair of connected physical qubits.

Experiment Platform. All experiments in this paper are
executed on a server with 2 Intel Xeon E5-2680 CPUs (48
logical cores) and 378GB memory. The Operating System is
CentOS 7.5 with Linux kernel version of 3.10.

Algorithm Configuration. The size of the Extended Set
|E | is fixed to be 20 and the the weightW to be 0.5. Thedecay
parameter δ increases from 0.001 and this decay function is
reset every 5 search steps or after a CNOT gate is executed.
The algorithm is executed for 5 times, each with a different
initial mapping for each benchmark. Each time we run 3
traversals (forward-backward-forward) and report the best
result out of 5 attempts.

Comparison. There are several existing algorithms with
the flexibility to be applied to an arbitrary coupling graph
proposed by IBM [19], Siraichi et al. [49], and Zulehner et
al. [61]. Among them, Zulehner et al.’s algorithm has beaten
the other two solutions and is used as the Best Known Algo-
rithm (BKA) in this paper. For a fair comparison, their source
code [41] is downloaded and only the embedded hardware
model is modified to be the same IBM 20-qubit chip model.
It is then recompiled with full optimization, and executed
on the same server with SABRE.

5.1 Number of Gates Reduction
Table 2 shows the gate counts reduction of SABRE compared
with BKA [61]. SABRE could beat BKA on various bench-
marks of different sizes.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1009

Table 2. Number of Additional Gates and Runtime Compared with BKA [61]

Original Circuit BKA [61] (C++) SABRE (Python) Comparison
type name n дor i дadd дtot ttot дla дop t1 top ttot/top ∆д ∆д/дadd
small 4mod5-v1_22 5 21 15 36 0 6 0 0 0 N/A 15 100%
small mod5mils_65 5 35 18 53 0 12 0 0 0 N/A 18 100%
small alu-v0_27 5 36 33 69 0 30 3 0 0 N/A 30 91%
small decod24-v2_43 4 52 27 79 0 9 0 0 0 N/A 27 100%
small 4gt13_92 5 66 42 108 0 18 0 0 0 N/A 42 100%
sim ising_model_10 10 480 18 498 1.37 39 0 0.003 0.004 342.5 18 100%
sim ising_model_13 13 633 60 693 42.46 66 0 0.005 0.007 6066 60 100%
sim ising_model_16 16 786 Out of Memory 84 0 0.008 0.01 N/A N/A N/A
qft qft_10 10 200 66 266 0.22 93 54 0.004 0.103 2.136 12 18%
qft qft_13 13 403 177 580 266.27 204 93 0.015 0.036 7396 84 47%
qft qft_16 16 512 267 779 474.81 276 186 0.028 0.084 5652 81 30%
qft qft_20 20 970 Out of Memory 429 372 0.034 0.102 N/A N/A N/A
large rd84_142 15 343 138 481 1.97 243 105 0.012 0.035 56.29 33 24%
large adr4_197 13 3439 1722 5161 4.53 2112 1614 0.19 0.49 9.245 108 6%
large radd_250 13 3213 1434 4647 2.23 1488 1275 0.16 0.48 4.646 159 11%
large z4_268 11 3073 1383 4456 1.15 1695 1365 0.15 0.44 2.614 18 1%
large sym6_145 14 3888 1806 5694 0.56 1650 1272 0.19 0.56 1.000 534 30%
large misex1_241 15 4813 2097 6910 0.3 2904 1521 0.29 0.89 0.337 576 27%
large rd73_252 10 5321 2160 7481 1.19 2391 2133 0.31 0.94 1.266 27 1%
large cycle10_2_110 12 6050 2802 8852 1.31 2622 2622 0.44 1.35 0.970 180 6%
large square_root_7 15 7630 3132 10762 2.81 5049 2598 0.63 1.5 1.873 534 17%
large sqn_258 10 10223 4737 14960 16.92 5934 4344 1.23 3.52 4.807 393 8%
large rd84_253 12 13658 6483 20141 15.25 7668 6147 1.82 5.39 2.829 336 5%
large co14_215 15 17936 9183 27119 18.37 10128 8982 3.18 9.51 1.932 201 2%
large sym9_193 10 34881 17496 52377 72.61 26355 16653 11.11 30.17 2.407 843 5%
large 9symml_195 11 34881 17496 52377 81.73 25368 17268 11.1 31.42 2.601 228 1%

small: small quantum arithmetic. sim: quantum simulation. qft: quantum fourier transform. large: large quantum arithmetic. n: number of logical qubits in the original circuit.
дor i : original number of gates. дadd : number of additional gates. дtot : total number of gates. ttot : total runtime in seconds, ‘0’ means shorter than 0.001 second. дla : number
of additional gates with only look-ahead heuristic. дop : number of additional gates after reversal traverse. t1: runtime of first traverse in seconds. top : runtime of all 3 traversals.
∆д: = дadd − дop . Out of Memory: the program required more than 378 GB memory (entire memory space on the test server)

5.1.1 Small Size Cases and Ising Model.
SABRE could perform much better than BKA on small-size
benchmarks. It is able to find a good initial qubit mapping
with no or very few additional SWAPs required. The number
of additional gates could be significantly reduced by 91%
or even fully eliminated. For ising model benchmarks, the
optimal solution is trivial since the ising model in quantum
mechanics only considers nearby coupling energy. Although
the number of qubits and the number of gates are much
larger compared with small cases, SABRE can still find the
optimal solution. BKA only considers the two-qubit gates
at the beginning of the circuit without such a scheme to
improve the initial mapping.

5.1.2 Large Size Cases.
For larger circuits in type ‘large’ and ‘qft’, SABRE can still
be better than BKA. Since the BKA searches a much larger
space in each step, SABREmay not achieve the same or better

result in the first traversal. The дla column in Table 2 shows
the number of additional gates after the first traversal with
look-ahead heuristic function and дla is larger than дadd in
most cases. However, with the help of our reverse traversal
technique, SABRE (shown in дr e) is able to outperform BKA
with the updated initial mapping and reduce the number of
additional gates by 10% on average.
Note that the gate count reduction for large size cases is

less significant than that for small size cases. This difference
comes from whether a perfect initial mapping, which could
satisfy all the CNOT gate constraints in the program after
the inital mapping and does not require further SWAPs, can
be found. For small benchmarks, there often exists a physical
qubit coupling subgraph that can perfectly or almost match
logical qubit coupling in the benchmarks. Our algorithm can
find such matching (at least for all small benchmarks we
have tested), while BKA cannot. This leads to substantial
benefit since very few or no SWAPs are inserted. For the
benchmarks with larger number of gates, a physical qubit

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1010

subgraph that can match the logical qubits coupling usually
does not exist. Therefore, both our approach and the baseline
need to insert more SWAPs, leading to less benefit.

5.2 Runtime Speedup and Scalability
As discussed in Section 4.3.1, the size of search space is
O(exp(N)) in BKA, which limits its scalability in terms of
the number of qubits. But the search space size in SABRE is
only O(N). Although more search steps are required since
only one SWAP is selected in each step, the overall complex-
ity in the worst case is still O(N 2.5д). Such a difference in
complexity makes BKA not applicable to larger size cases.

5.2.1 Runtime Comparison.
BKA is written in C++ and compiled with GCC O3 opti-
mization, while SABRE is implemented in pure Python with-
out any parallelization or C/C++ accelerated library. The
‘ttot/top ’ column in Table 2 shows the ratio between the
execution time of BKA and SABRE. For most benchmarks,
SABRE requires significantly less execution time. Even in the
worst case ‘misex1_241’, SABRE only needs about 3 times
runtime compared with the BKA. Since the intrinsic speed
difference between C++ and Python can be over 100 times,
the speedup can still be estimated to be dozens of times if
the same programming language is used.

5.2.2 Limit of BKA and Scalability.
Our experiments have reached the limit of BKA (shown in
Table 2 with ‘Out of Memory’). For the ‘sim’ and ‘qft’ type,
the benchmarks share the same function with different input
sizes. The runtime of BKA grows rapidly as the number of
qubits increases. For ‘qft_16’ benchmark, we observe that
BKA requires more than 40GB memory and 474.81 seconds
runtime while SABRE only required about 200MB memory
and 0.08 seconds runtime. For ‘ising_model_16’ and ‘qft_20’
benchmarks, the BKA requires more than 378GB memory
and can not be executed on our server. But SABRE can still
solve it in 0.1 seconds with about 300MB memory. These
results show that SABRE is much more scalable than BKA.

5.3 Trade-off between Number of Gates and Depth
The decay effect is introduced in the heuristic cost function
in order to reduce the depth of the generated circuit. Figure 8
shows the generated circuit variation with different δ values
for 9 benchmarks. The X-axis is the number of gates normal-
ized to дor i (in Table 2). The Y-axis represents the generated
circuit depth normalized to the original circuit depth. These
results showed that SABRE could provide about 8% variation
in generated circuit depth by varying the number of gates
and control the generated circuit quality. For a specific imple-
mentation technology, we can change the δ according to the
qubit coherence time and gate fidelity data. However, if we
continue to increase δ , both the circuit depth and the number
of gates may increase (not shown in the figure) because our

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 .2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 .9

qft_10

qft_13

qft_16

qft_20

rd84_142

radd_250

cycle10_2_110

co14_215

sym9_193

Number of Gates Normalized to 𝒈𝒐𝒓𝒊

C
ircu

it
D

ep
th

 N
o
rm

a
lized

 to
 O

rig
in

a
l D

ep
th

Figure 8. Trade-off between д and d in the Output Circuits

search algorithm will consider more about unmoved qubits
instead of trying to satisfy a CNOT dependency, which will
bring redundant SWAPs.

6 Limitation and Future Work
This paper provides an effective, flexible, and scalable solu-
tion for the qubit mapping problem. However, some of our
assumptions may not hold due to the rapid development
in this area. Some limitations and potential future research
directions are listed as follows:

Benchmarks.We select 26 benchmarks of different sizes
and functions from several benchmark suites. However, these
quantum circuits may not be able to fully represent the char-
acteristics of emerging practical NISQ applications which
are still under development.

Various ChipArchitecture.Weuse the hardwaremodel
from the latest IBM’s 20-qubit chip, on which each connected
qubit pair support CNOT gates. However, the chip model
varies among different vendors. For example, Rigetti’s QPU
supports CPhase and iSWAP two-qubit gates [40, 44]. How
to design more general circuit transformations is beyond the
scope of this paper, but can be a future research direction.

More Precise Hardware Modeling. Besides the qubit
coherence time, gate fidelity, and available on-chip coupling,
the difference in the error rate of various quantum gates and
of the same quantum gate applied on different qubits or qubit
pairs may also influence the fidelity of executing a quantum
algorithm [50]. In addition, realistic hardware suffers from
more imperfections which are not covered in this paper, such
as the cross talk between qubits. Both facts call for a more
precise hardware model to enable better platform-specific
quantum circuit optimization.

7 Related Work
Although the qubit mapping problem shares some similari-
ties with the register allocation [7, 37] and instruction sched-
uling problem [11, 17, 51] in classical computing, the con-
straints are different. In register allocation, the main con-
straint is the limited number of registers while for quantum
computing, the number of physical qubits cannot be smaller
than that of logical qubits. In instruction scheduling, the

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1011

main constraints are the data dependency and limited num-
ber of computing units. But in the qubit mapping problem,
the major constraint is the limited coupling between phys-
ical qubits. Therefore, existing methods for such problems
cannot be directly applied in this qubit mapping problem.

It is well known that nearest neighbor coupling is the most
feasible and promising when there were only devices with
a very limited number of qubits. Attempts to solve qubit
mapping problem at that time were made on hypothetical
quantum hardware models like ideal 1D/2D lattice models
and can be classified into two types. One popular type of
approach is to formulate the qubit mapping problem into a
mathematically equivalent optimization problem and then
apply a software solver [4, 6, 8, 30, 31, 34, 45, 46, 53, 54, 59].
The major drawback of this type of approach is that a gen-
eral solver cannot utilize the intrinsic feature in qubit map-
ping and the execution time is usually very long compared
with the following heuristic approaches. Another type of
approach is search algorithms guided by heuristic cost func-
tions. Several attempts have beenmade on ideal 1D/2D lattice
qubit coupling models [1, 3, 26, 27, 29, 42, 48, 58], but they
are not applicable in the NISQ era since qubit coupling can
be much more complex and restricted on NISQ devices. Some
other works target hypothetical large-scale quantum comput-
ers [16, 20], which is beyond the scope of NISQ and the qubit
mapping problem turns out to be another one [16, 20, 28, 35].

After IBM launched its quantum cloud service, more peo-
ple were able to work on hardware models from realistic
devices. IBM provides a mapper targeting IBM’s chips in
its quantum computing toolkit QISKit [19]. This mapper
divides the quantum circuit into independent layers. Each
layer only contains non-overlapped operations. Then it ran-
domly searches satisfying mappings for each layer guided by
certain heuristics [49, 61]. Besides IBM’s solution, two more
recent works [49, 61] are proposed for IBM’s chips and can
handle devices with arbitrary coupling, which are discussed
as follows.

Siraichi et al. studied the qubit allocation problem on IBM
QX2 and QX3 chips [49]. They proposed a search algorithm
to find the optimal solution based on dynamic programming.
However, this optimal algorithm requires exponential time
and space to execute and can only work for circuits with
8 or fewer qubits. For larger size cases, they proposed a
heuristic method for both initial mapping and intermediate
qubit movement. Their initial mapping solution counted
the number of two-qubit gates between each pair of logical
qubits and tried to find a matched edge on the physical chip
with no temporal information considered in this stage. For
the qubit movement, they only resolved one two-qubit gate
each time and determined whether to move qubits depending
on the number of two-qubit gates between them greedily
without considering the effects of these local decisions. Their
heuristic method is fast but oversimplified with results worse
than IBM’s solution.

Zulehner et al. tried to use A* search plus heuristic cost
function [61] (BKA in this paper). They divided the two-
qubit gates into independent layers similar to IBM’s solution.
Then they searched all possible combination of SWAP gates
to minimize the sum of distance between the coupled qubits
in the layer and reduce the depth of the final output circuit
at the same time. Although their method is more efficient
than IBM’s approach and only requires up to several min-
utes on 16-qubit circuits, searching all possible combinations
of concurrent SWAP gates still requires exponential time.
Their initial mapping was determined by only those two-
qubit gates at the beginning of the circuit without global
consideration.

8 Conclusion
The NISQ era is coming in the next few years while a signif-
icant gap remains between quantum software and imperfect
NISQ hardware. This paper tries to solve the qubit mapping
problem caused by limited physical qubits coupling on NISQ
devices. Two-qubit gate is allowed between arbitrary two log-
ical qubits but can only be implemented between two nearby
physical qubits on NISQ hardware. The initial mapping be-
tween logical qubits and physical qubits and its evolution
need to be carefully designed to minimize the circuit transfor-
mation overhead. We propose SABRE, a novel SWAP-based
bidirectional heuristic search method to overcome the draw-
backs of previous works and ensure flexibility, scalability,
controllability, and high-quality initial mapping. Experiment
results show that SABRE can generate hardware-compliant
circuit among different objectives with less or comparable
overhead consuming much shorter execution time. Although
SABRE works for IBM chips with arbitrary symmetric CNOT
coupling, the hardware model, which differs among vendors
and may change over time, is also simplified and single-qubit
gates are not yet considered. We only add additional gates
instead of modifying the original circuit, while the latter one
is much more complicated. In conclusion, this work explores
one step in mitigating the quantum software-hardware gap.
Future work is required to take more precise hardware mod-
els into consideration.

9 Acknowledgments
We thank all anonymous reviewers for their valuable com-
ments. We are grateful to Dr. Xiang Fu who read the early
drafts and provided constructive feedback. We are also grate-
ful to Dr. Robert Wille and Mr. Marcos Siraichi for answering
questions about their related work. This work was supported
in part by NSF 1730309.

References
[1] Mohammad AlFailakawi, Imtiaz Ahmad, and Suha Hamdan. 2014.

Lnn reversible circuit realization using fast harmony search based
heuristic. In Asia-Pacific Conference on Computer Science and Electrical
Engineering.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1012

[2] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVin-
cenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin,
and Harald Weinfurter. 1995. Elementary gates for quantum computa-
tion. Physical review A 52, 5 (1995), 3457.

[3] Anirban Bhattacharjee, Chandan Bandyopadhyay, Robert Wille, Rolf
Drechsler, and Hafizur Rahaman. 2018. A Novel Approach for Nearest
Neighbor Realization of 2D Quantum Circuits. In Proceedings of IEEE
Computer Society Annual Symposium on VLSI. IEEE.

[4] Debjyoti Bhattacharjee and Anupam Chattopadhyay. 2017. Depth-
optimal quantum circuit placement for arbitrary topologies. arXiv
preprint arXiv:1703.08540 (2017).

[5] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush,
Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and
Hartmut Neven. 2018. Characterizing quantum supremacy in near-
term devices. Nature Physics 14, 6 (2018), 595.

[6] Kyle EC Booth, Minh Do, J Christopher Beck, Eleanor Rieffel, Davide
Venturelli, and Jeremy Frank. 2018. Comparing and Integrating Con-
straint Programming and Temporal Planning for Quantum Circuit
Compilation. arXiv preprint arXiv:1803.06775 (2018).

[7] Gregory J Chaitin. 1982. Register allocation & spilling via graph
coloring. In ACM Sigplan Notices, Vol. 17. ACM, 98–105.

[8] Amlan Chakrabarti, Susmita Sur-Kolay, and Ayan Chaudhury. 2011.
Linear nearest neighbor synthesis of reversible circuits by graph parti-
tioning. arXiv preprint arXiv:1112.0564 (2011).

[9] Yu Chen, C Neill, P Roushan, N Leung, M Fang, R Barends, J Kelly, B
Campbell, Z Chen, B Chiaro, and A Dunsworth. 2014. Qubit architec-
ture with high coherence and fast tunable coupling. Physical review
letters 113, 22 (2014), 220502.

[10] Frederic T Chong, Diana Franklin, and Margaret Martonosi. 2017.
Programming languages and compiler design for realistic quantum
hardware. Nature 549 (2017), 180.

[11] Josep M Codina, Jesús Sánchez, and Antonio González. 2001. A unified
modulo scheduling and register allocation technique for clustered
processors. In pact. IEEE, 0175.

[12] Robert W Floyd. 1962. Algorithm 97: shortest path. Commun. ACM 5,
6 (1962), 345.

[13] X Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf,
R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten,
C. G. Almudever, L. DiCarlo, and K. Bertels. 2017. An experimental
microarchitecture for a superconducting quantum processor. In Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE/ACM, 813–825.

[14] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger,
and Benoît Valiron. 2013. Quipper: a scalable quantum programming
language. In ACM SIGPLAN Notices, Vol. 48. ACM, 333–342. Issue 6.

[15] Lov K Grover. 1996. A fast quantummechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. ACM, 212–219.

[16] Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel
Kudrow, Kenneth R Brown, Diana Franklin, Frederic T Chong, and
Margaret Martonosi. 2015. Compiler management of communication
and parallelism for quantum computation. ACM SIGARCH Computer
Architecture News 43, 1 (2015), 445–456.

[17] John L Hennessy and Thomas Gross. 1983. Postpass code optimization
of pipeline constraints. ACM Transactions on Programming Languages
and Systems (TOPLAS) 5, 3 (1983), 422–448.

[18] IBM. 2018. IBM Q Experience Device. https://quantumexperience.ng.
bluemix.net/qx/devices.

[19] IBM. 2018. QISKit, Open Source Quantum Information Science Kit.
https://qiskit.org/.

[20] Ali Javadi-Abhari, Pranav Gokhale, Adam Holmes, Diana Franklin,
Kenneth R Brown, Margaret Martonosi, and Frederic T Chong. 2017.
Optimized surface code communication in superconducting quantum
computers. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 692–705.

[21] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey
Lvov, Frederic T Chong, and Margaret Martonosi. 2014. ScaffCC:
a framework for compilation and analysis of quantum computing
programs. In Proceedings of the 11th ACM Conference on Computing
Frontiers. ACM, 1.

[22] Jeremy Hsu. 2018. CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum
Supremacy. https://spectrum.ieee.org/tech-talk/computing/hardware/
intels-49qubit-chip-aims-for-quantum-supremacy.

[23] Julian Kelly. 2017. A Preview of Bristlecone, GoogleâĂŹs
New Quantum Processor. https://ai.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.html.

[24] Julian Kelly, R Barends, AG Fowler, A Megrant, E Jeffrey, TC White, D
Sank, JY Mutus, B Campbell, Yu Chen, and Z Chen. 2015. State preser-
vation by repetitive error detection in a superconducting quantum
circuit. Nature 519, 7541 (2015), 66.

[25] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, DI Schuster,
J Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and
Robert J Schoelkopf. 2007. Charge-insensitive qubit design derived
from the Cooper pair box. Physical Review A 76, 4 (2007), 042319.

[26] Abhoy Kole, Kamalika Datta, and Indranil Sengupta. 2016. A Heuristic
for Linear Nearest Neighbor Realization of Quantum Circuits by SWAP
Gate Insertion Using N-Gate Lookahead. IEEE J. Emerg. Sel. Topics
Circuits Syst. 6, 1 (2016), 62–72.

[27] Abhoy Kole, Kamalika Datta, and Indranil Sengupta. 2018. A New
Heuristic for N -Dimensional Nearest Neighbor Realization of a Quan-
tum Circuit. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 1 (2018), 182–192.

[28] L Lao, B van Wee, I Ashraf, J van Someren, N Khammassi, K Bertels,
and CG Almudever. 2018. Mapping of Lattice Surgery-based Quantum
Circuits on Surface Code Architectures. arXiv:1805.11127 (2018).

[29] Chia-Chun Lin, Susmita Sur-Kolay, and Niraj K Jha. 2015. PAQCS:
Physical design-aware fault-tolerant quantum circuit synthesis. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 23, 7 (2015),
1221–1234.

[30] Aaron Lye, Robert Wille, and Rolf Drechsler. 2015. Determining the
minimal number of swap gates for multi-dimensional nearest neighbor
quantum circuits. In Design Automation Conference (ASP-DAC), 2015
20th Asia and South Pacific. IEEE, 178–183.

[31] Dmitri Maslov, Sean M Falconer, and Michele Mosca. 2008. Quantum
Circuit Placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27, 4 (2008), 752–763.

[32] Michael A Nielsen and Isaac L Chuang. 2010. Quantum Computation
and Quantum Information. Quantum Computation and Quantum
Information, by Michael A. Nielsen, Isaac L. Chuang, Cambridge, UK:
Cambridge University Press, 2010 (2010).

[33] Daniel Nigg, Markus Mueller, Esteban A Martinez, Philipp Schindler,
Markus Hennrich, Thomas Monz, Miguel A Martin-Delgado, and
Rainer Blatt. 2014. Quantum computations on a topologically encoded
qubit. Science (2014), 1253742.

[34] Angelo Oddi and Riccardo Rasconi. 2018. Greedy Randomized Search
for Scalable Compilation of Quantum Circuits. In International Confer-
ence on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. Springer, 446–461.

[35] Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J Devitt. 2017.
Fault-tolerant, high-level quantum circuits: form, compilation and
description. Quantum Science and Technology 2, 2 (2017), 025003.

[36] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L
OâĂŹbrien. 2014. A variational eigenvalue solver on a photonic quan-
tum processor. Nature communications 5 (2014), 4213.

[37] Massimiliano Poletto and Vivek Sarkar. 1999. Linear scan register
allocation. ACM Transactions on Programming Languages and Systems
(TOPLAS) 21, 5 (1999), 895–913.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1013

https://quantumexperience.ng.bluemix.net/qx/devices
https://quantumexperience.ng.bluemix.net/qx/devices
https://qiskit.org/
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

[38] John Preskill. 2012. Quantum computing and the entanglement frontier.
arXiv preprint arXiv:1203.5813 (2012).

[39] John Preskill. 2018. Quantum Computing in the NISQ era and beyond.
arXiv preprint arXiv:1801.00862 (2018).

[40] Rigetti. 2018. The Quantum Processing Unit (QPU). http://docs.rigetti.
com/en/latest/qpu.html.

[41] Robert Wille. 2018. Mapping to the IBM QX Architectures. http:
//iic.jku.at/eda/research/ibm_qx_mapping/.

[42] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. 2011. Synthesis of
quantum circuits for linear nearest neighbor architectures. Quantum
Information Processing 10, 3 (2011), 355–377.

[43] Mark Saffman, Thad G Walker, and Klaus Mølmer. 2010. Quantum
information with Rydberg atoms. Reviews of Modern Physics 82, 3
(2010), 2313.

[44] Eyob A Sete, William J Zeng, and Chad T Rigetti. 2016. A functional
architecture for scalable quantum computing. In Rebooting Computing
(ICRC), IEEE International Conference on. IEEE, 1–6.

[45] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2013. Optimiza-
tion of quantum circuits for interaction distance in linear nearest
neighbor architectures. In Proceedings of the 50th Annual Design Au-
tomation Conference. ACM, 41.

[46] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2014. Qubit
placement to minimize communication overhead in 2D quantum ar-
chitectures. In Design Automation Conference (ASP-DAC), 2014 19th
Asia and South Pacific. IEEE, 495–500.

[47] Peter W Shor. 1999. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM review 41,
2 (1999), 303–332.

[48] Ritu Ranjan Shrivastwa, Kamalika Datta, and Indranil Sengupta. 2015.
Fast qubit placement in 2D architecture using nearest neighbor real-
ization. In Nanoelectronic and Information Systems (iNIS), 2015 IEEE
International Symposium on. IEEE, 95–100.

[49] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Col-
lange, and Fernando Magno Quintão Pereira. 2018. Qubit allocation.
In Proceedings of the 2018 International Symposium on Code Generation
and Optimization. ACM, 113–125.

[50] Swamit S Tannu andMoinuddin KQureshi. 2018. ACase for Variability-
Aware Policies for NISQ-Era Quantum Computers. arXiv preprint
arXiv:1805.10224 (2018).

[51] Robert M Tomasulo. 1967. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development 11, 1
(1967), 25–33.

[52] Rodney Van Meter and Clare Horsman. 2013. A blueprint for building
a quantum computer. Commun. ACM 56 (2013), 84–93.

[53] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. 2017.
Temporal planning for compilation of quantum approximate optimiza-
tion circuits. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI. 4440–4446.

[54] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. 2018.
Compiling quantum circuits to realistic hardware architectures us-
ing temporal planners. Quantum Science and Technology 3, 2 (2018),
025004.

[55] Theodore Walter, Philipp Kurpiers, Simone Gasparinetti, Paul Mag-
nard, Anton Potočnik, Yves Salathé, Marek Pechal, Mintu Mondal,
Markus Oppliger, Christopher Eichler, and Andreas Wallraff. 2017.
Rapid high-fidelity single-shot dispersive readout of superconducting
qubits. Physical Review Applied 7, 5 (2017), 054020.

[56] Will Knight. 2017. IBM Raises the Bar with a 50-Qubit
Quantum Computer. https://www.technologyreview.com/s/609451/
ibm-raises-the-bar-with-a-50-qubit-quantum-computer/.

[57] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W Dueck, and Rolf
Drechsler. 2008. RevLib: An online resource for reversible functions
and reversible circuits. InMultiple Valued Logic, 2008. ISMVL 2008. 38th
International Symposium on. IEEE, 220–225.

[58] Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam
Chattopadhyay, and Rolf Drechsler. 2016. Look-ahead schemes for
nearest neighbor optimization of 1D and 2D quantum circuits. In
Design Automation Conference (ASP-DAC), 2016 21st Asia and South
Pacific. IEEE, 292–297.

[59] Robert Wille, Aaron Lye, and Rolf Drechsler. 2014. Optimal SWAP gate
insertion for nearest neighbor quantum circuits. In Design Automation
Conference (ASP-DAC), 2014 19th Asia and South Pacific. IEEE, 489–494.

[60] DM Zajac, TM Hazard, Xiao Mi, E Nielsen, and JR Petta. 2016. Scalable
gate architecture for a one-dimensional array of semiconductor spin
qubits. Physical Review Applied 6, 5 (2016), 054013.

[61] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient
mapping of quantum circuits to the IBM QX architectures. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018.
IEEE, 1135–1138.

Session: Quantum Computing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

1014

http://docs.rigetti.com/en/latest/qpu.html
http://docs.rigetti.com/en/latest/qpu.html
http://iic.jku.at/eda/research/ibm_qx_mapping/
http://iic.jku.at/eda/research/ibm_qx_mapping/
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/

	Abstract
	1 Introduction
	2 Background
	2.1 QC Software Basics
	2.2 QC Hardware in the NISQ Era

	3 Problem Analysis
	3.1 Problem in Qubit Mapping
	3.2 Objectives and Metrics

	4 Finding Initial Mapping and SWAPs
	4.1 Preprocessing
	4.2 SWAP-Based Heuristic Search
	4.3 Key Design Decisions
	4.4 Design the Heuristic Cost Function

	5 Evaluation
	5.1 Number of Gates Reduction
	5.2 Runtime Speedup and Scalability
	5.3 Trade-off between Number of Gates and Depth

	6 Limitation and Future Work
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

